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The Boolean space of higher level orderings
by

Katarzyna Osiak (Katowice)

Abstract. Let K be an ordered field. The set X (K) of its orderings can be topol-
ogized to make it a Boolean space. Moreover, it has been shown by Craven that for any
Boolean space Y there exists a field K such that X (K) is homeomorphic to Y. Becker’s
higher level ordering is a generalization of the usual concept of ordering. In a similar way
to the case of ordinary orderings one can define a topology on the space of orderings of
fixed exact level. We show that it need not be Boolean. However, our main theorem says
that for any n and any Boolean space Y there exists a field, the space of orderings of fixed
exact level n of which is homeomorphic to Y.

1. Notation and terminology. In the terminology introduced by
Becker, Harman and Rosenberg [2] a signature of a formally real field K
is a character x of the multiplicative group K with values in the group i
of all complex roots of unity, with additively closed kernel. The level s(x)
of the signature y, if finite, is defined as #Im(x)/2. The orderings of higher
level are exactly the kernels of signatures with s(x) < co. If x is a signature
with s(x) = n, then P = ker(x) is called an ordering of exact level n, and an
ordering of level m for any m such that n|m. We denote by s(P) the exact
level of the ordering P. In general, several signatures have the same kernel.
Note that P = ker(x1) = ker(x2) if and only if there exists an automorphism
k of u such that y; = Kk o xa.

For a field K let eSgn,,(K) be the set of all signatures of K of exact level
n and let

Sgn,, (K) = U{eSgnd(K) :d|n}.

Similarly denote by eX,(K) and X, (K) the set of all orderings of exact
level n and the set of all orderings of level n, respectively. With the standard
topology the space Sgn,,(K) is Boolean (i.e. compact, Hausdorff and totally
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disconnected) [3, Prop. 1.4]. It is known that the set X;(K) = eX;(K) of
total orders of the field K can be topologized to make it a Boolean space by
using as a subbasis the family of Harrison sets

H(a)={PeX|(K): a€ P}, ackK.

Since H(a) :={P € X1(K) : a ¢ P} = H(—a), the sets H(a) are clopen.
In fact, Sgn; (K) and X;(K) are homeomorphic in the natural way.

In a similar way one can define a topology on X,(K) by using as a
subbasis the family of sets

Hy(a)={P e X, (K):a€ P} and H,(a)={P € X,(K):a¢ P}.

This topology makes the space X,,(K) Boolean. Moreover, X,,(K) is hom-
eomorphic to a quotient space Sgn,, (K)/o, where g is the relation

x1ox2 < ker(x1) = ker(x2).

The details can be found in our earlier paper [8, Prop. 1]. The space
eXn(K) = Xo(K)\ | J{Xa(K) : d|n, d < n}

is an open subset of the Boolean space X,,(K). It need not be clopen and
hence Boolean. In the last section we give an example of a field for which the
subspace of orderings of exact level n is infinite and its topology is discrete,
thus not compact.

However, the converse is true, which is our main theorem.

THEOREM 1.1. Let n be any natural number. Every Boolean space Y 1is
homeomorphic to the space eX, (M) of orderings of exact level n for some
formally real field M.

In the case n = 1 the construction of M was given by Craven in [5].
For any n and Y being the Cantor cube it was given in [8], where it was
shown that if F'is a real closed field of cardinality m, then the space eX,,(K)
for K := F(X)({\/(X —a)/X : a € F}) is homeomorphic to the Cantor
cube D.. It was also pointed out that for n odd one could take K :=
F(X){VX —a :a € F}) [8, Th. 12], which for n = 1 was remarked by
Craven [5, Remark, p. 230].

The proof of Theorem 1.1 requires considering separately the cases of n
even and odd. In the third section, for each even n, we find a field M with
eX,, (M) homeomorphic to a given Boolean space; for n odd, this is done in
Section 4.

Just as Craven did, we start our construction with a field K for which
the space eSgn,,(K) is homeomorphic to the Cantor cube Dy, containing Y.
We get the field M by extending K in such a way as to eliminate unwanted
orderings. However, the problem we have to cope with and which does not
appear in the case n = 1 is controlling the levels of the orderings of K
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which extend to M. It turns out that for n odd the field M may be taken
the same as in Craven’s paper [5] for n = 1. The case of n even requires a
slightly different approach. When constructing M we have to make use of
some results on the space M (K) of real places of K and apply the Separation
Criterion.

