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On transcendental automorphisms of algebraic foliations

by

B. Scárdua (Rio de Janeiro)

Abstract. We study the group Aut(F) of (self) isomorphisms of a holomorphic fo-
liation F with singularities on a complex manifold. We prove, for instance, that for a
polynomial foliation on C2 this group consists of algebraic elements provided that the line
at infinity CP (2) \ C2 is not invariant under the foliation. If in addition F is of general
type (cf. [20]) then Aut(F) is finite. For a foliation with hyperbolic singularities at infinity,
if there is a transcendental automorphism then the foliation is either linear logarithmic,
Riccati or chaotic (cf. Definition 1). We also give a description of foliations admitting an
invariant algebraic curve C ⊂ C2 with a transcendental foliation automorphism.

1. Introduction and main results. In this paper we study the group
of (self) isomorphisms of a foliation. Given a codimension one holomorphic
foliation F with singularities on a complex manifoldM we denote by Aut(F)
the maximal subgroup of Aut(M) whose elements preserve the foliation F .
This object has been studied in [20] where it is proven that Aut(F) is finite
for F of general type on a (compact) projective surface. We recall (cf. [20])
that a foliation F on a projective surface M 2 is of general type if its Kodaira
dimension (cf. [17]) is equal to 2. Our results extend in a way the result above
to open algebraic surfaces. Indeed, we are concerned with the non-compact
case and its applications to the classification of holomorphic flows on C2,
for instance. Our first result is the following:

Proposition 1. Let F be a foliation with hyperbolic singularities on
CP (2). Suppose there exists some affine open subset U ⊂ CP (2) such that
the restriction F|U contains a holomorphic flow in its group of automor-
phisms. Then F is, in suitable affine coordinates, a linear hyperbolic folia-
tion.

By an affine set U ⊂ CP (2) we mean the complement of an algebraic
curve Γ ⊂ CP (2). This preliminary result suggests that the complexity of
the transverse structure and that of the tangent structure are, in a certain

2000 Mathematics Subject Classification: 37F75, 32S65.

[179]



180 B. Scárdua

sense, in inverse proportion. This idea is enforced by our next results. The
first is the following extension lemma:

Lemma 1 (Extension Lemma). An entire automorphism ϕ : C2 → C2

of an algebraic foliation F on CP (2) is algebraic provided that the infinity
P1
∞ = CP (2) \ C2 is not invariant under F .

The above result actually holds for bimeromorphic maps ϕ : C2 \ Γ 99K
C2 \ Γ if we replace P1

∞ by an irreducible (non-invariant) algebraic curve
Γ ⊂ CP (2), as will be clear from the proof we give. We point out that a
foliation automorphism ϕ ∈ Aut(C2) may extend to a bimeromorphic non-
linear map of CP (2) as is the case for F : dx = 0 and ϕ(x, y) = (x, y + xn).
Denote by Bim(F) the group of bimeromorphic maps Φ : M 99K M which
preserve F in M (these maps take leaves of F onto leaves of F wherever
defined). Combining the extended Lemma 1 with Theorem 1 of [20] we
immediately obtain:

Corollary 1. Let F be a codimension one singular holomorphic foli-
ation on CP (2) and Γ ⊂ CP (2) a non-invariant algebraic curve. Then we
have natural group immersions Bim(F|CP (2)\Γ ) ⊂ Bim(F) ⊂ Bim(CP (2)).
In particular , Bim(F|CP (2)\Γ ) is finite if F is generic.

For a foliation F on a projective surface M admitting a minimal model G
on M̃ (cf. [6]), we have a natural group isomorphism Bim(F) ' Aut(G) [20].
Foliations without minimal model are listed as: rational fibrations, non-
trivial Riccati foliations and the exceptional foliation H in [6] (see also Ex-
ample 1.3 in [10]). In particular, if F is generic then it admits a minimal
model ([20]). In [10] it is proved that for a foliation F on a projective sur-
face if Aut(G) ( Bim(G) for every birational model G of F then we have
the following possibilities: F is a rational fibration or F is the exceptional
foliation H of [6], i.e., the foliation in Example 1.3 of [10]. Combining these
results with Corollary 1 above we obtain:

Corollary 2. Let F be a codimension one singular holomorphic foli-
ation on CP (2) and Γ ⊂ CP (2) a non-invariant algebraic curve. Suppose
that Bim(F|CP (2)\Γ ) is not finite. Then F is either a linear foliation, an
elliptic fibration, a rational fibration, a Riccati foliation, or (birationally
equivalent to) the exceptional foliation H of [6].

