Ordinals in topological groups

by

Raushan Z. Buzyakova (Greensboro, NC)

Abstract

We show that if an uncountable regular cardinal τ and $\tau+1$ embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T_{1} topological group. We prove, among others, the following statements: (1) If τ and $\tau+1$ embed closedly in G then $\tau \times(\tau+1)$ embeds closedly in G; (2) If τ embeds in G, G is Abelian, and the order of every non-neutral element of G is greater than $2^{N}-1$ then $\prod_{i \in N} \tau$ embeds in G; (3) The previous statement holds if τ is replaced by $\tau+1$; (4) If G is Abelian, algebraically generated by $\tau+1 \subset G$, and the order of every element does not exceed $2^{N}-1$ then $\prod_{i \in N}(\tau+1)$ is not embeddable in G.

1. Introduction. The paper is devoted to the following problem.

Problem. Let G be a topological group and $X, Y \subset G$. What conditions on X and/or Y and/or G guarantee that $X \times X$ and/or $X \times Y$ embed (closedly) in G ?

It is known, in particular, that X^{n} is homeomorphic to a closed subspace of the Abelian free topological group over X for every natural number n [S-T]. We restrict ourselves to cases when X and Y in this problem are spaces of ordinals. A corollary to one of our main results implies that if ω_{1} and $\omega_{1}+1$ embed closedly in G then so does $\omega_{1} \times\left(\omega_{1}+1\right)$, thus making G not normal. Another result of the paper implies that ω_{1} is not embeddable in a torsion free Abelian group that is hereditarily normal. This is because, once such a group contains ω_{1} it contains $\omega_{1} \times \omega_{1}$ as well. In short, investigating the above problem is one approach to study separation and covering properties in topological groups. We refer the reader to surveys [COM] and [TKA] that contain some results and references related to the topic in ques-

[^0]tion. The main results of the paper are those cited in the abstract and are given by statements $2.6,3.3,3.4,4.7$, and 4.8.

To shorten our statements, let us agree that whenever we claim that $X=\left\{x_{\alpha}: \alpha<\tau\right\}$ is homeomorphic to an ordinal τ we assume that $x_{\alpha} \leftrightarrow \alpha$ is a homeomorphism inducing an order on X.

We will use the \star sign for the binary operation in a given topological group G. The neutral element of G is denoted by e_{G}. The order of $g \in G$ is denoted by $o(g)$. If the order of every element of G does not exceed N we write $o(G) \leq N$. The equality $o(G)=N$ means that $o(G) \leq N$ and the order of at least one element equals N.

Let G be a topological group and $\left\langle x_{\alpha}: \alpha<\tau\right\rangle$ a sequence in G, where τ is an infinite regular cardinal. We say that $\left\langle x_{\alpha}: \alpha<\tau\right\rangle$ converges to $x \in G$ if for any open neighborhood U of x there exists an ordinal $\alpha_{U}<\tau$ such that $x_{\alpha} \in U$ whenever $\alpha>\alpha_{U}$. We will use the following fact quite often.

FACT. Let G be a topological group and τ an infinite regular cardinal. If $\left\langle x_{\alpha}: \alpha<\tau\right\rangle$ and $\left\langle y_{\alpha}: \alpha<\tau\right\rangle$ converge in G to x and y, respectively, then $\left\langle x_{\alpha} \star y_{\alpha}: \alpha<\tau\right\rangle$ converges to $x \star y$ and $\left\langle x_{\alpha}^{-1}: \alpha<\tau\right\rangle$ to x^{-1}.

An ordinal τ, when treated as a topological space, is endowed with the topology of linear order. The symbol α^{n} denotes $\alpha \star \cdots \star \alpha$, where α is an element of a group G. The topological second power of the space τ will be denoted by $\tau \times \tau$. The topological N th power of τ will be denoted by $\prod_{i \in N} \tau$.

In notation and terminology we will follow [ENG]. All spaces are assumed to satisfy T_{1}. It is a classical theorem of Kolmogorov and Pontryagin that a T_{1} topological group is Tikhonov (see, for example, [PON]).
2. $\tau \times(\tau+1)$ in topological groups. In this section we will prove that if a topological group contains closed copies of τ and $\tau+1$, where τ is an uncountable regular cardinal, then G contains a closed copy of $\tau \times(\tau+1)$. It follows in particular that if ω_{1} and $\omega_{1}+1$ embed in a topological group G as closed subspaces then G is not normal.

