The Boolean space of higher level orderings

by

Katarzyna Osiak (Katowice)

Abstract. Let K be an ordered field. The set X(K) of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that X(K) is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem says that for any n and any Boolean space Y there exists a field, the space of orderings of fixed exact level n of which is homeomorphic to Y.

1. Notation and terminology. In the terminology introduced by Becker, Harman and Rosenberg [2] a signature of a formally real field K is a character χ of the multiplicative group K with values in the group μ of all complex roots of unity, with additively closed kernel. The level $s(\chi)$ of the signature χ , if finite, is defined as $\#\operatorname{Im}(\chi)/2$. The orderings of higher level are exactly the kernels of signatures with $s(\chi) < \infty$. If χ is a signature with $s(\chi) = n$, then $P = \ker(\chi)$ is called an ordering of exact level n, and an ordering of level m for any m such that $n \mid m$. We denote by s(P) the exact level of the ordering P. In general, several signatures have the same kernel. Note that $P = \ker(\chi_1) = \ker(\chi_2)$ if and only if there exists an automorphism κ of μ such that $\chi_1 = \kappa \circ \chi_2$.

For a field K let $\mathrm{eSgn}_n(K)$ be the set of all signatures of K of exact level n and let

$$\mathrm{Sgn}_n(K) = \bigcup \{ \mathrm{eSgn}_d(K) : d \, | \, n \}.$$

Similarly denote by $eX_n(K)$ and $X_n(K)$ the set of all orderings of exact level n and the set of all orderings of level n, respectively. With the standard topology the space $\operatorname{Sgn}_n(K)$ is Boolean (i.e. compact, Hausdorff and totally

²⁰⁰⁰ Mathematics Subject Classification: Primary 12D15; Secondary 13J30.

Key words and phrases: ordering of higher level, signature.

This paper represents a portion of the author's Ph.D. thesis written at Silesian University.

disconnected) [3, Prop. 1.4]. It is known that the set $X_1(K) = eX_1(K)$ of total orders of the field K can be topologized to make it a Boolean space by using as a subbasis the family of *Harrison sets*

$$H(a) := \{ P \in X_1(K) : a \in P \}, \quad a \in \dot{K}.$$

Since $H(a)^c := \{P \in X_1(K) : a \notin P\} = H(-a)$, the sets H(a) are clopen. In fact, $\operatorname{Sgn}_1(K)$ and $X_1(K)$ are homeomorphic in the natural way.

In a similar way one can define a topology on $X_n(K)$ by using as a subbasis the family of sets

$$H_n(a) = \{ P \in X_n(K) : a \in P \} \text{ and } H_n^c(a) = \{ P \in X_n(K) : a \notin P \}.$$

This topology makes the space $X_n(K)$ Boolean. Moreover, $X_n(K)$ is homeomorphic to a quotient space $\operatorname{Sgn}_n(K)/\varrho$, where ϱ is the relation

$$\chi_1 \varrho \chi_2 \iff \ker(\chi_1) = \ker(\chi_2).$$

The details can be found in our earlier paper [8, Prop. 1]. The space

$$eX_n(K) = X_n(K) \setminus \bigcup \{X_d(K) : d \mid n, d < n\}$$

is an open subset of the Boolean space $X_n(K)$. It need not be clopen and hence Boolean. In the last section we give an example of a field for which the subspace of orderings of exact level n is infinite and its topology is discrete, thus not compact.

However, the converse is true, which is our main theorem.

Theorem 1.1. Let n be any natural number. Every Boolean space Y is homeomorphic to the space $eX_n(M)$ of orderings of exact level n for some formally real field M.

In the case n=1 the construction of M was given by Craven in [5]. For any n and Y being the Cantor cube it was given in [8], where it was shown that if F is a real closed field of cardinality \mathfrak{m} , then the space $eX_n(K)$ for $K:=F(X)(\{\sqrt{(X-a)/X}:a\in \dot{F}\})$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$. It was also pointed out that for n odd one could take $K:=F(X)(\{\sqrt{X-a}:a\in \dot{F}\})$ [8, Th. 12], which for n=1 was remarked by Craven [5, Remark, p. 230].

The proof of Theorem 1.1 requires considering separately the cases of n even and odd. In the third section, for each even n, we find a field M with $eX_n(M)$ homeomorphic to a given Boolean space; for n odd, this is done in Section 4.

Just as Craven did, we start our construction with a field K for which the space $\operatorname{eSgn}_n(K)$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$ containing Y. We get the field M by extending K in such a way as to eliminate unwanted orderings. However, the problem we have to cope with and which does not appear in the case n=1 is controlling the levels of the orderings of K

which extend to M. It turns out that for n odd the field M may be taken the same as in Craven's paper [5] for n = 1. The case of n even requires a slightly different approach. When constructing M we have to make use of some results on the space M(K) of real places of K and apply the Separation Criterion.

We shall make use of the concept of strong approximation property (SAP). Recall that a formally real field K is said to satisfy SAP if the Harrison subbasis consists of all the clopen subsets of $X_1(K)$. This is in fact equivalent to the condition that the Harrison subbasis is a basis for $X_1(K)$ [7, Prop. 17.2].

2. Orderings and their extensions. Let K be a formally real field and let P be a higher level ordering of K. Then P determines the valuation ring

$$A(P) := \{ a \in K : \exists_{q \in \mathbb{O}^+} \ q \pm a \in P \}$$

with the maximal ideal

$$I(P) := \{ a \in K : \forall_{q \in \mathbb{O}^+} \ q \pm a \in P \}$$

and the residue field k(P) such that $\overline{P} := (P \cap \dot{A}(P)) + I(P)$ is an archimedean total order of k(P). Here $\dot{A}(P)$ denotes the set of units of the ring A(P).

DEFINITION 2.1. Let K be a formally real field and let P and Q be orderings of higher level of K. We say that P and Q are associated if A(P) = A(Q) and $\overline{P} = \overline{Q}$ on the residue field k(P).

