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Can we assign the Borel hulls in a monotone way?

by

Márton Elekes and András Máthé (Budapest)

Abstract. A hull of A ⊆ [0, 1] is a set H containing A such that λ∗(H) = λ∗(A). We
investigate all four versions of the following problem. Does there exist a monotone (with
respect to inclusion) map that assigns a Borel/Gδ hull to every negligible/measurable
subset of [0, 1]?

Three versions turn out to be independent of ZFC, while in the fourth case we only
prove that the nonexistence of a monotone Gδ hull operation for all measurable sets is con-
sistent. It remains open whether existence here is also consistent. We also answer the ques-
tion of Z. Gyenes and D. Pálvölgyi whether monotone hulls can be defined for every chain
of measurable sets. Moreover, we comment on the problem of hulls of all subsets of [0, 1].

1. Introduction. Let us fix some notation before formulating the prob-
lems of this note.

Notation 1.1. Let us denote by N ,L,B and Gδ the classes of Lebesgue
negligible, Lebesgue measurable, Borel and Gδ subsets of [0, 1], respectively.
Let λ stand for Lebesgue measure, and λ∗ for Lebesgue outer measure.

Definition 1.2. A set H ⊆ [0, 1] is a hull of A ⊆ [0, 1] if A is a subset
of H and λ∗(H) = λ∗(A).

Clearly, every set has a Borel, even a Gδ hull. It is then very natural to
ask whether “a bigger set has a bigger hull”. (For the two actual motivations
of this paper see below.)

Definition 1.3. Let D and H be two subclasses of P([0, 1]) (usually D
is N or L, and H is B or Gδ). If there exists a map ϕ : D → H such that

• ϕ(D) is a hull of D for every D ∈ D,
• D ⊆ D′ implies ϕ(D) ⊆ ϕ(D′),

then we say that a monotone H hull operation on D exists.
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The four questions we address in this paper are the following.

Question 1.4. Let D be either N or L, and let H be either B or Gδ.
Does there exist a monotone H hull operation on D?

Remark 1.5.

• The problem was originally motivated by the following question of
Z. Gyenes and D. Pálvölgyi [4]. Suppose that C ⊆ L is a chain of sets,
i.e. for all C,C ′ ∈ C either C ⊆ C ′ or C ′ ⊆ C. Does there exist a
monotone B/Gδ hull operation on C?

• Another motivation for our set of problems is that it seems to be very
closely related to the theory of so called liftings. A map l : L → L is
called a lifting if it preserves ∅, finite unions and complement, is con-
stant on the equivalence classes modulo nullsets, and maps each equiv-
alence class to one of its members. Note that liftings are clearly mono-
tone. For a survey of this theory see the chapter by Strauss, Macheras
and Musiał in [6], or the chapter by Fremlin in [5], or Fremlin [3]. Note
that the existence of Borel liftings is known to be independent of ZFC ,
but the existence of a lifting with range in a fixed Borel class is not
known to be consistent.

We also remark that liftings are usually considered as l∗ : L/N → L
or l∗ : P([0, 1])/N → L maps.
• In light of the theory of liftings it is natural to ask if a monotone

Borel/Gδ hull operation on all of P([0, 1]) can be defined. We will
see in Section 3 that this is actually equivalent to the existence of a
monotone Borel/Gδ hull operation on L.

Remark 1.6. We can extend the notion of hull to any uncountable Polish
space endowed with a nonzero continuous σ-finite Borel measure µ. Let µ∗
denote the corresponding outer measure. If µ is finite, then we can define H
to be a hull of A if

H ⊇ A and µ∗(H) = µ∗(A).

However, if µ is infinite, then we say that a set H is a hull of A if

H ⊇ A and µ∗(H ∩ I) = µ∗(A ∩ I)

for every µ-measurable set I. This latter property is in fact equivalent to
µ(M) = 0 for every µ-measurable set M ⊆ H \A.