We shall make use of the concept of strong approximation property
(SAP). Recall that a formally real field K is said to satisfy SAP if the
Harrison subbasis consists of all the clopen subsets of X;(K). This is in fact
equivalent to the condition that the Harrison subbasis is a basis for X (K)
[7, Prop. 17.2].

2. Orderings and their extensions. Let K be a formally real field
and let P be a higher level ordering of K. Then P determines the valuation
ring

A(P):={a€ K :3,cq+ q+ac P}
with the maximal ideal

I(P):={a € K :Vyeq+ q*ac P}

and the residue field k(P) such that P := (PN A(P))+I(P) is an archime-
dean total order of k(P). Here A(P) denotes the set of units of the ring A(P).

DEFINITION 2.1. Let K be a formally real field and let P and @ be
orderings of higher level of K. We say that P and Q are associated if A(P) =
A(Q) and P = @ on the residue field k(P).

For every ordering P there exists a total order Py such that P and P, are
associated. In [2] the authors described the connection between the signature
x of the ordering P = ker(x) of exact level n and the signature yo of the
total order P, associated with P. We have

(2.1) X = X0'TOoup,

where vp is the valuation determined by A(P) and 7 is a character of the
value group of vp such that

() = {

This fact allows us to determine all orderings of higher level of any formally
real field, if we know the total orders. Moreover, the existence of such a
representation for every ordering P implies that if P and () are associated,
then

2n if n is even,

nor 2n if n is odd.

PNAP)=QnA(@Q).



104 K. Osiak

EXAMPLE 2.2. Let F' be a real closed field. Consider the function field
F(X) with the total order

_Jf cOs 2
PO_{gGF(X)'thF}’

where ag, by are the leading coefficients of the polynomials f and g, respec-
tively. Here is a complete list of orderings associated with Py (cf. [8, Sec. 3]).
For any even n € N the set

Pn:{i: <%€F2/\t—350(mod2n)>
t

9
\/(Z—E —F?At—s= (mod?n))}
t

is the unique ordering of exact level n associated with Fy.
For any odd n € N the sets

ﬁn:{i:%GIﬂAt—SEO(modn)},

g b
P, = {i : (-Dtﬂ% CFAt—5=0 (modn)}
g by

are the unique orderings of exact level n associated with Fy. Notice that
P1 Py, whereas for n > 1 we have P C Pyand P, C P.

Now we recall some facts on extensions of orderings (cf. [2], [8]).

Let L/K be a field extension and let PY be an ordering of L. Then
P = PEN K is an ordering of K and s(P) divides s(P¥). The ordering P*
is called an extension of P. If s(P*) = s(P), then the extension is said to be
faithful. If P% is an extension of P, then A(PL)N K = A(P). Notice that if
the orderings PY and Q' are associated, then so are PX N K and Q* N K.

Given two formally real fields K C L, we obtain the natural mapping

or/x + Xn(L) — Xn(K)

which restricts the orderings of L to the subfield K.

PROPOSITION 2.3. The canonical restriction mapping or/k : Xn(L) —
Xn(K), or/x(PY) = PEN K, is continuous.

Proof. Let [Hy,(a)]x be a clopen subbasis set of X,,(K’). Then
01/ (Hn(a)x) = [Hu(a)]z,
a clopen subbasis set of X,,(L). m

Now we give a necessary condition for the existence of an extension of a
given ordering P.
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PROPOSITION 2.4. If an ordering P of K extends to L, then there exists
a total order Py which is associated with P and has a faithful extension to L.

Proof. Take for Py the image under g, x of any total order associated
with an extension PL of P. m

The converse need not be true. For example, let K be a field with an
ordering P of level n > 1 and let Py be a total order associated with P.
Consider a real closure F of (K, Py). Then F? is an extension of Py and it
is the unique ordering of F'.

In the case of Galois extensions, we have a simple criterion for the ex-
istence of an ordering extension. It is a consequence of [2, Th. 4.4, p. 73]
which we now recall in the notation of orderings.

THEOREM 2.5. Let L/K be a Galois extension of fields and let P be an
ordering of K. If P extends to L, then either all extensions are faithful or
all have level 2s(P).

COROLLARY 2.6. Let L/K be a Galois extension and P be an ordering
of K. Then P extends to L if and only if there exists a total order Py
associated with P which extends faithfully to L.