For every ordering P there exists a total order P_0 such that P and P_0 are associated. In [2] the authors described the connection between the signature χ of the ordering $P = \ker(\chi)$ of exact level n and the signature χ_0 of the total order P_0 associated with P. We have

$$\chi = \chi_0 \cdot \tau \circ v_P,$$

where v_P is the valuation determined by A(P) and τ is a character of the value group of v_P such that

$$#Im(\tau) = \begin{cases} 2n & \text{if } n \text{ is even,} \\ n \text{ or } 2n & \text{if } n \text{ is odd.} \end{cases}$$

This fact allows us to determine all orderings of higher level of any formally real field, if we know the total orders. Moreover, the existence of such a representation for every ordering P implies that if P and Q are associated, then

$$P \cap \dot{A}(P) = Q \cap \dot{A}(Q).$$

EXAMPLE 2.2. Let F be a real closed field. Consider the function field F(X) with the total order

$$P_0 = \left\{ \frac{f}{g} \in F(X) : \frac{a_s}{b_t} \in \dot{F}^2 \right\},\,$$

where a_s , b_t are the leading coefficients of the polynomials f and g, respectively. Here is a complete list of orderings associated with P_0 (cf. [8, Sec. 3]).

For any even $n \in \mathbb{N}$ the set

$$P_n = \left\{ \frac{f}{g} : \left(\frac{a_s}{b_t} \in \dot{F}^2 \wedge t - s \equiv 0 \pmod{2n} \right) \right\}$$

$$\vee \left(\frac{a_s}{b_t} \in -\dot{F}^2 \wedge t - s \equiv n \pmod{2n} \right) \right\}$$

is the unique ordering of exact level n associated with P_0 .

For any odd $n \in \mathbb{N}$ the sets

$$\widehat{P}_n = \left\{ \frac{f}{g} : \frac{a_s}{b_t} \in \dot{F}^2 \wedge t - s \equiv 0 \pmod{n} \right\},$$

$$P_n = \left\{ \frac{f}{g} : (-1)^{t-s} \frac{a_s}{b_t} \in \dot{F}^2 \wedge t - s \equiv 0 \pmod{n} \right\}$$

are the unique orderings of exact level n associated with P_0 . Notice that $\widehat{P}_1 = P_0$, whereas for n > 1 we have $\widehat{P}_n \subset P_0$ and $P_n \subset P_1$.

Now we recall some facts on extensions of orderings (cf. [2], [8]).

Let L/K be a field extension and let P^L be an ordering of L. Then $P = P^L \cap K$ is an ordering of K and s(P) divides $s(P^L)$. The ordering P^L is called an *extension* of P. If $s(P^L) = s(P)$, then the extension is said to be faithful. If P^L is an extension of P, then $A(P^L) \cap K = A(P)$. Notice that if the orderings P^L and Q^L are associated, then so are $P^L \cap K$ and $Q^L \cap K$.

Given two formally real fields $K \subset L$, we obtain the natural mapping

$$\varrho_{L/K}: X_n(L) \to X_n(K)$$

which restricts the orderings of L to the subfield K.

PROPOSITION 2.3. The canonical restriction mapping $\varrho_{L/K}: X_n(L) \to X_n(K), \ \varrho_{L/K}(P^L) = P^L \cap K$, is continuous.

Proof. Let $[H_n(a)]_K$ be a clopen subbasis set of $X_n(K)$. Then

$$\varrho_{L/K}^{-1}([H_n(a)]_K) = [H_n(a)]_L,$$

a clopen subbasis set of $X_n(L)$.

Now we give a necessary condition for the existence of an extension of a given ordering P.

PROPOSITION 2.4. If an ordering P of K extends to L, then there exists a total order P_0 which is associated with P and has a faithful extension to L.

Proof. Take for P_0 the image under $\varrho_{L/K}$ of any total order associated with an extension P^L of P.

The converse need not be true. For example, let K be a field with an ordering P of level n > 1 and let P_0 be a total order associated with P. Consider a real closure F of (K, P_0) . Then \dot{F}^2 is an extension of P_0 and it is the unique ordering of F.

In the case of Galois extensions, we have a simple criterion for the existence of an ordering extension. It is a consequence of [2, Th. 4.4, p. 73] which we now recall in the notation of orderings.

Theorem 2.5. Let L/K be a Galois extension of fields and let P be an ordering of K. If P extends to L, then either all extensions are faithful or all have level 2s(P).

COROLLARY 2.6. Let L/K be a Galois extension and P be an ordering of K. Then P extends to L if and only if there exists a total order P_0 associated with P which extends faithfully to L.

Proof. Let P_0 be a total order of K which is associated with P and extends faithfully to L. Let χ be any signature of P and χ_0 a signature of P_0 . By [2, Th. 3.4, p. 65], χ extends to L, since χ_0 does. An extension χ^L of χ has a finite level, hence $\ker(\chi^L)$ is an ordering and $\ker(\chi^L) \cap K = P$.

COROLLARY 2.7. Let L/K be a Galois extension. Let P be an ordering of K with an extension P^L to L and let Q be an ordering of K associated with P. Then there exists an extension Q^L of Q associated with P^L .

Proof. Let χ , η be any signatures of P and Q, respectively. Let χ^L be a signature of P^L such that $\chi^L|_K = \chi$. By [2, Th. 3.4, p. 65] there exists an extension η^L of η such that $A(\ker(\eta^L)) = A(\ker(\chi^L))$ and $\overline{\ker(\eta^L)} = \overline{\ker(\chi^L)}$. By [2, Th. 4.4, p. 73] the exact level of $\ker(\eta^L)$ is finite, thus $Q^L := \ker(\eta^L)$ is an extension of Q associated with P^L .

Let L/K be a Galois extension and let G(L/K) be its topological Galois group. Let P^L be a higher level ordering of L. It is a routine matter to check that $\sigma(P^L)$ is a higher level ordering of L for every $\sigma \in G(L/K)$. The next theorem is based on [2, Ths. 4.2 and 4.5] and was proved in [8, Th. 7].

Theorem 2.8. Let L/K be a Galois extension and let P be an ordering of K. Let P^L be a faithful extension of P. Then the map

$$G(L/K) \to \varrho_{L/K}^{-1}(P), \quad \sigma \mapsto \sigma(P^L),$$

is a homeomorphism.

Now we shall answer the question: When does a given ordering P of K extend faithfully to the Galois extension L of K?

Let P be an ordering of K of even exact level n and let P_0 be any total order associated with P. Let χ be any signature of P and χ_0 a signature of P_0 . Define

$$P_1 := \ker(\chi_0 \chi^n).$$

If χ has a representation of the form (2.1), then $\chi_0 \chi^n = \chi_0 \cdot \tau^n \circ v_P$ and P_1 is a total order of K associated with P_0 and P. Notice that P_1 is different from P_0 .

