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semiconjugate to an ergodic translation
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Abstract. We prove that for every ε > 0 there exists a minimal diffeomorphism
f : T2 → T2 of class C3−ε and semiconjugate to an ergodic translation with the following
properties: zero entropy, sensitivity to initial conditions, and Li–Yorke chaos. These ex-
amples are obtained through the holonomy of the unstable foliation of Mañé’s example of
a derived-from-Anosov diffeomorphism on T3.

1. Introduction. The beautiful theory of Poincaré about orientation
preserving homeomorphisms of the circle states, in particular, that any
homeomorphism f with irrational rotation number ρ(f) is in fact semi-
conjugate to the rigid rotation of angle ρ(f). Moreover, it says that such an
f is indeed conjugate to the relevant irrational rotation or has a minimal
Cantor set such that every interval in its complement is wandering.

The celebrated theorem of Denjoy [D] asserts that in case f is a C2

diffeomorphism, it is indeed conjugate to the rotation. Moreover Denjoy gave
examples of maps of class C1+α which are semiconjugate but not conjugate
to rigid rotations, today called Denjoy type maps.

Thus, we can distinguish two facts about the theory of circle diffeomor-
phisms:

(i) A purely topological fact: a circle homeomorphism with irrational
rotation number is semiconjugate to the respective rotation. Fur-
thermore, whenever it is not conjugate to the rotation, there exists
a minimal Cantor set such that the intervals in the complement are
wandering.
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(ii) A rigidity phenomenon: a C2 diffeomorphism with irrational rotation
number cannot have a wandering open set. Hence, it is conjugate to
the respective rotation.

During the last decades extensions of Poincaré and Denjoy theory to
higher dimensional tori have been the object of interest of many authors, in
particular the case of dimension two. This has led to the notion of rotation
set for homeomorphisms on the two-torus isotopic to the identity, and to
several results concerning the structure of this set and the dynamics of f .

Particular attention has been paid to the so called pseudo-translations of
the two-torus, when the rotation set consists of a single totally irrational vec-
tor; the situation here is much more subtle than for circle diffeomorphisms.

First of all, pseudo-translations are no longer semiconjugate to the re-
spective ergodic translation, as can be seen in [J]. Further, even assuming
the existence of the semiconjugacy between a pseudo-translation f and the
translation, it is not necessarily true that f has a wandering domain. It
could even have complicated features, such as positive topological entropy
(see [R1, R2, BCL1]). Moreover, examples of Denjoy maps (i.e., homeomor-
phisms which are semiconjugate but not conjugate to ergodic translations)
with wandering domains can have very different dynamical structures: one
can consider a product of two Denjoy maps of the circle, a product of a Den-
joy map of the circle with a rigid rotation, and the suspension of a Denjoy
map of the circle, in order to obtain three cases with different topological
structures. Indeed, in the first case the wandering domain has a unique com-
ponent which is doubly essential, in the second case the wandering domain
is the orbit of a wandering essential annulus, and in the third case it is an
unbounded disk (see [JKP]).

On the other hand, finding analogues of the rigidity phenomenon (ii)
in higher dimensions is an open problem which seems to be far from being
solved. Even so, there exists a result in KAM theory which suggests that
Cn+1 is the regularity which would imply rigidity for the n-dimensional
torus. This is a positive result under the assumptions of a Diophantine
rotation vector and being close enough to the respective translation.

Among all the different kinds of Denjoy examples known, there is only
one in which diffeomorphisms of class at least C2 are considered. Moreover
these examples can be regarded as Cr diffeomorphisms for every r < 3, which
corresponds to the expected differentiability class that could guarantee rigid-
ity, i.e. C3. This family of examples was introduced by McSwiggen [McS],
and its elements have the following dynamical structure: the wandering do-
main is given by the orbit of a wandering bounded disk, and its complement
is a minimal set. On the other hand, the existing examples of Denjoy maps
without wandering domains are only C0 regular (see [R1, BCL1]).
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In this article we introduce a new family of Denjoy maps of the two-torus
which are minimal diffeomorphisms of T2, of class Cr with r arbitrarily close
to three. This improves the state of the art in the theory.

The elements of the family have the following simple properties: they
are sensitive to the initial conditions, point-distal and non-distal, uniquely
ergodic and have zero entropy. Furthermore, the examples can be made to
exhibit Li–Yorke chaos. To the best of our knowledge, no minimal diffeo-
morphism with Li–Yorke chaos has been known before.

Our construction implies in particular that we obtain a Diophantine ro-
tation vector. Indeed it is an algebraic vector of degree three. This property
makes the examples even more interesting since Diophantine vectors are as-
sociated to a stronger rigidity than Liouvillean vectors. In fact, the results
in KAM theory make use of the combination of differentiability and Dio-
phantine rotation vector, in order to obtain rigidity. One may ask if another
method and starting with a Liouvillean translation can provide an example
with the same features and with higher differentiability.

Before we state our result, let us recall some of the above topological
notions. Let f be a homeomorphism (of a metric space).

• f is non-distal if there exist x 6= y such that

inf
n∈Z

dist(fn(x), fn(y)) = 0,

and f is point distal if there exists x such that for any y 6= x,

inf
n∈Z

dist(fn(x), fn(y)) > 0;

• f is sensitive to initial conditions if there exists ε > 0 so that for any
x ∈ T2 and any neighborhood U(x) there exist y ∈ U and n > 0 such
that dist(fn(x), fn(y)) > ε;
• f has Li–Yorke chaos if there exists an uncountable scrambled set any

points x 6= y of which satisfy

lim inf
n

dist(fn(x), fn(y)) = 0 and lim sup
n

dist(fn(x), fn(y)) > 0.

We are now ready to state the main result:

Main Theorem 1.1. For every r ∈ [1, 3) there exists a diffeomorphism
f : T2 → T2 of class Cr which is minimal, isotopic and semiconjugate (but
not conjugate) to an ergodic translation. If we denote by h the semiconju-
gacy, then:

• Each fiber h−1(x) is either a point or an arc.
• f preserves a minimal and invariant foliation with one-dimensional
C1 leaves. Each fiber h−1(x) is contained in a leaf of this foliation.
• The set {x ∈ T2 : h−1(x) is a point} has full Lebesgue measure.
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As a consequence, f has zero entropy, is sensitive to initial conditions, point
distal, non-distal and uniquely ergodic. Furthermore, f can be constructed
so that there are uncountably many points x such that h−1(x) is a nontrivial
arc exhibiting Li–York chaos as well.

Although examples with much more dynamical complexity can be con-
structed by the techniques given in [R1, BCL1], as we remarked before these
constructions are C0 and it is not known if C1 can be achieved.

On the other hand, while unfortunately our examples are simple from
the ergodic point of view: they have just one invariant measure, i.e., are
uniquely ergodic, Denjoy type maps with interesting measurable dynamics
are constructed by a refinement of these purely topological techniques in
[BCL2]. Nevertheless we ask: does there exist a minimal diffeomorphism
semiconjugate to an ergodic translation but not uniquely ergodic?

The reader may notice the opposition between zero entropy and the
presence of Li–Yorke chaos in the constructed examples. In this sense one
can ask whether such a dynamic deserves to be called chaotic or not (see [O]
for a discussion of the subject).

The proof of our theorem is inspired by [McS]. There, examples are
constructed through the holonomy map from a cross section to itself of
the unstable foliation of a derived-from-Anosov diffeomorphism obtained
through a Hopf bifurcation. Indeed, the construction is as follows. Start
with a linear Anosov map on T3 having one real eigenvalue λu of modulus
greater than 1 and a complex eigenvalue λs of modulus smaller than 1 and
then perform a modification around a fixed point (that can be thought of
as going through a Hopf bifurcation) so that the fixed point becomes a
repeller. The new map still has a partially hyperbolic structure of the form
Ecs ⊕ Eu. Next consider the holonomy map from a two-torus transverse to
Eu along the (strong) unstable foliation (tangent to Eu). The wandering
domain appears due to the fact that the fixed point is a repeller and so the
strong unstable foliation cannot return near the fixed point.

In this paper we use instead Mañé’s example of a derived-from-Anosov
diffeomorphism ([M1]). The construction is as follows. Start with a linear
Anosov map on T3 with three real distinct eigenvalues λs, λc, λu, 0 < λs <
λc < 1 < λu. Then perform a modification around a fixed point so that the
fixed point becomes a hyperbolic point of unstable index 2 (which can be
thought of as going through a pitch-fork bifurcation). The new map has a
partially hyperbolic structure of the form Es ⊕ Ec ⊕ Eu. The interesting
feature here is that the strong unstable foliation (tangent to Eu) is mini-
mal, i.e., every leaf is dense. Thus, considering the holonomy map from a
two-torus transverse to Eu to itself along the unstable foliation leads to a
minimal homeomorphism on the two-torus with the topological features of
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our result. In order to obtain Li–Yorke chaos we still have to make a delicate
perturbation of the partial hyperbolic diffeomorphism on T3.

However, there is a main difference with [McS] which has to do with the
class of differentiability of the unstable foliation. To study the differentia-
bility class of the unstable foliation one uses the Cr section theorem (see
Section 4 for details). And the first thing to do is to check the conditions
on the initial linear Anosov diffeomorphism (hoping that the modification
performed does not change these conditions too much). These conditions for
the linear Anosov map of McSweegen’s example can be written as

|λs|
λu

(
1

|λs|

)r
< 1

and so with r arbitrarily close to 3 the conditions hold.

In our case, these conditions can be written as

λc
λu

(
1

λs

)r
< 1

and so r cannot be chosen arbitrarily close to 3. Thus, what we have to do
is, for a given r close to 3, find afterwards a linear Anosov map to start
with, so that the above condition holds.

