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On Levi subgroups and the Levi decomposition for
groups definable in o-minimal structures
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Abstract. We study analogues of the notions from Lie theory of Levi subgroup and
Levi decomposition, in the case of groups G definable in an o-minimal expansion of a
real closed field. With a rather strong definition of ind-definable semisimple subgroup, we
prove that G has a unique maximal ind-definable semisimple subgroup S, up to conjugacy,
and that G = R · S where R is the solvable radical of G. We also prove that any semi-
simple subalgebra of the Lie algebra of G corresponds to a unique ind-definable semisimple
subgroup of G.

1. Introduction and preliminaries. The “Levi–Mal’tsev” theorem
sometimes refers to Lie algebras (over any field of characteristic 0) and
sometimes to Lie groups. For Lie algebras L it says that L is the semidirect
product of a solvable ideal r and a semisimple subalgebra s (with certain
uniqueness properties) and, as such, is valid for Lie algebras over real closed
fields. s is sometimes called a Levi factor of L. For connected Lie groups G it
says that G has a unique, up to conjugacy, maximal connected semisimple
Lie subgroup S, and for any such S, G = R · S where R is the solvable
radical (maximal connected solvable normal subgroup). And of course R∩S
is 0-dimensional. S need not be closed, but when G is simply connected,
S is closed and R ∩ S = {1} (so G is the semidirect product of R and S).
S is sometimes called a Levi subgroup of G. See Theorems 3.14.1, 3.14.2 and
3.18.13 of [17] for example. We also refer to the latter book for basic facts
and definitions concerning Lie algebras and Lie groups.

In this paper we are concerned with a (definably connected) group G
definable in an o-minimal expansion M of a real closed field K, so this goes
outside the Lie group context unless K = R. We are interested not only in
the existence of a “Levi” subgroup and decomposition of the group G but
also in definability properties. Even in the case where M = (R,+, ·) and
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so G is a Nash group (semialgebraic Lie group), this is a nontrivial issue
and S need not be semialgebraic, as pointed out in the first author’s thesis
(see also Example 2.10 of [4]). In the general situation G will have a Lie
algebra L(G) (over the relevant real closed field K) which has its own Levi
decomposition as a sum of a solvable ideal and a semisimple algebra, so the
issue is what kind of subgroup of G, if any, corresponds to the semisimple
subalgebra, and also to what extent it is unique.

We will be forced into the category of “ind-definable” subgroups, i.e. de-
fined by a possibly infinite, but countable, disjunction of formulas. In Defi-
nition 2.5 below we give a rather strong definition of an ind-definable semi-
simple group S: S should be ind-definable, (locally) definably connected,
with “discrete” centre Z(G) and G/Z(G) should be a definable semisimple
group. This is equivalent to saying that S is a quotient of the o-minimal uni-
versal cover (in the sense of [8]) of a definable semisimple group. We should
say that the existence of a natural candidate for a maximal “ind-definable
semisimple subgroup” S of a definable group G is straightforward: G/Z(G)0

has a maximal definable (definably connected) semisimple subgroup H, and
if H1 is the preimage of H in G then take S to be the commutator subgroup
of H1. However to prove that S has the required properties (ind-definable
semisimple), and is unique up to conjugacy modulo those properties, requires
some additional work. (If we use a weaker notion of ind-definable semisimple
such as ind-definable, (locally) definably connected, and with semisimple Lie
algebra, the uniqueness up to conjugacy of S will fail.) Definability of S in
this general context corresponds more or less to S being a closed subgroup
of G in the classical context. We will also give a number of situations where
S is definable (for example when the “semisimple” quotient of G has finite
o-minimal fundamental group).

Let us now state formally the main result. We assume M to be an o-
minimal expansion of a real closed field, and G to be a definably connected
definable group in M . Then G has a unique maximal definably connected
solvable subgroup which we call R. We denote the quotient G/R by P , a de-
finable (equivalently, interpretable) group which is definably connected and
semisimple in the sense that it has no infinite normal solvable (equivalently,
abelian) subgroups, or equivalently the quotient of P by its finite centre is a
direct product of finitely many definably simple (noncommutative) definable
groups. We sometimes call P the semisimple part of G.