DEFINITION 2.9. If n is even, then the pair (P_0, P_1) defined above is called a pair of total orders associated with P.

Now let P be an ordering of K of odd exact level n with a signature χ . Then $\ker(\chi^n)$ is a total order associated with P and $P \subset \ker(\chi^n)$. By [4, Lem. 1.6] such an order is uniquely determined. We denote it by $(P)_0$.

Proposition 2.10. Let K be a formally real field and n be odd. Then the map

$$\varphi_K : eX_n(K) \to X_1(K), \quad \varphi_K(P) = (P)_0,$$

is continuous.

Proof. It is a routine matter to check that for any $a \in K$ we have $a^n \in P$ iff $a \in (P)_0$. Let H(a) be a Harrison subbasis set. Then

$$\varphi_K^{-1}(H(a)) = \{ P \in eX_n(K) : a \in (P)_0 \} = H_n(a^n) \cap eX_n(K). \blacksquare$$

The following proposition was proved in [8, Cor. 11].

Proposition 2.11. Let L/K be a Galois extension and let P be an ordering of K.

- (1) If P is an ordering of even exact level and there exists a pair (P_0, P_1) of total orders associated with P such that P_0 and P_1 extend faithfully to L, then P also has a faithful extension to L.
- (2) If P is an ordering of odd exact level, then P has a faithful extension to L if and only if (P)₀ has a faithful extension to L.

For our next result we need the notion of the real holomorphy ring $\mathcal{H}(K)$ of a formally real field K. Recall that

$$\mathcal{H}(K) = \bigcap_{P \in X_1(K)} A(P).$$

We denote the group of units of $\mathcal{H}(K)$ by $\mathbb{E}(K)$ (cf. [1]). Notice that if $a \in \mathbb{E}(K)$, then a is a unit of any real valuation of K. Therefore, if $a \in \mathbb{E}(K)$, then $a \in P$ or $-a \in P$ for any higher level ordering P of K. Moreover, if $a \in P$, then $a \in Q$ for any ordering Q associated with P.

Now we show how to eliminate higher level orderings of a field by extending the base field.

LEMMA 2.12. Let K be a formally real field, and let $a \in K$ with $\sqrt{a} \notin K$. Let $M := K(\{\sqrt[2^s]{a} : s = 1, 2, ...\})$. Then

- (1) If $P \in eX_n(K)$ and $a \in \dot{A}(P) \cap P$, then P has a unique extension to M and this extension is faithful.
- (2) If $a \in \mathbb{E}(K)$, then the map

$$eX_n(M) \to X_n(K), \quad P^M \mapsto P^M \cap K,$$

is a bijection onto $\{P \in eX_n(K) : a \in P\}$.

Proof. Let $M_s := K(\sqrt[2^s]{a})$. Then $M = \bigcup_{s=1}^{\infty} M_s$.

- (1) By induction we shall show that if $a \in \dot{A}(P) \cap P$, then
- P has exactly two extensions to M_s ,
- both extensions are faithful,
- only one of them extends to M_{s+1} and this extension is faithful.

First, we deal with the case s=1. Notice that M_1 is a Galois extension of K. Since $a\in P\cap\dot{A}(P)$ the element a is positive in every total order associated with P. By Proposition 2.11 and Theorem 2.8, P has two faithful extensions P^{M_1} and $\sigma(P^{M_1})$, where $\mathrm{id}_{M_1}\neq\sigma\in G(M_1/K)$. Notice that $\sqrt{a}\in\dot{A}(P^{M_1})\cap\dot{A}(\sigma(P^{M_1}))$, because $a\in\dot{A}(P)$ and the value groups of the valuations determined by $A(P^{M_1})$ and $A(\sigma(P^{M_1}))$ are torsion-free. Thus $\sqrt{a}\in P^{M_1}$ or $-\sqrt{a}\in P^{M_1}$. We may assume that $\sqrt{a}\in P^{M_1}$ and $-\sqrt{a}\in\sigma(P^{M_1})$. Then \sqrt{a} is positive in every total order associated with P^{M_1} and negative in every total order associated with $\sigma(P^{M_1})$. Therefore, by Proposition 2.11, P^{M_1} extends faithfully to M_2 , and by Proposition 2.4, $\sigma(P^{M_1})$ does not extend to M_2 .

Now let $P^{M_s} \in eX_n(M_s)$ be the unique extension of P to M_s which extends to M_{s+1} . We have $\sqrt[2^s]{a} \in \dot{A}(P^{M_s})$, since $a \in \dot{A}(P^{M_s})$ and the value group of the valuation determined by $A(P^{M_s})$ is torsion-free. Moreover, $\sqrt[2^s]{a} \in P^{M_s}$, since P^{M_s} extends to M_{s+1} . To explain the inductive step it suffices to take M_s instead of K and apply the first part of the proof.

In this way we obtain an increasing chain $(P^{M_s})_{s\in\mathbb{N}}$ of orderings of exact level n of the fields M_s such that $P^{M_0}=P$ and $P^{M_s}\cap M_{s-1}=P^{M_{s-1}}$, where $M_0=K$. It is a routine matter to check that the set $P^M:=\bigcup_{s=0}^\infty P^{M_s}$ is an ordering of M of exact level n. Uniqueness of P^M follows from the uniqueness of P^{M_s} .

(2) As pointed out above, if $a \in \mathbb{E}(K)$ and a is negative in an ordering P, then a is negative in any ordering associated with P. Then P does not extend to M. This fact and (1) imply (2).

In the above lemma the assumption on a is very restrictive. In the next lemma we show that for n odd the assumption can be weakened.

LEMMA 2.13. Let K be a formally real field, and let $a \in K$ with $\sqrt{a} \notin K$. Let $M := K(\{\sqrt[2^s]{a} : s = 1, 2, ...\})$. Suppose n is odd.

- (1) If $P^M \in eX_n(M)$, then $P^M \cap K \in eX_n(K)$.
- (2) $P \in eX_n(K)$ has a unique faithful extension to M iff $a \in (P)_0$.
- (3) The map

$$eX_n(M) \to eX_n(K), \quad P^M \mapsto P^M \cap K,$$

is a bijection onto $\{P \in eX_n(K) : a \in (P)_0\}$.