The strategy is straightforward. Given $X=\left\{x_{\alpha}: \alpha<\tau\right\}$ and $Y=\left\{y_{\alpha}\right.$: $\alpha<\tau+1\}$ in G, we carefully select a closed unbounded subset T of τ such that $\left\{x_{\alpha}: \alpha \in T\right\} \star\left\{y_{\alpha}: \alpha \in T \cup\{\tau\}\right\}$ is as desired.

Lemma 2.1. Let G be a topological group and $X=\left\{x_{\alpha}: \alpha<\tau\right\}, Y=$ $\left\{y_{\alpha}: \alpha<\tau+1\right\} \subset G$ homeomorphic to ordinals τ and $\tau+1$, respectively, where τ is an infinite regular cardinal. Then for any $\lambda<\tau$ there exists $\lambda^{*}<\tau$ such that $x_{\lambda} \star y_{\alpha} \neq x_{\beta} \star y_{\gamma}$ for any $\alpha, \beta, \gamma \geq \lambda^{*}$.

Proof. Assume the contrary. Then we can select non-decreasing sequences $\left\langle\beta_{i}\right\rangle_{i<\tau}$ of elements of τ and $\left\langle\alpha_{i}\right\rangle_{i<\tau},\left\langle\gamma_{i}\right\rangle_{i<\tau}$ of elements of $\tau+1$ such that
(1) $x_{\lambda} \star y_{\alpha_{i}}=x_{\beta_{i}} \star y_{\gamma_{i}}$;
(2) $\beta_{i}>\lambda$;
(3) $\left\langle\alpha_{i}\right\rangle_{i<\tau}$ and $\left\langle\gamma_{i}\right\rangle_{i<\tau}$ converge to τ.

By (3), $\left\langle y_{\alpha_{i}}: i<\tau\right\rangle$ and $\left\langle y_{\gamma_{i}}: i<\tau\right\rangle$ converge to y_{τ}. Therefore, the sequence $\left\langle x_{\lambda} \star y_{\alpha_{i}}: i<\tau\right\rangle$ converges to $x_{\lambda} \star y_{\tau}$. By (1), the sequence $\left\langle x_{\beta_{i}} \star y_{\gamma_{i}}: i<\tau\right\rangle$ also converges to $x_{\lambda} \star y_{\tau}$. Therefore, $\left\langle\left(x_{\beta_{i}} \star y_{\gamma_{i}}\right) \star y_{\gamma_{i}}^{-1}: i<\tau\right\rangle$ converges to $\left(x_{\lambda} \star y_{\tau}\right) \star y_{\tau}^{-1}=x_{\lambda}$. That is, $\left\langle x_{\beta_{i}}: i<\tau\right\rangle$ converges to x_{λ}, contradicting (2) and the fact that $x_{\alpha} \leftrightarrow \alpha$ is a homeomorphism of X with τ.

Lemma 2.2. Let G be a topological group and $X=\left\{x_{\alpha}: \alpha<\tau\right\}, Y=$ $\left\{y_{\alpha}: \alpha<\tau+1\right\} \subset G$ homeomorphic to ordinals τ and $\tau+1$, respectively, where τ is an uncountable regular cardinal. Then for any $\lambda<\tau$ there exists $\lambda^{*}<\tau$ such that $x_{\alpha} \star y_{\lambda} \neq x_{\beta} \star y_{\gamma}$ for any $\alpha, \beta, \gamma \geq \lambda^{*}$.

Proof. Assume the contrary. Then we can select non-decreasing sequences $\left\langle\alpha_{n}\right\rangle_{n<\omega}$ and $\left\langle\beta_{n}\right\rangle_{n<\omega}$ of elements of τ and $\left\langle\gamma_{n}\right\rangle_{n<\omega}$ of elements of $\tau+1$ such that
(1) $x_{\alpha_{n}} \star y_{\lambda}=x_{\beta_{n}} \star y_{\gamma_{n}}$;
(2) $\lim _{n \rightarrow \infty} x_{\alpha_{n}}=\lim _{n \rightarrow \infty} x_{\beta_{n}}=p$ for some $p \in G$;
(3) $\gamma_{n}>\lambda$.