Proof. If F has a minimal model then we may assume that F is minimal
and therefore Aut(F) = Bim(F) is infinite. Theorem 1.1 of [10] then shows
that F is either an elliptic fibration, a Riccati foliation or given by a global
holomorphic vector field on CP (2), in which case F is necessarily linear.
Now we may assume that F has no minimal model. Therefore, according
to the above discussion F is either a non-trivial Riccati foliation, a rational
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fibration or the foliation H of [6] which is the foliation in Example 1.3
of [10].

For the transcendental case we shall be more precise by introducing a
dynamical concept:

Definition 1 (chaotic foliation). We shall say that a foliation F on
CP (2) which leaves invariant the line at infinity is chaotic if:

(ch-1) F|C2 has no parabolic leaf (in the sense of potential theory, cf. [4]);
(ch-2) the foliation F|C2 admits no (non-trivial) holonomy invariant mea-

sure, indeed the leaves of F|C2 have exponential growth for the
Fubini–Study metric ([9]);

(ch-3) the holonomy group of the leaf L∞ = P1
∞ \ (sing(F) ∩ P1

∞) is non-
solvable (see [19]);

(ch-4) all leaves of F , except for L∞, are dense in CP (2) ([15], [12]).
(ch-5) F|C2 (and therefore F on CP (2)) is ergodic ([12]) and topologically

rigid ([15], [23]).

Using this terminology we state our main results as follows:

Theorem 1. Let F be an algebraic foliation on CP (2) such that sing(F)
∩ P1

∞ is hyperbolic and Aut(F|C2) contains a transcendental element ϕ :
C2 → C2. We have the following possibilities: (i) F is chaotic; (ii) F is a
linear logarithmic foliation; (iii) F is a Riccati foliation.

Examples of foliations of logarithmic and Riccati type with transcen-
dental foliation automorphisms are given in §4. Also, consider the following
construction: let

ϕ(x, y) =

(
x,

y

α(x)y + β(x)

)

for entire functions α, β ∈ O(C). We can obtain examples of ϕ-invariant
Riccati equations of the form F : [(x−a1) . . . (x−ar)]dy−[y2A(x)+yB(x)]dx
= 0, where in the affine system (x, y) ∈ C2 ⊂ CP (2) we take the line

at infinity to be P1
∞ = (x =∞). It is then easy to obtain such examples

with transcendental ϕ and sing(F) ∩ P1
∞ hyperbolic. A linear hyperbolic

foliation F : xdy − λydx = 0, λ ∈ C \ R, admits no transcendental foliation
automorphisms (cf. Example 2).

As an immediate consequence of Theorem 1 we obtain:

Corollary 3. Let F be a foliation on CP (2) with hyperbolic singu-
larities in P1

∞ and such that Aut(F|C2) contains a transcendental element.
Suppose F has no algebraic invariant curve C ⊂ C2. Then F is chaotic.

In general, for a foliation admitting an algebraic invariant curve and with
a transcendental automorphism we have:
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Theorem 2. Let F be an algebraic foliation on CP (2) such that
Aut(F|C2) contains a transcendental element ϕ : C2 → C2. Suppose that
F has an invariant algebraic curve C ⊂ C2. Then, up to replacing ϕ by
some power ϕn, n ∈ N, we have (only) the following possibilities:

(tr.1) ϕ(C) is not algebraic and F|C2 is holomorphically equivalent to dy = 0
in C2. Up to some entire automorphism taking F|C2 to dy = 0 we have
ϕ(x, y) = (a0(y)x+a1(y), b0 + b1y) with a0(y), a1(y) ∈ O(C2), b0, b1 ∈
C and some natural restrictions on the coefficients. In particular C is
isomorphic to the affine line, C ' C.