Proof. As previously, let $M = \bigcup_{s=1}^{\infty} M_s$, where $M_s := K(\sqrt[2^s]{a})$. Since M_s is a Galois extension of M_{s-1} and n is odd, statement (1) is a consequence of Theorem 2.5.

By induction we show that if $a \in (P)_0$, then P has exactly two faithful extensions to M_s and only one of them extends faithfully to M_{s+1} .

Notice that if P^{M_s} is an extension of P which extends faithfully to $P^{M_{s+1}}$, then by Proposition 2.11, $(P^{M_s})_0$ extends faithfully to $(P^{M_{s+1}})_0$, thus $a \in (P^{M_s})_0$. Now, it suffices to settle the case s=1. If $a \in (P)_0$ then by Proposition 2.11, P extends faithfully to M_1 . Moreover, by Theorem 2.8, there are two faithful extensions P^{M_1} and $\sigma(P^{M_1})$, where $\mathrm{id}_{M_1} \neq \sigma \in G(M_1/K)$. We have $(P^{M_1})_0 \cap K = (P)_0$ and $(\sigma(P^{M_1})_0 \cap K = \sigma((P^{M_1})_0) \cap K = (P)_0$, since $(P)_0$ is uniquely determined. We may assume that $\sqrt{a} \in (P^{M_1})_0$. Thus by Proposition 2.11, P^{M_1} extends faithfully to M_2 . But $\sigma(P^{M_1})$ does not extend faithfully to M_2 , since $-\sqrt{a} \in (\sigma(P^{M_1}))_0$.

Let P^{M_s} be an extension of P which extends faithfully to M_{s+1} . It is easy to check that $P^M := \bigcup_{s=1}^{\infty} P^{M_s}$ is a faithful extension of P to M. Moreover P^M is uniquely determined, since P^{M_s} is uniquely determined for any $s \in \mathbb{N}$.

The converse is obvious, since P extends faithfully to M_1 and this implies that $(P)_0$ extends faithfully to M_1 and $a \in (P)_0$.

Statement (3) is a simple consequence of (1) and (2). \blacksquare

Remark 2.14. In the notation of the previous lemma consider the diagram

$$eX_n(M) \xrightarrow{\varrho_{M/K}} eX_n(K)$$

$$\varphi_M \Big| \qquad \qquad \varphi_K \Big|$$

$$X_1(M) \xrightarrow{\varrho_{M/K}} X_1(K)$$

where the vertical maps are as in Proposition 2.10. This diagram commutes. Moreover, if φ_K is a bijection, then so is φ_M .

THEOREM 2.15. Let K be a formally real field and let $Y \subset eX_n(K)$. Assume that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that $Y = \bigcap \{H_n(\beta) : \beta \in \mathcal{B}\}$ $\cap eX_n(K)$. Then there exists an algebraic extension M of K such that the restriction map $\varrho_{M/K} : eX_n(M) \to X_n(K)$ is a bijection onto Y. Moreover, if $eX_n(K)$ is compact, then $\varrho_{M/K}$ is a homeomorphism.

Proof. We may assume that $\mathcal{B} \cap \dot{K}^2 = \emptyset$ since $\beta \in \dot{K}^2 \cap \mathbb{E}(K)$ implies $H_n(\beta) = X_n(K)$. Define

$$M = K(\{ \sqrt[2^s]{\beta} : \beta \in \mathcal{B}, s = 1, 2, \ldots \}).$$

Let \mathcal{R} be the set of pairs (L,\mathcal{C}) where $\mathcal{C} \subset \mathcal{B}$ and $L := K(\{\sqrt[2^s]{\beta} : \beta \in \mathcal{C}, s = 1, 2, \ldots\})$ is a subfield of M such that:

- (1) $\varrho_{L/K}(eX_n(L)) \subseteq eX_n(K)$,
- (2) the restriction $\varrho_{L/K}|_{eX_n(L)}$ of $\varrho_{L/K}$ to $eX_n(L)$ is injective,
- (3) $Y \subseteq \varrho_{L/K}(eX_n(L))$.

Note that \mathcal{R} is nonempty, since $(K,\emptyset) \in \mathcal{R}$, and \mathcal{R} is partially ordered by inclusion on the subsets of \mathcal{B} . If (L_1,\mathcal{C}_1) and (L_2,\mathcal{C}_2) are in \mathcal{R} with $\mathcal{C}_1 \subset \mathcal{C}_2$, then the following diagram commutes:

$$eX_n(L_2) \longrightarrow eX_n(L_1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$eX_n(K) = eX_n(K)$$

Let $\{(L_{\xi}, \mathcal{C}_{\xi})\}$ be a simply ordered subset of \mathcal{R} and let $L = \bigcup L_{\xi}$, $\mathcal{C} = \bigcup \mathcal{C}_{\xi}$. Then $L = K(\{\sqrt[2^s]{\beta} : \beta \in \mathcal{C}, s = 1, 2, \ldots\})$.

Let $P^L \in eX_n(L)$ and let χ^L be any signature of P^L . There exists $\omega \in L$ such that $\chi^L(\omega) = \epsilon_{2n}$, a primitive 2nth root of unity. But $\omega \in L_{\xi}$ for some ξ , hence $\chi^L|_{L_{\xi}} \in \mathrm{eSgn}_n(L_{\xi})$. This means that $\ker(\chi^L|_{L_{\xi}}) = P^L \cap L_{\xi} \in eX_n(L_{\xi})$ and $P^L \cap K = P^L \cap L_{\xi} \cap K \in eX_n(K)$. Thus (L, \mathcal{C}) satisfies condition (1). The map $\varrho_{L/K}|_{eX_n(L)}$ is injective since $\varrho_{L_{\xi}/K}|_{eX_n(L_{\xi})}$ is, so (L, \mathcal{C}) satisfies (2). Each ordering of Y extends faithfully to each L_{ξ} and hence to $L = \bigcup L_{\xi}$, so (L, \mathcal{C}) satisfies (3). Therefore $(L, \mathcal{C}) \in \mathcal{R}$.