We remark here that the results (and proofs) of this paper remain valid
if we replace [0, 1] by R, or by Rn, or more generally, by any uncountable
Polish space endowed with a nonzero continuous σ-finite Borel measure.
Statement 3.2 is still true in this more general setting, as one can combine
Lemma 3.1 with the fact the every such Polish space is Borel isomorphic
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(with a measure preserving isomorphism) either to the real line, or to a
subinterval [a, b] of the real line [7].

The paper is organized as follows. First, in the next section we settle
the independence of the existence of a monotone Borel/Gδ hull on N . The
consistency of the nonexistence immediately yields the consistency of the
nonexistence of a monotone Borel/Gδ hull on L. Then, in Section 3, we
prove that under CH there is a monotone Borel hull on L, and prove partial
results concerning Gδ hulls. We conclude the paper by collecting the open
questions in Section 4.

2. Monotone hulls for nullsets. Recall that non(N ) = min{|H| :
H ⊆ [0, 1], H /∈ N}, where | · | denotes cardinality. In the following, each
cardinal κ is identified with its initial ordinal, i.e. with the smallest ordinal
of cardinality κ, and also every ordinal is identified with the set of smaller
ordinals. For the standard set theory notation and techniques we use here
see e.g. [9] and [1].

Theorem 2.1. In a model obtained by adding ω2 Cohen reals to a model
satisfying CH there is no monotone Borel hull operation on N .

Proof. We need two well-known facts. Firstly, non(N ) = ω2 in this
model [1]. Secondly, in this model there is no strictly increasing sequence
of Borel sets of length ω2 (this is proved in [8], see also [2]).

Assume that ϕ : N → B is a monotone hull operation. Choose H = {xα :
α < non(N )} /∈ N , and consider ϕ({xβ : β < α}) for α < non(N ). This
is an increasing ω2-long sequence of Borel sets, which cannot stabilize, since
then H would be contained in a nullset. But then we can select a strictly
increasing subsequence of length ω2, a contradiction.

The following is immediate.

Corollary 2.2. Under the same assumption there exists no monotone
Gδ hull operation on N .

Remark 2.3. We will see in Remark 3.14 that the length ω2 is optimal
in the sense that all shorter well-ordered chains have monotone Gδ hulls.

Recall that add(N ) = min{|F| : F ⊆ N ,
⋃
F /∈ N} and cof(N ) =

min{|F| : F ⊆ N , ∀N ∈ N ∃F ∈ F such that N ⊆ F}, and also that
add(N ) = cof(N ) is consistent [1] (note that e.g. CH implies this equality).

Theorem 2.4. Assume add(N ) = cof(N ). Then there exists a monotone
Gδ hull operation on N .

Proof. Let {Nα : α < cof(N )} be a cofinal family in N , that is, ∀N ∈ N
∃α < cof(N ) such that N ⊆ Nα. For every α < cof(N ) define, using transfi-
nite recursion, Aα = a Gδ hull of

⋃
β<αAβ∪Nα. Clearly, {Aα : α < cof(N )}
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is a cofinal increasing sequence of Gδ sets. Now, for every N ∈ N define
ϕ(N) = AαN , where αN is the minimal index for which H ⊆ AαN . It is easy
to see that ϕ : N → Gδ is a monotone hull operation.

The following is again immediate.

Corollary 2.5. Under the same assumption there exists a monotone
Borel hull operation on N .

3. Monotone hulls for all sets. First we note (Statement 3.2 below)
that the title of this section is justified, as there is no difference between
working with measurable sets or arbitrary sets.

We need a well-known lemma first. Recall that the density topology of
R consists of those measurable sets that have Lebesgue density 1 at each of
their points (see e.g. [10]). Closure in this topology is denoted by Hd, and
the term “hull” is used in the sense of Remark 1.6.

Lemma 3.1. Hd is a hull of H for every H ⊆ R.

Proof. Assume to the contrary that there exists a Lebesgue measurable
set L ⊆ R with λ(L) > 0 such that L ⊆ H

d \ H. Set L0 = {x ∈ L : x
is a density point of L}. By the Lebesgue Density Theorem, L \ L0 is a
nullset, which easily implies that L0 6= ∅ is open in the density topology. But
L0 ⊆ H

d is disjoint from H, a contradiction.