Put $q=\lim _{n \rightarrow \infty} y_{\gamma_{n}}$. The limit exists by countable compactness of Y. Recall that $y_{\alpha} \leftrightarrow \alpha$ is a homeomorphism of Y with $\tau+1$. Applying this fact and (3), we have $q>y_{\lambda}$.

By continuity of $\star, \lim _{n \rightarrow \infty} x_{\alpha_{n}} \star y_{\lambda}=p \star y_{\lambda}$ and $\lim _{n \rightarrow \infty} x_{\beta_{n}} \star y_{\gamma_{n}}=p \star q$. By (1), $p \star y_{\lambda}=p \star q$. Therefore, $y_{\lambda}=q$, contradicting $q>y_{\lambda}$.

Lemma 2.3. Let G be a topological group and $X=\left\{x_{\alpha}: \alpha<\tau\right\}, Y=$ $\left\{y_{\alpha}: \alpha<\tau+1\right\} \subset G$ closed and homeomorphic to τ and $\tau+1$, respectively, where τ is an infinite regular cardinal. Then for any $\lambda<\tau$ there exists $\lambda^{*}<\tau$ such that $x_{\lambda} \star y_{\alpha} \neq x_{\beta} \star y_{\lambda}$ for any $\alpha, \beta \geq \lambda^{*}$.

Proof. Assume the contrary. Then we can select non-decreasing sequences $\left\langle\alpha_{i}\right\rangle_{i<\tau}$ of elements of $\tau+1$ and $\left\langle\beta_{i}\right\rangle_{i<\tau}$ of elements of τ such that
(1) $x_{\lambda} \star y_{\alpha_{i}}=x_{\beta_{i}} \star y_{\lambda}$;
(2) $\left\langle\alpha_{i}\right\rangle_{i<\tau}$ and $\left\langle\beta_{i}\right\rangle_{i<\tau}$ converge to τ.

By (2), $\left\langle y_{\alpha_{i}}\right\rangle_{i<\tau}$ converges to y_{τ}. Therefore, $\left\langle x_{\lambda} \star y_{\alpha_{i}}\right\rangle_{i<\tau}$ converges to $x_{\lambda} \star y_{\tau}$. By (1), $\left\langle x_{\beta_{i}} \star y_{\lambda}\right\rangle_{i<\tau}$ also converges to $x_{\lambda} \star y_{\tau}$. By (2), we may assume that $\beta_{i} \neq \beta_{j}$ for distinct $i, j \in \tau$. Therefore, $x_{\lambda} \star y_{\tau}$ is a complete accumulation point for the set $X \star y_{\lambda}=\left\{x_{\alpha} \star y_{\lambda}: \alpha<\tau\right\}$, contradicting the fact that X is closed in G.

Lemma 2.4. Let G be a topological group and $X=\left\{x_{\alpha}: \alpha<\tau\right\}, Y=$ $\left\{y_{\alpha}: \alpha<\tau+1\right\} \subset G$ closed and homeomorphic to τ and $\tau+1$, respectively,
where τ is an infinite regular cardinal. Then for any $\lambda<\tau$ there exists $\lambda^{*}<\tau$ such that $x_{\lambda} \star y_{\lambda} \neq x_{\alpha} \star y_{\beta}$ for any $\alpha, \beta \geq \lambda^{*}$.

Proof. Assume the contrary. Then we can select non-decreasing sequences $\left\langle\alpha_{i}\right\rangle_{i<\tau}$ of elements of τ and $\left\langle\beta_{i}\right\rangle_{i<\tau}$ of elements of $\tau+1$ such that
(1) $x_{\lambda} \star y_{\lambda}=x_{\alpha_{i}} \star y_{\beta_{i}}$;
(2) $\left\langle\alpha_{i}\right\rangle_{i<\tau}$ and $\left\langle\beta_{i}\right\rangle_{i<\tau}$ converge to τ.