By Zorn's lemma, \mathcal{R} has a maximal element (L_0, \mathcal{C}_0) . Suppose $L_0 \neq M$. Then there exists $\beta_0 \in \mathcal{B} \setminus \mathcal{C}_0$. Since $\beta_0 \in \mathbb{E}(K) \subset \mathbb{E}(L_0)$, by Lemma 2.12 the restriction map

$$eX_n(L_0(\{\sqrt[2^s]{\beta_0}: s=1,2,\ldots\})) \to X_n(L_0)$$

is a bijection onto the set $\{P^{L_0} \in eX_n(L_0) : \beta_0 \in P^{L_0}\}$.

Thus $L_0(\lbrace \sqrt[2^s]{\beta_0} : s = 1, 2, \ldots \rbrace)$ satisfies conditions (1)–(3) and

$$(L_0(\{\sqrt[2^s]{\beta_0}: s=1,2,\ldots\}), C_0 \cup \{\beta_0\}) \in \mathcal{R},$$

contradicting the maximality of (L_0, \mathcal{C}_0) . Therefore $L_0 = M$.

Now it suffices to show that $\varrho_{M/K}(eX_n(M)) \subseteq Y$. Notice that if $\beta \in \mathcal{B}$, then $\beta \in \dot{M}^2$. Let $P^M \in eX_n(M)$ and let P_0^M be a total order associated with P^M . The orderings $P^M \cap K$ and $P_0^M \cap K$ are associated and $\beta \in P_0^M \cap \mathbb{E}(K)$. Hence $\beta \in P^M \cap K$ and $P^M \in H_n(\beta)$ for every $\beta \in \mathcal{B}$.

For the next lemma we need the notion of the space M(K) of \mathbb{R} -valued places of the field K. Any ordering P of K leads to the \mathbb{R} -valued place $\lambda_K(P): K \to \mathbb{R} \cup \{\infty\}$ attached to a unique order imbedding of the archimedean ordered field $(k(P), \overline{P})$ into $(\mathbb{R}, \mathbb{R}^2)$. Thus we have a map

$$\lambda_K: \bigcup_{n=1}^{\infty} X_n(K) \to M(K)$$

which sends an ordering $P \in X_n(K)$ to $\lambda_K(P)$, its associated \mathbb{R} -valued place. Notice that two orderings P and Q determine the same \mathbb{R} -valued place $\lambda_K(P) = \lambda_K(Q)$ if and only if they are associated.

Lemma 2.16. Let P be an ordering of the field F and let

$$K = F(\sqrt{a_1}, \dots, \sqrt{a_s}), \quad \text{where } a_i \in 1 + I(P), i = 1, \dots, s.$$

Then the restriction $\lambda_{K,P}$ of

$$\lambda_K: \bigcup_{n=1}^{\infty} X_n(K) \to M(K)$$

to the set $\varrho_{K/F}^{-1}(P)$ is injective.

Proof. It suffices to show that the map $P^K \mapsto A(P^K)$ is injective.

First, we consider the case s=1. Let $K:=F(\sqrt{a}),\ P\in eX_n(F)$. Since $a\in 1+I(P),\ a$ is positive in every total order associated with P. By Proposition 2.11, P has exactly two extensions P^K and $\sigma(P^K)$, where id $\neq \sigma\in G(K/F)$, and they are both faithful. We may assume that $\sqrt{a}\in P^K$, since $a\in P$. Then $-\sqrt{a}\in\sigma(P^K)$. Suppose that $A(P^K)=A(\sigma(P^K))=:A$ with maximal ideal I=I(A) and residue field k=k(A). Then $\sqrt{a}+I=1+I$ or $-\sqrt{a}+I=1+I$, since a+I=1+I. Thus $\sqrt{a}\in P^K\cap\sigma(P^K)$ or $-\sqrt{a}\in P^K\cap\sigma(P^K)$, a contradiction.

Let now $K:=F(\sqrt{a_1},\ldots,\sqrt{a_s})$ and let P^K , Q^K be different extensions of P to K. Let $F_1:=F(\sqrt{a_2},\ldots,\sqrt{a_s})$. If $P^K\cap F_1\neq Q^K\cap F_1$, then by the induction assumption $A(P^K\cap F_1)\neq A(Q^K\cap F_1)$, hence $A(P^K)\neq A(Q^K)$. If $P^K\cap F_1=Q^K\cap F_1$ then apply the case s=1 with $F=F_1$, $P=P^K\cap F_1$ and $K=F_1(\sqrt{a_1})$.

Let L/K be a field extension. The restriction map $\varrho_{L/K}$ induces the map

$$\omega_{L/K}: M(L) \to M(K), \quad \omega_{L/K}(\lambda_L(P^L)) = \lambda_K(\varrho_{L/K}(P^L)).$$

This definition makes sense, because if $\lambda_L(P^L) = \lambda_L(Q^L)$ (i.e. P^L and Q^L are associated), then $\lambda_K(P^L \cap K) = \lambda_K(Q^L \cap K)$ (i.e. $P^L \cap K$ and $Q^L \cap K$ are associated). Moreover, the following diagram commutes:

$$X(L) \xrightarrow{\lambda_L} M(L)$$

$$\varrho_{L/K} \downarrow \qquad \qquad \omega_{L/K} \downarrow$$

$$X(K) \xrightarrow{\lambda_K} M(K)$$

As an obvious consequence of this fact and Lemma 2.16 we have

COROLLARY 2.17. Let P be a higher level ordering of the field F and let

$$K = F(\{\sqrt{a} : a \in \mathcal{A}\}),$$

where $A \subset 1+I(P)$. Then the restriction $\lambda_{K,P}$ of $\lambda: \bigcup_{n=1}^{\infty} X_n(K) \to M(K)$ to the set $\varrho_{K/F}^{-1}(P)$ is injective.

Remark 2.18. In the notation of this corollary suppose that Q is an ordering of F associated with P. Consider the following diagram:

Since K/F is a Galois extension, by Corollaries 2.7 and 2.17, we can complete the above diagram to

where $\phi_{P,Q}$ is bijective. In fact, if P^K is a fixed extension of P and Q^K is an extension of Q associated with P^K , then $\phi_{P,Q}(\sigma(P^K)) = \sigma(Q^K)$ for any $\sigma \in G(K/F)$ and the diagram

$$\varrho_{K/F}^{-1}(P) \xrightarrow{\phi_{P,Q}} \varrho_{K/F}^{-1}(Q)$$

$$G(K/F)$$

commutes. By Theorem 2.8, $\phi_{P,Q}$ is a homeomorphism.