(tr.2) There is n ∈ N such that ϕn(C) = C in C2, and C is, up to a
polynomial automorphism of C2, in the following list :

(a) α(x) + yβ(x) = 0, α(x), β(x) ∈ C[x];
(b) a union of irreducible components of fibers of xnym, n,m ∈ N,
〈n,m〉 = 1;

(c) a union of irreducible components of fibers of a polynomial R(x, y)
= xn(xly + P (x))m with n,m, l ∈ N, 〈n,m〉 = 1, P (x) ∈ C[x] of
degree at most l − 1, P (0) 6= 0.

In particular , C is rational and C ∩ P1
∞ ≤ 2, so that each irreducible

component C0 ⊂ C satisfies C0 ' C or C \ {0}.
(tr.3) ϕn(C) is algebraic for some n ∈ N but ϕm(C) 6= C for all m ∈ N.

In this case F admits a rational first integral R : CP (2) 99K P1; in
particular all the leaves of F are algebraic.

Examples are given and we believe that one may go further in the dis-
cussion of Case (tr.2) above.

2. The case of flows—Proof of Proposition 1

2.1. Motivations and the compact case. Let F be a codimension k fol-
iation on a manifold M with singular set sing(F). The group of foliation
automorphisms of F is the subgroup Aut(F) of Aut(M) whose elements
ψ : M → M satisfy ψ(sing(F)) = sing(F) and ψ∗F = F , in other words, ψ
fixes the singular set and takes (non-singular) leaves of F onto (non-singular)
leaves of F . If M is (complex) compact then Aut(M) is a (complex) Lie
group, and since Aut(F) is a closed subgroup of Aut(M), it is a (complex)
Lie subgroup. Thus we may consider the following general situation: Aut(F)
is a complex Lie group and therefore there exists a Lie group action ϕ : G×
M → M such that each automorphism ϕg, g ∈ G, belongs to Aut(F). We
have two main (antipodal) cases: (i) ϕ is transverse to F ; (ii) ϕ is tangent
to F . In the rest of this section we shall consider the two main cases above
in the compact two-dimensional situation for singular foliations.
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1. Let F be a singular codimension one foliation on a complex surface
M and assume there is a flow ϕ : C×M →M such that ϕt ∈ Aut(F) for all
t ∈ C. If ϕ is transverse to F then we are in the situation considered in [22];
in particular there exists a closed holomorphic 1-form Ω, non-singular and
defining F on M , and we may describe the dynamics of F according to the
group Per(Ω) ⊂ (C,+) (cf. [22]). For instance, if M is compact Kaehler with
rank H1(M ;R) ≤ 2 then F is a Seifert fibration (i.e., a foliation by compact
leaves having finite holonomy groups).

2. Assume now that there is a flow ϕ which is tangent to F ; this implies
that given any p ∈ M the leaf Lp of F containing p admits a holomorphic
map ϕp : C→ Lp and Lp is holomorphically equivalent to one of the following

Riemann surfaces: C, C∗ or a torus C/Z ⊕ Z. Moreover, X(p) = ∂ϕt
∂t (p)|t=0

defines a global holomorphic vector field (possibly with singularities) on M ,
tangent to F . If X is singular but M = CP (2) then X must be linear:
X = λx ∂

∂x+µy ∂
∂y or X = λx ∂

∂x+(x+λy) ∂
∂y in some affine chart (x, y) ∈ C2

and F is linear as well.

3. Now we consider the non-singular case. If M is compact and X is non-
singular then the second Chern class of M is zero: c2(M) = 0, and we may
use the Enriques–Kodaira classification [1] in order to describe M . Actually,
in [18] it is proved that such a surface must be one of the following: (1) a
flat holomorphic fibre bundle over an elliptic curve with connected fibres;
(2) a complex torus; (3) an elliptic surface without singular fibres or with
singular fibres of type mI0 only; (4) a non-elliptic Hopf surface; (5) an Inoue

surface of type S
(+)
N,p,q,r,t.