The paper is organized as follows: in Section 2 we give our construction
of Mañé’s derived-from-Anosov diffeomorphism and we prove the minimality
of the unstable foliation (see Section 2.2), and the minimality of the central
foliation through the semiconjugacy with the linear Anosov map (see Section
2.3); in Section 3 we give the topological version of our main result and in
Section 4 we prove the differentiability of the unstable foliation through the
Cr section theorem ([HPS]).

2. On Mañé’s derived-from-Anosov diffeomorphism. In [M1]
R. Mañé constructs an example on T3 which is robustly transitive but not
Anosov. This is known as Mañé’s derived-from-Anosov diffeomorphism due
to its construction: it begins with an Anosov linear map on T3 with partially
hyperbolic structure Es⊕Ec⊕Eu and modifies it in a neighborhood of the
fixed point in order to change its unstable index (preserving the partially
hyperbolic structure). See Figure 1.

Let us be more precise. Let T3 = R3/Z3 be the three-dimensional torus,
denote by π : R3 → T3 the canonical projection, and set p = π(0).

Consider B ∈ SL(3,Z) with eigenvalues 0 < λs < λc < 1 < λu and
denote also by B the induced linear Anosov system on T3 with hyperbolic
structure TT3 = Es⊕Ec⊕Eu (corresponding to the eigenspaces associated
to λs, λc and λu). For simplicity of calculations we will define a Euclidean
metric on R3 so that EsB, EcB and EuB are mutually orthogonal.
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Fig. 1. Modification

Let ρ be small and consider the ball B(p, ρ) centered at p. Let Z : R→ R
be a C∞ bump function such that Z(0) = 1, supp[Z] ⊂ (−ρ/2, ρ/2) (where
supp[Z] is the support of Z) and |Z ′(z)| < 4/ρ (see Figure 2).

Z

1

ρ/2−ρ/2

Fig. 2. The bump function Z

For our construction of Mañé’s derived-from-Anosov diffeomorphism (1)
we need an auxiliary function as in the next lemma.

Lemma 2.1. For all k > 0 arbitrarily small there exists a function βk :
[0,∞)→ R such that:

(1) βk is C∞, decreasing and such that −k ≤ β′k(t)t ≤ 0.
(2) βk is supported in [0, k], i.e. supp[βk] ⊂ [0, k].
(3) λs + βk(0) < 1 < λc + βk(0) < 1 + k.

Proof. We may assume that 0 < k < λc − λs and take b such that
1 − λc < b < 1 − λc + k. Let r0 < k. Since

	r0
0 (k/t) dt is divergent we

may find a C∞ non-negative function ψ with support in [0, r0] such that	r0
0 ψ(t) dt = b and ψ(t) ≤ k/t (in other words, the graph of ψ is below the

graph of h(t) = k/t.)

(1) Our construction is slightly different because we need to keep control of the relation
between Es and Ec to obtain higher differentiability of the unstable foliation. In particular
the central foliation is not kept unchanged.
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Fig. 3. The function ψ

Define

βk(t) = b−
t�

0

ψ(s) ds.

This function is as desired.

Finally, define gB,k : T3 → T3 by

(2.1) gB,k(ξ) = B(ξ) for ξ /∈ B(p, ρ),

and for ξ ∈ B(p, ρ) in local coordinates with respect to EsB ⊕ EcB ⊕ EuB,
ξ = (x, y, z),

(2.2) gB,k(ξ) = (λsx, λcy, λuz) + Z(z)βk(r)(x, y, 0)

where r = x2 + y2.

Proposition 2.2. If k is sufficiently small, then gB,k : T3 → T3 de-
fined above is a diffeomorphism with partially hyperbolic structure (2) TT3 =
EsgB,k ⊕E

c
gB,k
⊕EugB,k where EsgB,k is uniformly contracting and EugB,k is uni-

formly expanding. Moreover, given cones Cs, Cc and Cu around EsB, EcB and
EuB respectively we have EsgB,k ∈ C

s, EcgB,k ∈ C
c and EugB,k ∈ C

u. Further-

more, the same is true for any g in any sufficiently small C1 neighborhood
U of gB,k.

Proof. First of all, the C0 distance between gB,k and B is smaller than√
k and hence (assuming k small) we conclude that gB,k is a differentiable

homeomorphism. To ease notation, set g = gB,k for the time being.

For ξ /∈ B(p, ρ) we have dgξ = B. For ξ ∈ B(p, ρ) we have (with respect
to the decomposition Es ⊕ Ec ⊕ Eu)

(2) We remark that it is not absolutely partially hyperbolic.
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(2.3) dgξ =λs + Z(z)(β(r) + β′(r)2x2) Z(z)β′(r)2xy Z ′(z)β(r)x

Z(z)β′(r)2xy λc + Z(z)(β(r) + β′(r)2y2) Z ′(z)β(r)y

0 0 λu

 .

We may write dgξ = Aξ+Mξ where (agreeing that Z and β are identically
zero outside B(p, ρ))

Aξ =

λs + Z(z)β(r) 0 0

0 λc + Z(z)β(r) 0

0 0 λu

 ,(2.4)

Mξ =

Z(z)β′(r)2x2 Z(z)β′(r)2xy Z ′(z)β(r)x

Z(z)β′(r)2xy Z(z)β′(r)2y2 Z ′(z)β(r)y

0 0 0

 .(2.5)

Since |β′(r)r| ≤ k it is straightforward to check the inequality ‖Mξ‖ ≤
max{2k, 8β(0)

√
k/ρ}. Therefore, choosing k arbitrarily small we also get

‖Mξ‖ arbitrarily small. Since the co-norm (= ‖A−1ξ ‖
−1) of Aξ is bounded

away from zero we see that dgξ is an isomorphism and hence g is a diffeo-

morphism. On the other hand, Aξ(E
j
B) = EjB, j = s, c, u, and

• λs ≤ ‖Aξ/EsB‖ ≤ λs + βk(0) < 1,

• λc ≤ ‖Aξ/EcB‖ ≤ λc + βk(0) < 1 + k,

• ‖Aξ/EsB‖/‖Aξ/EcB‖ ≤ λs/λc < 1,

• ‖A−1ξ/EuB‖ ≤ λ
−1
u .

From this it is easy to conclude the proof of the proposition, taking k suffi-
ciently small (and so ‖Mξ‖ sufficiently small) and U sufficiently small.

For gB,k : T3 → T3 with k small and g ∈ U(gB,k) so that the above
proposition applies, we set

λs(g)(ξ) = ‖dgξ/Esg‖, λs(g) = max
ξ∈T3

λs(g)(ξ),

λc(g)(ξ) = ‖dgξ/Ecg‖, λc(g) = max
ξ∈T3

λc(g)(ξ),

λu(g)(ξ) = ‖dgξ/Eug ‖, λu(g) = min
ξ∈T3

λu(g)(ξ).

Remark 2.3. Notice that, given ε > 0 small, the following conditions
hold for g ∈ U(gB,k) with k and U sufficiently small:

(1) 0 < λs(g)(ξ) < λc(g)(ξ) < λu(g)(ξ) for all ξ ∈ T3.
(2) λc − ε < λc(g)(ξ) for all ξ ∈ T3.
(3) λs(g) < λs + β(0) + ε < 1.
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(4) λs(g)(ξ) < λs + ε for ξ ∈ T3 −B(p, ρ).
(5) λc(g) < λc + β(0) + ε.
(6) λu(g) > λu − ε > 1 and λu(g) > λc + β(0) + ε.

Once we know that g ∈ U(gb,k) is partially hyperbolic, by well known
results (see [HPS]) we deduce that the bundles Esg and Eug uniquely integrate
to foliations Fsg and Fug called the (strong) stable and unstable foliations
respectively. These foliations have an interesting property of being quasi-
isometric (i.e. the distance in R3 of two points in the same leaf lifted to the
universal cover R3 is comparable with the distance measured along the leaf,
see the beginning of Section 2.1). This property is obtained in [BBI].

In our case, since Esg and Eug are contained in tiny cones around EsB and
EuB we can conclude directly that Fsg and Fug are quasi-isometric (see [B]).
However, since g is not absolutely partially hyperbolic, the result in [B] (see
also [BBI]) does not apply to prove that Ecg is uniquely integrable. Recently,
R. Potrie [Po] has extended the results in [BBI] to the non-absolutely par-
tially hyperbolic setting, and we can conclude that Ecg is uniquely integrable.
However, for our particular case we can give a direct proof of the unique
integrability of Ecg in the spirit of [B] (see Section 2.1). We denote by Fcg this
central foliation; consequently, the bundles Esg⊕Ecg and Ecg⊕Eug are uniquely
integrable and lead to the central stable and central unstable foliations. We
also remark that in the particular case g = gB,k we have Esg⊕Ecg = EsB⊕EcB
and so the central stable foliation of gB,k coincides with the two-dimensional
stable foliation of B.

Also, in the following subsections we are going to study the properties of
invariant foliations and consequences of the semiconjugacy with the linear
Anosov map. These results are fundamental for our purposes.

Theorem 2.4. For all k sufficiently small and U(gB,k) sufficiently small,
the central bundle Ecg uniquely integrates to an invariant foliation Fcg . Fur-
thermore, the central and unstable foliations Fcg ,Fug of g ∈ U(gB,k) are min-
imal, i.e., all leaves are dense.

The minimality of Fug can be obtained from [PS], and the minimality
of Fcg will follow from the semiconjugacy with the linear Anosov map. We
are going to give a complete proof of the theorem in Sections 2.1, 2.2 (see
Theorem 2.7) and 2.3 (see Corollary 2.13).

Remark 2.5. If one is not interested in obtaining Li–York chaos, the
map gB,k with an appropriate B and k is enough to prove our main theo-
rem. In order to get Li–Yorke chaos we need to have a C∞ diffeomorphism
g arbitrarily close to gB,k with certain properties we state in the next corol-
lary. The reader not interested in the Li–York chaos property may skip any
reference to the neighborhood U(gB,k) and just stick to the map gB,k.
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Since every g ∈ U(gB,k) is transitive (this follows from the minimality
of Fug ) and has periodic points of different indices, it follows that the set of
diffeomorphisms having a non-hyperbolic periodic point is dense in U(gB,k)
(see [M2], [A] and [H2]). We have the following

Corollary 2.6. Let k and U(gB,k) be as in the above theorem. Then
there exists g ∈ U(gB,k) of class C∞ such that

(1) g has a transverse homoclinic point associated to a periodic point of
unstable index 2.