3. Boolean space as a space of orderings of even exact level. As we have pointed out, every Boolean space is a closed subspace of some Cantor cube. For each infinite cardinal \mathfrak{m} , let $D_{\mathfrak{m}}$ denote the Cantor cube of weight \mathfrak{m} . It was shown in [8] that if F is a real closed field of cardinality \mathfrak{m} and n is a fixed natural number, then the space $eX_n(K)$ for

$$K := F(X) \left(\left\{ \sqrt{\frac{X - a}{X}} : a \in \dot{F} \right\} \right)$$

is homeomorphic to $D_{\mathfrak{m}}$. Now we briefly recall the explanation of this fact. The reader can find the details in [8, Th. 12].

- (1) K/F(X) is a Galois extension with Galois group homeomorphic to $D_{\mathfrak{m}}$.
- (2) We have

$$X_1(K) = H(X) \dot{\cup} H(-X)$$

where H(X), H(-X) are Harrison subbasis sets. Let P_0, P_1 be the total orders of F(X) as in Example 2.2. Then

$$H(X) = \varrho_{K/F(X)}^{-1}(P_0)$$
 and $H(-X) = \varrho_{K/F(X)}^{-1}(P_1)$.

(3) By Corollary 2.6 and Proposition 2.11, every higher level ordering of K is a faithful extension of some ordering P of F(X) associated with P_0 and P_1 . Therefore if n is even, then

$$eX_n(K) = \varrho_{K/F(X)}^{-1}(P_n),$$

where P_n is the unique ordering of F(X) of exact level n associated with P_0 and P_1 , and if n is odd, then

$$eX_n(K) = \varrho_{K/F(X)}^{-1}(P_n) \stackrel{\cdot}{\cup} \varrho_{K/F(X)}^{-1}(\widehat{P}_n),$$

where P_n , \widehat{P}_n are the orderings of exact level n as in Example 2.2.

(4) If P is a higher level ordering of F(X) which extends to K, then by Theorem 2.8, the space $\varrho_{K/F(X)}^{-1}(P)$ is homeomorphic to G(K/F(X)), hence to $D_{\mathfrak{m}}$.

Now we are able to prove the first part of our main theorem.

Theorem 3.1. Let n be even. Every Boolean space Y is homeomorphic to the space of orderings of exact level n for some formally real field M.

Proof. Let F be a real closed field of cardinality $\mathfrak m$ and let

$$K := F(X) \left(\left\{ \sqrt{\frac{X - a}{X}} : a \in \dot{F} \right\} \right).$$

Let P_0 be the total order of F(X) as in Example 2.2 and let P be any higher level ordering of F(X) associated with P_0 (as yet, we do not assume that

the exact level of P is even). Note that

$$\frac{X - a}{X} \in 1 + I(P_0) = 1 + I(P)$$

for every $a \in \dot{F}$. By Remark 2.18, we have a homeomorphism

$$\phi_P: \varrho_{K/F(X)}^{-1}(P) \to \varrho_{K/F(X)}^{-1}(P_0),$$

where $\phi_P(P^K)$ is the unique extension of P_0 associated with P^K .

If we take as P the total order P_1 , then we get a bijection which pairs orders in H(-X) with the associated orders in H(X). Therefore

$$\bigcap_{P^K \in H(X)} \dot{A}(P^K) = \bigcap_{P^K \in X_1(K)} \dot{A}(P^K) = \mathbb{E}(K).$$

Let Y be a closed subspace of $D_{\mathfrak{m}}$. Denote by Y_P the subset of $\varrho_{K/F(X)}^{-1}(P)$ homeomorphic to Y. We shall show that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that

$$Y_P = \bigcap_{\beta \in \mathcal{B}} H_n(\beta) \cap \varrho_{K/F(X)}^{-1}(P).$$

The set $\phi_P(Y_P)$ is a closed subspace of H(X), and $\phi_P(Y_P)^c$, the complement of $\phi_P(Y_P)$, is an open subset of $X_1(K)$. Moreover, $\phi_P(Y_P)^c \cap H(X)$ is open. By [6, Th. 3 and Theorem, p. 346], K satisfies SAP. Therefore,

$$\phi_P(Y_P)^c \cap H(X) = \bigcup_{\alpha \in \mathcal{A}} H(-\alpha).$$

For every $\alpha \in \mathcal{A}$ one observes that $H(\alpha) \cap H(X)$ and $H(-\alpha) \cap H(X)$ are closed and disjoint subsets of $X_1(K)$. By Corollary 2.17, the sets $\lambda(H(\alpha) \cap H(X))$ and $\lambda(H(-\alpha) \cap H(X))$ are disjoint. By the Separation Criterion [7, Prop. 9.13], there exists $\beta \in \bigcap \{\dot{A}(P^K) : P^K \in H(X)\} = \mathbb{E}(K)$ such that $H(\alpha) \cap H(X) \subset H(\beta)$ and $H(-\alpha) \cap H(X) \subset H(-\beta)$. It is not difficult to check that $H(-\alpha) = H(-\beta) \cap H(X)$, since $H(-\alpha) \subset H(X)$. Let \mathcal{B} be the set of β 's determined in this way. Then $\phi_P(Y_P) = \bigcap \{H(\beta) : \beta \in \mathcal{B}\} \cap H(X)$ and $Y_P = \bigcap \{H_n(\beta) : \beta \in \mathcal{B}\} \cap \varrho_{K/F(X)}^{-1}(P)$.