Statement 3.2. The existence of a monotone Borel/Gδ hull operation
on P([0, 1]) is equivalent to the existence of a monotone Borel/Gδ hull oper-
ation on L.

Proof. On the one hand, the restriction to L of a monotone hull operation
on P([0, 1]) is itself a monotone hull operation.

On the other hand, by the previous lemma there exists a monotone hull
operation ψ : P([0, 1])→ L (note that [0, 1] is closed in the density topology).
Hence if ϕ is a monotone hull operation on L then ϕ ◦ ψ is a monotone hull
operation on P([0, 1]).

Theorem 2.1 immediately implies the following.

Corollary 3.3. In a model obtained by adding ω2 Cohen reals to a
model satisfying CH there is no monotone Borel or Gδ hull operation on L.

Now we turn to the positive results.

Theorem 3.4. Assume CH. Then there is a monotone Borel hull oper-
ation on L.

Before we prove this theorem we need a few lemmas. In case H = B the
first one is a special case of a well-known result about Borel liftings, but
there are no such results in the case of Gδ.
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Let us denote by A4B the symmetric difference of A and B.

Lemma 3.5. (CH ) There exists a monotone map ψ : L → Gδ such that
λ(M 4 ψ(M)) = 0 for every M ∈ L, and λ(M 4M ′) = 0 implies ψ(M) =
ψ(M ′) for all M,M ′ ∈ L.

Proof. Let us say that M,M ′ ∈ L are equivalent if λ(M 4 M ′) = 0.
Denote by [M ] the equivalence class of M and by L/N the set of classes.
We say that [M1] ≤ [M2] if there are M ′1 ∈ [M1] and M ′2 ∈ [M2] such that
M ′1 ⊆M ′2.

It is sufficient to define Ψ : L/N → Gδ so that [M ] ≤ [M ′] implies
Ψ([M ]) ⊆ Ψ([M ′]) for all M,M ′ ∈ L, and Ψ([M ]) ∈ [M ] for every M ∈ L.

Enumerate L/N as {[Mα] : α < ω1}. For every α < ω1 define

Ψ([Mα]) =
⋂
β<α

[Mβ ]≥[Mα]

Ψ([Mβ]) ∩
(
a Gδ hull of

⋃
γ<α

[Mγ ]≤[Mα]

Ψ([Mγ ]) ∪Mα

)
.

It is not hard to check that this is a Gδ set such that [Mγ ] ≤ [Mα] ≤ [Mβ]
implies Ψ([Mγ ]) ⊆ Ψ([Mα]) ⊆ Ψ([Mβ]), and that Ψ([Mα]) ∈ [Mα], hence the
construction works.

Remark 3.6.

• Actually we will not use the fact that ψ is constant on the equivalence
classes.
• We do not know whether CH is needed in this lemma, nor if CH could

be replaced by Martin’s Axiom.

The following lemma is the only result we can prove for B but not for Gδ.
Lemma 3.7. (CH ) There exists a monotone hull operation ϕ : N → B

such that

(i) ϕ(N ∪N ′) ⊆ ϕ(N) ∪ ϕ(N ′) for all N,N ′ ∈ N (subadditivity),
(ii)

⋃
{ϕ(N) : N ⊆ B, N ∈ N} \B ∈ N for every B ∈ B.

Proof. Let {Aα : α < ω1} and αN be as in the proof of Theorem 2.4
(note that add(N ) = cof(N ) = ω1 under CH ). Set A∗α = Aα \

⋃
β<αAβ .

Enumerate B as {Bα : α < ω1} and for every α < ω1 define the countable
set

Bα =
{ n⋃
i=0

Bβi : n ∈ N, βi < α (0 ≤ i ≤ n)
}
.

Note that every Bα is closed under finite unions.
Now define

ϕ(N) =
⋃

α≤αN

(
A∗α ∩

⋂
B∈Bα

N∩A∗α⊆B

B
)
.
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This is clearly a disjoint union. It is easy to see that ϕ is a monotone Borel
hull operation (note that ϕ(N) ⊆ AαN ).