4. Finally, concerning the existence of compact leaves in the non-singular
case we find that if L0 is a toral leaf then we have two possibilities: (i) L0 is
an isolated toral leaf; (ii) L0 is not an isolated toral leaf; in this case the holo-
nomy group Hol(L0) ↪→ Diff(C, 0) is abelian with some finite pseudo-orbits
so that it cannot contain non-trivial flat elements (cf. [7]) and therefore it is
a finite group of rational rotations. Since Hol(L0) is finite the global stability
theorem in [2] implies that every leaf of F is compact with finite holonomy,
therefore F is a Seifert fibration by complex tori.

2.2. Proof of Proposition 1. We shall keep the notation of the preceding
subsection. The case where ϕt is completely transverse to F in CP (2) \ Γ
follows from [22]. Indeed, as we have seen above the foliation in U = CP (2)\
Γ is given by a closed holomorphic one-form Ω. Since the singularities of
F in Γ are hyperbolic, Ω extends meromorphically with simple poles along
Γ to a neighborhood of each singular point p ∈ sing(F) ∈ Γ [21]. Thus
we conclude by the Hartogs Theorem that Ω extends to a meromorphic

one-form Ω̃ in CP (2). This one-form has simple poles in CP (2) and by the
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Integration Lemma is logarithmic; by [3] the foliation must be linear in some
affine chart due to the fact that its singularities are hyperbolic.

Assume now that the flow is everywhere tangent to F in U . This means
that the leaves of F|U are the nonsingular orbits of the vector field X(p) =
(∂ϕt(p)/∂t)|t=0. In particular F|U and therefore F is parabolic; since F has
only hyperbolic singularities in CP (2), it follows from [4] that it is linear in
some affine chart in C2.

Finally, assume that ϕt is not completely transverse to F in CP (2) \ Γ
but F is not the foliation induced by the vector field X as above. If L is
a leaf of F in U which is also invariant under X then L is covered by C.
If L is non-algebraic then F has a transcendental leaf covered by C and
according to [5] and [9] it follows that F admits a non-trivial holonomy
invariant measure; moreover, [9], F is a linear hyperbolic foliation due to
its hyperbolic singularities. If the closure L ⊂ CP (2) is an algebraic curve,

say Γ ′, then U ′ = CP (2) \ (Γ ∪ Γ ′) is also affine. Due to the hyperbolic
singularities F admits no rational first integral and therefore by a theorem
of Darboux [13], F has only finitely many algebraic invariant curves. This
reduces the proof to the two cases above. In other words, we may assume
that either F is completely transverse to X or it coincides with the foliation
of X in CP (2) \ Γ . In either case the foliation is linear in some affine chart
in C2.

3. Entire automorphisms—Proof of Lemma 1 and Theorem 1.
Let F be an algebraic foliation on C2. Then F admits an extension of al-
gebraic type to a foliation (also denoted by) F on CP (2) = C2 ∪ P1

∞. Let
ϕ : C2 → C2 be an entire (algebraic or transcendental) automorphism of C2

that preserves F . Under which conditions on F is ϕ algebraic?

3.1. Case of P1
∞ is not F-invariant—Proof of Extension Lemma 1. As-

sume that P1
∞ is not F-invariant; the set of points p ∈ P1

∞ such that F is
not transverse to P1

∞ in a neighborhood of p is a finite subset of P1
∞, say

T (F ,P1
∞) = {p1, . . . , pr}. Let p ∈ P1

∞ \ T (F ,P1
∞) be given and choose a

flow-box neighborhood U of p in CP (2) such that in local coordinates (x, y)
in U we have x(p) = y(p) = 0, P1

∞ ∩ U = {x = 0} and F|U : dy = 0.
Also we may assume that {y = 0} ⊂ Lp. Denote by Lp the leaf of F that

contains p and by L∗p = Lp \ P1
∞ the corresponding leaf of F|C2 . Since

ϕ : C2 → C2 is an automorphism that preserves F we have L∗p = ϕ(L∗),
where L∗ = L \ P1

∞ ⊂ C2 for some leaf L of F on CP (2). Now, using the
flow-box in U we may choose a disk Σ ⊂ U ∩ C2 transverse to F with the
properties that each plaque of F|U cuts Σ at most once and the same holds
for the disk P1