As we have pointed out, if n is even, then $eX_n(K) = \varrho_{K/F(X)}^{-1}(P_n)$, where P_n is the unique ordering of exact level n of F(X) associated with P_0 and P_1 . We use Theorem 2.15 to get a field M with a bijective correspondence between $eX_n(M)$ and Y. Notice that $eX_n(M)$ equals $\varrho_{M/F(X)}^{-1}(P_n) \cap X_n(M)$, so it is compact. Thus $eX_n(M)$ and Y are homeomorphic. \blacksquare

REMARK 3.2. Let n be odd and let K be as in the above theorem. Then $eX_n(K) = \varrho_{K/F(X)}^{-1}(P_n) \stackrel{.}{\cup} \varrho_{K/F(X)}^{-1}(\widehat{P}_n)$, where P_n and \widehat{P}_n are orderings of exact level n as in Example 2.2. If $\beta \in \mathbb{E}(K)$, then $H_n(\beta)$ contains an ordering $P_n^K \in \varrho_{K/F(X)}^{-1}(P_n)$ iff $H_n(\beta)$ contains an ordering $\widehat{P}_n^K \in \varrho_{K/F(X)}^{-1}(\widehat{P}_n)$

such that P_n^K and \widehat{P}_n^K are associated. Let Y be any closed subspace of the Cantor cube $D_{\mathfrak{m}}$. In the proof of Theorem 3.1 we have shown that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that Y is homeomorphic to $\bigcap \{H_n(\beta) : \beta \in \mathcal{B}\}$ $\cap \varrho_{K/F(X)}^{-1}(P_n)$ and to $\bigcap \{H_n(\beta) : \beta \in \mathcal{B}\} \cap \varrho_{K/F(X)}^{-1}(\widehat{P}_n)$. Then $Y \cup Y$ is homeomorphic to $\bigcap \{H_n(\beta) : \beta \in \mathcal{B}\} \cap eX_n(K)$. Let M be as in Theorem 2.15. Then $eX_n(M)$ equals $(\varrho_{M/F(X)}^{-1}(P_n) \cup \varrho_{M/F(X)}^{-1}(\widehat{P}_n)) \cap X_n(M)$, so it is compact. Therefore $eX_n(M)$ is homeomorphic to $Y \cup Y \cong D(2) \times Y$, where D(2) is the two-point discrete space.

4. Boolean space as a space of orderings of odd exact level. In this section we prove Theorem 1.1 for odd n. The proof is based on the result of Craven in [5]. Let F be a real closed field of cardinality \mathfrak{m} and let

$$K := F(X)(\{\sqrt{X - a} : a \in \dot{F}\}).$$

By [8, Th. 12], the space $eX_n(K)$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$ for any odd n. In particular, $X_1(K)$ is homeomorphic to $D_{\mathfrak{m}}$. Moreover, in the proof of that theorem we have seen that $X_1(K) = \varrho_{K/F(X)}^{-1}(P_0)$ and $eX_n(K) = \varrho_{K/F(X)}^{-1}(\widehat{P}_n)$, where P_0 , \widehat{P}_n are the orderings of F(X) from Example 2.2. Let Y be any closed subset of $X_1(K)$. Since K satisfies SAP, the space Y^c is a union of sets of the Harrison subbasis of $X_1(K)$. Write

$$Y^c = \bigcup_{\alpha \in \mathcal{A}} H(-\alpha).$$

As shown by Craven [5, Prop. 2, p. 227], the space $X_1(M)$ is homeomorphic to Y for

$$M := K(\{\sqrt[2^s]{\alpha} : \alpha \in \mathcal{A}, s = 1, 2, \ldots\}).$$

We shall show that the spaces $eX_n(M)$ and $X_1(M)$ are homeomorphic.

Theorem 4.1. Let n be odd. Every Boolean space Y is homeomorphic to the space of orderings of exact level n for some formally real field M.

Proof. Let F, K, M be the fields defined above. Let \mathcal{R} be the set of pairs (L, \mathcal{B}) , where $\mathcal{B} \subset \mathcal{A}$, and let

$$L := K(\{ \sqrt[2^s]{\alpha} : \alpha \in \mathcal{B}, s = 1, 2, \ldots \})$$

be a subfield of M such that

- (1) $P^L \in eX_n(L) \Rightarrow P^L \cap K \in eX_n(K)$,
- (2) the map $\varphi_L : eX_n(L) \to X_1(L), \varphi_L(P^L) = (P^L)_0$, is a bijection.

The set \mathcal{R} is nonempty, since $(K,\emptyset) \in \mathcal{R}$, and it is partially ordered by inclusion on the subsets of \mathcal{A} . Notice that if (L_1,\mathcal{B}_1) and (L_2,\mathcal{B}_2) are in \mathcal{R}

with $\mathcal{B}_1 \subset \mathcal{B}_2$, then the following diagram commutes:

$$eX_n(L_2) \longrightarrow eX_n(L_1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1(L_2) \longrightarrow X_1(L_1)$$

Let $\{(L_{\xi}, \mathcal{B}_{\xi})\}$ be a simply ordered subset of \mathcal{R} and set $L = \bigcup L_{\xi}, \mathcal{B} = \bigcup \mathcal{B}_{\xi}$. Then $L := K(\{ \sqrt[2s]{\alpha} : \alpha \in \mathcal{B}, s = 1, 2, \ldots \})$. Let $P^L \in eX_n(L)$ and let χ^L be any signature of P^L . There exists $\omega \in L$ such that $\chi^L(\omega) = \epsilon_{2n}$, a primitive 2nth root of unity. But $\omega \in L_{\xi}$ for some ξ , hence $\chi^L|_{L_{\xi}} \in e\mathrm{Sgn}_n(L_{\xi})$. Therefore $\ker(\chi^L|_{L_{\xi}}) = P^L \cap L_{\xi} \in eX_n(L_{\xi})$ and $P^L \cap K \in eX_n(K)$. Thus (L,\mathcal{B}) satisfies condition (1). The map φ_L is injective since $\varphi_{L_{\xi}}$ is. If P_0^L is a fixed order of L then $P^L = \bigcup \varphi_{L_{\xi}}^{-1}(P_0^L \cap L_{\xi})$ is an ordering of exact level n contained in P_0^L , hence (L,\mathcal{B}) satisfies (2). Thus $(L,\mathcal{B}) \in \mathcal{R}$.

By Zorn's lemma, \mathcal{R} has a maximal element (L_0, \mathcal{B}_0) . Suppose $L_0 \neq M$. Then there exists $\alpha_0 \in \mathcal{A} \setminus \mathcal{B}_0$. By Lemma 2.13 and Remark 2.14, the field

$$L_0(\{\sqrt[2^s]{\alpha_0}: s=1,2,\ldots\})$$

satisfies conditions (1), (2), so

$$(L_0(\{\sqrt[2^s]{\alpha_0}: s=1,2,\ldots\}), \mathcal{B}_0 \cup \{\alpha_0\}) \in \mathcal{R},$$

contradicting the maximality of (L_0, \mathcal{B}_0) . Therefore $L_0 = M$.