Proof. Let Py be a total order of K which is associated with P and
extends faithfully to L. Let x be any signature of P and xo a signature
of Py. By [2, Th. 3.4, p. 65], x extends to L, since xo does. An extension x”
of x has a finite level, hence ker(x’) is an ordering and ker(y*)N K = P. m

COROLLARY 2.7. Let L/K be a Galois extension. Let P be an ordering
of K with an extension PY to L and let Q be an ordering of K associated
with P. Then there exists an extension QY of Q associated with PL.

Proof. Let x, n be any signatures of P and Q, respectively. Let x” be a
signature of P! such that x”|x = x. By [2, Th. 3.4, p. 65] there exists an
extension n¥ of ) such that A(ker(n*)) = A(ker(x")) and ker(nk) = ker(x%).
By [2, Th. 4.4, p. 73] the exact level of ker(n¥) is finite, thus Q¥ := ker(n%)
is an extension of @ associated with PL. w

Let L/K be a Galois extension and let G(L/K) be its topological Galois
group. Let PL be a higher level ordering of L. It is a routine matter to check
that o(PF) is a higher level ordering of L for every o € G(L/K). The next
theorem is based on [2, Ths. 4.2 and 4.5] and was proved in [8, Th. 7].

THEOREM 2.8. Let L/K be a Galois extension and let P be an ordering
of K. Let PT be a faithful extension of P. Then the map

G(L/K) = oy (P). o= a(Ph),

is a homeomorphism.
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Now we shall answer the question: When does a given ordering P of K
extend faithfully to the Galois extension L of K?

Let P be an ordering of K of even exact level n and let Py be any total
order associated with P. Let x be any signature of P and g a signature
of Py. Define

Py = ker(xox").
If x has a representation of the form (2.1), then xox™ = xo - 7" cvp and P;
is a total order of K associated with Py and P. Notice that P; is different
from Pp.

DEFINITION 2.9. If n is even, then the pair (Pp, P;) defined above is
called a pair of total orders associated with P.

Now let P be an ordering of K of odd exact level n with a signature .
Then ker(x") is a total order associated with P and P C ker(x"). By [4,
Lem. 1.6] such an order is uniquely determined. We denote it by (P)o.

PropPOSITION 2.10. Let K be a formally real field and n be odd. Then
the map
oK 1 eXp(K) — X1 (K),  or(P)=(P)o,

18 continuous.

Proof. 1t is a routine matter to check that for any a € K we have a™ € P
iff a € (P)o. Let H(a) be a Harrison subbasis set. Then

¢ (H(a)) ={P € eXn(K):a € (P} = Hy(a") NeXp(K).
The following proposition was proved in [8, Cor. 11].

PROPOSITION 2.11. Let L/K be a Galois extension and let P be an
ordering of K.

(1) If P is an ordering of even exact level and there exists a pair (Py, Pi)
of total orders associated with P such that Py and Py extend faithfully
to L, then P also has a faithful extension to L.

(2) If P is an ordering of odd exact level, then P has a faithful extension
to L if and only if (P)o has a faithful extension to L.

For our next result we need the notion of the real holomorphy ring H(K)
of a formally real field K. Recall that

HE)= (] AP).
PeX1(K)
We denote the group of units of H(K) by E(K) (cf. [1]). Notice that if
a € E(K), then a is a unit of any real valuation of K. Therefore, if a € E(K),
then @ € P or —a € P for any higher level ordering P of K. Moreover, if
a € P, then a € () for any ordering () associated with P.
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Now we show how to eliminate higher level orderings of a field by ex-
tending the base field.

LEMMA 2.12. Let K be a formally real field, and let a € K with \/a ¢ K.
Let M .= K({%/a:s=1,2,...}). Then

(1) If P € eX,(K) and a € A(P) N P, then P has a unique extension
to M and this extension is faithful.
(2) Ifa € E(K), then the map

eXn(M) = X,(K), PM— PMOK,
is a bijection onto {P € eX,(K):a € P}.

Proof. Let My := K(3%/a). Then M = J32, M.
(1) By induction we shall show that if a € A(P) N P, then

e P has exactly two extensions to Mj,
e both extensions are faithful,
o only one of them extends to Msy1 and this extension is faithful.

