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The null ideal restricted to
some non-null set may be N;-saturated
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Abstract. Our main result is that possibly some non-null set of reals cannot be
divided into uncountably many non-null sets. We also deal with a non-null set of reals,
the graph of any function from which is null, and deal with our iterations somewhat more
generally.

Annotated content
0. Introduction. We review results and background, and give notation.

1. The null ideal restricted to a non-null set may be Nj;-saturated. We ex-
plain the difficulty for the null case, solved by adding ~ random reals 7)1, in the end,
x measurable, but they are random over some subuniverses, so we add at the beginning A
Cohens r; (i < A). The memory is devised such that {A : {nx4q : @ € A} null} will include
P(I‘C)V \ D, D a normal ultrafilter on s (in the universe before the forcing). Whereas in
[Sh 592], the Ao (memory) were chosen closed enough, here we use automorphisms of the
memory structure.

2. Non-null set with no non-null function. We show that consistently for some
non-null set A of reals for every function from A to the reals, its graph is a null subset of
the plane.

3. The Ly, x,-elementary submodels and the forcing. We deal with general FS
iterations of c.c.c. definable in subuniverses, and give sufficient condition for P’y < Pg.
As application we show consistency of some values of 280, add(meagre), cov(meagre),

unif(meagre), b, 0.
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0. Introduction. Note that the result stated in the abstract tells us

that the positive result explained below cannot be improved (to Ry sets). It
is (Gitik and Shelah [GiSh:582])

(%)  given sets A, of reals for n < w, we can find B,, C A,, pairwise disjoint
such that A,,, B,, have the same outer Lebesgue measure.

Lately, we have proved ([Sh 592]):
0.1. THEOREM. Con(cov(null) =R, + MAy, ) for each n < w.

The idea of the proof was to use finite support (P;, Q; : i < a), where say
Q; has generic real r; and Q; is random forcing in VRZ“]‘ 1 j € ay)], a; C 1,
a; closed enough or r; is Cohen real but the “memory” is not transitive, i.e.,
in general j € a; # a; C a;.

As 0.1 was hard for me for long it seems reasonable to hope the solution
will open my eyes on other problems as well.

In this paper we deal mainly with “can every non-null set be partitioned
to uncountably many non-null sets?”, equivalently: “can the ideal of null
sets which are subsets of a fixed non-null subset of R be Ni-saturated?”.
P. Komjath [Ko] proved that it is consistent that there is a non-meagre set
A such that the ideal of meagre subsets of A is Ni-saturated. The question
whether a similar fact may hold for measure dates back to Ulam (see also
Prikry’s thesis; Fremlin asked both versions in the seventies).

So we prove the following:

0.2. THEOREM. It is consistent that there is a non-null set A C R such
that the ideal of null subsets of A is Ny-saturated (of course, provided that
“ZFC + 3 measurable” is consistent).

The proof of 0.1 was not directly applicable, but “turning the tables”
make it relevant as explained in §1.

The question appears on Fremlin’s current list of problems [Fe94| as
problem EL(a).

We also have some further remarks, e.g. the exact cardinal assumption
for 0.1. We try to make the paper self-contained for readers with basic
knowledge of forcing and of [Sh 592].

Also we answer the following problem which Komjath draws our atten-
tion to:

0.3. THEOREM. It is consistent that

@  there is a non-null A C R such that for every f : A — R, the function
f is null as a subset of the plane R x R

provided that “ZFC + there is a measurable cardinal” is consistent.
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Lastly, in §3 we investigate when partial memory iteration behaves as
in [Sh 592], and give an example how to apply the method. This paper
originally was a part of [Sh 592], but as the main part of [Sh 592] was in
final form and this was not and we wanted to add §3, we separated.

0.4. NoTATION. (A) We denote:

(1) natural numbers by k,l, m,n and also i, j,
(2) ordinals by «, 3,7,9,(, & (§ always limit),

(3) cardinals by A, k, X, 4,

(4) reals by a,b and positive reals (normally small) by &,
(5) subsets of w or “Z2 or Ord by A, B,C, XY, Z,

(6) Borel functions by B,

(7) finitely additive measures by =,

(8) sequences of natural numbers or ordinals by 71, v, o,
(9) various things by s.

(B) 7 is as in Definition 2.9 of [Sh 592], ¢ is a member of 7.
(C) We denote

(1) forcing notions by P, Q,
(2) forcing conditions by p, q,
(3) “p stronger than ¢” by p > ¢

and use r to denote members of Random (see below).

(E)(1) Leb is Lebesgue measure (on {4 : A C “2}).
(2) Random will be the family

{r C“>2: 7 is a subtree of (“~2,<), i.e., closed under initial segments,
() € r, with no <-maximal element (so lim(r) C “2
is closed), Leb(lim(r)) > 0, and moreover,

n € r = lim(r") is not null (on [ see below)}
ordered by inverse inclusion. We may sometimes use instead
{B : B is a Borel non-null subset of “2}.
(F) For n € “>2 and A C “=2 let
A=y e A:vanvy v}

We thank Tomek Bartoszynski, Mariusz Rabus and Heike Mildenberger
for reading, commenting and suggesting corrections.

1. The null ideal restricted to a non-null set may be N;-satu-
rated. Let us first describe an outline of Komjéath’s solution to the problem
for the meagre ideal. Note that by a theorem of Solovay, the conclusion
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implies that there is a measurable cardinal in some inner model. So Komjath
starts with

V = “k is measurable and D is a normal ultrafilter on x”.

He uses a finite support iteration (Po, Qg : a < 2%, 5 < 27) of c.c.c. forcing
notions such that for 3 < k the forcing notion Qp adds a Cohen real ng € “2
(so Qp = (“>2,<)) and for each 3 € [k,2%) for some Az € D (s0 from V),
the forcing notion Qg makes the set {1, : v € » \ Az} meagre (and every
A € D appears). The point is that finite support iterations tend to preserve
non-meagreness, so in VF2* the set {1, : @ < x} remains non-meagre and as
Py« is a c.c.c. forcing notion, D is (i.e. generates) in VP2 an R;-saturated
filter.

For our aims this per se is doomed to failure: finite support iterations
add Cohen reals which make the set of old reals null, whereas countable
support iterations tend to collapse N9 and we no longer know that D gener-
ates an Ny-saturated filter. This seems to indicate that the solution should
be delayed till we have better other support iterations (the 2¥0 = N3 prob-
lem; see [Sh 666], [Sh:b, Chs. VII, VIII] and [Sh:f, Chs. VII, VIII]). But
we start with a simpler remedy: we use a finite support iteration which il-
lustrates a quotation from Lewis Caroll: the punishment will precede the
sin, i.e., we first add the Cohens to make the required sets of reals null and
only then do we add the x randoms which form the non-null set. That is,
our iteration of c.c.c. forcing notions is (Py, Qg : a < §*, B < §*) with
cf(0%) = K, (B¢ : £ < k) is increasing with limit 0%, Qg is a partial random,

say RandomV P Where A(B¢) = A, C B¢, adding the real 75, , so actually
Vi) = V(1) iy € Ag.)]. B.g. 8 = A+ K, e = A+ &,
Clearly we would like to have

Frs. “{ 78, : € < K} is not null”.

For this it suffices to have: every countable A C §* is included in some
A(B¢). However, we would also like to have the set { 75, : £ € £\ B} null for
every B € D. For this it is natural to demand that for some «, Q, is Cohen
forcing and -

(V€ e r\B)(a ¢ Ag,).

So we try to force a null set including {73, : £ € x\ B} before we force
the 75’s! If 7, is similar enough to being Cohen over (75, : { € k\ B), we
are done. So this becomes similar to the problem in proving 0.1. But there
we use 2" = x, so that we need to carry only s finitely additive measures
(2% :t € T), i.e. have few blueprints, hence can make A, (when |Q,| > &)
closed enough. However, the Z?’s had been really used only to prove the
existence of p® which forces that many p;’s (I < w) are in the generic set
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(see the proof of [Sh 592, Claim 3.4]). So in fact we can define the name
of the finitely additive measure after we have the sequence (p; : | < w).
Actually, we need this only for some specific cases and/or can embed our P,,
into another iteration. So the problem boils down to having the Ag’s closed
enough to enable us to produce finitely additive measures like the one in
[Sh 592, 2.11(i) or 2.16(d)]. The way we materialize the idea is by having
enough automorphisms of the structure

<P017@ﬁ7AB5/~Lﬁ7IB ta < Oé*, ﬁ < O[*>.

In fact, below we can replace A + k by A - k. If we would like to have e.g.
{A: E(A) = 1} to be a selective filter then the A\ x k version is better: we
can use { Tax¢4i+4y : ¥ < A}, which are Cohen, to ensure this.

If you do not like the use of “automorphisms” of Q and doing it through
higher \’s, later we analyze the partial support iteration (as in [Sh 592, §§2,
3]) more fully (using essentially <L, , ), and then the proof is more direct
(see 3.1-3.13).

1.1. THEOREM. Let D be a k-complete non-principal ultrafilter on k.
Then for some c.c.c. forcing notion P of cardinality 2%, in VF we have:

(x)  for some A € [“2]" we have:

(a) A is not null,
(b) the ideal I = {B C A: B is null} is Yy -saturated.

Moreover,
(xx)  we can find pairwise distinct ng € “2 (for € < k) such that
A={ne:¢6<k} and YeD e {n:£€r\Y} isnull

1.2. REMARK. (1) We can replace “2 by R.

(2) We can use as D any uniform Ny-complete filter on x (such that D
is Ny-saturated in V and hence in V¥, see 1.12).

(3) In (%) of course D stands for the filter that D generated in V.

1.3. CONVENTION. For A > 2% (but we use only A < (2%)%) let g :
A — D be such that

YeD = {a<Ai:gr(a)=Y} =\

For simplicity gy is increasing with A, and let h : D — 2% be such that
groh = idp. For &£ < k let

Engé\:{a<)\:§€g>\(a)}.
Finally we let
E=FE*=(E}: £ <k).