By (1), the sequence $\left\langle x_{\alpha_{i}} \star y_{\beta_{i}}\right\rangle_{i<\tau}$ converges to $x_{\lambda} \star y_{\lambda}$. By (2), $\left\langle y_{\beta_{i}}\right\rangle_{i<\tau}$ converges to y_{τ}. Therefore, $\left\langle\left(x_{\alpha_{i}} \star y_{\beta_{i}}\right) \star y_{\beta_{i}}^{-1}\right\rangle_{i<\tau}$ converges to $\left(x_{\lambda} \star y_{\lambda}\right) \star$ y_{τ}^{-1}. By (2), we may assume that $\alpha_{i} \neq \alpha_{j}$ for distinct $i, j<\tau$. Therefore, $\left(x_{\lambda} \star y_{\lambda}\right) \star y_{\tau}^{-1}$ is a complete accumulation point for the set $\left\{x_{\alpha_{i}}: i<\tau\right\}$, contradicting the fact that X is closed in G.

Lemma 2.5. Let G be a topological group and $X, Y \subset G$ closed and homeomorphic to τ and $\tau+1$, respectively, where τ is an uncountable regular cardinal. Then there exist $X^{\prime}, Y^{\prime} \subset G$ closed and homeomorphic to τ and $\tau+1$, respectively, such that \star is one-to-one on $X^{\prime} \times Y^{\prime}$.

Proof. Put $X=\left\{x_{\alpha}: \alpha<\tau\right\}$ and $Y=\left\{y_{\alpha}: \alpha<\tau+1\right\}$. We will construct $X^{\prime}=\left\{x_{\lambda_{\alpha}}: \alpha<\tau\right\}$ and $Y^{\prime}=\left\{y_{\lambda_{\alpha}}: \alpha<\tau+1\right\}$ inductively.

Assume that for all $\beta<\alpha<\tau$, we have defined λ_{β} and λ_{β}^{*} that meet the following conditions:
(1) $\lambda_{\gamma}^{*}<\lambda_{\beta}^{*}<\tau$ for $\gamma<\beta$;
(2) $\lambda_{\beta}=\sup \left\{\lambda_{\gamma}^{*}: \gamma<\beta\right\}$ for $\beta>0$;
(3) $\lambda_{\beta}<\lambda_{\beta}^{*}$;
(4) $x_{\lambda_{\beta}} \star y \neq z \star w$ if $z \in\left\{x_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\tau\right\}$ and $y, w \in\left\{y_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\right.$ $\tau+1\} ;$
(5) $x \star y_{\lambda_{\beta}} \neq z \star w$ if $x, z \in\left\{x_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\tau\right\}$ and $w \in\left\{y_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\right.$ $\tau+1\} ;$
(6) $x_{\lambda_{\beta}} \star y \neq z \star w_{\lambda_{\beta}}$ if $z \in\left\{x_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\tau\right\}$ and $y \in\left\{y_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\right.$ $\tau+1\} ;$
(7) $x_{\lambda_{\beta}} \star y_{\lambda_{\beta}} \neq z \star w$ if $z \in\left\{x_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\tau\right\}$ and $w \in\left\{y_{\gamma}: \lambda_{\beta}^{*} \leq \gamma<\right.$ $\tau+1\}$.
If $\alpha=0$ put $\lambda_{\alpha}=0$. If $\alpha>0$ put $\lambda_{\alpha}=\sup \left\{\lambda_{\beta}^{*}: \beta<\alpha\right\}$. Note that λ_{α} is limit if α is limit, and $\lambda_{\alpha}=\lambda_{\gamma}^{*}$ if $\alpha=\gamma+1$. Let λ_{α}^{*} be an ordinal strictly between λ_{α} and τ that meets requirements (4)-(7). Such an ordinal exists by Lemmas 2.1-2.4. Put $\lambda_{\tau}=\tau$. Put $X^{\prime}=\left\{x_{\lambda_{\alpha}}: \alpha<\tau\right\}$ and $Y^{\prime}=\left\{y_{\lambda_{\alpha}}: \alpha<\right.$ $\tau+1\}$. By (2), X^{\prime} and Y^{\prime} are closed in X and Y, respectively, and therefore in G. As τ is a regular cardinal, X^{\prime} and Y^{\prime} are homeomorphic to τ and $\tau+1$, respectively. To finish the proof we need to show that $x_{\lambda_{\alpha_{1}}} \star y_{\lambda_{\beta_{1}}} \neq x_{\lambda_{\alpha_{2}}} \star y_{\lambda_{\beta_{2}}}$ whenever $\left\langle\alpha_{1}, \beta_{1}\right\rangle \neq\left\langle\alpha_{2}, \beta_{2}\right\rangle$. We have a number of cases to consider.