It suffices to show that the bijection φ_M is a homeomorphism. As pointed out above, $eX_n(K) = \varrho_{K/F(X)}^{-1}(\widehat{P}_n)$. Therefore $eX_n(M)$ equals $\varrho_{M/F(X)}^{-1}(\widehat{P}_n) \cap X_n(M)$ and is compact. By Proposition 2.10, the map φ_M is continuous. A continuous bijection of a compact space onto a Hausdorff space is a homeomorphism. \blacksquare

5. The space of orderings of exact level n of $\mathbb{R}(X)$. All total orders of $\mathbb{R}(X)$ were described in [9, Example 1.1.4]. They are as follows:

$$P = \left\{ \frac{f}{g} \in \mathbb{R}(X) : \frac{a_s}{b_t} \in \dot{\mathbb{R}}^2 \right\}, \quad Q = \left\{ \frac{f}{g} \in \mathbb{R}(X) : (-1)^{t-s} \frac{a_s}{b_t} \in \dot{\mathbb{R}}^2 \right\},$$

where a_s , b_t are the leading coefficients of the polynomials f and g, respectively, and for any $a \in \mathbb{R}$,

$$P^{a} = \left\{ (X - a)^{k} \frac{f}{g} \in \mathbb{R}(X) : \frac{f(a)}{g(a)} \in \mathbb{R}^{2} \right\},$$

$$Q^{a} = \left\{ (X - a)^{k} \frac{f}{g} \in \mathbb{R}(X) : (-1)^{k} \frac{f(a)}{g(a)} \in \mathbb{R}^{2} \right\},$$

where $f(a) \neq 0$ and $g(a) \neq 0$. The orderings P and Q are associated, as also are P^a and Q^a for any $a \in \mathbb{R}$.

Let n be even. Then

$$P_n = \left\{ \frac{f}{g} : \left(\frac{a_s}{b_t} \in \dot{\mathbb{R}}^2 \wedge t - s \equiv 0 \pmod{2n} \right) \right\}$$

$$\vee \left(\frac{a_s}{b_t} \in -\dot{\mathbb{R}}^2 \wedge t - s \equiv n \pmod{2n} \right)$$

is the unique ordering of $\mathbb{R}(X)$ of exact level n associated with P and Q, and

$$P_n^a = \left\{ (X - a)^k \frac{f}{g} : \left(\frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^2 \land k \equiv 0 \pmod{2n} \right) \right.$$

$$\left. \lor \left(\frac{f(a)}{g(a)} \in -\dot{\mathbb{R}}^2 \land k \equiv n \pmod{2n} \right) \right\}$$

is the unique ordering of $\mathbb{R}(X)$ of exact level n associated with P^a and Q^a . Let n be odd. Then

$$P_n = \left\{ \frac{f}{g} : \frac{a_s}{b_t} \in \mathbb{R}^2 \land t - s \equiv 0 \pmod{n} \right\},$$

$$Q_n = \left\{ \frac{f}{g} : (-1)^{t-s} \frac{a_s}{b_t} \in \mathbb{R}^2 \land t - s \equiv 0 \pmod{n} \right\}$$

are the unique orderings of $\mathbb{R}(X)$ of exact level n associated with P and Q, and

$$P_n^a = \left\{ (X - a)^k \frac{f}{g} : \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^2 \wedge k \equiv 0 \pmod{n} \right\},$$

$$Q_n^a = \left\{ (X - a)^k \frac{f}{g} : (-1)^k \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^2 \wedge k \equiv 0 \pmod{n} \right\}$$

are the unique orderings of $\mathbb{R}(X)$ of exact level n associated with P^a and Q^a . It is readily verified that for n even we have

$${P_n} = \bigcap {H_n^c(X^{2d}) : d \mid n, d < n},$$

and for $a \in \mathbb{R}$ we have

$$\{P_n^a\} = H_n(X^n) \cap \bigcap \{H_n^c((X-a)^{2d}) : d \mid n, d < n\}.$$

Thus all one-point sets are open and the topology induced on $eX_n(\mathbb{R}(X))$ from $X_n(\mathbb{R}(X))$ is discrete.

Similarly, one checks that if n > 1 is odd, then

$$\{P_n\} = H_n(X^n) \cap \bigcap \{H_n^c(X^{2d}) : d \mid n, d < n\},\$$
$$\{Q_n\} = H_n(-X^n) \cap \bigcap \{H_n^c(X^{2d}) : d \mid n, d < n\},\$$

and for $a \in \mathbb{R}$,

$$\{P_n^a\} = H_n(X^2) \cap H_n((X-a)^n) \cap \bigcap \{H_n^c((X-a)^{2d}) : d \mid n, d < n\},\$$

$$\{Q_n^a\} = H_n(X^2) \cap H_n(-(X-a)^n) \cap \bigcap \{H_n^c((X-a)^{2d}) : d \mid n, d < n\},\$$

which proves that the topological space $eX_n(\mathbb{R}(X))$ is discrete. Since it is infinite, it cannot be compact.

References

- E. Becker, The real holomorphy ring and sums of 2n-th powers, in: Lecture Notes Math. 959, Springer, Berlin, 1982, 139–181.
- [2] E. Becker, J. Harman and A. Rosenberg, Signatures of fields and extension theory, J. Reine Angew. Math. 330 (1982), 53-75.
- [3] E. Becker and A. Rosenberg, Reduced forms and reduced Witt rings of higher level,
 J. Algebra 92 (1985), 477–503.
- [4] R. Berr, Sums of mixed powers in fields and orderings of prescribed level, Math. Z. 210 (1992), 513–528.
- [5] T. C. Craven, The Boolean space of orderings of the field, Trans. Amer. Math. Soc. 209 (1975), 225–235.
- [6] —, The topological space of orderings of rational function field, Duke Math. J. 41 (1974), 339–347.
- [7] T. Y. Lam, Orderings, Valuations and Quadratic Forms, CBMS Reg. Conf. Ser. Math. 52, Amer. Math. Soc., 1983.
- [8] K. Osiak, A Cantor cube as a space of higher level orderings, Tatra Mt. Math. Publ. 32 (2005), 71–84.
- [9] A. Prestel and Ch. N. Delzell, *Positive Polynomials*, Springer Monogr. Math., Springer, Berlin, 2001.

Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland E-mail: kosiak@ux2.math.us.edu.pl

> Received 23 March 2006; in revised form 10 September 2007