If not said otherwise we assume that A = A¥0 > 2% (for simplicity).



102 S. Shelah

REMARK. Our intention is that 7, will exemplify { 7a1¢ : € € K\ gr(a)}
is null, for which it is enough that 7, will be (at least somewhat) like Cohen
over V[(Txate : € € K\ gr(@))], so it is reasonable to ask that 7, is not in
the subuniverse over which 7y4¢ is random when £ € &\ gx(a), i.e. a & E¢.

1.4. DEFINITION. (1) KCj is the family of Q= (P,, Qa, Aoy oy Ta 1 < B)
such that:

(A) (Pq,Qq : @ < B) is a FS iteration.

(B) Ao C o, fta = R, and either |Aa| < 0, Qq is Cohen forcing, 7,
the Cohen real or |44 > 6,Q, is Random VK Zv7€4a)l (defined
as in [Sh 592, 2.2]) and 7, the random real. This is a particular
case of [Sh 592, 2.2] except replacing k there by 6 here, so we
can use [Sh 592].

(2) We define Pg naturally as the direct limit of the FS iteration (Py, Qq :
a < ) and for a < § we define P, = {p € P, : for every ~ € dom(p), p(7)
has the form B(.. ., truth value(¢,, € 7,,), .. .)n<w Where B is a Borel function
and v, € A, and ¢, < w}.

(3) We may write P, = P2, etc.

1.5. REMARK. Note that Definition 1.6(1) and Claim 1.7(2) below are
vacuous when 6 = 1, the case we use here, but they are natural for less
specific cases. Let T = (7, : @ < [3); note that more accurately we should
write not Q, = Random Tl but RandomVZ14]T14a or RandomV !4«
as a priori Qy may be a proper subset of Random VZ14«] depending on 7[ A,
too. For the “good” cases equality holds, in particular in §1 + §2 here. For
brevity we shall write RandomZ'4,

1.6. DEFINITION. For Q € Kj;:
(1) A Clg(Q) is called Q-closed if

(a<1g(Q)&|Anl <& aecA) = A, C A
(2) Let (1)
PAUT(Q) = {f : f is a one-to-one partial function from lg(Q) to
1g(Q) such that dom(f) and rang(f) are Q-closed and
for 3 € dom(f) we have |Ag| < 6 < |Ayz)| < 0 and

if 3,7 € dom(f), then 8 € A, & f(B) € Apy)}-

(3) We define the following by induction on 1g(Q). For f € PAUT(Q) let
f be the partial function from Py, to P .o (see [Sh 592, Definition

(1) This suffices when we iterate just partial random forcing (when |Ag| > k) and
Cohen forcing (when |Qg| < &), which is enough here. For a more complicated situation,
see §3.
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2.2(3)]) defined by

p1 = f(po) when po € Pl sy, dom(py) = {f(B) : B € dom(po)},
p1(f(B)) = Bg(. .., truth value(¢ € Tf(y)), - .)7€w§o7<<w

when po(8) = Bg(. . ., truth value(¢ € 7,),. )vewg C<w

(so wf(g) {f(v):v e ’wZO ).

For such Q, f for any ]P’iiom( p-hame 7 we define f( 7), alP -name,

rang(f)
naturally (when we define names without using the order or being a (maxi-

mal) antichain).
(4) For Q € K, let
EAUT(Q) = {f € PAUT(Q) : dom(f) = rang(f) = 1g(Q)}.

(5) If A is Q-closed let P, be

{p € P, : for each (8 € dom(p) we have 3 € A and the condition
p() is either a Cohen condition or has the form
B(...,truth value(C € 7,), .. .)yew? c<w> Where
wg C Ag N Ais a countable set, B is a Borel function with
domain and range of the right form (and B, wg are not
Pg-names but actual objects)}.

1.7. FAcT. Let Q € KJ,.

(1) If a <1g(Q),Q" =Qla, then Q' € K and PAUT(Q') C PAUT(Q).

(2) If a < 1g(Q), then {B : B < a} is Q-closed; and the family of
Q-closed sets is closed under intersection and union (of any family).

(3) If f € PAUT(Q) and A C 1g(Q) is Q-closed, then f[(AN dom(f))
belongs to PAUT(Q).

(4) If (3) f € EAUT(Q), then f is an automorphism of Pl £(@)
(5) If A is Q-closed and @, 4 below holds, then Py < Py, (q), where
®g.a if a € A, [Ax| > 0 and B C « is countable, then for some f €

EAUT(Qla) we have:
i) fr(BN A) the identity,
(i) f"(B) €

(iii) f"(BN Aa) CANA,.
Proof. Straightforward. For part (5) we prove by induction on 8 < (Q)
that if we replace IP] <(@)’ Aby P, A" = ANg, so q € P/, then the conclusion
of (5) holds.

(%) Does f € PAUT(Q) imply £ is an isomorphism from ]P):jlom(f) onto P;ang(f)? The

problem is that the order is inherited from P, so in general is not necessarily the same.
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The case 8 = 0 is trivial and the limit cases use the properties of FS
iterations. At successor stages § = a + 1, if a € A or |A,| < 0 it is trivial,
so assume a € A& |Ay| > 6. Hence by the induction hypothesis Py, < P,
etc., and it is enough to show:

I / . . . . PAnana
() if in VPana | T is a maximal antichain in RandomV *™*"*«

/
Vi

, then in
VP@, the set 7 is a maximal antichain of Random
By the c.c.c. this is equivalent to
(x) i * < wi, {pc : ¢ < ("} C P;m(aﬂ)v p € Py, and p Fpr,
“pe(a) : ¢ <" and pcla € Gp, }is a predense subset of
Random/T(ANeN4)]» “then p ke, “{pc(a) : ¢ < ¢ and pela € Gpr, }
is a predense subset of Randomvma ?
Assume ()’ fails, so we can find ¢ such that p < ¢ € P/, and
qlFpr “Apc(a) : ¢ < " and p¢la € Gpr, } is not
a predense subset of Random 47,
So for some P/ -name 1 we have
g ke, “r € Random®'“ (= Q,) and
it is incompatible with every p¢(a) € Qa”.
Possibly increasing g, without loss of generality r is
B(...,truth value(¢ € 7), .. .)yew, c<w>

where w C A, is countable. Let us define (supp for support is from [Sh 592,
Def. 2.2(1)(F)], i.e. above supp(r) = w)

B =wUdom(q)U | J dom(pcla)U| J{supp(g(8)) : 8 € dom(q)}
¢<¢x
U J{supp(pc(B)) : B € dom(pcla) and ¢ < ¢*}.

Clearly B is a countable subset of a. By ®g 4 there is f € EAUT(Q'«)
such that

FI(B N A) = the identity, f"(B)C A, f"(BNAy)C Aq.

As fis an automorphism of P/, and is the identity on P, 5, clearly

~ ~

fo)=p, floc)=pc. p<flg) €Pl,
and f(f) is B(...,truth value(¢ € 7¢(y)), - - -)yew, ¢<w, and
f(w) C f"(BNAy) C AN A,.

Hence kg, “f(r) € Random /A7) and
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f(q) IFpr, “in Qq, the conditions f(r) and p¢(a)
are incompatible for ¢ < ¢*”,

so we get a contradiction.

Note that we use: in VP;, two conditions in RandomZ'?

are compatible

in RandomZ!? iff they are compatible in Randomvpa, for every B C «; in
particular for B= A, NAand B= f"(A,NA). m 7

1.8. REMARK. (1) Instead of automorphisms (f € EAUT(QJ«)) we can
use f € PAUT(QJa) but having more explicit assumptions and more to
carry by induction; see §3.

(2) The use of Random is not essential for the last claim, we just need
enough absoluteness.

Proof of 1.1. We shall define
Q= (P, Qp, A, g, 75 < A+ K and B < A+ k)
as an iteration from /Cj. More accurately, P, = IP’Z\Y =Py a, @a = Qg‘t = @A,av

A, = Aé = Ao b= o = ué, Ta = T2 = T),q are such that for § < A

167

we have: Ag = ) and Qg is as in [Sh 592, Def. 2.5], i.e. the Cohen forcing
notion (and 73 is the Cohen real), while for 5 € [A\, A + k) we let

Ag = E/g‘,/\ UAB), Q= RandomT!4%
and 73 is the (partial) random real (as in [Sh 592, Definition 2.2(F)]).

Let P = P* = Py, .. We define P/, (= P} o) asin 1.6(5) (which is [Sh 592,
Definition 2.2(3)]). More generally, P} , for A C A + x denotes P/, for Q*
(this is to help when we deal with more than one \).

1.9. DEFINITION/FACT. (1) We define £2 (for & < x and A = A®o > 2%),
an equivalence relation on A by: aé'g‘ﬂ iff gx(a) NE = gx(B) NE.

(2) Sg‘ is an equivalence relation on A with < 2/¢l equivalence classes,
each of cardinality .

(3) If ¢ < ¢ < K, then 52‘ refines 55‘ and |Eé\ N (a/é’g’\)] = M for every
a < A

1.10. FacT. (1) If € < K, then (in Q*):

(a) P/AHg - P,(,\mAHg)u[)\,H&) - P/Egu[,\,,vrg) < P/,\+£'

(b) If g€ Py, and q[(E2UNA+E)) <pE€ IP”E?U[A’HO, then

PU(aIA\EZ)UNA+€) € Py
is the least upper bound of p,q.
(2) If A< X, then P, i avpmy << P ovgn and Py g0 vy, i8S iso-

. / . / — NN
morphic to ]P’AAJM, say by h : IP’A’AJrH — ]ID/\’,)\U[A/,)\/Jr/-c)’ where h = h 18
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the canonical mapping, i.e. let h: A\+k — N + Kk be a < A = h(a) = a and
E<k=hA+& =N+ nowif h(p) =p' then dom(h(p)) = {h(a) : a €
dom(p)}, ete.