For every α < ω1 define ϕα(N) = A∗α ∩ ϕ(N) (N ∈ N ). In order to
check subadditivity, let N,N ′ ∈ N . We may assume αN ≤ αN ′ , so clearly
αN∪N ′ = αN ′ . It suffices to check that each ϕα is subadditive. If α > αN
then actually ϕα(N ∪N ′) = ϕα(N ′), so we are done. Suppose now α ≤ αN .
Let x ∈ A∗α be such that x /∈ ϕ(N) ∪ ϕ(N ′). Then there exist B ⊇ N ∩ A∗α
and B′ ⊇ N ′∩A∗α in Bα such that x /∈ B,B′. But then B∪B′ ∈ Bα witnesses
that x /∈ ϕ(N ∪N ′), since x /∈ B ∪B′ ⊇ (N ∪N ′) ∩A∗α.

Finally, to prove (ii) it is sufficient to show that N ⊆ Bα implies that
ϕ(N) \ Bα ⊆ Aα for every N ∈ N and α < ω1. So let x ∈ ϕβ(N) for some
β > α. We have to show x ∈ Bα. But this simply follows from the definition
of ϕ, since Bα ∈ Bβ .

Lemma 3.8. Let H be either B or Gδ. Assume that there exists a mono-
tone map ψ : L → H such that λ(M 4 ψ(M)) = 0 for every M ∈ L, and
also that there exists a monotone hull operation ϕ : N → H such that

• ϕ(N ∪N ′) ⊆ ϕ(N) ∪ ϕ(N ′) for all N,N ′ ∈ N ,
•
⋃
{ϕ(N) : N ⊆ H, N ∈ N} \H ∈ N for every H ∈ H.

Then ϕ can be extended to a monotone hull operation ϕ∗ : L → H.
Proof. We may assume that ψ(N) = ∅ for every N ∈ N (by redefining

ψ on N to be constantly ∅, if necessary).
Define

ϕ∗(M) = ψ(M) ∪ ϕ(M \ ψ(M)) ∪ ϕ
( ⋃
N⊆ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)
.

Clearly ϕ∗(M) ∈ H. As the union of the first two summands contains M ,
we obtain M ⊆ ϕ∗(M). Moreover, ϕ∗(M) is a hull of M , since the first
summand is equivalent to M and the last two summands are nullsets. It is
also easy to see that ϕ∗ extends ϕ.

We still have to check monotonicity of ϕ∗. First we prove

(1) N ′ ∈ N , M ′ ∈ L, N ′ ⊆ ψ(M ′) ⇒ ϕ(N ′) ⊆ ϕ∗(M ′).
Indeed, the case N ′ = ∅ is trivial to check, and otherwise

ϕ(N ′) ⊆
⋃

N⊆ψ(M ′)
∅6=N∈N

ϕ(N) ⊆
( ⋃
N⊆ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
∪ ψ(M ′)

⊆ ϕ
( ⋃
N⊆ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
∪ ψ(M ′) ⊆ ϕ∗(M ′),

which proves (1).
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Let now M ⊆ M ′ be arbitrary elements of L. We need to show that all
three summands of ϕ∗(M) are contained in ϕ∗(M ′).

Firstly, ψ(M) ⊆ ψ(M ′).
Secondly, define N ′ = (M \ ψ(M)) ∩ ψ(M ′). Using the subadditivity of

ϕ and then (1) we obtain

ϕ(M \ ψ(M)) ⊆ ϕ
(
(M \ ψ(M)) ∩ ψ(M ′)

)
∪ ϕ
(
(M \ ψ(M)) \ ψ(M ′)

)
⊆ ϕ(N ′) ∪ ϕ(M ′ \ ψ(M ′)) ⊆ ϕ∗(M ′).

Thirdly, let

N ′ =
( ⋃
N⊆ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)
∩ ψ(M ′).

Using the subadditivity of ϕ and then (1) we obtain

ϕ
( ⋃
N⊆ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

⊆ ϕ
(( ⋃

N⊆ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)
∩ψ(M ′)

)
∪ϕ
(( ⋃

N⊆ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)
\ψ(M ′)

)

⊆ ϕ(N ′) ∪ ϕ
( ⋃
N⊆ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
⊆ ϕ∗(M ′).