Theorem 1.1. G has a maximal ind-definable semisimple subgroup S,
unique up to conjugacy in G. Moreover:

(i) G = R · S.
(ii) The centre of S, denoted Z(S), is finitely generated and contains

R ∩ S.
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As mentioned above, it will also follow from material discussed in Sec-
tion 2 that if π : G → P is the canonical surjective homomorphism, then
the (surjective) homomorphism from S to P induced by π is a quotient of
the o-minimal universal cover of P . We will call S as in Theorem 1.1 an
ind-definable Levi subgroup of G, and the decomposition of G given by The-
orem 1.1 the ind-definable Levi decomposition of G. When G is a definable
real Lie group this decomposition coincides with the usual Levi decomposi-
tion of G referred to earlier. Note that by uniqueness of the (ind-definable)
Levi subgroup up to conjugacy, some Levi subgroup will be definable iff all
are. When K = R the examples of nondefinability of the Levi subgroup,
given in [4], [5] and [3], come from encoding the universal cover of P as an
ind-definable but nondefinable subgroup of G, and for this to be possible P
has to have infinite “fundamental group”.

Our methods will also yield:

Theorem 1.2. Let s be a semisimple Lie subalgebra of L(G). Then there
is a unique ind-definable semisimple subgroup S of G such that s = L(S).

In Section 2 we discuss ind-definable groups, semisimplicity, and univer-
sal covers. In Sections 3 and 4 we will prove Theorem 1.1 (and Theorem 1.2)
in some special cases, and then combine these in Section 5 to give the proofs
in general. At the end of Section 5 we will list a number of hypotheses which
imply definability of the Levi subgroups. In the remainder of this introduc-
tion we recall some basic facts and notions.

Usually M denotes an o-minimal expansion of a real closed field K, and
G a group definable in M . For various reasons, especially when dealing with
ind-definable objects, we should bear in mind a saturated elementary ex-
tension M̄ of M . We refer to earlier papers such as [14] for an account of
the general theory of definable sets and definable groups in M , as well as
the existence and properties of tangent spaces and Lie algebras of definable
groups. But we repeat that, for any k, a definable group can be equipped
with an (essentially unique) definable Ck-manifold structure over K with
respect to which the group operation is Ck. Likewise for definable homoge-
neous spaces. Definable connectedness of a definable group has two equiva-
lent descriptions: no proper definable subgroup of finite index, and no proper
open definable subgroup with respect to the topological structure referred
to above. Definability means with parameters unless we said otherwise.

Definition 1.3. G is semisimple if G is definably connected and has no
infinite normal abelian (definable) subgroup.

Remark 1.4. Assume G definably connected. Then G is semisimple if
and only if Z(G) is finite and G/Z(G) is a direct product of finitely many
definably simple, noncommutative, definable groups.
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We now list some basic facts, from [11], [13], [14], [15], which we will use:

Fact 1.5.

(i) Assume G is definably connected. Then G has a unique maximal
definable definably connected normal solvable subgroup R and G/R
is semisimple.

(ii) If G is semisimple then G is perfect (i.e. G equals its commutator
subgroup [G,G]), and moreover for some r every element of G is a
product of at most r commutators.

(iii) If G is definably connected, then G/Z(G) is linear, that is, definably
embeds in some GLn(K).

(iv) Let G be definably connected. Then G is semisimple iff L(G) is
semisimple.

(v) If s is a semisimple Lie subalgebra of gln(K), then there is a (unique)
definably connected definable subgroup S of GLn(K) such that s =
L(S). Moreover S is semialgebraic (and semisimple by (iv)).

(vi) If G is definable, semisimple and centreless, then G is definably
isomorphic to a semialgebraic subgroup of some GLn(K) which is
defined over R (in fact over Z).