(3) If « < A+ K and |Ay| > 0 (equivalently, « € [\, \ + k)), then
Qo € VI = VFao,

Proof. (1) By 1.7(5) (really this is a particularly simple case). That is,
let A= Ayye = Eg‘ U[A, A+€), so by 1.7(5) it is enough to check ®qp(x1e)\a
there. So let a € A be such that |A,| > 6 and B C « is countable, and we
should find f as there. As |A,| > 0, necessarily a > A, so « = A + ( for
some ¢ < £. By 1.9(3) the existence of f is immediate.

(2) Straightforward.

(3) By [Sh 592, 2.3(7)] and clause (a) of part (1). my 19

1.11. FACT. X* = {7ate : £ < K} is not null (in VEr+x).

Proof. If it is null, it is included in a Borel null set X which is coded by
a real s which is determined by (truth value(p; € Gp,,, ) : | < w) for some
(pr : 1 <w), where p; € P\ .. Let

w = U dom(p;) U U{supp(pl(oz)) : for some | < w, o € dom(p;)},
I<w
sow € [A+ K]=N0 and wN A € [A]<N0. Now
®  there is £ < k such that (£ > 0 and):

(1) (VA +7ew =7 <.
(ii)aewﬁ)\:>a€E§‘ (C Axie).

This is possible as we have Ry demands; for each of them the set of £ < &
satisfying it is in D. Now 7x4¢ is random over Vi ate , and X is (definable)

in Ve (see [Sh 592, 2.3]). Hence Txr4¢ is not in the Borel set X, a
contradiction. (Alternatively follow the proof of [Sh 592, 2.3(2)].) my.11

1.12. Fact. If D is a k-complete ultrafilter, then in VE, D is a k-
complete Ny -saturated filter.

Proof. Well known (see, e.g., [J]), as P is a c.c.c. forcing notion. m
So the “only” point left is:

1.13. Fact. If Y € D, thenlkp “{1aye : £ € £\ Y} is null”.
This follows from

1.14. MAIN FACT. If § < K, a < A, a &€ Eg, then lrp; e Dage €
N(1,)”, where N(1,) is as in [Sh 592, Definition 2.4].
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Proof. Note that
(x)  for & <k,
EAUT(QI(A +&)) 2 {f : f a permutation of \ + ¢,
FIA A+ €) is identity and
STA maps Ei‘ onto E,? for v < &}

Assume toward a contradiction that the desired conclusion fails, hence for
some p € Py, we have p - “Taye & N(7,)”. In fact, possibly increasing p,
without loss of generality for some [* we have

plE N\ magelnf € af”,
>0
where (nf*,af : | < w) is as in [Sh 592, Definition 2.4].
We may assume that p € Pyxy¢41. Let G C Pyy¢ be generic over V such
that p[(A+ &) € G. So in V[G],

PA+8) oy ‘e € I,
where
T =T (a%) :={ne“2: ifl € [I*,w) and nj* <lg(n),then nn* € ai*}.
Now for some ¢ we have p[(A+ &) < ¢ € G and
gl “p(A+¢&) = B(...,truth value(e; € 73,), .. .)i<w”s

where B € V is a Borel function, §; € Axy¢ and ; < pg, for I < w. So (see
[Sh 592, Definition 2.2(1)(F)(«)])

t:=B(...,truth value(e; € 75,), .. .)i<w
is a perfect subtree of (¥~2,<) of positive measure above every node, i.e.
net = 0<Leb({r€“2:navand n <w = vn € t}).

So by the choice of p and g we have ¢ I “t C T;2”. Without loss of generality
q € Py ¢ Let

w* = dom(q) U J{supp(q(()) : ¢ € dom(q)} U{fi: | <w}U{a}.
We can choose p¢ € Pyy¢, f¢, a¢ (by induction on ¢ < (2%0)*) such that:

(a) fel(w* \ {a}) = the identity.
b) fel[A A+ €+ 1) = the identity.

e) a¢ ¢£a5:5<§}.
(f) ac = felg) and B} = fe(B) for I < w.
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(A) g¢ I “B(...,truth value(g; € Iﬁlg),...)l<w € Q¢ is perfect, of
positive measure (above every node), and C Tj;«(@“¢)” (also for the last
statement we need “p¢ IF”).

B) G <G= Q¢ # Q¢ -

(C) a¢ & Axye-

So if Gp,.. C Paye is generic over V and E = {¢ < (2%)" : ¢ € Gp,, .}
is unbounded, we see that in the universe V[Gp,, ] for some unbounded
subset E of (2%°)* the set Y = Neer Ti-(@*)[Gp, ] has an w-branch
Tate in (V[Gp,,])®+¢ which is not in V[Gp,,,] (think), but this set ¥’
is a subtree of (“~2,<). Hence (3) Y contains a perfect subtree, which was
exactly our problem in proving Theorem 0.1 in [Sh 592]. So we would like to
continue as in the proof of [Sh 592, 0.1], but for this we need a suitable =

First proof. We start by repeating the proof of [Sh 592, 3.3]. As there we
choose a sequence € = (g; : [ < w) of positive reals satisfying >°,_ /&, <
1/10. Letting k = 2%, for each ¢ < kT we choose p; € Z= (C P’)\+£,Ig defined
in [Sh 592, 3.1]) such that g; < p¢ and let 7¢ = <Vé : f € dom(pe), |Ag| > 6)
witness p; € Zz. Replacing (p¢ : ¢ < k1) by a subsequence of the same
length, without loss of generality the bullets (o) (i.e. X) of the proof of
[Sh 592, 3.3] hold, so we get i*,’yf (for i < i* and ¢ < k), v, v1, 2,
(vii€vo), 7= (v : 1 <wy), s, m* as there.

We proceed to define p’C > pc as in the proof of [Sh 592, 3.3] and exactly
as there it suffices to prove the parallel of [Sh 592, 3.4].

The difficulty in adapting the proof of [Sh 592, 3.4] is that it uses a
blueprint defined from (p; : ¢ < w), so using the (ng : B < lg(Q)), which
does not exist here. The following two possibilities seem natural.

PosSIBILITY A. Let x > AT and let R € V be the forcing notion {f :
f apartial function from y to {0, 1} with countable domain}. The iterations
@’\+k, and the properties we are interested in, are the same in V and in V&,
so we can work in V&,

So we can choose (1, : @ < X), forced to be pairwise distinct members
of #2.

PossiBILITY B (Definition). The set 7~ of weak blueprints as in [Sh 592,
Definition 2.9] replacing w® and the 7"’s by 7" so replacing clauses (a), (c),

(i), (5) by
() 7 = (1 im <, k<),
(c)" 74 5 is an ordinal increasing with n.

(3) In fact, we could have demanded ﬁé =f forl <w, (< (2N0)+, so t hence YV
includes t itself.
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() Yoy by = Vigk, = D1 = D2.

(j)! For each n < n' the sequence <7fl x -k <w) is constant or is strictly
increasing; if it is constant and n € dom(h}), then hf(n) is constant.

(k) For ko < n; < ny < n' one of the following occurs:

(@) n¥",m*  hY hY RY A are as in the proof of [Sh 592, 3.4].
(B) YL is i € dom(p}) above (for i < i* =n' and { < w).

Nothing relevant to us changes.

The actual difference between the two possibilities for the rest of the
proof is small and we shall use the second. We define the weak blueprint
t*=t(x) = ,n"",m", nl, nl BE ).

Clearly t* € 7 —; we would like to proceed and choose =, but first choose
By, C A for n < w such that: if Yz € {Axxpe N AN\ Axaye} for £ <
Ky Xn € {Bans A\ Ban} and e, Ye # 0, then e, Ye N(,., Xn C A
has cardinality A and the B,, separates the fyfik forn < m* and k < w.
Now for £ < X and n < m*™ let Axenk = {7 < A : for every ( < £ we
have 'yﬁ}? € Ax ¢ =7 € Ay ayc and 'yf:k € Byn =7 € Banl

For £ < Alet The = {t* € T~ : (@™, m*™) AL pI) ph) 7ty =
(nf,mt Al Rt AL AN, n e mln!) &k <w= ’yltj(}? =h, and n < m' =
Tnk € Arenk}-

Let

t(* * * *
r= {7n€0)77f1,0 +1: ’Yi,o = ’Yxtx,l} U{Aru { U ’Yfl,k : %tm,o < ')’ik}
k<w
for any (equivalently some) ¢ € Ty ; and let {72 : n < n(x)} list '\ A in
increasing order.

Now we choose the sequence (57 : j < w) by induction on n < n(x)
similarly to [Sh 592, Definition 2.11] but just for the t € 7, ; E

a) 57 isa P,,. ;-name of a full finitely additive measure (on P(w)).
~n A 7Y

(b) If n < nt*,’yfhk <~ forevery k <wand v}, s <~k and t € Tysi i
thenlbe , “the following set has Zi-measure 1: {k <w :ifl € [n],n} ),

n

then (j(n)(1) € G, }".

(c) If
(a) t € Tytsg,m < nt,viyk < 7J for k < w and 71];,0 = ’751,1771 €
dom(h),
(B) r,ru (for | <w) are P 3., RAmeS of members of @/\“Wi,o sat-

isfying (%), (r,:1<w) below,
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then
II—pHJ_% “ifreG.;, thenl— R (n)
< Avoy ({1 € Infnlesy) s € Go 3/ (nhy — ) £k < )",

where
(**)§<Il:l<w> 7,71 are Py -names of members of Qq, (17 : 1 < w) € V,

and in VFe_ for every 7! € Q, satisfying 7 < 7/ we have

Avzr ((an(r)  k <w)) > 1—hi(n),
where
X Nap(7') = ar(7',7) = ar (7', 7,7")

_ ( Z Leb(lim(r") ﬂlim(rl))> 1
Leb(lim(r")) ng 4 — "N

l€[n}i,n}i_‘_1)

(so ag(r',7,m) € [0,1] is well defined for k < w, 7= (r; : | < w), {r,m} C
Random, 7 = (n; : l < w), n; < nj41 < w).
Let us carry out the induction.

