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The twisted products of
spheres that have the fixed point property

by

Haibao Duan and Boju Jiang (Beijing)

Abstract. By a twisted product of Sn we mean a closed, 1-connected 2n-manifold
M whose integral cohomology ring is isomorphic to that of Sn × Sn, n ≥ 3. We list all
such spaces that have the fixed point property.

1. Introduction. An almost smooth manifold is a pair (M,DM) in
which

(1) M is a closed, 1-connected topological manifold;
(2) DM ⊂M is an embedded disc, dimDM = dimM ; and
(3) M \ intDM is furnished with a fixed smooth structure.

A homeomorphism between two almost smooth manifolds (M,DM ) and
(N,DN ) is a homeomorphism F : M → N that restricts to a diffeomor-
phism

M \ intDM → N \ intDN .

It is clear that such homeomorphisms yield an equivalence relation among
all almost smooth manifolds. Denote by W the set of equivalence classes of
this relation.

The category W introduced above is of classical interest. C. T. C. Wall
classified all (n − 1)-connected 2n- and (2n + 1)-manifolds, n ≥ 3, exactly
in this category [W1], [W2]. In general, it may be considered as a category
between the smooth and PL categories.

It has been forty years since a complete classification for (n−1)-connected
2n-dimensional almost smooth manifolds was achieved by C. T. C. Wall
[W1]. It seems, however, that the corresponding investigation into the geom-
etry of maps between such manifolds has not yet received as much attention
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as it deserves. In this paper, without attempting a thorough study of this
broad subject, we just present an evidence indicating an interesting aspect
of this topic in the context of fixed point theory.

A topological space X is said to have the fixed point property if the
equation

f(x) = x, x ∈ X,
has a solution for every self-map f of X. The classical Brouwer fixed point
theorem asserts that the n-dimensional disc Dn = {x ∈ Rn | |x| ≤ 1} has the
fixed point property. During the past century it has served as one of the main
technical tools in establishing existence results for highly nonlinear problems
[Fo]. On the other hand, except for even dimensional projective spaces and
certain complex Grassmannians, few examples of closed manifolds are known
to have this striking but useful property [F], [H].

By a twisted product of Sn, n ≥ 3, we mean a closed, 1-connected,
almost smooth 2n-manifold M whose integral cohomology ring is isomorphic
to that of Sn × Sn. The importance and generality of such spaces can be
seen from the following facts due to Wall [W1]. Let S(n) be the set of all
homeomorphism types of twisted products of Sn. Then

(i) if n is odd, connected sums of elements in S(n) yield all almost
smooth (n− 1)-connected 2n-manifolds;

(ii) if n is even and if n 6= 4, 8, the Grothendieck group of n-spaces
is generated by elements in S(n) together with the single n-space whose
intersection form is given by E8 (cf. Theorem 2 in [W1]).

The standard product Sn × Sn clearly fails the fixed point property.
However, this is no longer so for twisted products of Sn.

In order to describe our results, we need some notation to describe the
homotopy type of manifolds in S(4k). First recall that the Bernoulli numbers
Bk are the rationals defined by

x

ex − 1
= 1− x

2
+
∑

k≥1

(−1)k−1Bk
x2k

(2k)!
.

Let dk be the denominator of Bk/4k (expressed in lowest terms). Put σk =
dk/2 if k = 1, 2 and let σk = dk if k ≥ 3. The first 10 values of σk are

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10
12 120 504 480 264 65520 24 16320 28728 13200

It is shown in Section 4 that the set S(4k) is indexed by pairs of integers
as

S(4k) = {M(a, b) | a, b ∈ Z},



Twisted products of spheres 159

where, with respect to a certain basis x, y for H4k(M(a, b)) = Z ⊕ Z, the
parameter (a, b) is related to the Pontryagin class pk for the stable tangent
bundle of M(a, b) by

pk = 2ε(k)(2k − 1)!(ax+ by), ε(k) =
{

0 if k is even,

1 if k is odd.

A homotopy classification of elements of S(4k) is given in

Theorem 2. M(a1, a2) is homotopy equivalent to M(b1, b2) if and only
if one of the following eight congruence systems is satisfied :

{
a1 ± b1 ≡ 0 (modσk),

a2 ± b2 ≡ 0 (modσk),

{
a1 ± b2 ≡ 0 (modσk),

a2 ± b1 ≡ 0 (modσk).