(2) There exists a non-trivial arc J such that, for some m > 0, gm/J =

id/J , that is, J consists of periodic points of g of the same period m.

Proof. Note that for gB,k the fixed point p = π(0) has unstable index 2
since dgB,k/Ec = λc + β(0) > 1. On the other hand, since FugB,k(p) is dense

(and hence accumulates on FsgB,k(p)) by Hayashi’s connecting lemma (see

[H1]) we can perturb gB,k (with support disjoint from a ball at p) and find
g1 satisfying condition (1). Furthermore, any diffeomorphism C1 close to g1
will also satisfy (1). Now, we can find a diffeomorphism arbitrarily C1 close
to g1 having a non-hyperbolic periodic point q. This diffeomorphism can be
constructed of class C∞. Now, by another C1 arbitrarily small perturbation
(but of class C∞ since it can be done with an appropriate bump function) we
can transform this non-hyperbolic periodic point q into an arc J of periodic
points and find g as in the statement.

2.1. Unique integrability of the bundle Ecg. We first recall that a

foliation F in R3 is quasi-isometric if there exist positive numbers C,D such
that if x, y belong to the same leaf of the foliation, i.e. y ∈ F(x) = F(y),
then

d(x, y) ≥ CdF (x, y)−D
where dF means the distance along the leaf of the foliation.

Denote by F̃ jG, j = s, u, the lifts to the universal cover R3 of the stable

and unstable foliations F jg , j = s, u, for g ∈ U(gB,k). These foliations are
quasi-isometric, as we remarked before. In particular, this means that if we
have two points x, y in the same unstable leaf, then by future iteration, the
rate of growth of d(Gn(x), Gn(y)) is the same as dFuG(Gn(x), Gn(y)). And
similarly in the past for points in the stable leaf.

Now, assume for contradiction that the central bundle Ecg is not (locally)
uniquely integrable (at some point, say x). This implies (see [B]) that there
exist two points z, w such that (see Figure 4)

• z, w can be joined by a curve Jc always tangent to Ecg.
• z, w can be joined by the union of two curves Js, Ju always tangent

to Esg and Eug respectively (of course, one of them could be trivial).
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The same holds in the universal cover and we will argue there. If the
curve Ju is not trivial, then by future iteration we find that d(Gn(z), Gn(w))
grows at most with rate λc(g) and on the other hand, by the quasi-isometric
property of the unstable foliation, the rate of growth of d(Gn(z), Gn(w)) is
the rate of growth of Gn(Ju) (since the length of Gn(Js) decreases exponen-
tially), which is at least λu(g), which is greater than λc(g) (see Remark 2.3),
a contradiction.

If Ju is trivial, the argument is the same but more subtle and we need
better estimates. Let ε and δ be small enough such that

σ := (λs + ε)−1(1− δ) > (λc − ε)−1

(recall that λs, λc are eigenvalues of B). Now, choose k, ρ and U(gB,k) small
so that Remark 2.3 applies and such that for any curve tangent to Esg of
length at least 1 the portion of it outside B(p, ρ) is larger than 1− δ.

Now we are ready to return to the points z, w. Since they are joined by
a curve tangent to Ecg, we have

d(G−n(z), G−n(w)) ≤ (λc − ε)n`(Jc).
On the other hand, let n0 be such that G−n0(Js) has length greater than 1.
Then

`(G−n(G−n0(Js))) ≥ (λs + ε)−n(1− δ)n = σn.

For C and D the constant of the quasi-isometry of the stable foliation, for
n large enough we have

Cσn −D > (λc − ε)n+n0`(Jc)

and so we get a contradiction:

d(G−n−n0(z), G−n−n0(w)) ≤ (λc − ε)n+n0`(Jc)

< Cσn −D ≤ C`(G−n(G−n0(Js)))−D
≤ d(G−n−n0(z), G−n−n0(w)).

Thus, we have finished the proof of the unique integrability of Ec, i.e.,
the first part of Theorem 2.4.

2.2. Minimality of the unstable foliation. In this subsection we will
prove that Fug is minimal for g ∈ U(gB,k) for k and U small enough. The
proof is based on the ideas and methods of [PS]:
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Theorem 2.7. For all k sufficiently small and U(gB,k) sufficiently small,
the unstable foliation Fug of g ∈ U(gB,k) is minimal, i.e., all leaves are dense.

Proof. Recall that 0 < λs < λc < 1 < λu are the eigenvalues of B.
Choose σ with 1 − (λc − λs) < σ < 1. We may assume that ρ (the radius
of the ball centered at p where the modification of B is performed) is small
so that any arc Is in FsB of length 1 has a subarc Is1 of length at least 1/3
with empty intersection with B(p, 2ρ).

Let n0 be such that

(2.6) σ−n0 > 3.

Let ε with 0 < ε < ρ be such that 1− (λc − λs) + ε < σ and

(2.7) λ := λc(1 + ε)n0 < 1.

Let us denote by Dcs
g (x, ε) the disk centered at x and of radius ε in the

central stable leaf through x, Fcsg (x).

Now, we may assume that k and U are so small that the following holds
for all g ∈ U(gB,k):

(i) λs(g) < σ.
(ii) λc(g) < 1 + ε.
(iii) ‖dg/Ecsg (ξ)‖ ≤ λc(1 + ε) if ξ /∈ B(p, ρ).

(iv) Any arc Is of Fsg of length at least 1 has a subarc Is1 of length at
least 1/3 with empty intersection with B(p, 2ρ).

(v) Any leaf of Fug has non-empty intersection with Dcs
g (x, ε) for any x

(since FuB is minimal and for k and U small the bundles EuB and Eug
are close).

Given x ∈ T3 let Is(x) be an arc of length 1 such that x ∈ Is(x) ⊂ Fsg (x).
We know that there exists a subarc Is1 of length at least 1/3 such that
Is1 ∩B(p, 2ρ) = ∅. Now, by (2.6), we conclude that g−n0(Is1) ⊂ Fsg (g−n0(x))
is an arc of length at least 1. Therefore, there exists a subarc Is2 ⊂ g−n0(Is1)
of length at least 1/3 such that Is2 ∩ B(p, 2ρ) = ∅. Arguing by induction,
we conclude that for each j ≥ 1 there exists Isj+1 ⊂ g−n0(Isj ) such that
Isj+1 ∩B(p, 2ρ) = ∅.

Define

zx =
⋂
j≥1

gjn0(Ij+1).

Notice that

(2.8) zx ∈ Is(x) and g−jn0(zx) /∈ B(p, 2ρ) ∀j ≥ 0.

In other words, in any arc of length 1 on any leaf of Fsg there exists a
point whose gn0-backward orbit never meets B(p, 2ρ). Let z = zx be such a
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point and let j ≥ 1. Then

Dcs
g (g−jn0(z), ε) ∩B(p, ρ) = ∅

and so, for any y ∈ Dcs
g (g−jn0(z), ε) we have, by (2.7), (ii) and (iii),

‖dgn0
y ‖ ≤ λc(1 + ε)n0 = λ < 1

and therefore

(2.9) gn0(Dcs
g (g−jn0(z), ε)) ⊂ Dcs

g (g−(j−1)n0(z), λε)

and so for any 1 ≤ m ≤ j we have

gmn0(Dcs
g (g−jn0(z), ε)) ⊂ Dcs

g (g−(j−m)n0(z), λmε).

Now, we are ready to conclude the proof of the minimality of Fug (for

the argument see Figure 5). Let ξ ∈ T3 and let U be some open set in T3.
We want to prove that

Fug (ξ) ∩ U 6= ∅.
Let y ∈ U , and consider an arc Jy ⊂ F sg (y), Jy ⊂ U. There exists m0 so
that g−m0(Jy) has length greater than 1. Let z ∈ g−m0(Jy) be the point
constructed above, and let µ be such that

(2.10) gm0(Dcs
g (z, µ)) ⊂ U.

Let m1 be such that λm1ε < µ. From (2.9) we conclude that

gm1n0(Dcs
g (g−m1n0(z), ε)) ⊂ Dcs

g (z, µ).

��
��
��
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����
����
����
����

����
����
����
����

U

z

Dcs(z, µ)

gm0

gm1n0

Dcs(g−m1n0(z), ǫ)

y

Fu
g (g

−m1n0−m0(ξ))

Fig. 5

On the other hand, from (v) we know that

Fug (g−m1n0−m0(ξ)) ∩Dcs
g (g−m1n0(z), ε) 6= ∅.
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Using (2.10), iterating m1n0 +m0 times we conclude that

Fug (ξ) ∩ U 6= ∅
as desired. This completes the proof of the minimality of Fug for g ∈ U(gB,k)
with k and U small enough.

2.3. Semiconjugacy to the linear Anosov system. In this sub-
section we establish a well known result about the semiconjugacy of any
map isotopic to an Anosov map on the torus (see for instance [S]) and also
we derive some consequence of it. Indeed, we establish it in the universal
cover R3.

Theorem 2.8. Let B : R3 → R3 be a linear hyperbolic isomorphism.
Then there exists C > 0 such that if G : R3 → R3 is a homeomorphism such
that sup{‖G(x) − Bx‖ : x ∈ R3} = K < ∞ then there exists H : R3 → R3

continuous and onto such that:

(1) B ◦H = H ◦G.
(2) ‖H(x)− x‖ ≤ CK for all x ∈ R3.
(3) H(x) is characterized as the unique point y such that

‖Bn(y)−Gn(x)‖ ≤ CK ∀n ∈ Z.
(4) H(x) = H(y) if and only if ‖Gn(x) − Gn(y)‖ ≤ 2CK for all n ∈ Z

and if and only if supn∈Z ‖Gn(x)−Gn(y)‖ <∞.
(5) If B ∈ SL(3,Z) and G is the lift of g : T3 → T3 then H induces

h : T3 → T3 continuous and onto such that B ◦ h = h ◦ g and
distC0(h, id) ≤ C distC0(B, g).