CASE 1: n = 0. Necessarily v/ = A™7. Note that a < 7 = Ay o =0
and the sets {7}, , 1t € T\o}NAforn < n'" and k < w are pairwise disjoint.
Hence, the proof is easy (similar to [Sh 592, Lemma 2.14]).

CASE 2: n+1 and ,yng > 4 + 1. Similar to Case 1.

CASE 3: n+1 and ’ythl = ~J+1. Let n be such that ’yi,k =~ for k < w.
If n € dom(hg) there is nothing to do, so assume n € dom(hy). We would
like to repeat the proof of [Sh 592, Lemma 2.16(1)], but this proof needs, in

our notation, not just P\,; , ;< Py, ¥ (which we have proved) but also
/ Tn e

= Atia . <. . .
“ZTNP(w) v isalP\,; , -name”, which is not part of our induction
’ "/%

hypothesis here. But we have ZJ*! in our induction hypothesis. We let

be large enough and choose eler;lentary submodels My, My of (H(x), €, <})
of cardinality A*7 such that AT C M;, {@,\J+1?§%+17/];\1+j+177 } € M; and
My € M.

Now we can find a one-to-one function h from A™7 + k onto (AT +! 4 k)
N M, such that:

(1) For £ <k, h(ATT + &) = ATI+L 4 ¢

(2) For A € A7/ (and 3 € [AT7T1 ~7)) we have

AS A/\+j7ﬁ = h(’)/) c A)\+j+1’h(ﬁ).

J
n

(3) For A < A7 and n < w we have v € By+i ,, < h(v) € By+i+1 .
(4) For v < A*J we have v € Ayti i € h(v) € Mo.
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This should be clear. So we have finished the induction step in constructing
the Z7., so we have completed the missing point in the proof of the parallel
of [Sh 592, 3.4], hence of the parallel to [Sh 592, 3.3], so our main theorem
is proved.

Alternative proof. Let Q* = (P, Qp, Af 151 < At 4 k) be as above
except that A% is 0if § < AT and {y <A™ : =X ¢ EXJUIN, B) if B €
A A )\ {y i n <} and {y < AT B—A g EXT U 8)
fB=A4+n*+,.

It suffices to prove that we do not have (AT +~; : I <n*),z,(p] : | < w)
as above for the Q* defined above. We take k = n*.

[Why? Choose x* > x and an elementary submodel M of (H(x*), €, <})
of cardinality A to which Q* belongs, M* C M. Now Q* as interpreted in
M is just Q* with changes to names, and we have enough absoluteness. |

Now, fixing (y; : I < n*) (not the others!), by induction on n < n* we
prove that we can find suitable

g :B< A Fy,+14k), (' :a<At 44, 4+1):teT),

and a Pyin- ., -name = (stipulating 70 + 1 = 7 and y,~ = k). Which
means: letting Po, Qg, Ag, g, 75 be as in Q* there are 73, g}; such that

<PQ7QB7Aﬁ7M,@7I » 116, (gé)tGT a< )\+n* + Yns ﬁ < )\Jrn* +7n> € ’Cg’

i.e., it satisfies [Sh 592, Definition 2.11] except that in clause (d) there we
demand that if n € dom(h!) and (n}, : | < w) is constant, then «o; €
{Ym :n <m < n*}. For n we use n + 1: Lowenheim—Skolem argument and
uniqueness in Definition 2.11 of [Sh 592].

In detail: for n = 0, just let = be a Pyn+ ., -name for a finitely additive
measure on w (can be Ramsey if V |= CH) such that conditions 2.11(e)+(f)
in [Sh 592] are satisfied. For n, by the induction hypothesis we have (1} :
B<AT 4 ,), ((EL e < AT +,,) it € T), we can find A C AT 41,
of cardinality A*" such that {J,,,, A% C A, A AT 1) C AP, <

Pyins gy, andt €T = 23,0 IP(w)V ™ is a Py-name. If A = A\*"" then
as in [Sh 592], we can define =% 4~,+1 as required. This is not necessarily
true, but some f € EAUT(@[AT" 47,) maps A onto A, .« Aty and maps
t

At +vn’

ns (B < A +,) we can define Z¢, (for a < A" + v, + 1), g (for
B < At 4 A7), The advance from AT"" 4, +1 to AT"" 44,41 is as for
n = 0: as we are proving € K}, (not € KC3) there are no problems repeating
the proof from [Sh 592].

So we have finished the proof of 1.1. my 14

Ayinx g (for B # At"" 4 4,,) onto itself, so possibly changing the =
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2. Non-null set with no non-null function. Peter Komjath referred
me to the following problem, answered below.

2.1. THEOREM. It is consistent that

@  there is a non-null A C R such that for every f: A — R, the function
f is null as a subset of the plane R x R

provided that “ZFC + there is a measurable cardinal” is consistent.

Proof. We can use “2 instead of R. Let x be measurable, and D a normal
ultrafilter on . Let A = A®o, X\ > 2% for simplicity, and we use the same
forcing as in §1. Now we interpret the Cohen forcing Q, (for « < A) as

{{(ng,ap) : 1< 1*): 1" <w, ny <w, a is a subset of ("2) x ("2),
nem2=|{rem™2: (nv)caql/2m>1-47"}

We interpret the generic sequence a®* = ((nf*,af*) : | < w) as the following
null subset of the plane:

null(@®) := {(n,v) : n € “2 and for infinitely many | < w we have
(nlni',ving') € aj'}.

Let X* = {7a4i : # < k}; as in §1, it is not null (in fact everywhere).
Now suppose p Ik “g : X* — “27; of course, this g is unrelated to the g\’s
from §1. So for each i < k, g(IA+i) is a Py, x-name involving the conditions
pig € Py, (for I <w). For £ < k, let M¢ < (H(J,(AT¥)"), €,<*) be such
that Q,(1anyi @ 4 < ), D5 g, ((Piyy 1 1 <w) 1i < k), A& belongs to Mg and
| Me|| = 2% and “(M¢) € Mg, and let we = Mg N (A + k). Then for some
A € D we have:

(@A) y#E€A=> A+ EZ w,.

(b) (wy : v € A) and (M, : v € A) form A-systems with hearts w*, M*
respectively.

(c) wy N [A, A+ 7) is constant, w, N{A+& : & € A} = {\+ v}, moreover
sup(wy) < A+ min(A\ (y+1)) and wy N[A, A+ 7) C w*.

(d) For v,& € A, the models M,, M¢ are isomorphic, with the isomor-
phism mapping v to &, and Q, (Tat~ 1 7 < K), g to themselves, in fact is the
identity on M™.

So for all ¥ € A we have an isomorphic situation.
For v € Alet 77 = (ry ., : m < w) be the <*-first maximal antichain of
P+ above p, of forcing conditions deciding whether g(7x1,) is in

V[<IB : 6 < )‘+7+ 1>) = VP>‘+’Y+1’
and deciding whether g(l',\ﬂ) is in V[(z5: 8 € M*)"(Txs4)], and in both

cases if yes, without loss of generality, it forces for some Borel function
B = By that 7y m IF “g(Ta4y) = B(..., 76, -+, Taty)pew” s Where in the
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first case w = wy N~y and in the second case w = w*. As we can shrink A
(as long as it is in D), without loss of generality B, ,,, does not depend on
v, i.e. Bym = By,. Also, without loss of generality the answer (= decision)
for each m of r, ,,, does not depend on 1.

Choose o < A such that g,\( ) = A, where g, is from 1.3 (and is not
related to g) and o ¢ |J . It is enough to prove the following two
statements:

'yEA

()1 {(2r4y,9(Ta1+)) 17 € £\ A} is null (subset of the plane).
(*)2 {(IA+77g(IA+7)) iy € A} is null.
Proof of (x)1. Trivial as {7x4~ : 7 € K\ A} is null (as proved in 1.13).

Proof of (x)2. We shall use the proof of Fact 1.14 and the choice of «
to show that

{(rty, 9(To4y)) 1y € A} C U “2 x “2\ limtree; (a®))
l

where

tree;( @®) = {(n,v) € “2 x “2:if [ € [I",w) then (nn;,vIn;) € ai}.
Let A™ ={¢:r¢m € Gp,,,. } for £ < k.

It suffices to prove, for each m, that
(F)2;m  PIF H(Drtr: 9(Taty)) 17 € A™} is null”,
We do it by cases (note that in each case “for some v € A™” is equivalent
to “for every v € A™”).

CasE 1: rym b “g(1a44) is in V[(z5 : B € M*)"(Ta44)]”. Clearly
(%)2,m holds as the graph of a Borel function is null and we apply this to
the function o — B(...,78,...,...;0)geMm*-

CASE 21 1y m IF “(Tagy, 9(Ta1+)) € (“2x 92\, lim tree; (@%))”. As
the set on the right side is null this is trivial.

CasE 3: Not Case 2 and 7y IF “g(Ta4+) is n0t in VFA+7+17 remember
a < A was chosen such that g)(a) = A.

Fix £ = min(A) and let §§ = min(A\ (£ +1)). Let p* € Pyy¢, and I* < w
be such that r¢ ,,, < p* and p* IF “(Txate, 9(Tryy)) € limtrees- (@*)” (note:
both are Py ¢, -names and ¢, € Payg,).

As in the proof of 1.14, we can for ¢ < (2%¢)* by induction on ¢ choose
fc, ¢, P¢ such that

fc € BAUT(QI(A+ &), ac=fc(a), acé{ae G <}

andfc = fe(p®) and f¢ (Uyea My (A+&1)), fel[A A+£1) are the identity.