This concludes the proof.

Proof of Theorem 3.4. Lemmas 3.5 and 3.7 show that in the case of
H = B the requirements of Lemma 3.8 can be satisfied, so the proof of
Theorem 3.4 is complete.

Remark 3.9.

• We remark that subadditive monotone maps are actually additive.
• The proof actually gives a monotone Fσδσ hull. However, we do not

know whether a monotoneGδ hull operation on L exists (Question 4.6).
Of course, in light of the previous theorem, under CH , this is equivalent
to assigning Gδ hulls only to the Borel (or Fσδσ) sets in a monotone
way.

Question 3.10. Is there a monotone Gδ hull operation on B? Or
on Fσδσ? Or on any other fixed Borel class, e.g. Fσ? (Of course Gδ and
the simpler ones are not interesting.)

Our next goal is to prove Theorem 3.11 below, the partial result we have
concerning monotone Gδ hull operations on L. It shows that it is not possible
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to prove in ZFC the nonexistence of Gδ hulls on L along the lines of Theorem
2.1, that is, only by considering long chains of sets.

Theorem 3.11. Assume that there exists a monotone Gδ hull operation
ψ on N (which follows e.g. from add(N ) = cof(N )). Let C ⊆ P([0, 1]) be a
chain of sets, that is, for all C,C ′ ∈ C either C ⊆ C ′ or C ′ ⊆ C. Then there
exists a monotone Gδ hull operation on C.

Proof. By Lemma 3.1 we may assume that C ⊆ L.
Partition C into the intervals Ir = {C ∈ C : λ(C) = r}. Let R = {r ∈

[0, 1] : Ir 6= ∅}, and fix an element Cr ∈ Ir for every r ∈ R. Well-order R as
{rα : α < |R|}, and set Rα = {rβ : β < α}.

Now we define ϕ(Crα) by transfinite recursion as follows. Fix two count-
able sets R−α ⊆ {r ∈ Rα : r < rα} and R+

α ⊆ {r ∈ Rα : r > rα} so that
∀r ∈ Rα, r < rα ∃r′ ∈ R−α such that r ≤ r′ < rα, and similarly, ∀r ∈ Rα,
r > rα ∃r′ ∈ R+

α such that rα < r′ ≤ r. (Note that R−α and R+
α may be

singletons or even empty.) Set

ϕ(Crα) =
[
a Gδ hull of

(
Crα ∪

⋃
r∈R−α

ϕ(Cr)
)]
∩
⋂
r∈R+

α

ϕ(Cr).

It is easy to see that this is a monotone Gδ hull operation on {Cr : r ∈ R}.
We may assume that for the hull operation ψ we have ψ(∅) = ∅. Then we

can define a monotone Gδ hull operation ϕt on It for each t ∈ R as follows.
Let

ϕt(C) = ϕ(Ct) ∪ ψ(C \ Ct) (C ∈ It).
For each t ∈ R fix a countable set R++

t ⊆ {r ∈ R : r > t} so that ∀ r ∈ R,
r > t ∃r′ ∈ R++

t such that t < r′ ≤ r. Set

ϕ(C) = ϕt(C) ∩
⋂

r∈R++
t

ϕ(Cr)

for every C ∈ It and every t ∈ R. This is a proper definition since for C = Ct
this is just an equality. It is easy to check that ϕ(C) is a Gδ hull of C and
that ϕ is monotone.

Finally, we prove in ZFC that rather long well-ordered chains have mono-
tone Gδ hulls.

Lemma 3.12. Let ξ ≤ add(N ) and C = {Mα : α < ξ} ⊆ P([0, 1]) be such
that Mα ⊆ Mβ for all α ≤ β < ξ. Then there exists a monotone Gδ hull
operation on C.