We will prove some consequence of the above theorem for our B ∈
SL(3,Z) and our construction of Mañé’s derived-from-Anosov diffeomor-
phism gB,k : T3 → T3 and any g ∈ U(gB,k). Let G : R3 → R3 be the lift of g
such that sup{‖G(x)−Bx‖ : x ∈ R3} = distC0(B, g) (which we may assume

to be less than
√
k). Denote by F̃ j , j = s, c, u, cs, cu, the lift of the stable,

central, unstable, central stable and central unstable foliation respectively.

Theorem 2.9. With the above notations we have:

(1) H(F̃cuG (x)) = F̃cuB (H(x)) and H(F̃csG (x)) = F̃csB (H(x))

(2) H(F̃cG(x)) = F̃cB(H(x)).

(3) H(F̃uG(x)) = F̃uB(H(x)) = H(x) + EuB and H : F̃uG(x) → F̃uB(H(x))
is a homeomorphism.

(4) For any x, y ∈ R3,

#{F̃csG (x) ∩ F̃uG(y)} = 1 and #{F̃cuG (x) ∩ F̃sG(y)} = 1.

Proof. For the first item we only prove the first equality; the other one
is similar. Let us prove first that H(F̃cuG (x)) ⊂ FcuB (H(x)) = H(x) + EcuB .
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For contradiction, assume that there exists y ∈ F̃cuG (x) such that H(y) /∈
F̃cuB (H(x)) and let z = F̃sB(H(y)) ∩ F̃cuB (H(x)). By backward iteration we
have

‖B−n(H(y))−B−n(H(x))‖
≥ ‖B−n(H(y))−B−n(H(z))‖ − ‖B−n(H(z))−B−n(H(x))‖
≥ λ−ns ‖H(y)−H(z)‖ − λ−nc ‖H(z)−H(x)‖.

On the other hand, since y ∈ F̃cuG (x) and (for k and U small) ‖dG−1/EcuG ‖ ≤
(λc − ε)−1 we have

‖B−n(H(x))−B−n(H(y))‖ ≤ ‖B−n(H(x))−G−n(x)‖+‖G−n(x)−G−n(y)‖
+ ‖B−n(H(y))−G−n(y)‖

≤ 2C
√
k + (λc − ε)−n distF̃cuG (x)(x, y).

For n large enough we arrive at a contradiction with the previous inequality.

Now, since ‖H − id‖ ≤ C
√
k we have:

• F̃cuG (x) ⊂ {z : distR3(z,H(x) + EcuB ) ≤ C
√
k} (that is, roughly speak-

ing, F̃cuG is a surface in a sandwich of size C
√
k with central slice the

plane H(x) + EcuB (see Figure 6),

• F̃cuG (x) is transverse to EsB,

• F̃cuG (x) is a complete manifold,

and it is not difficult to see that F̃cuG (x) is the graph of a map EcuB → EsB.

Then, since ‖H − id‖ ≤ Cρ it follows that H : F̃cuG (x)→ F̃cuB (H(x)) is onto.

F̃cu
G (x)

H(x)− Cρes + Ecu
B

H(x) + Cρes + Ecu
B

Fig. 6. The Fcu
G leaf

Let us prove the second item. From the first one it follows that

H(F̃cG(x)) = H(F̃csG (x) ∩ F̃cuG (x)) ⊂ F̃csB (H(x)) ∩ F̃cuB (H(x)) = F̃cB(H(x)).
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Since ‖H − id‖ ≤ C
√
k we see that F̃cG(x) is in a cylinder of radius C

√
k

with axis H(x)+EcB = F̃cB(H(x)). Since EcG is in a tiny cone around EcB we

may assume that EcB is always transverse to EsB ⊕EuB and moreover F̃cG(x)

is the graph of a map EcB → EsB ⊕ EuB. Using again ‖H − id‖ ≤ C
√
k we

conclude that H : F̃cG(x)→ F̃cB(H(x)) is onto.

For the third item observe also that H(F̃uG(x)) ⊂ F̃uB(H(x)) since for

y ∈ F̃uG(x) we have ‖Gn(y)−Gn(x)‖ → 0 as n→ −∞ and hence the distance
between H(Gn(y)) = Bn(H(y)) and H(Gn(x)) = Bn(H(x)) is bounded for
n ≤ 0, which implies that H(y) ∈ H(x)+EuB. By similar arguments to those

in the previous item we find that H : F̃uG(x) → F̃uB(H(x)) is onto. On the
other hand, H/F̃uG(x)

is injective: otherwise, if H(z) = H(y) for some z, y ∈
F̃uG(x) then by forward iteration ‖Gn(y)−Gn(z)‖ goes to infinity (recall that

F̃uG is quasi-isometric) and so ‖H(Gn(y))−H(Gn(z))‖ also goes to infinity
by forward iteration, which is impossible since H(Gn(y)) = Bn(H(y)) =
Bn(H(z)) = H(Gn(z)).

For the fourth and last item observe that

#{F̃csG (x) ∩ F̃uG(y)} ≤ 1.

Otherwise, let z, w ∈ F̃csG (x)∩F̃uG(y) and iterating forward we see (since F̃u
is quasi-isometric) that ‖Gn(z) − Gn(w)‖ ∼ distF̃u(Gn(z), Gn(w)), which

grows with exponential rate ∼ λu. On the other hand, since z, w ∈ F̃cs the
distance can grow at most with rate λc(g) < 1 + ε < λu, and we get a
contradiction.

To see the intersection is non-empty just recall that F̃cs(x) is the graph
of a (bounded) map EcsB → EuB and F̃u(y) is the graph of a (bounded) map
EuB → EcsB .

The second part of this item is very similar to what we have already
done. Nevertheless (for the very last argument) it is worth mentioning that
it is not true in general that H(F̃sG(x)) = F̃sB(H(x)), and so we cannot be

sure that F̃sG(x) is at a bounded distance from H(x) +EsB but still it is not

difficult to see (since EsG is in a tiny cone around EsB) that F̃sG(x) is the
graph of a map EsB → EcuB .

Corollary 2.10. With the above notations, assume that H(x) = H(y).
Then x, y belong to the same central leaf F̃cG(x) = F̃cG(y). Moreover, if we

denote by [x, y]c the central arc in F̃cG(x) with ends x and y then H([x, y]c) =

H(x) = H(y) and the diameter of [x, y]c is bounded by 2C
√
k. In particular,

for any z, H−1(z) is either a point or an arc.

Proof. Let x, y be such that H(x) = H(y). We claim that y ∈ F̃csG (x).

Otherwise, from the last theorem we may consider z = F̃csG (x) ∩ F̃uG(y). By
similar arguments to those before, since by forward iteration the distance
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between Gn(z) and Gn(y) grows with a rate much higher than the one
between Gn(z) and Gn(x) could attain, we conclude that

‖Gn(x)−Gn(y)‖ −−−→
n→∞

∞.

This is impossible due to H(Gn(y)) = H(Gn(x)), and so Gn(z) and Gn(y)
are at a bounded distance for every n.

In a similar way we prove that y ∈ F̃cuG (x). Therefore

y ∈ F̃csG (x) ∩ F̃cuG (x) = F̃cG(x).

Now, recall that F̃c(z) is the graph of a map H(z) + EcB → H(z) +

EsB ⊕ EuB and bounded by C
√
k (in particular F̃c(z) is quasi-isometric) for

any z. We shall denote by Πsu : R3 → EcB the projection along EsB ⊕ EuB.
Now, if w ∈ [x, y]c it follows that for any n,

Πsu(Gn(x)) < Πsu(Gn(w)) < Πsu(Gn(y)).

Hence supn∈Z ‖Gn(x) − Gn(y)‖ < ∞ and so H(x) = H(w). Finally, if

H(w) = H(z) then ‖z − w‖ ≤ 2C
√
k.

For x ∈ R3 set [x] = {y ∈ R3 : H(y) = H(x)} = H−1(H(x)). In other
words [x] is the equivalence class of the equivalence relation x ∼ y if and only
if H(x) = H(y). From the above lemma we know that [x] is a point or an arc
contained in the central leaf FcG(x). In particular, as H : F̃ uG(x)→ F̃ uB(H(x))
is a homeomorphism, we have (see Figure 7):

[z]

[x]

H(x)

H(z)

H

x

z

F̃cu
G (x)

H(x) + Ec
B ⊕ Eu

B

Ec
B

Eu
B

F̃c
G

F̃u
G

F̃c
G(z)

Fig. 7

Corollary 2.11. Let x ∈ R3 and let z ∈ FuG(x). Then

(2.11) [z] =
( ⋃
y∈[x]

F̃uG(y)
)
∩ F̃cG(z).
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Now, going back to the linear Anosov diffeomorphism on the 3-torus
induced by B ∈ SL(3,Z) and the Mañé’s DA g ∈ U(gB,k) and applying the
previous results we get the following

Theorem 2.12. There exists h : T3 → T3 continuous and onto such that

(1) B ◦ h = h ◦ g.
(2) distC0(h, id) ≤ C

√
k.

(3) h(F jg (x))=F jB(h(x)) where j=cs, cu, c, u and h : Fug (x)→FuB(h(x))
is a homeomorphism.

(4) If h(x) = h(y) then y ∈ Fcg(x).

(5) h−1(z) is either a point or an arc contained in a central leaf (with
diameter less than 2C

√
k).