So fc maps Tatg, g(Ta+e) to themselves. Let Gp, .., C Pyieq1 be generic
over V such that £ = {( : pc[(A+ &+ 1) € Gp, ., } is unbounded in
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(2%)*. So in V[Gp,.,,,] we have, for ¢ € E, a (Px4¢, /Gp, .., )-name of a
real g(7x++) which is not in VEr+e+1 and

pe I “(2are; 9(Tate)) € limtree (@*¢)”.

Now, still as in the proof of 1.14, we can prove by induction on 8 € [£+1, 4]
that in V¥4 no (ng,m1) € (¥2 x ‘”2)V]PHB \ (2 x “’2)"PMH1 belongs to
lim tree;« (@*¢) for unboundedly many ¢ € E. The induction is straightfor-
ward; for the successor case 3+ 1 use 8 ¢ A = gx(a¢) (and f for some

f € EAUT(Q[(X + 4))). This gives us a contradiction as p* forces that

(I/\+£7Q(I)\+5)) is not in (¥2 x w2)VP/\+§+1
in VExte+1

as the second coordinate is not

CaAsE 4: Neither Case 1 nor Case 2, nor Case 3. As in Case 3, but only
Jfel((A+ &) N M™) is the identity. Hence f¢[(Pxte, N M™*) is the identity.
We let

Bi={a:a<A+&andagM:N(A+E\ M}

using f for f € EAUT(Q) we can easily show that Py <P)\,,,and Gg, =
Gpy ey NP, (or see §3). Now in V[Gp,,.,]| we have

E[Gg,] ={C:pcl(A+€&+1) € Gp,} is unbounded in (2%°)T.

We can assume that p¢ - “g(1at¢) € V[Gp,]” and p; € Zz for some € (as
in §1), because if not then without loss of generality p¢ forces g( Tay¢) =1’
such that 7/ = B(...,truth value(§ € 75:), .. .)i<w and B; € By and then we

J— ~ ~

can find f € EAUT(Q) such that f(g(7x+e)) = g(move) € M*, f(pe) € M
is compatible with p¢, and we get an easy contradiction.

Note: in V[(75 : 8 € B1)] we can compute E[Gp,,,,|, but we do not
have g( Txat+e) by the previous sentence so we get an easy contradiction as in
the proof of 1.14. mg 1

3. The Ly, r,-elementary submodels and the partial F'S support
iteration with non-transitive memory of definable forcing. We may
wonder what is really needed in §§1, 2 (and [Sh 592, §§2, 3]). Here we gen-
eralize one feature: iterating with partial memory but without transitivity
in the memory, not restricting ourselves to Cohen and random.

3.1. DEFINITION. K2 is the family of sequences of Q of the form
@ — <]P)047 @aa AOU Baaﬂom@a? XOHIQ e < ﬁ>
(we write 8 = lg(Q); the ¢’s are absolute formulas) such that:
(a) (Po,Qq : a < B) is a FS iteration of c.c.c. forcing notions (so Py =

Lim(Q) denotes the limit).
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(b) o < k (see clause (d) below), 7, is a Qu-name (i.e. a Py 1-name of
one), Ip, ., “Ta C po and 7, is the generic of Q,”.
(¢) B €Ay Caand f € By, = Bs C B, and |B,| < k.

First simple version:

(d) = (s tres 12), B={P0 )y Po =0 (@, Ya), and o =@ (,y, Yao);
let p1o = p2.

(e) The set of elements of Q, is a non-empty subset of QP = {n:n €
“(u)} in the universe V[(7, 1 7 € Ay )].

(f) Yo is a P,-name of a subset of ul, moreover we have sequences
Ea = <Ba,§ : C < Mclx>’ Ea = <€OZ7C7W : C < Mclx’ n < w> and Ba,g = <ﬁa,c,n :
¢ < pl, n <w), all three from V| such that:

(@) Ba,c=Bac(...,Tn, .. .)n<w is a Borel function from “{true, false}
to {true, false},

(/6) ga,g,n < HBa ¢ o 5a,§,n € B,,
(7) Yo € V(7 : v € By)) is the set

{¢<pd  Bael... truth value(§a,cn € T8, ¢ ), - - -Jn<w =truth}.
(g) p € Qq iff {n € QR : V(1 : v € Ba)] F ¢o(p,Y)} and
QuFEp<q iff V[(z,:7€ Ba)lF¢alp,a. Y]
Second, non-simple version:

(d)ﬁa_< l<>;welet,ua_,u,a,¢a—( l<6> _SOOL7
ol is a 3- place relation on “’>(,ua) if1 =0,3, a4 place relatlon on w>(ua)
if | = 1,2, ¢ is binary, ¢2 is a 5-place relation, and for i < 6, ¢! i
a subset () of {1 : 7 = (no,...,mj—1), for some n each 7, is a sequence
of ordinals of length n, and (i, 7) € {(0,3),(1,4),(2,4),(3,3),(4,2),(5,5)}}
(can read more natural restrictions), ¢° is closed under initial segments
(i.e. letting i = 0,77 = (n0,M1,7m2) € Yo = 7ln = (mo[n,mn,m2ln) € @3, of
course 7j[n is an abuse of notation),

lim(pq) = {(n,v,0) : n,v, 0 are sequences of length w
such that n < w = (nin,vn,oln) € va}

(depend on the universe) and similarly for other ?,.
(e) The set of elements of Q, is a (non-empty) subset of

Q® ={n:ne“(uy)NViz v e A}

(%) Note: lim(¢Q) describes Qq, lim(pl), lim(¢2) describe <Qu > TQus lim(p3) de-

)

scribes the maximal antichain of Qq, lim(gpé) describes “¢ € 14” and lim(cpg) describes

Ga(2).
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(f) 2, = <£fx,< ¢ < ¢l <6y, g&,g = <£loc,§,m :m < w), and Qfx,g,m
is a P,-name of a natural number (or of a member of {0,1}), it has the
form B, ¢.m (- truth value (&, Comik STBL Do) k<w B(ll,C,m is a Borel
function, ﬁa,(,m,k € B, and ¢, Comk < Ha-

(g) In V[(75 : B € Aa)], Qq is the set of elements of {n € QL% there
are v € “(Ord) and ¢ < ¢2 such that (n,v, 0°, ) € lim()) and v(0) = ¢;
SO 17,1/,~Qa7c[gpa] belongs to V[(75 : B € Au)]}; we may write ¢ = (2(p).
Similarly <g, is defined by .

(h) In V[(z5 : B € Aqa)] we have {(p,q) : p <qg. ¢} = {(p.q) : p.q € Qa
and there are v € “(Ord) and ¢ < ¢} such that (p,q,v, 0h.¢) € lim(p}, ) €
lim(¢l), v(0) = ¢}. We write ¢} (p, ¢) for the minimal (.

(i) In V[(75 : B € Aqa)] we have {(p,q) : p,q € Qq are compatible in
Qu} = {(p7 q) : p,q € Q, and there are v € “(Ord) and ¢ < ¢2 such that

(p,q, v, 02 RES lim(p2) and v(0) = ¢} (we write ¢2(p,q) for the minimal
such ().

(k) In V[(75 : B € Ay)] we have {(p,, : n < w) : pp, € Qy for n < w,
{pn :n < w} is predense in Q} = {(pp : 1 < w) : for some v € “(Ord) and
{ < ¢3 we have (p,v, 03, ) € Tin(3) [where p = (p,_ume ((VA]) 2 < w)]},
and we write ¢2(p) for the minimal such .

() In V[(z5 : B € Aa)] we have {(p,&) : p € Qa, & < i and p g, “€ €
7"} = {(p,€) : for some v € “(u3) and ¢ < (3 we have ((€)"p, (¢) € ¥4}

(m) If G, € P, is generic over V, G, C Qu[G<4] is generic over
V[G<o] and 7 = 74[Ga), then in V[(13(G,] : 5 € Ay)] we have

G = {n € “(0rd) : there are v € “(Ord), ¢ < 2,
v € “(ua), and o € “2 such that
o(n) =0« v'(n) € 7, and
(n,v, v, 0, 0ac) € lim(p])}.

We can simplify Definition 3.1 by

3.2. DEFINITION. (1) We say B is a Borel function to V if it is a function
from “{0,1} to V (we identify sometimes 1 with truth, 0 with false) with
countable range such that each {n € “2: B(n) = z} is a Borel set.

(2) We say B is a Borel function to “V if B(n) = (B,(n) : n < w) with
each B,, being a Borel function to V.
(3) Q is simple if in Definition 3.1(e),
lim(g) € {(n,v,0) : 0 € “w}.

3.3. DEFINITION. Let Q € K% and a = 1g(Q).
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(1) Let

I% = {p € P : for every v € dom(p), p(7) is computed by some Borel
function B (so B € V, and is an object, not a name),
B is a function to “V from some
(truth value(&; € 7,,) : | < w) where
&1 < po, and o < 7y and we say in this case that
the truth value of (§ € 7,,) appears in p(7y) for I < w
and p[vy forcing a value to CS (p(7))}-

(2) For p € Py and o € dom(p) let
supp(p(a)) = {~v : for some ¢ the truth value of (£ € 7,,) appears in p(a)}

and let supp(p) = dom(p) U U, cdom(p) SuPP(p(@)).-
(3) For A C v let

Py = {p € P, : dom(p) C A and ~y € dom(p) = supp(p(7)) C A},
ie., Py = {p e P, :supp(p) C A} with the order inherited from P/, which
is inherited from P4 (recall: only for some A’s, P/, < P.).

(4) A is called Q-closed if A C 1g(Q) and a« € A = B, C A. We call A
strongly Q-closed if A Clg(Q) and a € A= A, C A. We let clg(A) be the
Q-closure of A and sclg(A) be the strong Q-closure of A.