2. Ind-definability, semisimplicity, and universal covers. The ex-
pressions ind-definable, ∨-definable, and locally definable are more or less
synonymous, and refer to definability by a possibly infinite disjunction of
first order formulas. There is a considerable literature on ind-definability and
the “category” of ind-definable sets. See for example the detailed treatment
in Section 2.2 of [10]. Likewise there is a lot written on ind-definable spaces
and groups in the o-minimal setting, especially in the context of universal
covers and fundamental groups. See for example [1], [6] and [7]. So we refer
to these other sources for more details and restrict ourselves here to fixing
notation suitable for the purposes of this paper.

We start with T an arbitrary complete theory in a countable language L,
say and M̄ a saturated model of T . A definable set means a definable set in
M̄ unless we say otherwise. M denotes a small elementary substructure.

Definition 2.1.

(i) By an (abstract) ind-definable set X we mean a countable collection
(Xi : i < ω) of definable sets together with definable injections
fi : Xi → Xi+1 for each i, where we identify X with the directed
union (via the fi) of the Xi. By a definable subset of X we mean
a definable subset of some Xi (in the obvious sense). We say X is
defined over M if the Xi and fi are, in which case we also have
X(M).
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(ii) An ind-definable group is an ind-definable set as in (i) such that X
has a group operation which is definable, that is, the restriction to
each Xi ×Xj is definable, hence with image in some Xk.

(iii) An ind-definable set X as in (i) is called a concrete ind-definable
set if for some definable set Y , all the Xi are subsets of Y and each
fi is the identity map restricted to Xi, that is, Xi ⊆ Xi+1 for all i,
so that X is simply

⋃
iXi, an ind-definable subset of Y .

Remark 2.2.

(i) If X is an ind-definable subset of the definable set Y as in (iii) above,
and Z is a definable subset of Y contained in X, then by compactness
Z is contained in some Xi. Hence the notion of a definable subset
of the abstract ind-definable set X is consistent with the natural
notion when X is concrete.

(ii) There are obvious notions of a function between (abstract) ind-
definable sets being definable (or we should say ind-definable). Note
in particular that if X is ind-definable, Y is definable and f : X → Y
is definable and surjective, then already the restriction of f to some
Xi is surjective (by compactness).

We can formulate some basic notions such as definable connectedness for
groups at this level of generality.

Definition 2.3.

(i) Let X be an ind-definable set and Y a subset of X. We will say that
Y is discrete if for any definable subset Z of X, Z ∩ Y is finite.

(ii) Let G be an ind-definable group. We will call G definably connected if
G has no proper subgroup H with the properties: for each definable
subset Z of G, Z ∩H is definable, and Z meets only finitely many
distinct cosets of H in G.

Maybe we should rather use the expression “locally definably connected”
in (ii) above, but we leave it as is. In any case, when X is a definable set
(G a definable group) the above notions reduce to Y being finite (G has no
proper definable subgroup of finite index). Let us state for the record:

Lemma 2.4. Let G be a definably connected ind-definable group. Then
any discrete normal subgroup of G is central.

Proof. Let N be a discrete normal ind-definable subgroup of G. Then G
acts on N by conjugation. Let n ∈ N and let H be CG(n), which clearly
meets each definable subset of G in a definable set. Let Z be a definable
subset of G. Then {gng−1 : g ∈ Z} is a definable subset of N , hence finite
as N is discrete. So only finitely many distinct cosets of H in G meet Z.
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As this is true for all definable Z and G is definably connected, we see that
H = G, i.e. n is central in G.

We now specialize to the o-minimal case, i.e. T is an o-minimal expansion
of RCF. We will only work with concrete ind-definable sets. When X = G is
a (concrete) ind-definable group, then by [6], X can be definably equipped
with a topology such that the group operation is continuous (as in the
case for definable groups), and in fact Ck for arbitrarily large k. Definable
connectedness as defined above has a “topological” interpretation. Also G
has a well-defined Lie algebra (over the ambient real closed field). Here is
our main definition (which agrees with the usual one when G is definable).