(6) If we set [x] = h−1(h(x)) = {y ∈ T3 : h(x) = h(y)} then, for
z ∈ Fug (x),

[z] =
( ⋃
y∈[x]

Fug (y)
)
∩ Fcg(z).

Corollary 2.13. Let g ∈ U(gB,k) be as above. Then Fcg is minimal,

i.e., every leaf is dense in T3.

Proof. Let x ∈ T3 and let U ⊂ T3 be an open set. We want to prove
that Fcg(x)∩U 6= ∅. Consider a small two-dimensional disk S ⊂ U transverse
to Ecg. We know that h/S is injective and hence h(S) is a two-dimensional
topological manifold transverse to EcB. Since FcB is minimal, FcB(h(x)) ∩
h(S) 6= ∅, that is, there exists y ∈ S such that h(y) ∈ FcB(h(x)) = h(Fcg(x)).
Therefore y ∈ Fcg(x) and so Fcg(x) ∩ U 6= ∅.

Corollary 2.14. Let g ∈ U(gB,k) be as above. Then A = {z ∈ T3 :
h−1(z) is a point} has full Lebesgue measure.

Proof. Since the preimage by h of a central leaf of B is a central leaf
of g, the set of points x whose preimage is a non-trivial arc is countable in
each central leaf of B and hence it has measure zero on each central leaf. On
the other hand the central foliation of B is by lines and we can apply the
Fubini Theorem to conclude that the Lebesgue measure of the complement
of A is zero.

2.4. Further analysis of semiconjugacy. In this section we give more
details on the semiconjugacy with the linear Anosov diffeomorphism B and
on the equivalence classes [x] = h−1(h(x)) = {y : h(y) = h(x)}. This section
is needed to get uncountably many non-trivial fibers and to get Li–York
chaos in our example. Let us begin with the following
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Lemma 2.15. For g ∈ U(gB,k) as above, if

lim inf
n→−∞

1

n
log ‖dgn/Ecg(x)‖ > 0

then [x] = h−1(h(x)) ) {x}.
Proof. Let γ be such that

lim inf
n→−∞

1

n
log ‖dgn/Ecg(x)‖ > γ > 0.

Then for n large enough we have

‖Dg−nEcg(x)‖ ≤ e
−γn

and therefore, by standard arguments, there exists a central arc Ic containing
x such that the length of g−n(Ic) is uniformly bounded for n ≥ 0 (indeed,
Ic ⊂ W u(x)). We claim that gn(Ic) has bounded length for n ≥ 0. We will
denote by `(I) the length of I.

We may assume that ρ is small (recall that the support of the modifica-
tion of B is in B(p, ρ)) so that if Jc is a central arc such that 4ρ ≤ `(Jc) ≤ 6ρ
then Jc ∩ B(p, ρ) has at most one connected component of length at most
2ρ. Recall also that λc(g) < 1 + ε where ε is small (taking k small) (for
instance, ε < 1− λc and ε < 1/2).

To prove the claim we may assume that `(Ic) < 2ρ and arguing by
contradiction, consider the case where the length of gn(Ic) is unbounded for
n ≥ 0. Let n0 be the first time such that `(gn(Ic)) ≥ 6ρ. Since 4ρλc(g) <
4ρ(1 + ε) < 6ρ it follows that

4ρ ≤ `(gn0−1(Ic)) < 6ρ.

Set Jc = gn0−1(Ic). By the above condition on Jc and recalling that ‖dgξ‖ =
‖B‖ = λc if ξ /∈ B(p, ρ), we get

6ρ ≤ `(gn0(Ic)) = `(g(Jc)) ≤ (1 + ε)
`(Jc)

2
+ λc

`(Jc)

2
< `(Jc) < 6ρ,

a contradiction. Now since, `(gn(Ic)) is bounded for all n ∈ Z we conclude
that h(Ic) = h(x) (this can be seen by lifting to R3 where it immediately
follows that ‖Gn(x)−Gn(y)‖ is bounded for all n ∈ Z and y ∈ Ic).

The following lemma says that in any unstable leaf there is a point whose
forward orbit never meets B(p, 2ρ); this is similar to what we have done in
Section 2.2. Notice also that Fug is orientable and choose an orientation. For

x ∈ T3 denote by Fu,+g (x, t) an arc of length t in Fug (x) starting at x in the
chosen orientation.

Lemma 2.16. Assume that λu > 3. Then for ρ, k and U small the
following holds for each g ∈ U(gB,k): for any x ∈ T3 there exists a point

zx ∈ Fu,+g (x, 1) such that gn(z) ∩B(p, 2ρ) = ∅ for any n ≥ 0.
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Proof. We may assume that ρ is so small that any segment Iu in FuB of
length 1 has a subsegment Iu1 of length 1/3 such that Iu1 ∩ B(p, 2ρ) = ∅.
Now, if k and U(gB,k) are small we may assume that the same property
holds for g ∈ U , that is, any arc Iu in Fug of length 1 has a subarc Iu1 of
length 1/3 such that Iu1 ∩ B(p, 2ρ) = ∅. Moreover, we may assume that
λu(g) > 3. Now, g(Iu1) has length at least 1 and so it has a subarc Iu2 such
that Iu2 ∩B(p, 2ρ) = ∅. By induction, for any n, g(Iun) contains Iun+1 such
that Iun+1 ∩B(p, 2ρ) = ∅. Therefore,

zx ∈
⋂
n≥0

g−n(Iun+1)

satisfies the conclusion of the lemma.

Corollary 2.17. Let g ∈ U be as above and let x ∈ T3 be such that
[x] ) {x}. Then given η > 0 there is a point y ∈ Fu,+g (x) (the positive side
of Fug in the chosen orientation) such that `([y]) < η.

Proof. Recall that for g ∈ U we have ‖dg/Ecg(ξ)‖ < λc(1 + ε) < 1 if

ξ /∈ B(p, ρ). Also, if k is small then 2C
√
k < ρ. Let η be given and let n0 be

such that
(λc(1 + ε))n02C

√
k < η.

Consider x such that [x] ) {x}. From the above lemma, select z ∈
Fug (g−n0(x), 1) such that gn(z) /∈ B(p, 2ρ) for any n ≥ 0. Notice that, since
[g−n0(x)] is not trivial, the same is true for z. On the other hand, [z] is a
central segment of length at most 2C

√
k. Therefore, gn([z]) ∩ B(p, ρ) = ∅

for n ≥ 0. Therefore,

`(gn[z]) ≤ (λc(1 + ε))n2C
√
k.

Finally, setting y = gn0(z) ∈ Fu,+g (x) we have

`([y]) = `(gn0 [z]) ≤ (λc(1 + ε))n02C
√
k < η.

The next result is fundamental for the behavior of the holonomy map
along the unstable foliation. The main tool is the existence of a transverse
homoclinic point (recall Corollary 2.6).

Lemma 2.18. Let g ∈ U(gB,k) have a transverse homoclinic point associ-

ated to the fixed point p of unstable index 2. There exist ε0 and zp ∈ Fu,+g (p)
such that

lim sup
n→∞

`(gn([zp])) > ε0.

Proof. Recall that [p] is the central segment between q1, q2. Pick ε0 <
min{`[q1, p]c, `[p, q2]c}. Notice that

W u(p) =
⋃

y∈(q1,q2)c
Fug (y).
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Let z be a homoclinic point associated to p, that is, z ∈ Fsg (p)∩W u(p). We
know that

[z] =
( ⋃
y∈[p]

Fug (y)
)
∩ Fcg(z).

We may assume that the orientation in Fug is such that zp = [z] ∩ Fug (p) ∈
Fu,+g (p). Since [z] = [zp], z ∈ Fs(p) and [z] ⊂ Fcg(z) ⊂ Fcsg (p), by forward
iteration gn([z]) must approach [q1, p] or [p, q1] (see also Figure 8), and the
lemma follows.

Fs
g (p)

[z]

pq1 q2

x

z

Fc
g (p)

gn(z) gn([z])

W u
δ (x)

Fig. 8

Indeed, a more extensive result holds:

Proposition 2.19. Let g ∈ U(gB,k) have a transverse homoclinic point
associated to the fixed point p of unstable index 2. Then there exists an
uncountable set Λ0 such that:

(1) If x, y ∈ Λ0, x 6= y, then Fcug (x) 6= Fcug (y).
(2) For any x ∈ Λ0, [x] is non-trivial.
(3) There exists ε0 such that for any x ∈ Λ0 and any t > 0 there exists

zx ∈ Fu,+g (x) \ Fug (x, t) such that `([zx]) > ε0.

Proof. From the existence of a transverse homoclinic point associated
to p of index 2 we deduce the existence of a non-trivial hyperbolic compact
invariant set Λ (of unstable index 2) and with local product structure. In
particular, from Lemma 2.15 implies that for any x ∈ Λ, [x] is non-trivial.

Notice that for x ∈ Λ,W u(x) is two-dimensional and contained in Fcug (x)
and there exists δ > 0 such that W u

δ (x) has uniform size. We will denote by

W u,+
δ (x) the component of W u

δ (x)\Fcg(x), which is in the positive direction
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of Fug (x). Moreover, there are uncountably many disjoint unstable mani-
folds W u. Furthermore, there is some L such that, setting Fsg (p, L) = W s

L(p),
we have

Fsg (p, L) ∩W u
δ (x) 6= ∅ ∀x ∈ Λ.

Indeed, it is not difficult to see that if x is not in a central stable periodic
leaf, then

Fsg (p, L) ∩W u,+
δ (x) 6= ∅.

Let us indicate a consequence of the above fact. Let z ∈ Fsg (p, L)∩W u,+
δ (x)

and let ε0 < `([p])/2. Since gn(z)→ p we conclude that `(gn[z]) = `([gn(z)])
> ε0 for n large enough (see Figure 8). Indeed, [z] is a central arc of uniform
size and therefore, as moreover there exists m0 such that gm0(z) ∈W s

loc(p),
we infer that gm0([z]) is a central arc of uniform size in Fcsloc(p). Now, by
forward iteration, we have `(gn([z])) > ε0 for all n ≥ m1 for some m1 (which
is independent of x).