- Case [$\alpha_{1}<\min \left\{\beta_{1}, \alpha_{2}, \beta_{2}\right\}$ or $\alpha_{2}<\min \left\{\alpha_{1}, \beta_{1}, \beta_{2}\right\}$]. Assume α_{1} is the smallest. By (1)-(3), $\lambda_{\beta_{1}}, \lambda_{\alpha_{2}}, \lambda_{\beta_{2}} \geq \lambda_{\alpha_{1}}^{*}$. Now apply (4).
- Case $\left[\beta_{1}<\min \left\{\alpha_{1}, \alpha_{2}, \beta_{2}\right\}\right.$ or $\left.\beta_{2}<\min \left\{\alpha_{1}, \beta_{1}, \alpha_{2}\right\}\right]$. Apply (5).
- Case $\left[\alpha_{1}=\beta_{2}<\min \left\{\beta_{1}, \alpha_{2}\right\}\right.$ or $\left.\alpha_{2}=\beta_{1}<\min \left\{\alpha_{1}, \beta_{2}\right\}\right]$. Apply (6).
- Case $\left[\alpha_{1}=\beta_{1}<\min \left\{\alpha_{2}, \beta_{2}\right\}\right.$ or $\left.\alpha_{2}=\beta_{2}<\min \left\{\alpha_{1}, \beta_{1}\right\}\right]$. Apply (7).
- Case $\left[\alpha_{1}=\alpha_{2} \leq \min \left\{\beta_{1}, \beta_{2}\right\}\right.$ or $\left.\beta_{1}=\beta_{2} \leq \min \left\{\alpha_{1}, \alpha_{2}\right\}\right]$. Apply the fact that multiplication by a scalar is an automorphism.

Theorem 2.6. Let G be a topological group and τ an uncountable regular cardinal. If τ and $\tau+1$ are embeddable in G as closed subspaces then $\tau \times$ $(\tau+1)$ is embeddable in G as a closed subspace.

Proof. By Lemma 2.5, there exist disjoint and closed $X=\left\{x_{\alpha}: \alpha<\tau\right\}$, $Y=\left\{y_{\alpha}: \alpha<\tau+1\right\} \subset G$ such that \star is one-to-one on $X \times Y$. To reach the conclusion of the theorem, it suffices to show that $\left.\star\right|_{X \times Y}$ is a closed map and $X \star Y$ is closed in G. Assume the conclusion is not true. This means that there exists a point in the remainder of the Stone-Čech compactification $\beta(X \times Y)=\beta X \times Y$ that is glued up with a point in G under the continuous extension of $\left.\star\right|_{X \times Y}$ over $\beta(X \times Y)$. This point from the remainder must be the complete accumulation point for $X \times\left\{y_{\alpha}\right\}$ in $\beta X \times Y$, for some $\alpha \leq \tau$. That is, $\left.\star\right|_{X \times\left\{y_{\alpha}\right\}}$ is not a closed map or $X \star y_{\alpha}$ is not closed in G. Since multiplication by a scalar is an automorphism and X is closed in G, this cannot happen.

Corollary 2.7. Let G be a topological group and τ an uncountable regular cardinal. If τ and $\tau+1$ embed in G as closed subspaces then G is not normal.
3. Topological groups generated by $\tau+1$. In the next section we will prove that if an Abelian topological group contains an ordinal τ, where τ is a regular cardinal or the immediate successor of such, then G contains $\tau \times \tau$ provided the order of every non-neutral element of G is greater than 3 . In this section we will justify this requirement on the order. A particular case of a more general result of this section states that if an Abelian group G is algebraically generated by $\omega_{1}+1$ and $o(G) \leq 3$ then $\left(\omega_{1}+1\right) \times\left(\omega_{1}+1\right)$ is not embeddable in G.