∞ ∩ U =: Σ∞.
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Let p′ ∈ Σ∩Lp, p′ ∈ {y = 0}; choose a simple path α : [0, 1]→ Lp∩U such
that α(t) ∈ {y = 0} for all t ∈ [0, 1], α(0) = p′ and α(1) = p, and denote by
hα : (Σ, p′)→ (Σ∞, p) the holonomy map corresponding to α. Let Σ1 be the
inverse image Σ1 = ϕ−1(Σ) ⊂ C2. Then Σ1 is also a transverse disk to F in
C2 and Σ1∩L 3 p′1 = ϕ−1(p′). Now we choose any simple path β : [0, 1]→ L
with the following properties: β(0) = p1 and β(1) = q′ ∈ C2 is a point which
belongs to a flow-box V ⊂ CP (2) centered at a point q ∈ P1

∞ ∩ L.

Fig. 1

In particular we may assume that q′ and q belong to the same plaque P of
F|V , which is a disk P ≈ D. We fix a transverse disk Σ2 ⊂ V to F with
Σ2 ∩ P = q′ and choose any simple path α1: [0, 1] → P with α1(0) = q′,
α1(1) = q.

Denote by hβ : (Σ1, p
′
1) → (Σ2, q

′) and hα1: (Σ2, q
′) → (Σ′∞, q) the

holonomy diffeomorphisms corresponding to β and α1 respectively, where
Σ′∞ = P1

∞ ∩ V is transverse to F .

Fig. 2
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Given a point a ∈ Σ∞ close enough to p, we define ϕ−1
β (a) := hα1 ◦ hβ

◦ h−1
α (a).

Lemma 2. If the holonomy of L is trivial then ϕ−1
β does not depend on

the choice of β.

Proof. This is clear.

Proof of Lemma 1. We keep the above notation. Since F|U and F|V
are trivial it follows that for a leaf L with trivial holonomy as above ϕ−1

β

is an extension of ϕ−1 to Σ∞ = U ∩ P1
∞ and by the Hartogs Extension

Theorem ϕ−1 extends to a meromorphic map ϕ−1 : CP (2) 99K CP (2). Since
the same holds for ϕ and such extensions must clearly satisfy ϕ ◦ ϕ−1 =
IdCP (2) we conclude that ϕ extends to a bimeromorphism ϕ of CP (2); the

bimeromorphism ϕ still preserves F on CP (2). Using now the fact that for
F arbitrary (with P1

∞ not invariant) the set of leaves with trivial holonomy
is residual we obtain Lemma 1.

3.2. Proof of Theorem 1. Let F be an algebraic foliation on CP (2) such
that sing(F) ∩ P1

∞ is hyperbolic and Aut(F|C2) contains a transcendental
element ϕ : C2 → C2. According to Lemma 1 the line at infinity is invariant.
Denote by L∞ = P1

∞ \ (P1
∞ ∩ sing(F)) the corresponding leaf of F . If the

holonomy group of L∞ is solvable then, according to [21] and [8], due to the
fact that the singularities in sing(F) ∩ P1

∞ are hyperbolic, the foliation is
either a Riccati foliation or a logarithmic foliation. Thus we may assume that
Hol(F , L∞) is a non-solvable group. Since by the Index Theorem sing(F)∩
P∞ 6= ∅, the group Hol(F , L∞) contains hyperbolic elements. Using now [19],
[15], [9], [12], [23] we shall prove that F is chaotic:

Lemma 3. In the situation above, F has no algebraic leaf C ⊂ C2.

Proof. Assume that F has some algebraic invariant curve C ⊂ C2; de-
note by L = C \ sing(F) the corresponding leaf of F|C2 (we may work
with C irreducible). The leaf L is then a parabolic leaf of F|C2 ; denote by
L′ = ϕ(L) ⊂ C2 its image under ϕ. If L′ is not algebraic (i.e., the closure
L′ ⊂ C2 is not an algebraic curve) then the intersection L′ ∩D accumulates
to the origin o = D∩L∞ of any disk D transverse to F and to L∞. Since C
is closed in C2 the same holds for L′ and therefore it induces a pseudo-orbit
in the holonomy group Hol(F , l∞,D), which is closed off the origin o ∈ D.
According to the density theorem in [19], Hol(F , L∞,D) must be solvable,
a contradiction. Thus necessarily L′ is algebraic. If F has infinitely many
algebraic leaves then by a theorem of Darboux [13], F is given by a rational