Now choose an uncountable set Λ0 ⊂ Λ such that for x 6= y ∈ Λ0 we
have Fcug (x) 6= Fcug (y) and no x ∈ Λ0 is in a periodic central stable leaf. It
remains to prove (3). Let x ∈ Λ0 and let t > 0, and choose n1 > m1 such
that g−n1(Fu,+g (x, t)) ⊂ W u

η (g−n1(x)) where η is such that W u
η (g−n1(x)) ∩

Fsg (x, L) = ∅. Let w ∈ Fsg (p, L) ∩ W u,+
δ (g−n1(x)). It follows that [w] ∩

Fu,+g (g−n1(x)) 6= ∅; let y be the point of intersection. Notice that on one
hand y /∈ g−n1(Fu,+g (x, t)) and therefore zx = gn1(y) ∈ Fu,+g (x) \Fu,+g (x, t).
On the other hand,

`([zx]) = `([gn1(y)]) = `(gn1([y])) = `(gn1([z])) > ε0.

Finally, we will give a result for g as in Corollary 2.6, which is funda-
mental in order to get Li–Yorke chaos:

Proposition 2.20. Let g be as in Corollary 2.6 and let p1, p2 be any two
distinct points in J . Then there exists w ∈ J between p1 and p2, z ∈ Fu,+(w)
and a non-trivial arc Ic ⊂ [z] such that

(1) Ic ⊂ (
⋃
y∈[p1,p2]F

u
g (y)) ∩ [z].

(2) limk→∞ `(g
km(Ic)) > 0 (where m is given in Corollary 2.6).

(3) gkm(Ic) ⊂
⋃
y∈[p1,p2]F

u
g (y) for all k.

Proof. Consider Dcs =
⋃
x∈int(J)Fsg (x) which contains a disk in a central

stable manifold. Now, let w ∈ J lie between p1 and p2. Since the unstable
foliation is minimal, we have Fug (w)∩Dcs 6= ∅. Let z be in this intersection.
Then, since

⋃
y∈[p1,p2]F

u
g (y)∩[z] contains z in its interior (with respect to [z])

we may find Ic satisfying (1) of the proposition and such that Ic ⊂ Dcs.
Since gm/J ≡ id we also deduce (2). Since all points of J are fixed by gm, the
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Dcs

w
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unstable manifolds of points of J are invariant under gm and so we obtain
(3) as well.

3. The induced holonomy map on T2. Let B ∈ SL(3,Z) (with
eigenvalues 0 < λs < λc < 1 < λu) and gB,k defined in (2.1) and (2.2), and
let g ∈ U(gB,k) with k and U small so that the last section applies.

Consider a two-dimensional torus transverse to FuB and (assuming k
and U small) also transverse to Fug . In particular we may and do consider

T2 = (R2 × {0})/(Z2 × {0}).
The foliations FuB and Fug are orientable and we choose similar orien-

tations on both (that is, take unit vector fields XB = eu and Xg close
to XB).

Definition 3.1. For g as above we define f = fg : T2 → T2 to be
the holonomy map on T2 induced by the unstable foliation Fug . In other

words, f(x) is the first return map of Fug (x) to T2 in the given orientation.

Moreover, we can define F : T3 → T2 as the first return to T2 of any x ∈ T3

along the positive orientation of Fug (x).

Remark 3.2. Notice that the induced map f = fg is a homeomorphism.
Moreover, f is of class Cr if the unstable foliation Fug is of class Cr. Fur-
thermore, Fug is of class Cr if the unstable bundle Eug is.
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Moreover, if we consider the holonomy map TB : T2 → T2 induced by
FuB we find that TB is a minimal (and hence ergodic) translation. Moreover,
f = fg and TB are close as we wish if k is small.

If we apply the results of the previous section we obtain the topological
version of our main result:

Theorem 3.3. For g : T3 → T3 in U(gB,k) and f = fg : T2 → T2 and
TB : T2 → T2 as above we have:

(i) f is minimal.
(ii) f is isotopic and semiconjugate to the ergodic translation TB. If

we denote by ĥ the semiconjugacy, then ĥ−1(x) is either a point
or an arc.

(iii) f preserves a minimal and invariant C0 foliation with one-dimen-

sional C1 leaves. The fibers ĥ−1(x) are contained in the leaves of
this foliation.

(iv) The set Ã = {z ∈ T2 : ĥ−1(z) is a point} has full Lebesgue mea-
sure.

As a consequence:

(v) f has zero entropy.
(vi) f is point-distal and non-distal.

(vii) f is sensitive to initial conditions.
(viii) f is uniquely ergodic.

Furthermore, if g also satisfies the conditions of Corollary 2.6 then:

(ix) f exhibits Li–York chaos.

(x) There are uncountably points x such that ĥ−1(x) is a non-trivial
arc.

Proof. (i) follows from the minimality of the unstable foliation Fug (see
Section 2.2).

Let us prove (ii). Since f and TB are C0 close, they are isotopic. Recall
that h is the semiconjugacy between g = gB,k and B : T3 → T3 given in
Section 2.3.

Since distC0(h, id) < C
√
k (which we may assume to be smaller than

1/4), for every point in h(T2) we can define a natural projection P : h(T2)→
T2 along the unstable foliation FuB, that is, P (h(x)) is the closest point to
h(x) within FuB(h(x)) in T2. Define

ĥ : T2 → T2, ĥ(x) = P (h(x)).

Clearly, ĥ is continuous and close to the identity (if k is small) and hence
onto (and isotopic to the identity as well).
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Now, the points x ∈ T2 and f(x) ∈ T2 are the ends of an arc Iu ⊂ Fug (x)

and when lifted to R3 their coordinates have z-difference 1.

On the other hand, h(Iu) is an arc (segment) of FuB(h(x)) so that, when

lifted to R3 the ends have coordinates whose z-difference is between 1−2C
√
k

and 1 + 2C
√
k. Therefore P (h(f(x)) = TB(ĥ(x)), that is,

ĥ ◦ f = TB ◦ ĥ.

Notice that:

• If h−1(x) = {y} then clearly ĥ−1(x) is a unique point.
• If h−1(x) is a non-trivial central arc, then its projection (by P ) onto

T2 is a non-trivial arc and equals ĥ−1(x).

This finishes the proof of (ii).

To prove (iii), for x ∈ T2 let C(x) be the connected component of Fcug (x)∩
T2 that contains x. It follows that C is a continuous foliation with C1 one-
dimensional leaves (recall that Fcug (x) is a C1 manifold) and obviously invari-
ant under f , the holonomy map. Furthermore, since h(Fcug )(x) = FcuB (h(x))

it follows that ĥ(C(x)) is the connected component of FcuB (ĥ(x)) ∩ T2 that

contains ĥ(x). Since this foliation by lines on T2 is minimal we also conclude
that C is minimal (proof similar to that of Corollary 2.13). Since h−1(x) live

in a central unstable leaf, we see that ĥ−1 lives in the leaves of this foliation.

To prove (iv), consider as in the statement the set

Ã = {x ∈ T2 : ĥ−1(x) is a point}.

Observe that ĥ−1(x) is a point if and only if h−1(x) is. Moreover, if h−1(x)
is a point, the same is true for any y ∈ FuB(x). By Corollary 2.14,

A = {x ∈ T3 : h−1(x) is a point}

has full Lebesgue measure on T3 and therefore Ã has full Lebesgue measure
on T2.

The proof of (v) is rather easy. Indeed, by Bowen’s formula ([Bo]) we
have

htop(f) ≤ htop(TB) + sup
x∈T2

htop(f, ĥ−1(x))

where htop(f,K)=limε→0 lim supn→∞ n
−1logN(ε, n, f,K) and N(ε, n, f,K)

is the minimum cardinality of an (n, ε)-separated set in K. Since for all x,

ĥ−1(x) is either a point or an arc (with bounded length in the future and
in the past), we have the result (see also [BFSV]). Notice also that if we
happen to know that f is C1+α, the zero entropy follows from Katok’s re-
sult [Ka].
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Let us prove (vi). Recall that f is point distal if there exists x ∈ T2 such
that for every y 6= x there exists ry > 0 so that ry ≤ inf{dist(fn(x), fn(y)) :
n ∈ Z}, and f is non-distal if there exists a pair of points z, w such that
inf{dist(fn(z), fn(w)) : n ∈ Z} = 0.

We first show that f is point distal. Let x ∈ T2 with ĥ−1(ĥ(x)) = {x} and

consider any y ∈ T2. Let α = dist(ĥ(x), ĥ(y)). By the (uniform) continuity

of ĥ, there exists r such that if dist(z, w) < r then dist(ĥ(z), ĥ(w)) < α
for any z, w ∈ T2. We claim that inf{dist(fn(x), fn(y)) : n ∈ Z} ≥ r > 0.
Otherwise, if for some n we have dist(fn(x), fn(y)) < r then (since TB is an
isometry)

α > dist(ĥ(fn(x)), ĥ(fn(y))) = dist(TnB(ĥ(x)), TB(ĥ(y)))

= dist(ĥ(x), ĥ(y)) = α.

Now, we prove that f is non-distal. Let x be such that Ix = ĥ−1(ĥ(x)) is
a non-trivial arc. It follows that lim infn→∞ f

n(Ix) = 0 since the orbit of Ix
is dense and must approach points with trivial equivalence class (fiber),
and the equivalence classes vary lower semicontinuously. Finally, if we take
z 6= w ∈ Ix we conclude that inf{dist(fn(z), fn(w)) : n ∈ Z} = 0, i.e., f is
non-distal.