First, we deal with the case s = 1. Notice that M; is a Galois extension
of K. Since a € P N A(P) the element a is positive in every total or-
der associated with P. By Proposition 2.11 and Theorem 2.8, P has two
faithful extensions PM1 and o(PM1), where idy;, # o € G(M;/K). Notice
that /a € A(PM) N A(o(PM1)), because a € A(P) and the value groups
of the valuations determined by A(PM!) and A(c(PM1)) are torsion-free.
Thus /a € PMt or —\/a € PM. We may assume that \/a € PM and
—y/a € o(PM1), Then \/a is positive in every total order associated with
PM1 and negative in every total order associated with o(P™1). Therefore,
by Proposition 2.11, PM1 extends faithfully to Ms, and by Proposition 2.4,
o(PM1) does not extend to Mo.

Now let PMs ¢ eX,(M,) be the unique extension of P to M, which
extends to M ;. We have %/a € A(PMs), since a € A(PMs) and the value
group of the valuation determined by A(PMs) is torsion-free. Moreover,
%/a € PMs since PMs extends to M, 1. To explain the inductive step it
suffices to take M instead of K and apply the first part of the proof.

In this way we obtain an increasing chain (Ps),cy of orderings of exact
level n of the fields M such that PMo = P and PMsNM,_; = PMs—1 where
My = K. It is a routine matter to check that the set PM := |J32, P+ is an
ordering of M of exact level n. Uniqueness of PM follows from the uniqueness
of PMs,

(2) As pointed out above, if a € E(K) and a is negative in an ordering P,
then a is negative in any ordering associated with P. Then P does not extend
to M. This fact and (1) imply (2). =
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In the above lemma the assumption on a is very restrictive. In the next
lemma we show that for n odd the assumption can be weakened.

LEMMA 2.13. Let K be a formally real field, and let a € K with \/a ¢ K.
Let M := K({%/a:s5s=1,2,...}). Suppose n is odd.

(1) If PM € eX, (M), then PM N K € eX,,(K).
(2) P € eX,(K) has a unique faithful extension to M iff a € (P)o.
(3) The map

eX, (M) — eX,(K), PM—PYNK,
is a bijection onto {P € eX,(K):a € (P)o}.

Proof. As previously, let M = |J32 | M, where M, := K( 3/a). Since M
is a Galois extension of M,_; and n is odd, statement (1) is a consequence
of Theorem 2.5.

By induction we show that if a € (P)g, then P has exactly two faithful
extensions to Mg and only one of them extends faithfully to Msyq.

Notice that if PMs is an extension of P which extends faithfully to PMs+1,
then by Proposition 2.11, (PMs)q extends faithfully to (PMs+1)g, thus a €
(PMs)4. Now, it suffices to settle the case s = 1. If a € (P)g then by Propo-
sition 2.11, P extends faithfully to M;. Moreover, by Theorem 2.8, there
are two faithful extensions PMt and o(PM1), where idy, # o € G(M1/K).
We have (PM1)g N K = (P)g and (6(PM))gN K = o((PM)g) N K = (P)o,
since (P)p is uniquely determined. We may assume that /a € (PM1)y. Thus
by Proposition 2.11, PMt extends faithfully to M. But o(P™1) does not
extend faithfully to My, since —/a € (o(PM1)),.

Let PMs be an extension of P which extends faithfully to M. It is easy
to check that PM :=(J22, PMs is a faithful extension of P to M. Moreover
PM is uniquely determined, since PMs is uniquely determined for any s € N.

The converse is obvious, since P extends faithfully to M; and this implies
that (P)o extends faithfully to M; and a € (P)o.

Statement (3) is a simple consequence of (1) and (2). =

REMARK 2.14. In the notation of the previous lemma consider the dia-
gram
0
eXn(M) 5 e X, (K)
YM PK
OM/K
X1(M) —— X1(K)
where the vertical maps are as in Proposition 2.10. This diagram commutes.
Moreover, if ¢k is a bijection, then so is ;.
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THEOREM 2.15. Let K be a formally real field and let Y C eX,(K). As-
sume that there exists a subset B C E(K) such that Y = ({H,(08) : 0 € B}
NeXn(K). Then there exists an algebraic extension M of K such that the
restriction map oy eXn(M) — Xy (K) is a bijection onto Y. Moreover,
if eXy(K) is compact, then oy i s a homeomorphism.