Consequently , the subset T (k) = {M(a1, a2) | 0 ≤ a1 ≤ a2 ≤ σk/2} of S(4k)
consists of all distinct homotopy types of twisted products of S4k.

Since the fixed point property is invariant with respect to homotopy
equivalence of closed manifolds, a combination of Theorem 2 with the next
result classifies, with respect to homeomorphism type, all twisted products
of Sn that have the fixed point property.

For a ∈ Z let o(a) ∈ Z be the order of a in the cyclic group Zσk .

Theorem 3. If n = 4k, then M = M(a1, a2) ∈ T (k) has the fixed point
property if and only if a1a2 6= 0 and

gcd{o(a1), o(a2)} 6= 1,

gcd{2o(a1), o(a2)} 6= 2,

gcd{o(a1), 2o(a2)} 6= 2.

If n 6= 4k, then every M ∈ S(n) fails the fixed point property.

Let J(k) be the subset of T (k) consisting of all the homotopy types
that have the fixed point property, and let ck be the cardinality of J(k).
Computation based on Theorem 3 shows that most of the elements in T (k)
have the fixed point property.

Table 1. J(1)

(1,1)
(1,2) (2,2)
(1,3) (3,3)
(1,4) (2,4) (4,4)
(1,5) (2,5) (3,5) (4,5) (5,5)
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Table 2. J(7)

(1,1)
(1,2) (2,2)
(1,3) (2,3) (3,3)
(1,4) (2,4) (4,4)
(1,5) (2,5) (3,5) (4,5) (5,5)
(1,6) (2,6) (3,6) (5,6) (6,6)
(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7)
(1,8) (2,8) (4,8) (5,8) (7,8) (8,8)
(1,9) (2,9) (3,9) (5,9) (6,9) (7,9) (9,9)
(1,10) (2,10) (3,10) (4,10) (5,10) (6,10) (7,10) (8,10) (9,10) (10,10)
(1,11) (2,11) (3,11) (4,11) (5,11) (6,11) (7,11) (8,11) (9,11) (10,11) (11,11)

Table 3. ck, k ≤ 10

k 1 2 3 4 5
ck 13 1672 31104 28222 8410

k 6 7 8 9 10
ck 469532700 60 33250102 103080204 21744712

For M ∈ S(n) denote by HM the cohomology Hn(M ;Z) in the middle
dimension.

The paper is organized as follows. Section 2 recalls from [W1] the con-
structions of elements in S(n) both in terms of handle decomposition and
cell decomposition. In Theorem 1 (Section 3) we answer the question which
homomorphism HN → HM can be induced by a continuous map f : M → N
with M,N ∈ S(n). Combining Theorem 1 with the results of Adams [A] and
Quillen [Q] of late 60’s, we obtain in Section 4 a homotopy type classifica-
tion for elements in S(n), for n even, which was incomplete in [W1] due to
lack of information on J-homomorphisms. The proof of Theorem 3 is given
in Section 5; finally, Section 6 discusses some numerical phenomena arising
from the previous computation.

2. Constructions. Let J : πn−1(SO(n))→ π2n−1(Sn) be the J-homo-
morphism [Wh], and let H : π2n−1(Sn)→ Z be the Hopf invariant. We recall
from [W1] that elements in S(n) are parameterized by pairs of elements in
the group

Gn = Ker{H ◦ J : πn−1(SO(n))→ Z}.
Let D2n be the standard 2n-disc. Fix two smooth embeddings

hi : Sn−1 ×Dn → S2n−1 = ∂D2n ⊂ D2n, i = 1, 2,

with disjoint images so that the linking number of the restrictions h1|Sn−1×0
and h2|Sn−1 × 0 in S2n−1 is 1. For two αi ∈ Gn, i = 1, 2, let N(α1, α2) be
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the handle body
D2n

⋃

α′1tα′2

(Dn ×Dn tDn ×Dn)

with the attaching maps

Dn ×Dn ⊃ ∂(Dn ×Dn) ⊃ Sn−1 ×Dn α′i−→ S2n−1 = ∂D2n ⊂ D2n

defined by α′i(x, y) = hi(x, αi(x)y), i = 1, 2. Then N(α1, α2) is a smooth
manifold whose boundary is topologically a (2n − 1)-sphere (cf. Corollary
to Lemma 3 in [W1]), so a 2n-dimensional disc D2n can be added to yield
a closed almost smooth 2n-manifold M(α1, α2) = (N(α1, α2) ∪ D2n,D2n).
Since M(α1, α2) is simply connected (because n ≥ 3) and its intersection
form is seen to be (

0 (−1)n

1 0

)
,

it follows that M(α1, α2) ∈ S(n). Conversely, all elements in S(n) are ob-
tained in this way.