Definition 2.5. We will call G ind-definable semisimple if G is ind-
definable and definably connected, Z(G) is discrete, and G/Z(G) is definable
and semisimple (that is, there is a definable semisimple group D and a
definable surjective homomorphism from G to D with kernel Z(G), and
note that D will be centreless).

Remark 2.6. An equivalent definition is: G is ind-definable, definably
connected, and there is a definable surjective homomorphism π from G to a
definable (not necessarily centreless) semisimple group D such that ker(π)
is discrete.

Lemma 2.7. An ind-definable semisimple group is perfect.

Proof. Let G be our ind-definable semisimple group, and π : G → D
definable with D definable semisimple. Let G1 = [G,G]. We want to argue
that (i) the intersection of G1 with any definable subset Z of G is definable,
and moreover (ii) Z intersects only finitely many distinct cosets of G1 in G.
Definable connectedness of G will then imply that G1 = G.

We first prove (i). It suffices to show that for arbitrarily large definable
subsets Y of G, G1 ∩ Y is definable. As D = [D,D]r (the collection of
products of r commutators), we may assume, by enlarging Y , that Y ∩[G,G]
maps onto D under π. Now clearly Y ∩ [G,G] is ind-definable.

Claim. Y \ [G,G] is ind-definable.

Proof of Claim. Let y ∈ Y \ [G,G], and let π(y) = d ∈ D. By our
assumption above there is x ∈ Y ∩ [G,G] such that π(x) = d. Hence x−1y ∈
ker(π) = Z(G). Note that x−1y ∈ Y −1 · Y , a definable subset of G. By
definition of G being ind-definable semisimple, Z(G) ∩ (Y · Y −1) is finite.
Hence Y \ [G,G] equals the union of translates c · (Y ∩ [G,G]) for c ranging
over the (finite) set of elements of Z(G)∩ (Y ·Y −1) which are not in [G,G].
This proves the Claim.

By the Claim and compactness, Y ∩ [G,G] is definable. This proves (i).
The proof of the Claim shows (ii). So the lemma is proved.



Levi subgroups and Levi decomposition 55

Lemma 2.8. Let G be an ind-definable semisimple group. Then L(G) is
semisimple.

Proof. Let π : G → D be the canonical surjective homomorphism to a
definable semisimple group. As ker(π) is discrete, π induces an isomorphism
between L(G) and L(D) and the latter is semisimple by 1.5(iv).

As remarked earlier, there is a body of work on o-minimal universal
covers, which it will be convenient to refer to (although we could use other
methods, such as in Section 5 of [5]). The content of Theorem 1.4 of [8] is:

Fact 2.9. Let G be a definable, definably connected group. Then:

(i) The family Cov(G) = {f : H → G: H is ind-definable, definably
connected, f is surjective and definable with discrete kernel} has a
universal object, that is, some π : G̃ → G in Cov(G) such that for
any f : H → G in Cov(G) there is a (unique) surjective definable
homomorphism h : G̃→ H such that h ◦ f = π.

(ii) The kernel of π : G̃→ G is finitely generated.

We remark that π : G̃→ G is what is known as the “o-minimal universal
cover of G” and it is proved in [8] that ker(π) coincides with the “o-minimal
fundamental group” π1(G) of G given in terms of definable paths and ho-
motopies in [2]. Also if G is definable over M so is π : G̃→ G.

Although not required for the purposes of this paper, one would also
expect π : G̃→ G to have the additional property: For any (locally) definable
central extension f : H → G of G there is a (unique) definable (but not
necessarily surjective) homomorphism h : G̃→ H such that π = h ◦ f .

Remark 2.10. If G is an ind-definable semisimple group and f : G →
G/Z(G) = H is the canonical surjective homomorphism from G to a defin-
able semisimple group, then by Fact 2.9(i), f is a quotient of the o-minimal
universal cover π : H̃ → H, and by Fact 2.9(ii), Z(G) is finitely generated.