Proof. We may assume that BN K2 = ) since 3 € K2 N E(K) implies
H,(B) = Xn(K). Define

M=K{%B:6eB,s=1,2,..}).
Let R be the set of pairs (L,C) where C C B and L := K({%/B: 3 € C,
s=1,2,...}) is a subfield of M such that:

(1) or/x(eXn(L)) C eXp(K),
(2) the restriction o, /k|ex, (1) of or/x to eXn(L) is injective,
(3) Y C o k(eXn(L)).
Note that R is nonempty, since (K,()) € R, and R is partially ordered by

inclusion on the subsets of B. If (L1,C;) and (L2,C2) are in R with C; C Co,
then the following diagram commutes:

€Xn(L2) —— eXn<L1)

i |

eX,(K) eX,(K)

Let {(L¢,Ce)} be a simply ordered subset of R and let L = JLg,
C=UC. Then L=K({%/B:8€C,s=1,2,...}).

Let PX € eX,(L) and let x” be any signature of PL. There exists w € L
such that x*(w) = €2y, a primitive 2nth root of unity. But w € L for some &,
hence x”|r, € eSgn,,(L¢). This means that ker(x"|r,) = PN L¢ € eX,,(Le)
and PPN K =PNLeNK € eX,(K). Thus (L,C) satisfies condition (1).
The map o1 i |ex, (1) is injective since QLg/K|eXn(L§) is, so (L, C) satisfies (2).
Each ordering of Y extends faithfully to each L¢ and hence to L = L¢, so
(L, C) satisfies (3). Therefore (L,C) € R.

By Zorn’s lemma, R has a maximal element (Lg,Cp). Suppose Lo # M.
Then there exists Gy € B\ Cp. Since [y € E(K) C E(Lp), by Lemma 2.12
the restriction map

eXn(Lo({®/Bo:s=1,2,...})) = Xn(Lo)
is a bijection onto the set { P € eX,,(Lo) : By € PLo}.
Thus Lo({ 3/Bo : s = 1,2,...}) satisfies conditions (1)—(3) and

(L()({ 2\8/ Go:s=1,2,.. .}),CQ U {ﬁo}) € R,
contradicting the maximality of (Lg,Cp). Therefore Lo = M.
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Now it suffices to show that oy (eXn(M)) C Y. Notice that if 3 € B,
then § € M?. Let PM € X, (M) and let P} be a total order associated

with PM. The orderings PM N K and Pé\/[ N K are associated and g €
PMNE(K). Hence 8 € PY N K and PM € H,(B) for every 3 € B. =

For the next lemma we need the notion of the space M(K) of R-valued
places of the field K. Any ordering P of K leads to the R-valued place
Ak (P) : K — RU{oco} attached to a unique order imbedding of the archime-
dean ordered field (k(P), P) into (R, R?). Thus we have a map

Mg | Xn(K) — M(K)
n=1

which sends an ordering P € X,(K) to Ag(P), its associated R-valued
place. Notice that two orderings P and () determine the same R-valued
place A (P) = Ag(Q) if and only if they are associated.

LEMMA 2.16. Let P be an ordering of the field F' and let
K =F(\/a1,...,\/as), wherea;€1+I(P),i=1,...,s.

Then the restriction Ak p of
Mg | Xn(K) — M(K)
n=1

to the set QI_(}F(P) is injective.

Proof. Tt suffices to show that the map PX — A(PX) is injective.

First, we consider the case s = 1. Let K := F(y/a), P € eX,(F).
Since a € 1+ I(P), a is positive in every total order associated with P. By
Proposition 2.11, P has exactly two extensions PX and o(PX), where id #
o € G(K/F), and they are both faithful. We may assume that /a € P&,
since a € P. Then —+/a € o(PX). Suppose that A(PX) = A(c(PK)) =:
with maximal ideal I = I(A) and residue field k = k(A). Then \Ja+1I = 1+1
or —/a+1I =1+1,since a+1 =1+ 1. Thus \/a € PKX no(PK) or
—v/a € PX no(PK), a contradiction.