Proof. By Lemma 3.1 we may assume that C ⊆ L.
By transfinite recursion define Aα to be a Gδ hull of the set Mα ∪⋃

β<α(Aβ \ Mα). Clearly every Aβ \ Mα is a nullset; moreover, there are
|α| < add(N ) many of them; hence Aα is a hull of Mα too.
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Recall that κ+ is the successor cardinal of κ and also that every ξ < κ+

has a cofinal (i.e. unbounded) subset of order type at most κ.

Theorem 3.13. Let η < add(N )+ and C = {Mα : α < η} ⊆ P([0, 1])
be such that Mα ⊆Mβ for all α ≤ β < η. Then there exists a monotone Gδ
hull operation on C.

Proof. By Lemma 3.1 we may assume that C ⊆ L.
We argue by induction on η. Fix a cofinal subset X ⊆ η of order type

ξ ≤ add(N ) and also a monotoneGδ hull operation ϕX : {Mα : α ∈ X} → Gδ
by the previous lemma. Every complementary interval [β, γ) of X (i.e. ev-
ery interval that is maximal disjoint from X) is of order type < η, hence
by the inductive assumption there exists a monotone Gδ hull operation
ϕ[β,γ) : {Mα : α ∈ [β, γ)} → Gδ. Also fix a measure zero Gδ hull H[β,γ)

of
⋃
δ<β, δ∈X(ϕX(Mδ)\Mβ). Now for every [β, γ) and every α ∈ [β, γ) define

ϕ(Mα) = (H[β,γ) ∪ ϕ[β,γ)(Mα)) ∩ ϕX(Mγ),

and also define ϕ(Mα) = ϕX(Mα) for every α ∈ X. It is then easy to see
that this is a monotone Gδ hull operation on C.

Remark 3.14. As add(N ) ≥ ω1, we see that the length ω2 of the chain
in the proof of Theorem 2.1 was optimal.

4. Concluding remarks and open problems. First we show (in ZFC)
that there are no strictly monotone hulls of any kind.

Statement 4.1. There is no (-preserving monotone Borel hull on N .

Proof. It is well known that in every infinite set of size κ there is a chain
(of subsets) of size greater than κ. Indeed, let λ = min{λ′ : 2λ

′
> κ}, and let

us consider X = {x ∈ 2λ : ∃α < λ∀β ∈ [α, λ)x(β) = 0} (2λ is considered as
the set of functions from λ to 2 = {0, 1}). Then |X| = κ, and it suffices to
produce a 2λ-sized chain of subsets of X. Let <lex denote the lexicographic
ordering on 2λ, and for y ∈ 2λ set Ay = {x ∈ X : x ≤lex y}. Then y <lex y

′

implies Ay ( Ay′ , so {Ay : y ∈ 2λ} is a chain of size 2λ > κ.
Hence the usual middle-third Cantor set (which is of measure zero) con-

tains a chain of size greater than continuum; but then the Borel hulls of the
elements of this chain form more than continuum many Borel sets, which is
impossible.

Now we pose a few somewhat vague problems, some of which may turn
out to be easy.
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Question 4.2. It would be interesting to know what happens

• if we look at the category analogue of Question 1.4, that is, when N
and L are replaced by the first Baire category (=meager) sets and the
sets with the property of Baire;
• if we require that our monotone hulls are translation or isometry in-
variant.

Question 4.3. Does Theorem 3.4 remain valid if we replace CH by Mar-
tin’s Axiom? That is, does there exist a monotone Borel hull operation on L
if we assume Martin’s Axiom?

We now repeat the open questions of the paper for the sake of complete-
ness.

Question 4.4. Is there (in ZFC ) a monotone map ψ : L → Gδ such
that λ(M 4 ψ(M)) = 0 for every M ∈ L? If yes, is there one such that
λ(M 4M ′) = 0 implies ψ(M) = ψ(M ′) for all M,M ′ ∈ L?

Question 4.5. Is there a monotone Gδ hull operation on B? Or on
Fσδσ? Or on any other fixed Borel class, e.g. Fσ? (Of course Gδ and the
simpler ones are not interesting.)

Let us conclude with the most important open question.

Question 4.6. Is it possible to assign Gδ hulls to all (measurable) sub-
sets of [0, 1] in a monotone way?
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