We now briefly recall the relation of the o-minimal universal covers to the
classical universal covers of connected Lie groups. Let us suppose that G is a
definably connected definable group (identified with its group of M̄ -points).
Let L− be a sublanguage of the language L(T ) of T including the language of
ordered fields, such that for some copy R of the reals living inside K, R with
its induced L−-structure is an elementary substructure of M̄ |L−. Let us also
suppose that G is definable in L− with parameters from R. Then G(R) is
a connected Lie group. Moreover the o-minimal universal cover G̃ of G is
(ind-)definable in L− over R, so that G̃(R) makes sense as a topological (in
fact Lie) group. Then Theorem 8.5 from [11] and its proof say that G̃(R)
is the classical universal cover of G(R). Moreover the kernel of G̃ → G
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coincides with the kernel of G̃(R)→ G(R), which is the fundamental group
of the Lie group G(R) (see also Theorem 3.3 in [9]).

This applies in particular to the case when G is semisimple: By [11], G is
definably isomorphic in M̄ to a group definable in the ordered field language
over R. So we may assume G to be already definable in the ordered field
language over R. Hence the o-minimal fundamental group of G coincides
with the fundamental group of the semisimple real Lie group G(R) (see also
Corollary 1.3 in [9]).

In the rest of the paper, the model M will be an arbitrary model of an
o-minimal expansion of RCF. When we speak of an ind-definable set (resp.
group) in M we mean X(M) (resp. G(M)) for X (resp. G) an ind-definable
set (resp. group) in M̄ which is defined over M .

3. Central extensions of definable semisimple groups. Here we
prove Theorem 1.1 when R is central in G, hence R = Z(G)0. In fact S will
turn out to be the commutator subgroup [G,G], but one has to check the
various properties claimed of S.

We start with a trivial fact about abstract groups, which we give a proof
of, for completeness. Recall that an (abstract) group G is said to be perfect
if G coincides with its commutator subgroup [G,G].

Fact 3.1. If G is a central extension (as an abstract group) of a perfect
group P , then [G,G] is perfect.

Proof. Let N be the kernel of the surjective homomorphism π : G→P .
By assumption, N is central in G. Let H = [G,G]. As P is perfect, π(H)
= P , and for the same reason π([H,H]) = P . If by way of contradiction
H ′ = [H,H] is a proper subgroup of H, then as G = N · H ′ we see that
[G,G] = H is contained in H ′, impossible. So H is perfect.

We now return to the o-minimal context.

Lemma 3.2. Suppose R = Z(G)0. Let S = [G,G]. Then:

(i) S is the unique maximal ind-definable semisimple subgroup of G.
(ii) G = R · S.
(iii) R ∩ S is contained in Z(S) and the latter is finitely generated.

Proof. Let P be the semisimple part of G, that is, P is definable semi-
simple and π : G→ P is surjective with kernel R = Z(G)0.

(i) We first prove that S is “ind-definable semisimple”. Clearly S is
ind-definable. By Fact 1.5(ii), P is perfect, hence π induces a surjective
homomorphism π|S : S → P . By Remark 2.6 it suffices to prove that S
is definably connected and ker(π|S) is discrete. By Lemma 1.1 of [5], for
each n, [G,G]n ∩ Z(G)0 is finite, clearly showing that ker(π|S) is discrete.
If S were not definably connected, let this be witnessed by the subgroup S1
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of S. As P is definably connected, π(S1) = P , hence G = R · S1, but then
S = [G,G] is contained in S1, so S = S1, a contradiction.

We will now show maximality and uniqueness simultaneously by showing
that any ind-definable semisimple subgroup S1 of G is contained in S. So let
S1 be such. By Lemma 2.7, S1 is perfect, hence S1 = [S1, S1] ≤ [G,G] = S.
So (i) is proved.