(5) Let

Simple version:

PAUT(Q) ={f: (i) f is a one-to-one function,

(ii) the domain and range of f are Q-closed
(in particular are C Ig(Q)),

(iii) (Yo, ap € dom(f))(a1 € Aa, & fla1) € Af(ay))

(iv) (Vai, a0 € dom(f))(a1 € Ba, € f(a1) € Bf(a,))

(v) if f(a1) = g then f maps Yy, to Ya,,
Le. flo, = fayr Pay = Pags Bar ¢ = Basyc
a1, = Eantins Ban g = ﬁaz»,C,n}'

Non-simple version:

PAUT(Q) ={f: (i) f is a one-to-one function,
(i) the domain and range of f are Q-closed,
(in particular are C 1g(Q)),
(iii) (Vou, ap € dom(f))(a1 € An, & f(o1) € Af(ay)),
(iv) (Vaq,ap € dom(f))(c1 € Ba, € f(a1) € By(a,)),
(v) if f(an) = o then g, = 1, Co, = Gy
cpfxl = gofxz and f maps gthg to gfxva’ ie.
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Bm,c, =B for | < 6, C<C Cag,m<w,
and é-al’cmk 5([/12’C7m7k fOI“l<6, C<Ca1 :CiQ?
m < w, k < w, but, of course,
“€ € 73”7 is replaced by “€ € 14(3)”,

1
that i 18, ﬂaz ¢,myk — f(/Bal,C,m,k)}'

(6) For f € PAUT(Q), f is the natural map which f induces from ]P’éiom( n
rang(f); Similarly for part (7).

(7) For Q,Q? € K2 let PAUT(Q!, Q?) be defined similarly:

PAUT(Q',Q*) ={f: (i) f is a one-to-one function,
(ii) the domain of f is Q'-closed
(in particular is C 1g(Q'))
and the range of f is Q3-closed
(in particular is C lg(Q?)),
(ili) (Yo, a2 € dom(f)) (a1 € AL, & f(an) € Af(QQ))
(iv) (Yo, as € dom(f))(a1 € BY, < f(a1) € Bf(a2)),
(v) if f(a1) = ag then
simple version:
lﬁ = 2ﬁa1,1¢a1 = 2@042 and f maps Y Y1 to Y2

~w2?

asg,(,m

onto P’

2 1 2
Le. Bal ¢ 8062747 Ealvcam - £a27<7m’
1 2
a1,{;m = Pag,¢,ms
non-simple version: (for [ < 6)

1.0 _ 2,0 1.1 _ 2+ 11
Moy = uaz, ¢, =2¢, ek, =20, and

f maps QO( C tO QOLQ C’ 1 e. Ba2 C m = BO‘17C1m7
1 l

Eon ek = Eocomte A0 By cone = S (Bhy ¢omote)

for ¢ < C,lll :C,lm, m<w, k<w)}.

3.4. CLAIM. Let Q € K2 be of length o*.

(1) P, is a dense subset of Py~

(2) In VE_ from 1,[Go, ] we can reconstruct Gg, and vice versa. From
(Ty 7 < @) [Gp, ] we can reconstruct Gp,, and vice versa.

(3) Vie =V[(75: 8 < a)].

(4) If pis any cardinal, and X is a Py~ -name of a subset of u, then there
is a set A C a* such that |[A] < p and lFp,. “X € V[(zy : v € A)]”. More-
over, for each ( < p there is in V a Borel function Be(xo, ..., Tn,. . Jn<w
with domain and range the set {true, false} and v, € A, §¢1 < py, forl <w
(i.e. (Be,veis€en:C<p, l<w)e V) such that

IFp,. “C € X iff true = Be(.. ., truth value(§¢ EI%J[GQWC D)
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Proof. (1) Easy.

(2), (3) By induction on a.

(4) Let x* be such that {Q,A\} € H(x*), and let ¢ < y; let M be an
elementary submodel of (H(x*), €, <}.) to which {Q, A\, K, p, X, ¢} belongs
and p € M, so lFp_. “M[Gp_.] N H(x*) = M”. Hence by 3.4(3) (i.e. as
VFe = V[(75 : B < a)]) we have M[Gp,.] = M[{r; : i € a N M)] and the
conclusion should be clear. m3 4

3.5. CLAIM. For A C o, every real in V[(1, : v € A)] or even a subset
X of u (for some p) has the form mentioned in 3.4(4) with v¢; € A.

Proof. This does not follow by 3.4(4) as e.g. maybe P, < P,. Let Ly+
denote the propositional logic allowing conjunctions and disjunctions of size
< A. We know that if X C pand X € V[(7, : v € A)], where 7, C 1
(and (py : v € A) € V), then we can find in V a sequence (B¢ : ¢ < p),
((5(,7577(,1) < py i< )uC>7 g’y,i < Hoye i BC = BC("'7xia"')i<u< € £A+,w
for some A such that

(x) X ={{<p:Bc(...,truth value({¢; € 7y ,), .. .)i<y;, = truth}.
SoifpeP, and p I “7 € u”, we can find ¢,p < q € P, and

<(BC7N(7€C,17’7C,Z) : C < W, 1< NC> eV

as above with ¢ ; € A such that

qlFp, “T={C < p:Bc(. .., truth value({¢; € Ty.ci), - - -)i<u<}-

Now as PP, satisfies the c.c.c., for each { separately we can replace the
conjunction and disjunction inside B¢ by countable ones, so we are done. m3 5

3.6. Cramv. (1) If Q',Q?% € K2 and f € PAUT(Q',Q?) and dom(f) =
lg(Q'), rang(f) = 1g(Q?), then £ is an isomorphism from (P;g(@l))((@l) onto
(Pig(@g) ) “

(2) If Q € K8 and A C1g(Q) is strongly Q-closed, then P!, < Pig(@, m
fact if q € P{g(@) and qgA <p e Py, then pU (q[(1g(Q\ A)) € Pig(@) is a lub
of p,q and there are unique (Q', f) such that Q" € K2, f € PAUT(Q',Q),

f is order preserving, dom(f) = 1g(Q’), rang(f) = A.
(3) If A’ C o and A" = A" U{A, : a € A"}, then |,
strongly Q-closed and J{a+1:a € A°Y =U{a+1:acly,_ A"}

(4) PAUT(Q) is closed under composition and inverse. Similarly, if fi €
PAUT(@’,@HI) for 1 = 1,2, then foo fi € PAUT(Q',Q%) and f; ' €
PAUT(Q?,Q").

A™ s

nw
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(5) If Q € K2 and A C1g(Q) is strongly Q-closed and p € Pl £@)’ then
plA e Py and Pi@) E “(plA) <p” and

q€P & q<p, P = q<p,g PIA
Proof. Straightforward.

3.7. DEFINITION. We say F witnesses A for Q, s in A’ (or for (Q, s, A');
we may omit A’ if it is the strong Q-closure of A) if:

(a) Q € k2.

(b) A Clg(Q),A C A’ Clg(Q), A is Q-closed, A’ is strongly Q-closed.

(¢) F = (Fy : v < wy), Fy decreasing with v (this just for notational
simplicity).

(d) F, C PAUT(Q) for v < ws.

(e) If f e F, then:

(o) rang(f) C A.
(8) |[dom(f)] < k.

(v) (Vo € dom(f)) (36 € dom(f))[f(B) = B & a € sclg({B})]-

(0) dom(f) C A"

) If f1 € Frpyyz <11 < wi and C C A’ (C 1g(Q)) has cardinality
< K, then for some fy € F,, we have: fi C fy and C C dom(f,) and
C N A Crang(fa).

(g) If C' C A is such that |C| < k, then ide €

y<wi ’Y‘

3.8. OBSERVATION. Let Q € K5.

(1_) If p* <1g(Q), then Q[3* € K2, and for A C 3* we have (P, )Qrs”
(Py)°.

(2) If F witnesses A for Q,k in A’ and A” C A’ Clg(Q), AC A", A”
is strongly Q-closed, then F witnesses A for Q,k in A”.
3 If F witnesses A for Q,x in A" and 8* < 1g(Q) and A” is the strong
Q-closure of AN B*, then

{1 U sclg({B}) : B € dom(f) N7} : f € Fryqy} iy <wi)

witnesses AN B* for Q,k in A" (why 1+ +? to preserve also “transitive
closure of v; € A,,”; see 3.11(1) below).

Proof. Straightforward.
3.9. CLaM. Let Q € k3.
(1) If F witnesses A for Q, x inside A’ = sclg(A), then:

/ /
(a) Py < ]Plg((@)
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(b) p,q € P’y are compatible in P{g(@ iff they are compatible in P',.
Also if p,q € P!y and v € dom(p) N dom(q), then

[43 ”

p(7) <g, ¢(v)" = alvlFe_, “p(v) <g, ¢(7)".
(c) T C Py is predense in | <@ iff it is predense in P’y (without loss

r"}/ |FIP’/

of generality T is counta_ble) B o
(d) There are (°) unique f,Q" such that Q' € K3, f € PAUT(Q',Q),
f is order preserving, dom(f) =1g(Q’) (= otp(A)) and rang(f

= A; moreover f is an isomorphism from (P| (Q),) ' onto (P,)2.
(2) Moreover:
(e) For every p,q € Py, there is v < w1 such that:
(i) If f € Fy and supp(p) U supp(q) € dom(f), then Py, =
“p < q77 <:> ]:Plg((@) ‘_ ( ) S f(q)”.
(ii) If f € F, and supp(p) Usupp(q) C rang(f), then
WwEST P <) & PuE9<q.
(f) For every p,q € Py, there is v < wy such that:
(i) If f € F, and supp(p) Usupp(q) € dom(f), then p,q are
compatible in Pl @) iff f(p), f(q) are compatible in ]P’1 @)

(ii) If f € F, and supp(p) Usupp(q) C rang(f) (so p,q € P'y),
then f L(p), f’l(q) are compatible in Py, iff p,q are compat-
ible in IP'y,.