The space M(α1, α2) admits a cell decomposition

M(α1, α2) =
∨

i=1,2

Sni ∪α D2n,

with the attaching map α ∈ π2n−1(
∨
i=1,2 S

n
i ) related to α1, α2 ∈ Gn ⊆

πn−1(SO(n)) as follows. Let ιi : Sn → ∨
i=1,2 S

n
i ⊂ M(α1, α2) be the in-

clusion onto the ith copy of the bouquet
∨
i=1,2 S

n
i , i = 1, 2. By a result of

Hilton, there is a canonical splitting

(2.1) π2n−1

( ∨

i=1,2

Sni

)
=
⊕

i=1,2

π2n−1(Sni )⊕ π2n−1(S2n−1).

Lemma 1. With respect to the splitting (2.1), α = ι1◦J(α1)+ι2◦J(α2)+
[ι1, ι2], where [ , ] stands for the Whitehead product [W1], [Wh].

Remark 1. It follows from Lemma 1 that πr(M(α1, α2)) ∼= πr(Sn×Sn),
r ≥ 0.

3. Realization of a cohomology homomorphism by a map. For
two M,N ∈ S(n), sending a continuous map f : M → N to the induced
cohomology homomorphism yields a representation

r : [M,N ]→ Hom(HN ,HM ),

where [M,N ] is the set of all homotopy classes of maps M → N . This section
is devoted to a description of Im(r), the image of r in Hom(HN ,HM ).

Assume, by the discussion in the previous section, that

M = M(α1, α2) =
∨

i=1,2

Sni ∪α D2n, N = M(β1, β2) =
∨

i=1,2

Sni ∪β D2n
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with ιi : Sn → ∨
i=1,2 S

n
i ⊂ M (resp. ι′i : Sn → ∨

i=1,2 S
n
i ⊂ N) being

the inclusion onto the ith component of the bouquet
∨
i=1,2 S

n
i , i = 1, 2.

Let ei ∈ HM (resp. e′i ∈ HN ) be the image of ιi∗[Sn] ∈ Hn(M ;Z) (resp.
ι′i∗[S

n] ∈ Hn(N ;Z)) under Poincaré duality. Then HM = span{e1, e2} (resp.
HN = span{e′1, e′2}). In view of this we may equally well regard r as a
representation into the set M(2) of all 2× 2 integer matrices,

r : [M,N ]→M(2),

by r(f) = (aij)2×2 , where f∗(e′i) = ai1e1 + ai2e2, i = 1, 2.

Theorem 1. A = (aij)2×2 ∈ Im(r) if and only if the following equations
hold in π2n−1(Sn):

(3.1) kJ(βi) = ai1J(α1) + ai2J(α2) + ai1ai2[κn, κn], i = 1, 2,

where k = a11a22 + (−1)na12a21, and where κn ∈ πn(Sn) is the class of the
identity.

If n is even, applying the Hopf invariant H to (3.1) gives

a11a12 = a21a22 = 0

(since αi, βi ∈ Gn and H([κn, κn]) = 2). Theorem 1 implies

Corollary 1. Let n be even. Then A = (aij)2×2 ∈ Im(r) if and only if
one of the following constraints is satisfied :

(i) A =
(
a 0
0 b

)
with

{
abJ(β1) = aJ(α1)

abJ(β2) = bJ(α2)
in π2n−1(Sn);

(ii) A =
(

0 b
a 0

)
with

{
abJ(β1) = bJ(α2)

abJ(β2) = aJ(α1)
in π2n−1(Sn);

(iii) A =
(
a 0
b 0

)
with

{
aJ(α1) = 0

bJ(α1) = 0
in π2n−1(Sn);

(iv) A =
(

0 a
0 b

)
with

{
aJ(α2) = 0

bJ(α2) = 0
in π2n−1(Sn).