Let now K := F(\/a1,...,+/as) and let PE_ QK be different extensions
of P to K. Let Fy := F(\/ag, ..., \/as). If PX N F # Q¥ N Fy, then by the
induction assumption A(PX N Fy) # A(Q¥X N F), hence A(PX) #£ A(QX).
If PXNF; = QX N F, then apply the case s = 1 with F = F}, P = PKN R,
and K = Fl(\/a) | |

Let L/K be a field extension. The restriction map oy, /K induces the map

wr: M(L) = M(K),  wpr(AL(P") = Mg (o1, x(P")).
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This definition makes sense, because if A\r,(P¥) = A(QF) (i.e. P* and QF
are associated), then Ag (PN K) = Ag(QF N K) (i.e. PPN K and Q¥ N K
are associated). Moreover, the following diagram commutes:

X(L) -2~ M(L)

QL/Kl w”Kl
X(K) 2% M(K)
As an obvious consequence of this fact and Lemma 2.16 we have
COROLLARY 2.17. Let P be a higher level ordering of the field F' and let
K =F({Va:acA}),

where A C 1+I(P). Then the restriction Ag.p of X : Uy~ Xn(K) — M(K)
to the set Q;{}F(P) is injective.

REMARK 2.18. In the notation of this corollary suppose that @ is an
ordering of F' associated with P. Consider the following diagram:

oy (P) 0xr(Q)
M(K)

Since K/ F is a Galois extension, by Corollaries 2.7 and 2.17, we can complete
the above diagram to

Op(P)—0% o) (@)
M(K)

where ¢pq is bijective. In fact, if PE is a fixed extension of P and Q¥ is
an extension of @ associated with PX, then ¢p(o(PX)) = o(QF) for any
o0 € G(K/F) and the diagram

_ ép, -
QKl/F(P) e QK}F(Q)

~

G(K/F)

commutes. By Theorem 2.8, ¢p ¢ is a homeomorphism.
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3. Boolean space as a space of orderings of even exact level.
As we have pointed out, every Boolean space is a closed subspace of some
Cantor cube. For each infinite cardinal m, let Dy, denote the Cantor cube
of weight m. It was shown in [8] that if F' is a real closed field of cardinality
m and n is a fixed natural number, then the space eX,(K) for

K::F(X)({ X};“;aeFD

is homeomorphic to D,,. Now we briefly recall the explanation of this fact.
The reader can find the details in [8, Th. 12].

(1) K/F(X) is a Galois extension with Galois group homeomorphic
to D
(2) We have

X1(K) = H(X) U H(-X)
where H(X), H(—X) are Harrison subbasis sets. Let Py, P, be the
total orders of FI(X) as in Example 2.2. Then
—1 —1
H(X) = QK/F(X)(PO) and H(_X) = QK/F(X)(Pl)'

(3) By Corollary 2.6 and Proposition 2.11, every higher level ordering
of K is a faithful extension of some ordering P of F(X) associated
with Py and P;. Therefore if n is even, then

eXn(K) = Q;(l/F(X)(Pn)a

where P, is the unique ordering of F'(X) of exact level n associated
with Py and P;, and if n is odd, then

eXn(K) = Q;(l/F(X)(Pn) U Q;(l/p(x)(ﬁn)a

where P, ﬁn are the orderings of exact level n as in Example 2.2.

(4) If P is a higher level ordering of F'(X) which extends to K, then by
Theorem 2.8, the space QR-}F(X)(P) is homeomorphic to G(K/F (X)),
hence to Dy,.

Now we are able to prove the first part of our main theorem.

THEOREM 3.1. Let n be even. Every Boolean space Y is homeomorphic
to the space of orderings of exact level n for some formally real field M.

Proof. Let F be a real closed field of cardinality m and let

K::F(X)({ X);a:aeF})

Let Py be the total order of F'(X) as in Example 2.2 and let P be any higher
level ordering of F(X) associated with Py (as yet, we do not assume that
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the exact level of P is even). Note that

X —
Ye141(P)=1+1(P)

for every a € F. By Remark 2.18, we have a homeomorphism
.1 -1
op QK/F(X)(P) - QK/F(X)(PO)v

where ¢p(PX) is the unique extension of Py associated with PX.
If we take as P the total order P, then we get a bijection which pairs
orders in H(—X) with the associated orders in H(X). Therefore

N AP = () AP =EX).
PKeH(X) PKeX (K)

Let Y be a closed subspace of Dy,. Denote by Yp the subset of Q}} F(X) (P)
homeomorphic to Y. We shall show that there exists a subset B C E(K)
such that