(g) For every countable T C Py, there is v < wy such that:
(i) If f € Fy and UpeI supp(p) C dom(f), then Z is predense
in Py, iff f(I) is predense in Py, .
(ii) If f € Fy and U,crsupp(p) C rang(f) (so I C Py), then
{f_l(p) :p € I} is predense in Py, iff T is predense in Py, .
(h) For every Borel function
B =B(...,truth value(&, € 74, ) - - )n<w

from “2 to V such that o, € A" and p € Py, there is v < wy
such that:

(i) If f € F, and supp(p) U{ay, : n < w} C dom(f) and x € V,
then p IFp: - “B(...,truth value(&, € 74, )s - - Jn<w = " iff

F(p) Irer

Lo “B(...,truth value(§, € Tr(a,))s - - Jn<w = 77

(5) In fact, this does not depend on A having a witness (but not necessarily the
“moreover” part).
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(ii) If f e F, and supp(p)U{a, : n < w} Crang(f) andz € V,
then p H—p{ o “B(...,truth value(&, € 7a,), - Jn<w = 27 iff

J?_l(p) I-pr

o uB(, .. ,truth Value(fn S If*l(a"))’ . ')n<w = .

Proof. We prove ((1) + (2) together) by induction on o = a* = 1g(Q).
Arriving at o, we note various implications:

(¥)1 For a < a, if we replace A, A’ and F by AN a, A” (any strong
Q-closed set such that ANa C A” C A'Na) and F1A” .= {fIB:
B C dom(f)NA" and (Yo € B)(38 € B)[f(8) = B&a € sclg({B}) :
f € Fi}:i<wp) respectively, Claim 3.9 holds.

(x)2  Clause (d) (for o) follows (from the induction hypothesis).

(¥)s  If clause (e) holds, then clause (b) holds.

[Why? The second phrase in clause (b) holds by clause (e)(ii) as C C A &
|C] < Ng & i <wy =ide € F;. If p,q are compatible in P/,, then they have
a common upper bound there, which “works” in P{g @)’ too, by the previous
sentence. Assume p, ¢ have a common upper bound 7 in P{g @) 5° by 3.6(5)
also r’ :=rJA" € ’/;, is a common upper bound of p and g.

Let 71,72 < w; be as guaranteed in clause (e) for p < r’, ¢ < 7/ re-
spectively and let v = max{y1,72} and f = idsupp(p)usupp(q); NOW f € Fryy1

by clause (g), Definition 3.7 and there is f’ with f C f’ € F, such that
supp(r’) C dom(f").

~

So f'(p) = f(») = p. (@) = f(q) = ¢, F'(+') € P!y, and by clause (e) we

~

have p = f'(p) < ]/”\’(r’) elP,, q= ]/”\’(q) < f’(r’) € P, and we are done.]
(x)4  If clauses (e),(f) hold then clause (c) holds.

[Why? If 7 is not predense in P, then there is ¢ € P/, incompatible in P’
with every p € Z, hence by clause (b) which holds by (x)3, ¢ is incompatible
with p in P{g @) hence 7 is not predense in P{g @) Next assume 7 is predense
in P/;, and let J be a maximal antichain of P/, of elements above some
member of Z; so by clause (b) (which holds by (x)s3), J is an antichain in

]P’{g(@), hence is countable.

Let ¢ be any member of y,; let v = sup{~v(p,q) : p € Z} with y(p, q) as
in clause (f).

Now let C = UpE 7 supp(p); it is a countable subset of A, hence fo =
ide € Fy41, so there is f with fy C f € F, such that supp(q) C dom(f).
Now v > ~(p, q) for p € J, hence

(Vp € J)(p, q are compatible in P 4/

. . : /
iff f(p), f(¢q) are compatible in Plg(@).
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As f(q) € P/, and J is a maximal antichain of Py, for some p € J, f(q), D
are compatible in P’,, hence in P/;,. But f(p) = p, so ¢,p are compatible in
]P’{g(@); but by the choice of 7 there is p’ € Z with p’ < p, so ¢ is compatible
with some member of 7, i.e. with p’. As ¢ € !y, was arbitrary, this proves
that Z is predense in P’,,, completing the second implication in the proof

of (*)4.]

(¥)5  If clauses (e), (f) hold then clause (a) holds.

[Why? By (%)s + (*)a.]

(¥)¢  If clauses (e), (f), (g) hold for a*, then clause (h) holds.

[Why? First, it is enough to deal with the case where the range of the Borel
function is {0,1}. Now we prove the assertion by induction on the depth of
the Borel function.

CASE A: Bis atomic, i.e. B is the truth value of £ € 7., for some § < p5.
Clearly v < «* so we can apply the induction hypothesis to v. So p IF
“B(§ € Ty) = 1", where p € P/}, is equivalent to p[vy |- “p(vy) = truth”. Now
p(7y) has the form B'(...,truth value(§, € 73,),...)n<w, Where 3, € A,
&n < pg,, B' € V a Borel function, so the statement is equivalent to p[v I-
“B'(...,truth value(¢, € 73,),- - -Jncw = truth. As A’ is strongly Q-closed,
clearly 3, € A, C A’, so we can apply the induction hypothesis on 7 using
clause (h) there.

CASE B: B = -5 (i.e. 1 — B). By the way we phrase the statement, it
follows from the statement on B’.

Case C: B=A\,,__ Bn. Let Z be a maximal subset of

n<w
{q € Py, : (i) q forces B, for every n or for some n, q forces =B,
(ii) p < q or g, p are incompatible},

which is an antichain in Py, g). Let 77 < w1 be as guaranteed by 3.9(g), and
for ¢ € 7 let v(p, q) < w1 be as guaranteed by 3.9(f) if p, ¢ are incompatible,
and by 3.9(e) if p < q.

For each g € 7 let v,(q) be the v guaranteed for ¢, B,, for both x = 0
and z = 1. For ¢; # ¢ from Z (so incompatible) let v(q1,q2) < wy be as
guaranteed in clause (f). Let v* = sup({vz} U {v(p,q) : ¢ € T} U {7.(q) :
q€Z,n<whU{y(q1,q): q # g from I}) + 1.

Suppose f1 € Fy«, supp(p) U {ay, : n < w} C dom(f1), where the a,,’s
are from the statement of clause (h). We can find fo with fi C fo € Fvyq
and (J, ¢z dom(g) C dom(f>2).

Let Zp ={q:p<q€Z}and I, :Z\IO. Now q1 # g2 € Z = v(q1,q2) <
v* —1 and vz < ~* — 1, hence Z' = {f2(q) : ¢ € Z} is a maximal antichain.



124 S. Shelah

Also v(p,q) < 71, hence

1€Zy ={h@): 1T} = h) <
g€, ={f(q): g€ i} = fa(p),q incompatible.
Also for q € Ty,
gk “Bp =07 & fa(q) Ik “fa(Bn) = 07,
Qb Bu=1" & L) “fa(By) =17
The rest should be clear.]
So together it is enough to prove clauses (e), (f), (g).
(¥)7  Clause (e) holds.

If dom(p) = 0 this is trivial so suppose not, and if dom(p) ¢ dom(q)
the equivalence is trivial so assume () # dom(p) C dom(gq). Let a® =
max(dom(q)). Now if a® + 1 < a* we can use the induction hypothesis
on y*+1, so assume o = a® 41 (we can also discard the case v* ¢ dom(p)
if we like).

Now Py, = “p < ¢q” iff (o) + (3), where:

(@) Py = “pla® < qla®”.

(8) q - “p(a®) < q".

Now for (a) get v, by applying clause (e) to Q[a®, and for (3) get vz by
applying clause (h) to Q[a®, so v = max{~y;,7.} is as required.
(¥)s  Clause (f) holds.

As in the proof of clause (e), without loss of generality a* = a* 4+ 1
and a® = max(dom(p)) = max(dom(q)). Let {r, : n <w} C P, _ bea
maximal antichain such that each r,, satisfies:

() Tt forces a truth value, say t,, to “p(a®), q(a®) are compatible in
Qa® ” X

(8) ry > p or ry,, p are incompatible.

(v) rn, > q or 1y, q are incompatible.
By applying clause (h) to Q[a®, without loss of generality {r, : n < w}
cP,.

Now clearly p < ¢ iff \/,,[p < rn&q < r, &t,, = truth], and we can apply
the induction hypothesis to each of those countably many statements.

(x)g  Clause (g) holds.

Without loss of generality Z is countable. Now if w = | J{dom(p) : p € 7}
has no last element, clearly Z is predense iff &« € w = 1) = {pla: p € T}
is predense; so we can finish by the induction hypothesis. So assume a® is
the last element in w. Let {r,, : n < w} C P/, » be a maximal antichain
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of it, each r,, forcing a truth value to “{p(a®) : pla® € Gp ) Is a maximal
antichain of Q,”. m3 9

3.10. DEFINITION. (1) We say F is a s-witness for (Qt, Q?) if:

(a) Q' € K5 and Q2 € K2 (so k > Vo).

(b) F = (F, : v < w1) and F, is decreasing with v (for notational
simplicity). o

(c) F, C PAUT(Q', Q?) for v < w;.

(d) If f € F,, then dom(f) C lg(Q') and rang(f) C 1g(Q?).

() If fr € Fyy, 72 <m < w1, C1 Clg(@QY), Ca C1g(@?), |C] < &,
|Cs| < k, then for some fy € F,, we have

fi € fe,  CirCdom(fz), C2Crang(fa).