map R : CP (2) 99K C; this is not compatible with the hyperbolic singulari-
ties. We may therefore assume that ϕ(C) = C. Now we recall the following
notions from [14]:
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Let C ⊂ C2 be an irreducible algebraic affine curve. We say that C is
general if any analytic automorphism of C2 which transforms C into an
algebraic curve is algebraic.

Theorem 3 (Kizuka [14]). Let C ⊂ C2 be an affine algebraic curve.
Then C is general provided that the closure C of C on CP (2) intersects
the line at infinity P1

∞ at more than two points. If C is not general then
we have the following possibilities for C after an algebraic affine change of
coordinates:

(K.1) C : α(x) + yβ(x) = 0 (special case);
(K.2) C is a sum of several prime surfaces of a monomial f = xmyn where

m,n ∈ N;
(K.3) C is a sum of several prime surfaces of a polynomial f = xm(xly +

Pl−1(x))n, where Pl−1 is a one-variable polynomial of degree at most
l − 1 with Pl−1(0) 6= 0, and m,n ∈ N.

In each case above straightforward calculations show that F has either
some separatrix at infinity which is not smooth at the singularity or some
separatrix which is not transverse to the line at infinity. This contradicts the
invariance of P1

∞ and the hyperbolicity of the singularities in P1
∞. Lemma 3

is now proved.

Now we may finish the proof of Theorem 1:

(i) F|C2 has no parabolic leaf: otherwise according to [16], [4], [21], F|C2

would have some algebraic leaf, contradicting Lemma 3.
(ii) By (i) the leaves of F|C2 are hyperbolic (in the sense of potential

theory) and covered by the disk D. Moreover, the leaves of F|C2 have expo-
nential growth (otherwise, according to [9], F would admit some holonomy
invariant measure for the holonomy group of L∞ = P1

∞ and this measure
would imply that the holonomy group Hol(F , L∞) is solvable, giving a con-
tradiction).

(iii) Since the holonomy group of P1
∞ is non-solvable and contains hyper-

bolic elements, the foliations F|C2 and F on CP (2) are topologically rigid
and, as follows from the techniques in [15], we may also conclude that F|C2

and F on CP (2) are ergodic.
(iv) The density of the leaves in C2 is proved as in [15] as a consequence

of the density results in [19] and [23] for non-solvable groups of germs of one-
dimensional complex diffeomorphisms at the origin. Theorem 1 is therefore
proved.

4. Case of an algebraic invariant curve in C2—Theorem 2. Let
F be an algebraic foliation on CP (2) such that Aut(F|C2) contains a tran-
scendental element ϕ : C2 → C2 and having an invariant algebraic curve
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C ⊂ C2. As in the proof of Theorem 1 denote by L = C \ sing(F) the
corresponding leaf of F|C2 and by L′ = ϕ(L) ⊂ C2 its image under ϕ.

4.1. If L′ is not algebraic (i.e., the closure L′ ⊂ C2 is not an alge-
braic curve) then by the Darboux Theorem [13], F has only a finite num-
ber of algebraic leaves; we may therefore assume that L′ is a transcen-
dental leaf of finite type and properly embedded so that, by the Corol-
lary in [3], necessarily L′ (and therefore L) is isomorphic to C and also
F|C2 is holomorphically equivalent to the foliation dy = 0 on C2. In this
case, up to some entire automorphism, we have ϕ(x, y) = (a(x, y), b(y))
and therefore ϕ(x, y) = (a0(y)x + a1(y), b0 + b1y) for some b0, b1 ∈ C,
b1 6= 0, a0(y), a1(y) ∈ O(C), with a0(y) 6= 0 for all y ∈ C. Again we
may find holomorphic coordinates on C2 such that F|C2 : dy = 0 and

ϕ(x, y) = (eu(y)x+ v(y), y) for some holomorphic u, v ∈ O(C).