We now look at (ii) and (iii). As P is perfect (1.5(ii)), S maps onto P , so
G = R · S. As remarked earlier, [G,G]n ∩R is finite for all n, so that R ∩ S
is discrete, hence by Lemma 2.4 it is central in S. Also, by Fact 2.9, Z(S)
is finitely generated.

4. The almost linear case. Assume first that G is linear, that is, a
definable subgroup of GLn(K). Let g be its Lie algebra, a subalgebra of
gln(K). Let r be L(R) where remember that R is the solvable radical of G.

Lemma 4.1. (G linear.) Let S be a maximal ind-definable definably con-
nected semisimple subgroup of G. Then S is definable (in fact semialgebraic).
Moreover G = R · S and R ∩ S is contained in the (finite) centre of S.

Proof. Let s be the Lie algebra of S; it is semisimple by Lemma 2.8.
By [17], s extends to a Levi factor s1 of g (i.e. a semisimple subalgebra
such that g is the semidirect product of r and s1). By Fact 1.5(v) there is a
definable semisimple subgroup S1 of G such that L(S1) = s1. We will prove
that S ≤ S1, so by maximality S = S1 and is definable.

This is a slight adaptation of material from [14] to the present context.
Consider the definable homogeneous space X = G/S1. We have the natural
action α : G × X → X of G on X by multiplication on the left, which
is differentiable (when X is definably equipped with suitable differentiable
structure). Let a ∈ X and let f : G → X be f(g) = α(g, a). By Theo-
rem 2.19(ii) of [14], L(S1) is precisely the kernel of the differential dfe of f
at the identity e of G. Consider the restriction f1 of f to S. As L(S) = s is
contained in s1 = L(S1), we see that (df1)e is 0. By Theorem 2.19(i) of [14],
(df1)h = 0 for all h ∈ S, so f1 is “locally constant” on S. It follows that
Fix(a) = {h ∈ S : f1(h) = a} is a subgroup of S which is “locally” of finite
index (as in Definition 2.3(ii)), hence Fix(a) = S, which means that S ≤ S1,
as desired.

For dimension reasons G = R · S. Clearly R ∩ S is finite (for dimension
reasons again, or because it is solvable and normal in S), hence central in S,
as S is definably connected.

Now we want to prove conjugacy.

Lemma 4.2. (G linear.) Any two maximal ind-definable definably con-
nected semisimple subgroups of G are conjugate.
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Proof. Let S, S1 be such. By Lemma 4.1 both S, S1 are semialgebraic
subgroups of G ≤ GLn(K). We may assume that G is already semialge-
braic, by using 4.1 of [15] which says that there are semialgebraic G1 <
G < G2 ≤ GLn(K) with G1 normal in G normal in G2 and G1 normal
in G2 such that G2/G1 is abelian. (One could also get to this conclusion
by using Lemma 3.1 in [16] and deduce that the (abstract) subgroup H of
GLn(K) generated by S and S1 is contained in some algebraic subgroup
H1 of GLn(K) such that moreover H contains an open semialgebraic sub-
set of H1. Therefore dimH = dimH1 and the definably (or equivalently,
semialgebraically) connected component of H1 is contained in G.)

We now make use of transfer to the reals together with the classical Levi
theorem to conclude the proof. Without loss of generalityG,S, S1 are defined
by formulas φ(x, b), ψ(x, b), ψ1(x, b) where these are formulas in the language
of ordered fields with parameters witnessed by b. We may assume that these
formulas include conditions on the parameters b expressing that the group
defined by φ(x, b) is definably connected and of the given dimension, also
that the subgroups defined by ψ(x, b), ψ1(x, b) are maximal (semialgebraic)
semisimple. For example the family of definable abelian subgroups of a defin-
able group is uniformly definable in terms of centralizers, so we can express
that the subgroup defined by ψ(x, b) is semisimple (definably connected with
no infinite normal abelian subgroup). We can also express maximality, by
witnessing a solvable definable normal subgroupR such thatG isR·ψ(x, b)K .