Yp = m Hn(ﬂ) N QI_(}F(X)(P)'
peB

The set ¢pp(Yp) is a closed subspace of H(X), and ¢p(Yp)®, the comple-
ment of ¢p(Yp), is an open subset of X;(K). Moreover, ¢pp(Yp)°NH(X) is
open. By [6, Th. 3 and Theorem, p. 346], K satisfies SAP. Therefore,

¢p(Yp)'NH(X) = | J H(-a).
acA

For every a € A one observes that H(a) N H(X) and H(—«a) N H(X) are
closed and disjoint subsets of X;(K'). By Corollary 2.17, the sets A\(H («)
NH(X)) and A(H(—a) N H(X)) are disjoint. By the Separation Criterion
7, Prop. 9.13], there exists 3 € {A(PX) : PK € H(X)} = E(K) such that
H(a)NH(X) C H(f) and H(—«a) N H(X) C H(—p). It is not difficult to
check that H(—«a) = H(—f5) N H(X), since H(—a) C H(X). Let B be the
set of 3’s determined in this way. Then op(Yp) =(W{H(B): € BNH(X)
and Yp = (\{Hn(B) : B € B} N QK/F( )(P).

As we have pointed out, if n is even, then eX,,(K) = QK/F(X)( ), where
P, is the unique ordering of exact level n of F'(X) associated with Py and P;.
We use Theorem 2.15 to get a field M with a bijective correspondence be-
tween eX,, (M) and Y. Notice that eX, (M) equals QX;/F(X)(Pn) NXn(M),
so it is compact. Thus eX, (M) and Y are homeomorphic. =

REMARK 3.2. Let n be odd and let K be as in the above theorem. Then
eXn(K) = Q;(}F(X)(Pn) U g;{;F(X)(Pn), where P, and P, are orderings of
exact level n as in Example 2.2. If § € E(K), then H, (/) contains an order-
ing PX ¢ Q;(}F(X)(Pn) iff H,,(3) contains an ordering P € QK/F(X)(]3 )
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such that PX and 13,{( are associated. Let Y be any closed subspace of the
Cantor cube Dy,. In the proof of Theorem 3.1 we have shown that there ex-
ists a subset B C E(K) such that Y is homeomorphic to (\{H,(0) : B € B}

N O ypix)(Pn) and to N{Hu(B) : 8 € BY N 0y p(xy(FPa)- Then Y UY s
homeomorphic to (\{H,(B) : € B} NeX,(K). Let M be as in Theo-
rem 2.15. Then eX,,(M) equals (QX;/F(X)(PN) U QX;/F(X)(ﬁ”)) N X, (M), so
it is compact. Therefore eX,,(M) is homeomorphic to Y UY = D(2) x Y,
where D(2) is the two-point discrete space.

4. Boolean space as a space of orderings of odd exact level. In
this section we prove Theorem 1.1 for odd n. The proof is based on the
result of Craven in [5]. Let F' be a real closed field of cardinality m and let

K:=FX){VX —a:a€F}).

By [8, Th. 12], the space eX,,(K) is homeomorphic to the Cantor cube Dy,
for any odd n. In particular, X;(K) is homeomorphic to Dy,. Moreover, in
the proof of that theorem we have seen that X;(K) = Q;(I/F(X)(Po) and

eXn(K) = Q;(}F(X)(ﬁ")’ where Py, P, are the orderings of F(X) from Ex-

ample 2.2. Let Y be any closed subset of X;(K). Since K satisfies SAP, the
space Y is a union of sets of the Harrison subbasis of X (K). Write

ve=|J H(-a).

acA

As shown by Craven [5, Prop. 2, p. 227], the space X1 (M) is homeomorphic
to Y for

M:=K({%a:acA s=1,2,..1}).
We shall show that the spaces eX,, (M) and X;(M) are homeomorphic.

THEOREM 4.1. Let n be odd. Every Boolean space Y is homeomorphic
to the space of orderings of exact level n for some formally real field M.