We complete this section by proving Theorem 1. For a homomorphism
h : HN → HM one constructs a map g :

∨
i=1,2 S

n
i →

∨
i=1,2 S

n
i so that the

induced g∗ on cohomology fits in the commutative diagram

HN HM

Hn(
∨
i=1,2 S

n
i ) Hn(

∨
i=1,2 S

n
i )

∼=
��

h //

∼=
��

g∗ //

where the vertical isomorphisms are induced by the inclusions
∨
i=1,2 S

n
i

⊂ N and
∨
i=1,2 S

n
i ⊂M . A standard discussion in homotopy theory yields
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Lemma 2. g is extendible to a map f : M → N (of degree k) if and only
if the induced homomorphism g∗ : π2n−1(

∨
i=1,2 S

n
i ) → π2n−1(

∨
i=1,2 S

n
i )

satisfies

(3.2) g∗(α) = kβ.

Assume that, with respect to the basis {e′1, e′2} for HN and {e1, e2} for
HM , h : HN → HM has the representation

(3.3) h(e′i) =
∑

j=1,2

aijej , aij ∈ Z.

Equivalently g∗ : πn(
∨
i=1,2 S

n
i ) → πn(

∨
i=1,2 S

n
i ) is given by g∗(ιi) =∑

j=1,2 ajiι
′
j , i = 1, 2. With these notations we compute

g∗(α) =
∑

i=1,2

g∗(ιi) ◦ J(αi) + [g∗(ι1), g∗(ι2)]

=
∑

j=1,2

ι′j ◦ (aj1J(α1) + aj2J(α2) + aj1aj2[κn, κn])

+ (a11a22 + (−1)na12a21)[ι′1, ι
′
2],

where we have made use of the (−1)n-symmetry and bilinearity of the White-
head product [ , ], the bilinearity of the composition operator ◦ (note that
◦ is linear with respect the first factor since αi ∈ Gn, cf. formula (1.16) in
[Wh, p. 494]), as well as the obvious relation

[ι′i, ι
′
i] = ι′i ◦ [κn, κn]

(in π2n−1(
∨
i=1,2 S

n
i )). Now comparing the coefficients of ι′i and [ι′1, ι

′
2] on

both sides of (3.2) yields

Lemma 3. g is extendible to a map f : M → N (of degree k) if and only
if the homomorphism h defined by (3.3) satisfies

kJ(βi) = ai1J(α1) + ai2J(α2) + ai1ai2[κn, κn], i = 1, 2,

in π2n−1(Sn), where k = a11a22 + (−1)na12a21.

This clearly finishes the proof of Theorem 1.

4. Homotopy type classification in S(n) (for n even). Assume
throughout this section that n is even. We need information on the groups
Gn, as well as the restriction of the J-homomorphism toGn. In the statement
and proof of the next result we use a section of the homotopy sequence

πn(Sn) ∂→ πn−1(SO(n)) i∗→ πn−1(SO(n+ 1))→ 0

of the fibration SO(n+ 1)→ Sn. The number σk is as defined in Section 1.

Lemma 4. The groups Gn and the restriction of the J-homomorphism
to Gn can be classified into the following four cases.
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Case 1. n = 4k, k ≤ 2: Let δ ∈ πn−1(SO(n − 1)) = Z be a generator ,
and put x = i∗(δ). Then

(1-1) Gn = Z is generated by x;
(1-2) J(x) generates a direct cyclic summand of π2n−1(Sn) of order σk.

Case 2. n = 4k, k ≥ 3: Let y ∈ πn−1(SO(n)) be a class such that i∗(y)
generates πn−1(SO(n+ 1)) = Z, and put x = y − 1

2HJ(y)∂κn. Then

(2-1) Gn = Z is generated by x;
(2-2) J(x) generates a direct cyclic summand of π2n−1(Sn) of order σk.

Case 3. n ≡ 2 (mod 8), n > 8: Let y ∈ πn−1(SO(n)) be a class so that
i∗(y) generates πn−1(SO(n+ 1)) = Z2, and put x = y − 1

2HJ(y)∂κn. Then

(3-1) Gn = Z2 is generated by x;
(3-2) J : Gn → π2n−1(Sn) is monomorphic.

Case 4. n = 8s+ 6: Gn = {0}.
Remark 2. In Cases 2 and 3, HJ(y) ∈ Z must be even for dimensional

reasons.