(2) We say F is an explicit k-witness for (Q',Q?) if (a)—(d) above hold
and:

(e)/ If f1 S .7:71, Y2 <71 < wi, C; C lg(@l) N SC1@1 (dom(fl)), Cy C

1g(Q?) N sclge (dom(f2)), |C1| < &, |Cs| < &, then for some fo €

Fy, we have fi C fa,C1 C dom(fz), Cy C rang(fz), dom(fz) C

sclys (dom( 1)), rang(fa)  selg (rang( 1))
(f)For fe F,,gC f=g€F,.
(g) If f € F, and o, § € dom(f), then

a €sdg({BY) < f(a) € sclg({F(B)}).

(h) If C; C 1g(Q') and Cy C 1g(Q?) are countable and v < wy, then
for some f € F, we have C; C dom(f) and Cy C rang(f).

3.11. CLaM. Assume F is a k-witness for (Q',Q?).
(1) If v € (0,w;) and f € F, and o, 3 < 1g(Q?'), then
a € sclgi ({B}) & fa) €scg({f(8)})-
(2) Let F~' = (F;' iy <wi) and F;U={f~"': f e F,}. Then F~!

a k-witness for (Q2, Q).

(3) If A; C 1g(Q") and A, = sclgi (A1) for I = 1,2 and we let F., =
{fNnX:feFiiy, X T A x A}, then <.7-"§ Dy < wi) 1S a Kk-witness for
(Q'1A1,Q?1As) and an explicit k-wilness for it; note that by renaming A,
can become an ordinal

4) If p e . € (P ) and T C (PL _ ) is countable, then
1 8@ ) 1g(Q') 1g(@")
for some v < w;y and every f € F, we have:

() If supp(p) Usupp(q) € dom(f), then
(Pllg((@l)) ‘:pgq iﬁ ( lg(Q2) ):f() ()
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(B) If supp(p) U supp(q) C dom(f), then p,q are compatible in
(PL 1£(@) ) iff f( ), f( ) are incompatible in (]P’l2 (Ql))’.
(v) If U,ezsupp(r) € dom(f), then T is predense in (Pllg(@)), iff

(@) ={f(r):r € T} is predense in (P2 (Q2))’.

(5) For every Borel function B = B(...,tn,.. . )ncw (for t, a truth value,
with values in V) and ((§n, o) :n < w>, a, < 1g(QY), and p € (]P’l1 (Ql))/
there is v < wy such that if f € Fy, {a, : n <w} Usupp(p) C dom(f) and
x €V, then

D ”‘pllg(Ql “B(...,truthvalue (§, € Ta,, ), - - Jn<w =27 iff

f(p) ke

2 o2 “B(...,truthvalue (§&, € Tf(an))s- - Jn<w = 7.

Proof. (1), (2), (3) Easy.
(4), (5) It suffices to prove 3.12 below.

3.12. CLAM. If F is an explicit k-witness for (Q',Q?) then (4), (5) of
3.11 hold.

Proof. We prove this by induction on o* = max{lg(Q'),1g(Q?)}, and
for a fixed a* by induction on 8* = min{lg(Q"),1g(Q?)}.

As above it is enough to prove part (4). This is done by cases. Without
loss of generality A’ is the strong Q-closure of A.

CASE 1: 1g(Q!) = 0. Trivial.

Caske 2: cf(Ig(Q')) > Rg. Solet p, ¢, T be given and choose a' < 1g(Q')
such that p,q € (PL,) and T C (PL,)". Let Q° = Q' o, F=FN (ol x
1g(Q?)), and apply the induction hypothesis to Q°, Q?, (F., iy <wp) and to
p,q,Z and get v < w; we shall prove that it works for Q', Q2, F,p,q,Z. So
let f € F, be such that supp(p)Usupp(gq) € dom(f) (needed if we are dealing
with clauses () or (3) of 3.11(4)) and such that J,.,supp(r) C dom(f)
(needed if we are dealing with clause () of 3.11(4)). Now f":= fla' € F/,
S0:

(1 BLY < e Bhg) 0 < PO

(*)2  p,q are compatible in P!, iff f (p), f’( ) are compatible in (Pfg(@z))’.
(%)3 T is predense in (P1,)" iff {F'(r) : 7 € I} is predense in (Pfg(@Q))'.

As in all three cases we can replace (P1,)" by (P! " and f’ by fwe are

lg(@l))
done.
CasE 3: cf(1g(Q')) = Ro. Concerning clauses (), (8) of 3.11(4) the

proof is just as in case 2, so we deal with clause (). Let Z C (P =(@) ) be



Null ideal 127

countable. We choose a™ < lg(Q') such that o < o"*! and J,,., o™ =
1g(Q") and let Z,, = {rla" : r € T,,} and FJ' = F, N (" x 1g(Q?)), F" =
(J’:;L : v < wy). For each n apply the induction hypothesis to Q! [a™, Q2, F",
T, and get v, < wi, and let v* = (UJ,,, 7o) + 1. So let f € F,- be such
that (J,c,supp(r) C dom(f). First assume 7 is predense in (Pfg(@l))’ .

So there is g € (]P’l1 (Q1)) incompatible with every r € 7, hence ¢ € (]P’}ln)/
for some n, so ¢ is incompatible with every r € Z,, in (IP’}XH)’ , hence Z,, is not

predense in (P}, ). As v* > =, necessarily {f( ) :r € Z,} is not predense

n (]P)fg(@))’ , which means that some ¢ € (]P)l1 (QZ)), is incompatible with
]/”\(7“) for every r € Z,,. Now trivially
ret = flrlan) <@,y 7ir)

(look at the definition and note r|a,, < r and increasing v*), clearly ¢’ €

(Pl2g(@2))/ is incompatible with every member of f(I) = {f(r) :r €T} so

F(Z) is not predense in (P? (QQ))’ , as required.

Second, assume 7 is predense in (IP’EL (Ql))’. So for each n, Z,, = {rla
r € T} is predense in (]P’1 ). Hence, by the induction hypothesis for each n,

f(In) = {f( ):r €Z,} is a predense subset of (P2 ; (QQ))’.

Let Al be the strong Q-closure of U,ez, supp(p), AL =U, ., Ay, and
let A2 be the strong Q2-closure of Upef(In) supp(p), A2 =, ., A2. Thus
if k < m < w, then A} C Al and A7 C A2, hence (le‘*i-), < (P%, ) and
(P2 <P ).

Remembering clause (g) of Definition 3.10(2), clearly

® if a € Uyersupp(p) € dom(f1),
then A, (Vn)[a € AL — fi(a) € A2,

and hence for p € Z, f(p[a”) = f(p[A}l) f( )[A2 Since p € 7T —

V,,(p € Z,,) (as dom(p) is bounded in 1g(Q')), clearly f( ) Un<w f(In).

Hence g € P;‘Q is incompatible in (P2 16(3%) ) with every p € f ( 7) iff ¢ is incom-

patible with every p € f( Tn(q)) in )/, where n(g) = min{n : q € ]P’z‘%},

n (P}
g(@?)
which is well defined as (A%n :m < w) is increasing continuous. As each

f(In(q)) is predense in /EIF’llg(@z))’ (see above using the induction hypothesis),
there is no such ¢. So f(Z) is predense in Piz , but A2 is strongly Q2-closed
(being the union of such sets), hence (by 3.8) (P%, ) < (P? )’, Slo) ]?(I) is

1g(Q?)
predense, and we have finished.
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Case 4: 1g(Q') = ~v* + 1. By Definition 3.1 all is translated to the
~v* case (including instances of 3.11(5)), so we can apply the induction
hypothesis. m3.12

3.13. CLAIM. If F witnesses A for Q inside A’, then:

(b) p,q € P’y are compatible in P

/ —
1g(Q)

(¢) T C Py is predense in P{g(@) iff it is predense in P’y (without loss of

iff they are compatible in P, .

generality T is countable).

(d) There are unique f,Q' such that Q' € K, f € PAUT(Q,Q), f

the

is order preserving, dom(f) = 1g(Q’) (= otp(A)) and rang(f)
essential part is: if p,q € P’y and v € dom(p) N dom(q), then

I ke, p(7) <o, ¢(v) = qlv ke, P(v) <g, 4(7)-
CONCLUDING REMARK. We describe below an application of the method.

3.14. Cramm. Assume for simplicity V |= GCH. For some c.c.c. forcing
notion P of cardinality N3 we have, in V':

(a) 2NO = Ng.
(b) add(meagre) = N;.
(c) cov(meagre) = Ng, moreover unif(meagre) = No.

(d) 0 = .

3.15. REMARK. We can use other three cardinals, and use very little
cardinal arithmetic assumption.

Proof. Let Q = (Pi,@j, aj, Mt <wstws, j < ws+ws) be a FS iteration
with:

e 7; the generic real of Qj,

e if j < ws then Q; is Cohen, say (“~w, <), so 7; is undominated,

o if j = w3 + ¢ with { < ws then Q; is Random VI{n::i€a;)]

e if b C a € [wg + wy]=Nt then for arbitrarily large i € (w3, ws + wa) We
have aNa; = b.

Let P = P, 4w, Trivially |P| = N3. So in V we know:

(a) As |P| < N3 the < inequality holds; the other inequality holds as
(n; 11 < ws) is a sequence of N3 distinct reals.

" (b) As in [Sh 592] we know that b is not increased by P, so b = X; but
add(meagre) < b.

(c) If for i < w; we have Borel sets A; C “2 in V¥ then for some o < wy,
(A; 17 < w) € VPesti and the forcing Py, i 4w/Pusts adds a Cohen real
over VFws+i (as we are using FS iteration). So cov(meagre) > N; and in fact
unif(meagre) > Ny. The reverse inequality holds by the fourth e above.
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On the other hand, (n,,4+i : < wg2) is a non-null set of reals, hence
unif(null) < Ro; but cov(meagre) < unif(null), so cov(meagre) < Ny. So
together cov(meagre) = Nj.

(d) Now 2 < 2%0 = N3, on the other hand, as in [Sh 592] for no A € [w3]™?
from V, is there a <*-bound to {n; :i € A}.
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