Let σ be the sentence in the language of ordered fields expressing that
for any choice c of parameters, the subgroups of φ(x, c)K defined by ψ(x, c)
and ψ1(x, c) are conjugate.

Claim. The sentence σ is true in the model (R,+, ·, <).

Proof of Claim. Choose parameters c from R. Let H,W,W1 be the
groups (subgroups of GLn(R)) defined by the formulas φ(x, c), ψ(x, c),
ψ1(x, c). As H = RW = RW1 (R being solvable definable normal, as ex-
plained before), it follows that W,W1 are maximal semisimple Lie subgroups
of H (which also happen to be closed) hence are conjugate in H by 3.18.13
of [17].

So the Claim is proved, hence σ is true in the structure M , so that S, S1
are conjugate in G.

Note that Lemmas 4.1 and 4.2 give Theorem 1.1 in the linear case. Let
us now prove Theorem 1.2 in the linear case, by a slight extension of the
proof of Lemma 4.1.

Lemma 4.3. (G linear.) Let s be a semisimple Lie subalgebra of L(G).
Then there is a unique ind-definable semisimple subgroup S of G such that
L(S) = s. Moreover S is definable.
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Proof. First let S1 be a semialgebraic semisimple subgroup of G with
s = L(S1). Let S be another ind-definable semisimple subgroup of G with
L(S) = s. The proof of Lemma 4.1 shows that S ≤ S1. Let P be a semisimple
centreless definable group with π : S → P witnessing the semisimplicity of S
(according to Definition 2.5). By 1.5(vi) we may assume P to be linear and
semialgebraic. Let us now work inside the linear semialgebraic group S1×P .
The graph of π, W say, is clearly an ind-definable semisimple subgroup of
S1×P . Let w be its Lie algebra, which is semisimple by 2.8. By 1.5(v), there
is a semialgebraic semisimple W1 ≤ S1 × P such that L(W1) = w. Again
as in the proof of 4.1 one sees that W ≤ W1. Note that dimW1 = dimS1
= dimP . So W1 has finite cokernel. We will assume for simplicity that this
cokernel is trivial so that W1 is the graph of a definable (semialgebraic)
homomorphism π1 from S1 to P , which has to have finite kernel. Hence
ker(π) is also finite, from which it follows that π is definable, therefore S is
definable. Hence S = S1.

We will say that G is almost linear if for some finite central subgroup
N of G, G/N is linear (i.e. there is a definable homomorphism from G into
some GLn(K) with finite central kernel).

Lemma 4.4. Theorems 1.1 and 1.2 hold when G is almost linear. More-
over in this case any ind-definable semisimple subgroup of G is definable.

Proof. Let G/N be linear where N is finite (central) and let π : G →
G/N be the canonical surjective homomorphism. Note first that by Lem-
ma 4.3 (and Lemma 2.8), any ind-definable semisimple subgroup of G/N is
definable. So if S ≤ G is ind-definable semisimple then π(S) is definable,
and so thus is S. This proves the “moreover” clause. The rest easily follows
from the previous lemmas.

5. The general case. This is an easy consequence of the special cases
in Sections 3 and 4 but we sketch the proofs nevertheless. First:

Proof of Theorem 1.1. We construct the obvious ind-definable semi-
simple subgroup S of G, observe the desired properties, then we prove its
maximality and uniqueness up to conjugacy.

By Fact 1.5(iii), G1 = G/Z(G)0 is almost linear. Let π : G→ G1 be the
canonical surjective homomorphism. Also let R be the solvable radical of
G (which contains Z(G)0) and then R1 = π(R) will be the solvable radical
of G1.

By Lemma 4.4 let S1 be a definable Levi subgroup of G1 and let H =
π−1(S1), a definably connected definable subgroup of G. So H is definably
an extension of the semisimple definable S1 by the central subgroup Z(G)0.
So Z(G)0 coincides with Z(H)0 and will be the solvable radical of H.
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Therefore Lemma 3.2 applies to H. Let S = [H,H], which is in particular
an ind-definable semisimple subgroup ofG. As S1∩R1 is finite, and S∩Z(G)0

is finitely generated, S∩R is finitely generated (and normal, discrete, hence
central in S).