Proof. All the statements above can be found in [W1] except for (1-2),
(2-2) and (3-2), due essentially to Adams [A] and Quillen [Q].

The J-homomorphisms induce the commutative diagram

. . . π4k(S4k) π4k−1(SO(4k)) π4k−1(SO(4k + 1)) 0

0 π8k+1(S8k+1) π8k−1(S4k) π8k(S4k+1) . . .

// ∂ //

J
��

i∗ //

J
��

//

// P // E // //

in which the bottom is a section of the EHP sequence [Wh, p. 548]. It is
known that

(1) i∗ maps G4k = Z isomorphically onto π4k−1(SO(4k + 1)) = Z if
k ≥ 3, and monomorphically onto the subgroup of index 2 if k ≤ 2.

By Adams [A] and Quillen [Q] we have

(2) J(π4k−1(SO(4k+ 1))) ⊂ π8k(S4k+1) is a cyclic subgroup of order dk
(cf. Section 1).

Combining these with the obvious fact that

(3) the composition H ◦ P : π8k+1(S8k+1)→ Z is monomorphic

proves (1-2) and (2-2).
Assume now that n ≡ 2 (mod 8) and n > 8 (i.e. Case 3). By Adams [A],

J(i∗(x)) ∈ π2n(Sn+1) is of order 2. This clearly implies (3-2).

If n is even and n 6= 4k, then J restricts to a monomorphism Gn →
π2n−1(Sn) by Lemma 4. The homotopy classification of elements in S(n)
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now coincides with the homeomorphism classification, hence was done by
Wall [W1]:

Corollary 2. If n is even and n 6= 4k, we have

(1) for n ≡ 2 (mod 8) and n > 8: S(n) = {M(0, 0),M(x, 0)};
(2) for n = 8s+ 6: S(n) = {M(0, 0)},

where M(0, 0) = Sn × Sn.

If n = 4k (Cases 1 and 2), we write M(a1, a2) instead of M(a1x, a2x),
ai ∈ Z. In view of the construction of M(a1, a2) described in Section 2,
the characteristic map for the normal bundle of the embedding ιi : Sn →
M(a1, a2) is seen to be aix ∈ π4k−1(SO(4k)), i = 1, 2. Thus, by the divis-
ibility result of R. Bott [B], the Pontryagin class pk for the stable tangent
bundle of M(a1, a2) is related to (a1, a2) by the formula of Section 1.

Proof of Theorem 2. Since n = 4k, the J-homomorphism restricts to
the modulo-σk reduction Gn = Z → π2n−1(Sn) by Lemma 4. Let f :
M(a1, a2) → M(b1, b2) be a homotopy equivalence. Then r(f) ∈ M(2)
must be unimodular. The congruence relations follow from (i) and (ii) of
Corollary 1.

5. Proof of Theorem 3. For a self-map f of a manifold M , let L(f)
be the Lefschetz number of f [Br]. We put

L(M) = {L(f) | f : M →M}.
By the definition of Lefschetz number we deduce from Corollary 1 the fol-
lowing

Lemma 5. If M = M(a1, a2) ∈ T (k), then L(M) = L1 ∪ L2 ∪ L3 ∪ L4

with

L1 = {(a+ 1)(b+ 1) | (ab− a)a1 ≡ (ab− b)a2 ≡ 0 (modσk), a, b ∈ Z},
L2 = {1 + ab | aba1 − ba2 ≡ aba2 − aa1 ≡ 0 (modσk), a, b ∈ Z},
L3 = {1 + a | aa1 ≡ 0 (modσk), a ∈ Z},
L4 = {1 + b | ba2 ≡ 0 (modσk), b ∈ Z}.
It is well known that if M is a simply connected manifold, then M has

the fixed point property if and only if 0 6∈ L(M).

Proof of Theorem 3. Assume n = 4k, and M(a1, a2) ∈ T (k) (i.e. 0 ≤
a1 ≤ a2 ≤ σk/2). It is easy to see from Lemma 5 that the condition a1a2 6= 0
is equivalent to 0 6∈ L3 ∪ L4, and that 0 ∈ L2 implies 0 ∈ L1. We may
assume below that a1a2 6= 0. Consequently, o(a1) 6= 0, o(a2) 6= 0 (since
a1, a2 ≤ σk/2).
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If 0 ∈ L1, then by Lemma 5 we have either

(i) b = −1 and 2aa1 ≡ (a− 1)a2 ≡ 0, or
(ii) a = −1 and (b− 1)a1 ≡ 2ba2 ≡ 0.