For the proof of (vii), recall that f is sensitive to initial conditions if there
exists some ε2 such that for any x ∈ T2 and any open set U containing x there
exist y ∈ U and n > 0 such that dist(fn(x), fn(y)) ≥ ε2. So, given ε1, let ε2
be such that any arc in C of length ε1 has endpoints at distance at least 2ε2.
Let x and U be given. Assume first that ĥ−1(ĥ(x)) = {x}, which is the
same as [x] = {x}. Since f is minimal, there is mk such that fmk(p)→k x.
We claim that for k large enough, fmk(Ip) ⊂ U. Indeed, `(fmk(Ip)) → 0,
as otherwise [x] 6= {x} (the equivalence classes are lower semicontinuous).
Thus, choose some m so that fm(Ip) ⊂ U. Since lim sup `(fn(Ip)) ≥ ε1 we
get the result taking y as the appropriate endpoint of fm(Ip). Now, if [x] is
non-trivial we can argue as before, since in U there are points z such that
[z] is trivial and so for some m we have fm(Ip) ⊂ U.

To prove (viii), denote by Mf the set of invariant probabilities of f .
Given µ ∈ Mf we may define a measure ν ∈ MTB by ν(A) = µ(h−1(A)).
Since TB is uniquely ergodic, ν = m (the Lebesgue measure on T2). That is,
for every Borel set D and µ ∈ Mf we have µ(h−1(D)) = m(D). Therefore,

for every µ ∈Mf , setting D = ĥ−1(Ã) where Ã is as in (iv), we have

µ(D) = µ(ĥ−1(Ã)) = m(Ã) = 1.

Observe that for any Borel set A we have A ∩ D = ĥ−1(ĥ(A ∩ D)).
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Given µ1, µ2 ∈Mf and any Borel set A we have

µ1(A) = µ1(A ∩ D) = µ1(ĥ
−1(ĥ(A ∩ D))) = m(ĥ(A ∩ D))

= µ2(ĥ
−1(h(A ∩ D))) = µ2(A ∩ D) = µ2(A).

Thus f is uniquely ergodic.

We now prove (ix) in case g is as in Corollary 2.6. Consider the arc
J as in Corollary 2.6. Notice that for any x ∈ J , [x] ⊇ J. If J ∩ T2 = ∅
let J̃ = F (J) where F is the first return map to T2 along the unstable
foliation Fug ; otherwise, set J̃ = P (J). As above, lim infn→∞ f

n(J̃) = 0. On

the other hand, given any two points p1, p2 in J̃ and applying Proposition
2.20 we conclude that lim supn→∞ d(fn(p1), f

n(p2)) > 0.

Finally, by Proposition 2.19, there are uncountably many points x such
that ĥ−1(x) is a non-trivial arc. This proves (x).

Remark 3.4. If f were of class C2 and the leaves of the foliation C also
were of class C2 one would be tempted to use Schwarz’s argument ([Sch])

to show that non-trivial fibers of ĥ−1 are not possible. However, in our case
there is an extra difficulty: we do not know a priori that the sum of the
lengths of the iterates of a non-trivial fiber (if any) does converge. In our
examples, this sum does not converge!

Let us point out as well that with our method, the differentiability of
the system and of the foliation are like the dishes on a balance. More differ-
entiability for the system implies less for the foliation.

4. On the smoothness of Eug . From Theorem 3.3 and Remark 3.2
the only thing left to prove for our Main Theorem is the following: given
r ∈ [1, 3) there exists g so that the unstable bundle Eug is of class Cr.

In order to establish the differentiability class of Eug we recall a classical
result from [HPS] that is very useful for this type of problem.

Theorem 4.1 (Cr-section theorem). Let M be a compact Cr mani-
fold and g : M → M a Cr diffeomorphism. Let π : L → M be a finite-
dimensional Finsler vector bundle and let D be the disk subbundle with
π(D) = M. Let F : D → D be a homeomorphism such that F (Lξ) = Lg(ξ),
and let lξ = lξ(F, g) be the Lipschitz constant of F |Lξ for ξ ∈M .

If lξ < 1 for every ξ ∈M , then there exists a unique continuous section
σ : M → L such that F ◦ σ = σ ◦ g (an invariant section).

Moreover, if π : L→M is a Cr vector bundle (with some structure which
is compatible with the Finsler structure), F is Cr and setting τξ = τξ(g) =
‖(dgξ)−1‖ we have lξτ

r
ξ < 1, then the invariant section σ : M → L is Cr.

Let B ∈ SL(3,Z) be a linear transformation with eigenvalues 0 < λs <
λc < 1 < λu and invariant hyperbolic structure EsB⊕EcB⊕EuB as considered



90 A. Passeggi and M. Sambarino

above and a Euclidean metric on R3 such that the above spaces are mutually
orthogonal. Consider the vector space L(EuB, E

s
B ⊕ EcB) of linear maps t :

EuB → EsB ⊕ EcB with the natural norm.
Consider the (trivial) vector bundle

(4.1) L = {(ξ, t) : ξ ∈ T3, t ∈ L(EuB, E
s
B ⊕ EcB)}.

Then π : L → M given by π(ξ, t) = ξ is a (finite-dimensional) C∞ Finsler
vector bundle.

Now, for g = gB,k : T3 → T3 we define the associated vector bundle map
F = FB,g : L→ L as follows: for (ξ, t) ∈ L,

(4.2)
F (ξ, t) = (g(ξ), s), s ∈ L(EuB, E

s
B ⊕ EcB)

such that graph(s)) = dgξ(graph(t)).

Recall that EsB ⊕EcB is invariant under dgξ for any ξ ∈ T3 and so F is a
well defined vector bundle homeomorphism. Nevertheless, for g close to gB,k
the associated map F : L→ L may not be well defined on the whole L. To
overcome this difficulty just set

D = {(ξ, t) : ξ ∈ T3, t ∈ L(EuB, E
s
B ⊕ EcB), ‖t‖ ≤ 1}.

Then from the above theorem we have

Corollary 4.2. Assume that for some r,B and k we have

lξ(F, gB,k) < 1, lξ(F, gB,k)τ(gB,k)
r < 1.

Then there exists U(gB,k) such that for any g ∈ U(gB,k) of class C∞ the
associated map Fg : D → D is well defined, lξ(F ) < 1 and lξ(F )τ(g)r < 1.
In particular, there exists a unique invariant section for Fg in D and it is
of class Cr.

Remark 4.3. Observe that if σ : T3 → L is an invariant section for F ,
i.e., F ◦ σ = σ ◦ g, then graph(σ(ξ)) = Eug (ξ). So, in order to find the
differentiability class we will apply the Cr section theorem to our F : L→ L
over g.

Remark 4.4. If we use the Cr section theorem to calculate the differen-
tiability of the unstable vector bundle of the Anosov system induced by B,
then we will have differentiability less than C3: if r = 3, then

lξτ
r
ξ =

λc
λu

1

λ3s
=
λ2c
λ2s

> 1.

Moreover, the last estimate shows that in order to have proximity to C3

differentiability we must find linear Anosov systems with λs close to λc.
This will be done in Section 4.1.

Throughout the rest of this subsection, to ease notation we set g=gB,k.
We want to estimate lξ(F, g) and τξ(g) for the graph transform F asso-
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ciated to g = gB,k. Recall that the differential of g in the decomposition
EsB ⊕ EcB ⊕ EuB is given by

dgξ =

λs 0 0

0 λc 0

0 0 λu

 for ξ ∈ T3 \B(p, ρ)

and

dgξ =λs + Z(z)(β(r) + β′(r)2x2) Z(z)β′(r)2xy Z ′(z)β(r)x

Z(z)β′(r)2xy λc + Z(z)(β(r) + β′(r)2y2) Z ′(z)β(r)y

0 0 λu


for ξ ∈ B(p, ρ).

Set Tξ = dgξ/EsB⊕E
c
B
.

Lemma 4.5. With the above notations we have

lξ = lξ(F ) ≤ ‖Tξ‖/λu.

Moreover the following estimates hold:

(i) For ξ /∈ B(p, ρ) we have lξ ≤ λc/λu.
(ii) For ξ ∈ B(p, ρ) we have lξ < (λc + Z(z)β(r) + k)/λu.

In particular lξ(F ) < 1 for all ξ ∈ T3 (if k is small).

Proof. If we write

dgξ =

(
Tξ Aξ

0 λu

)
then it is not difficult to see that

F (ξ, t)(v) =
1

λu
(Tξ(t(v)) +Aξv)

and therefore

‖F (ξ, t1)− F (ξ, t2)‖ ≤
‖Tξ‖
λu
‖t1 − t2‖,

which implies lξ ≤ ‖Tξ‖/λu. Since for ξ /∈ B(p, ρ) we have ‖Tξ‖ = λc, we
obtain (i).

In order to prove (ii), set Tξ = D + Sξ where D =
(
λs 0
0 λc

)
and

Sξ =

(
Z(z)(β(r) + β′(r)2x2) Z(z)β′(r)2xy

Z(z)β′(r)2xy Z(z)(β(r) + β′(r)2y2)

)
.
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Observe that Sξ is selfadjoint and has eigenvectors (when ξ 6= p) (x, y),
(−y, x) and eigenvalues

(4.3) λ1 = Z(z)(β(r) + 2β′(r)r), λ2 = Z(z)β(r).

If ξ = p then Sξ = Z(0)β(0) id. From the definition of g (recall Lemma 2.1
and (2.2)) we have −k < λ1 < λ2 < β(0) and λ2 > 0, λ2 − λ1 < k. Then,
‖Sξ‖ ≤ max{|λ1|, |λ2|} ≤ λ2+k = Z(z)β(r)+k and so ‖Tξ‖ ≤ λc+λ2+k.

Lemma 4.6. Let λ1 = λ1,g : T3 → R be defined by λ1,g(ξ) = 0 if ξ /∈
B(p, ρ) and λ1,g(ξ) = Z(z)(β(r) + 2β′(r)r) for ξ ∈ B(p, ρ). Then

‖(dgξ)−1‖ = τξ = τξ(g) ≤ 1

λs + λ1,g(ξ)
.