It remains to prove maximality and uniqueness up to conjugacy of S.
Suppose S2 is an ind-definable semisimple subgroup of G containing S. Then
π(S2) is an ind-definable, semisimple, subgroup of G1 containing S1, so as
S1 was a Levi subgroup of G1, we see that π(S2) = S1. Hence S2 is contained
in H, and by Lemma 3.2 applied to H, equals S.

Now let S2 be another maximal ind-definable semisimple subgroup of G.
Let π(S2) = S3 ≤ G1. Clearly S3 is an ind-definable semisimple subgroup
of G1, which is definable by Lemma 4.4. Let S4 be a maximal definable semi-
simple subgroup of G1 containing S3. Noting that G1 = R1 · S4, and as (by
Lemma 2.7) S2 is perfect, we see by Lemma 3.2 that [π−1(S4), π

−1(S4)] is
ind-definable semisimple and contains S2, hence by maximality of S2 we have
equality, and S3 = S4 and moreover S2 = [π−1(S3), π

−1(S3)]. By Lemma 4.4
again S3 is conjugate in G1 to S1 by g1 say. Hence (as ker(π) is central in G)
for any lift g of g1 to a point of G, S2 = [π−1(S3), π

−1(S3)] is conjugate via
g to S = [π−1(S1), π

−1(S1)], and we have proved conjugacy.
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Again we let π : G → G/Z(G)0 = G1 be the
canonical surjective homomorphism. If s is semisimple and s1 = dπe(s) (the
image of s under the differential of π at the identity), then s1 is also semi-
simple and so by Lemma 4.4 is the Lie algebra of the unique definable semi-
simple subgroup S1 of G1. Let H = π−1(S1). Then by Lemma 3.2 applied
to H we see that s is the unique Levi factor of L(H) and S = [H,H] is the
unique ind-definable semisimple subgroup of H with L(S) = s.

If S2 is another ind-definable semisimple subgroup of G with L(S2) = s,
then by Lemma 4.4, π(S2) = S1, and by perfectness of S2 and definable
connectedness of [H,H] = S we see that S2 = S.

Theorem 1.2 is proved.

Finally we mention cases when some (any) ind-definable Levi subgroup
of G is definable. G remains a definably connected group definable in M .

Proposition 5.1. Suppose either of the following hold:

(i) G is affine Nash,
(ii) G/N is linear for some finite central N ,
(iii) the semisimple part P of G has finite o-minimal fundamental group,
(iv) the semisimple part P of G is definably compact.

Then any ind-definable Levi subgroup S of G is definable (so that G = R ·S
with R ∩ S finite).



Levi subgroups and Levi decomposition 61

Proof. (i) G being affine Nash means that G is definable in the RCF
language and with its unique structure as a Nash manifold it has a Nash
embedding in some Kn. See [12]. In fact in the latter paper it is proved that
G is a finite cover of an “algebraic group” (namely of H(K)0 where H is an
algebraic group defined over K). Remark 2.9 of [4] says that H(K)0 has a
definable Levi subgroup, and this lifts to G.

(ii) This is already part of Lemma 4.4 above.

(iii) The previous material shows that it suffices to look at central exten-
sions G of a semisimple group P , in which case by Lemma 3.2, S = [G,G]
is the ind-definable Levi subgroup. The induced surjective homomorphism
S → P is, by Remark 2.10, a quotient of the o-minimal universal cover of P ,
so if P had finite o-minimal fundamental group, then the kernel of S → P
is finite, and it follows easily that S is definable.

(iv) If P is definably compact then it has finite o-minimal fundamental
group (as this corresponds to the usual fundamental group of the associated
compact semisimple Lie group discussed at the end of Section 3), so we can
use (iii). But this case also follows from the results of [11].
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