Proof. Let F, K, M be the fields defined above. Let R be the set of
pairs (L, ), where B C A, and let

L=K{¥a:aeB,s=1,2,..1)
be a subfield of M such that
(1) Pt eeX,(L)= P'NK € eX,(K),
(2) the map ¢z, : eX, (L) — X1(L), or(P¥) = (PL)g, is a bijection.
The set R is nonempty, since (K,0) € R, and it is partially ordered by
inclusion on the subsets of A. Notice that if (L1,81) and (L, B2) are in R
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with By C Bs, then the following diagram commutes:

eXn(Le) —eX,(L1)

i |

X1(L2) — X1 (L1)

Let {(L¢, Be)} be a simply ordered subset of R and set L = |J L¢, B = |J Be.
Then L := K{%a : a € B,s = 1,2,...}). Let PX € eX,(L) and let
x* be any signature of PL. There exists w € L such that x(w) = eay,
a primitive 2nth root of unity. But w € L¢ for some &, hence b Le €
eSgn,, (L¢). Therefore ker(XL]Lg) = PLnL € eXy(L¢) and PPN K €
eX,(K). Thus (L, B) satisfies condition (1). The map ¢y, is injective since
oL is. If P} is a fixed order of L then P = cngl(POL N L) is an ordering
of exact level n contained in PF, hence (L, B) satisfies (2). Thus (L, B) € R.

By Zorn’s lemma, R has a maximal element (Lo, Bp). Suppose Lo # M.
Then there exists ag € A\ By. By Lemma 2.13 and Remark 2.14, the field

Lo({ ey ap S = 1,2,. . })
satisfies conditions (1), (2), so

(Lo({ ¥/ :s=1,2,...}),BoU{a}) € R,
contradicting the maximality of (Lg, By). Therefore Ly = M.

It suffices to show that the bijection ¢y is a homeomorphism. As pointed
out above, eX,,(K) = Q;{}F(X)(Pn). Therefore eX,,(M) equals QX}/F(X)(Pn)
N X, (M) and is compact. By Proposition 2.10, the map ¢y is continu-
ous. A continuous bijection of a compact space onto a Hausdorff space is a
homeomorphism. =

5. The space of orderings of exact level n of R(X). All total orders
of R(X) were described in [9, Example 1.1.4]. They are as follows:
P= {i eR(X): & ¢ R2}, Q= {i ER(X): (~1) % ¢ RQ},
g be g by
where ag, by are the leading coefficients of the polynomials f and g, respec-
tively, and for any a € R,

o_fix_art @) pe

P _{(X a) ge]R(X).g(a)eR},

e dx—afp L erexy: (1 L9 1['{8}

@ ={x-arlerms Y el
where f(a) # 0 and g(a) # 0. The orderings P and () are associated, as also
are P* and Q* for any a € R.
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Let n be even. Then

Pn:{i: <%€R2/\t—550(m0d2n)>
9 by

\/(% e -R2At—s=n (mod2n)>}
t

is the unique ordering of R(X) of exact level n associated with P and @,
and

P = {(X—a)k I (ﬁ ERZAk=0 (mod2n)>

" 9 \9g(a)
v(% € -Rinak=n (monn))}

is the unique ordering of R(X) of exact level n associated with P* and Q°.
Let n be odd. Then
P, = {i L e R2At-5=0 (modn)},
g b

Qn = {i : (—1)“3% eERZAt—s=0 (modn))}
g by

are the unique orderings of R(X) of exact level n associated with P and @,
and

¢ = —aki'—f(a) R? =0 (modn
Pn—{(X )g'g(a)ER ANk =0 (mod )},
= —aki' — k—f(a) R2 =0 (modn
Qn—{(X ) g.( 1) g(a)eR ANE=0 ( d)}

are the unique orderings of R(X) of exact level n associated with P* and
Q“. Tt is readily verified that for n even we have

{Pu} = {H(X*)) :d|n, d <n},
and for a € R we have
{PS} = Ho(X™) N[ {HS(X —a)*)) :d|n, d <n}.

Thus all one-point sets are open and the topology induced on eX,(R(X))
from X, (R(X)) is discrete.

Similarly, one checks that if n > 1 is odd, then
{P.} = Ho(X™) N (({HG(X*) : d|n, d < n},

{Qn} = Ho(=X") N[ {HL(X?) : d|n, d < n},
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and for a € R,

(P} = Ho(X?) N Ho(X = @)") N[ {H5:((X = a)*") :d|n, d < n},

{Qn} = Ho(X?) N Hu(—(X — a)") N[ {H (X = a)*") :d|n, d < n},

which proves that the topological space eX,(R(X)) is discrete. Since it is
infinite, it cannot be compact.

[9]
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