Proof. Write

dgξ =

(
Tξ Aξ

0 λu

)
.

Then

(dgξ)
−1 =

(
T−1ξ −λ−1u T−1ξ Aξ

0 λ−1u

)
.

Since ‖Aξ‖ is small, λ−1u < 1 and ‖T−1ξ ‖ ≥ 1 it follows that

τξ ≤ ‖T−1ξ ‖.

So we want to estimate ‖T−1ξ ‖. If ξ /∈ B(p, ρ) then

‖T−1ξ ‖ =
1

λs
=

1

λs + λ1(ξ)
.

If ξ = p then

Tp =

(
λs + Z(0)β(0) 0

0 λc + Z(0)β(0)

)
and so

‖T−1p ‖ =
1

λs + Z(0)β(0)
=

1

λs + λ1(p)
.

For ξ ∈ B(p, ρ), ξ 6= p, write Tξ = Cξ + S̃ξ where

Cξ =

(
λs − λc 0

0 0

)
,

S̃ξ =

(
Z(z)(β(r) + β′(r)2x2) + λc Z(z)β′(r)2xy

Z(z)β′(r)2xy Z(z)(β(r) + β′(r)2y2) + λc

)
.

The selfadjoint map S̃ξ has eigenvectors (x, y), (−y, x) associated to the
eigenvalues λ1 + λc and λ2 + λc where λ1, λ2 are as in (4.3).
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Let E be the ellipse with axes in the (x, y) direction and (−y, x) direction,
with vertices of norm 1/(λ2 + λc) and 1/(λ1 + λc) respectively. We have
Sξ(E) = S1 (the unit circle). Thus

Tξ(E) ⊂
{
v : 1− λc − λs

λc + λ1
≤ ‖v‖ ≤ 1 +

λc − λs
λc + λ1

}
.

Setting R = 1− λc−λs
λc+λ1

= λs+λ1
λc+λ1

, we have

T−1ξ ({v : ‖v‖ = R}) ⊂ int(E) ⊂
{
v : ‖v‖ ≤ 1

λ1 + λc

}
.

Then

‖(Tξ)−1‖ ≤
1

R

1

λ1 + λc
=

1

λs + λ1
.

4.1. A special family of linear Anosov diffeomorphisms on T3.
In order to construct elements with Eu bundle of class Cr with r close to 3
we have seen that we need B ∈ SL(3,Z) with eigenvalues λs and λc arbitrary
close. For this we will find a special family of matrices in SL(3,Z).

Let us begin with the following family J = {Ma}a∈N\{0,1,2} of matrices
in SL(3,Z) (inspired from the one in [McS]):

(4.4) Ma =

0 −1 0

1 a2 − 1 a

0 a3 + a 1

 .

Lemma 4.7. For every a ∈ N \ {0, 1, 2}, Ma has eigenvalues αa, βa, γa
such that

αa < −a2/3 < −1 < βa < 0 < a2 < γa.

Furthermore,

(4.5) − 2a2/3 < αa < −a2/3 and a2 < γa < 2a2.

Proof. The characteristic polynomial of Ma is Pa(λ) = −λ3 + a2λ2 +
a4λ + 1. Its derivative P ′a(λ) = −3λ2 + 2a2λ + a4 has one negative root
λ = −a2/3 and a positive one λ = a2. At the negative root of P ′a the
polynomial Pa has a relative minimum, and at the positive root there is a
relative maximum of Pa. The values of Pa at the roots are

Pa(−a2/3) = −5a6/27 + 1 < 0 and Pa(a
2) = a6 + 1 > 0.

Thus, Pa(λ) is as in Figure 10 and the eigenvalues of Ma (i.e. the roots of
Pa(λ)) satisfy

αa < −a2/3 < βa < 0 < a2 < γa.

For the proof of the other inequalities in (4.5) we just compute

Pa

(
−2a2

3

)
=

2

33
a6 + 1 > 0 and Pa(2a

2) = −2a6 + 1 < 0.
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αa βa
γaa2

−a2/3

Fig. 10. The graph of Pa(λ)

We are ready to define our special family of linear Anosov maps:

(4.6) I = {Ba = (M2
a )−1 : Ma ∈ J , a ∈ N \ {0, 1, 2}}

Notice that Ba ∈ SL(3,Z) and the eigenvalues of Ba are the inverses of the
squares of the eigenvalues of Ma and we have

1

4a4
<

1

γ2a
<

1

a4
<

9

4a4
<

1

α2
a

<
9

a4
< 1 <

1

β2a
.

We summarize this in the following

Corollary 4.8. For Ba ∈ I the following holds:

(i) Ba ∈ SL(3,Z) and has eigenvalues 0 < λs(a) < λc(a) < 1 < λu(a).
(ii) For every a ∈ N \ {0, 1, 2} we may write

(4.7) λs(a) = Ka/a
4 and λc(a) = K ′a/a

4

where 1/10 < Ka < K ′a < 10. In particular λu(a) = a8/KaK
′
a.

With the next result we will conclude the proof of our Main Theorem:

Proposition 4.9. For each r ∈ [1, 3) there exists Ba ∈ I such that
for ga = gBa,k as defined in (2.1) and (2.2) with k sufficiently small the
following holds: for the map F = FBa,ga : L → L as defined in (4.1) and
(4.2) and lξ(F ), τξ(ga) as defined in Theorem 4.1 we have

lξ(F )τξ(ga)
r < 1 for all ξ ∈ T3.

Proof. For simplicity, for ξ ∈ T3 set lξ,a = lξ(FBa,ga) and τξ,a = τξ(ga).

Fix r with 1 ≤ r < 3. It is enough to show that

lim
a→∞

lξ,aτ
r
ξ,a = 0

uniformly in ξ ∈ T3. To do so, from Lemmas 4.5 and 4.6, we have, for
ξ /∈ B(p, ρ),
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(4.8) lξ,aτ
r
ξ,a =

λc(a)

λu(a)

1

λs(a)r
=

λc(a)2

λs(a)r−1
=
K ′aa

4(r−1)

Kaa8
≤ 100

a4(r−1)

a8
,

and for ξ ∈ B(p, ρ),

lξ,aτ
r
ξ,a =

λc(a) + Z(z)β(r) + k

λu(a)

[
1

λs(a) + λ1,ga(ξ)

]r
=

1

λu(a)

[
λc(a) + λ1,ga(ξ)

(λs(a) + λ1,ga(ξ))r
+
k + Z(z)β(r)− λ1,ga(ξ)

(λs(a) + λ1,ga(ξ))r

]
.

Since Z(z)β(r)− λ1,ga(ξ) ≤ 2k we have

lξ,aτ
r
ξ,a ≤

1

λu(a)

[
λc(a) + λ1,ga(ξ)

(λs(a) + λ1,ga(ξ))r
+

3k

(λs(a) + λ1,ga(ξ))r

]
≤ 1

λu(a)

[
λs(a) + λ1,ga(ξ) + (λc(a)− λs(a) + 3k)

(λs(a) + λ1,ga(ξ))r

]
.

We may assume, for fixed a, that 3k < λs(a) < 10/a4. From the fact that
0 < λc(a)− λs(a) < 10/a4 and also that λ1,ga(ξ) ≥ −k we have

lξ,aτ
r
ξ,a ≤

1

λu(a)

[
λs(a) + λ1,ga(ξ) + 20 1

a4

(λs(a) + λ1,ga(ξ))r

]
≤ 1

λu(a)

[
1

(λs(a) + λ1,ga(ξ))r−1
+

20

a4(λs(a) + λ1,ga(ξ))r

]
≤ 1

λu(a)

[
1

(λs(a)− k)r−1
+

20

a4(λs(a)− k)r

]
≤ 100

a8

[
2

λs(a)r−1
+

40

a4λs(a)r

]
≤ 100

a8
[8a4(r−1) + 40a4(r−1)] ≤ 104

a4(r−1)

a8
.

From this and (4.8) and taking into account that 1 ≤ r < 3 we deduce for
a ∈ N large enough that lξ,aτ

r
ξ,a < 1 for any ξ ∈ T2. This completes the

proof of the proposition.

We can now conclude the proof of our Main Theorem: Let 1 ≤ r < 3
and choose Ba ∈ I and gBa,k from the above proposition. From Corollary
4.2 we find U(gBa,k) and we choose g ∈ U(gBa,k) of class C∞ and having a
homoclinic intersection associated to the fixed point p of unstable index 2.
From Theorem 4.1, Corollary 4.2 and Remark 4.3 the unstable foliation Fug
is of class Cr, and so, by Remark 3.2, the induced map f = fg : T2 → T2 is
of class Cr. Finally, Theorem 3.3 implies our Main Theorem.
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two-dimensional manifolds, Amer. J. Math. 85 (1963), 453–458; errata, ibid.,
753.

Alejandro Passeggi
Institut für Analysis
TU-Dresden
Zellescher Weg 12-14, Room C34
Dresden, Germany
E-mail: alepasseggi@gmail.com

Mart́ın Sambarino
CMAT, Facultad de Ciencias
Universidad de la República

Uruguay, Igua 4225 esq. Mataojo
Montevideo, Uruguay

E-mail: samba@cmat.edu.uy

Received 9 April 2012;
in revised form 19 February 2013

http://dx.doi.org/10.1090/S0002-9947-09-04810-7
http://dx.doi.org/10.1017/S0143385705000568
http://dx.doi.org/10.1007/BF02764916
http://dx.doi.org/10.2307/2373135



	1 Introduction
	2 On Mañé's derived-from-Anosov diffeomorphism
	2.1 Unique integrability of the bundle Ecg
	2.2 Minimality of the unstable foliation
	2.3 Semiconjugacy to the linear Anosov system
	2.4 Further analysis of semiconjugacy

	3 The induced holonomy map on T2
	4 On the smoothness of Eug
	4.1 A special family of linear Anosov diffeomorphisms on T3

	References