Example 1. Let us see an example of the above situation: X(x, y) =
(1+xy) ∂

∂x−y2 ∂
∂y generates a foliation F on C2 with the entire first integral

f(x, y) = yexy. The algebraic curve C : {y = 0} is F-invariant and we have

an entire non-algebraic automorphism ϕ(x, y) = (xeP (x,y), yexy) for some
polynomial P (x, y) (see [24]) and clearly ϕ preserves F . The vector field X
is not complete.

4.2. Suppose now C is F-invariant, algebraic and fixed by ϕ. Accord-
ing to Kizuka’s Theorem above [14], ϕ is algebraic or, up to polynomial
automorphism, C belongs to the following list:

(K.1) α(x) + yβ(x) = 0, where α and β are one-variable polynomials;

(K.2) a union of irreducible components of fibers of xnym, where n,m ∈ N
satisfy 〈n,m〉 = 1;

(K.3) a union of irreducible components of fibers of a polynomial Q of type
Q(x, y) = xn(xly + P (x))m, with n,m, l ∈ N, 〈n,m〉 = 1, P is a
one-variable polynomial of degree at most l − 1, P (0) 6= 0.

In any of the cases (K.1), (K.2) and (K.3) above the irreducible compo-
nents of the projective curve C ⊂ CP (2) are rational and we have ]C ∩ P1

∞
≤ 2; in particular, each irreducible component of C is diffeomorphic either
to C or to C∗ = C\{0}. Examples of this situation are given by vector fields
of the form

X = x(µ+mC1)
∂

∂x

−
{

(xly + P (x))(λ+ nC1)

xl
+

(lxly + xP ′(x))(µ+mC1)

x

}
∂

∂y

with C1 = xn(xly+P (x))m ·τ ′(xn(xly+P (x))m). These are complete vector
fields (see [11]) whose flow maps ϕt : C2 → C2 are not algebraic and preserve
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both the foliation FX |C2 and the algebraic invariant curve C : {xn(xly +
P (x))m = 0}.

4.3. Assume that F|C2 has some irreducible algebraic invariant curve C
whose image ϕ(C) is algebraic but is not C. Denote by Calg(F) the union
of all irreducible algebraic curves C1 ⊂ C2 which are invariant under F . We
may assume that for any irreducible curve C1 ∈ Calg(F) we have ϕ(C1) ∈
Calg(F) but ϕ(C1) 6= C1. Then in particular we have ϕn(C) 6= ϕm(C) for all
n 6= m and thus ]Calg(F) = +∞. By the Darboux Theorem [13], F admits

a rational first integral R : C2 99K C and therefore F is a pencil of curves
F : {λP + µQ = 0}, (λ;µ) ∈ P1, for some P,Q ∈ C[x, y].

It remains therefore to consider the following case:

4.4. F|C2 has no algebraic leaf, and P1
∞ is F-invariant. This case con-

tradicts the hypothesis of existence of the invariant curve C. Theorem 2 is
therefore proved.

Example 2. The linear foliation Fλ given on C2 ⊂ CP (2) by Fλ :
xdy − λydx = 0, λ ∈ C \ {0}, admits the following subgroup of automor-
phisms: {ϕ : C2 → C2; ϕ(x, y) = (xew, cyeλw), where w ∈ C, c ∈ C2}. Con-
versely, for λ /∈ Q, up to conjugacy with σ(x, y) = (y, x), these are the only
automorphisms of Fλ in C2: given ϕ : C2 → C2 preserving Fλ and the coordi-
nate axis we may write ϕ(x, y) = (x.u, y.v) for entire non-vanishing functions
u, v on C2. Then a straightforward calculation shows that ϕ∗(Fλ) = Fλ iff
vu−λ ∈ O(C2) is an entire first integral for Fλ iff vu−λ ≡ const. If we write
u = ew then we obtain ϕ(x, y) = (x.ew, c.yeλw) for w ∈ O(C2). Such a map
is a foliation automorphism iff w ∈ C is constant.

Examples of transcendental foliation automorphisms are given by com-
plete polynomial vector fields having non-polynomial flows (cf. [11]).
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