However (i) implies o(a1) | 2a and o(a2) | a − 1, and similarly (ii) implies
o(a1) | b− 1 and o(a2) | 2b, both leading to either

gcd{o(a1), o(a2)} = 1, gcd{2o(a1), o(a2)} = 2, or gcd{o(a1), 2o(a2)} = 2.

Conversely, if gcd{o(a1), o(a2)} = 1, so that there are s, t ∈ Z such that

so(a1) + to(a2) = 1,

then (a, b)=(−1, o(a2)t) satisfies (ii). Alternatively, if gcd{2o(a1), o(a2)}=2
(say), so that there are s, t ∈ Z such that

2o(a1)s+ o(a2)t = 2,

then o(a2)t is divisible by 2, and (a, b) = (−1, o(a2)t/2) satisfies (ii). Thus
0 ∈ L1. The first assertion of Theorem 3 is verified.

The second assertion of Theorem 3 comes directly from the following
observations:

(i) If n is odd, then for M ∈ S(n) one has

L(Id) = χ(M) = 0 ∈ L(M),

where Id : M → M is the identity and χ(M) is the Euler characteristic
of M .

(ii) If n = 8s + 6, then S(n) consists of the single element Sn × Sn by
Corollary 2(2).

(iii) If n ≡ 2 (mod 8) and n > 8, then S(n) = {Sn × Sn,M(x, 0)} by
Corollary 2(1). The matrix

A =
(

0 0
0 −1

)

is realizable by a self-map f of M(x, 0) by Corollary 1(ii); its Lefschetz
number is seen to be zero.

6. Computational examples. We conclude this paper by describing
some phenomena arising from the previous computation.

For every manifold M , the constant map and identity map of M con-
tribute to the set L(M) respectively 1 and χ(M) (the Euler characteristic).
Therefore, the subset L′(M) = L(M) \ {1, χ(M)} can be viewed as the set
of non-obvious Lefschetz numbers for self-maps of M .

If M ∈ S(4k), the set L(M) (hence L′(M)) may be computed by using
Lemma 5. For instance, if M = M(1, 2) ∈ S(4k), one can show that

|λ| ≥ √σk/2 for all λ ∈ L′(M).
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This estimate points out an interesting phenomenon: there exist twisted prod-
ucts of S4k whose non-obvious Lefschetz numbers are arbitrarily large.

A fundamental invariant for a map f : M → N between two closed
oriented manifolds of the same dimension is its Brouwer degree, denoted by
deg f . It may be evaluated in the following manner. Let [M ] ∈ HdimM (M)
be the fundamental class specified by the orientation, and let f∗ : H∗(M)→
H∗(N) be the induced homomorphism. In view of the fact that HdimM (M)
= Z is generated by [M ], deg f is seen to be the unique integer satisfying
f∗[M ] = deg f · [N ] in HdimN (N) = Z.

Given two closed oriented manifolds M,N of the same dimension we set

D(M,N) = {deg f | f : M → N}.
The problem of determining the set D(M,N) for given M and N can be
viewed as one of the realization problems in topology, and has been studied
by many authors for certain classes of 3-manifolds (cf. [S] for the latest
references).

Lemma 3 is sufficient to find the set D(M,N) for M,N ∈ S(n). For
instance, from Corollary 1 (a special case of Lemma 3) one finds that if
M = M8k(a1, a2), N = M8k(b1, b2) ∈ S(4k), then

D(M,N) = {xy | xyb1 − xa1 ≡ 0, xyb2 − ya2 ≡ 0 (modσk)}
∪ {xy | xyb1 − xa2 ≡ 0, xyb2 − ya1 ≡ 0 (modσk)}.

This indicates that the set D(M,N) might possess interesting numerical
features. Direct computations yield, as examples,

D(M8k(1, 1),M8k(0, 0)) = {σ2
kt | t ∈ Z},

D(M48(1, 1),M48(0, 0)) = {655202t | t ∈ Z},
D(M16(1, 2),M16(0, 0)) = {7200t | t ∈ Z},
D(M16(1, 3),M16(0, 0)) = {4800t | t ∈ Z},
D(M16(1, 4),M16(0, 0)) = {3600t | t ∈ Z}.
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