Lemma 3.1. Let G be an Abelian topological group algebraically generated by $\tau+1 \subset G$ (or by $\tau \subset G$), where τ is an uncountable regular cardinal. Suppose $X=\left\{x_{\alpha}: \alpha<\tau\right\} \subset G$ is homeomorphic to τ. Then there exist a non-negative integer $K_{X}, a \tau$-sized $J_{X} \subset \tau$, and $g_{X} \in G$ such that for any $\alpha \in J_{X}, x_{\alpha}=g_{X} \star c_{\alpha}$, where c_{α} can be represented as the \star-product of K_{X}-many ordinals in the range $[\alpha, \tau)$.

Proof. We will carry out the proof for the case when G is algebraically generated by $\tau+1$. For each $\alpha<\tau$ fix a triple $\left\langle A_{\alpha}, B_{\alpha}, C_{\alpha}\right\rangle$ of non-negative integers and a triple $\left\langle a_{\alpha}, b_{\alpha}, c_{\alpha}\right\rangle$ of elements of G such that
(1) $x_{\alpha}=a_{\alpha} \star b_{\alpha} \star c_{\alpha}$;
(2) a_{α} can be represented as the \star-product of A_{α}-many ordinals strictly less than α;
(3) $b_{\alpha}=\tau^{B_{\alpha}}$;
(4) c_{α} can be represented as the \star-product of C_{α}-many ordinals in the range $[\alpha, \tau)$.
Since G is Abelian and algebraically generated by $\tau+1$, such triples exist.
Since τ is regular and uncountable, there exist stationary $J_{0} \subset \tau$ and a triple $\langle A, B, C\rangle$ such that $\left\langle A_{\alpha}, B_{\alpha}, C_{\alpha}\right\rangle=\langle A, B, C\rangle$ for any $\alpha \in J_{0}$. For every $\alpha \in J_{0}$, fix an A-long sequence $\left\langle a_{\alpha}(i): i \in A\right\rangle$ of ordinals less than α such that $a_{\alpha}=a_{\alpha}(0) \star \cdots \star a_{\alpha}(A-1)$. Such sequences exist by (2). Define a regressive function $f_{0}: J_{0} \rightarrow \tau$ by letting $f_{0}(\alpha)=a_{\alpha}(0)$. Since J_{0} is stationary, τ is an uncountable regular cardinal, and f_{0} is regressive, we can apply the pressing-down lemma (see, for example, [KUN]). Applying the pressing-down lemma to J_{0}, τ, and f_{0}, we find stationary $J_{1} \subset J_{0}$ such that $a_{\alpha}(0)=a_{\beta}(0)$ for any $\alpha, \beta \in J_{1}$. Similarly, for each $0<i<A$, we find a stationary $J_{i} \subset J_{i-1}$ such that $a_{\alpha}(i)=a_{\beta}(i)$ for any $\alpha, \beta \in J_{i}$. Put $J_{X}=J_{A-1}$. It is clear that J_{X} is τ-sized and $a_{\alpha}=a_{\beta}=a$ for any $\alpha, \beta \in J_{X}$ and some fixed $a \in G$. Put $g_{X}=a \star \tau^{B}$ and $K_{X}=C$. By (1) and (4), g_{X}, K_{X}, and J_{X} are as desired.

In the next statement we will use a classical fact of algebra that if G is Abelian and $o(G)=N$ (that is, the maximum order is N) then $o(g)$ divides N for every $g \in G$.

Lemma 3.2. Let G be an Abelian topological group algebraically generated by $\tau+1 \subset G$ (or by $\tau \subset G)$, where τ is an uncountable regular cardinal. Suppose $X=\left\{x_{\alpha}: \alpha<\tau\right\} \subset G$ is homeomorphic to τ. Then there exist a natural number K_{X}, an unbounded closed subset I_{X} of τ, and $g_{X} \in G$ such that $x_{\alpha}=g_{X} \star \alpha^{K_{X}}$ for every $\alpha \in I_{X}$. If, additionally, $o(G)=N$, then K_{X} can be chosen strictly between 0 and N.

Proof. We will consider the case when G is algebraically generated by $\tau+1$. Let g_{X}, J_{X}, and K_{X} be as in the conclusion of Lemma 3.1.

Claim. There exists a τ-sized $I \subset \tau$ such that $x_{\lambda}=g_{X} \star \lambda^{K_{X}}$ for any $\lambda \in I$.

To prove the claim, fix any $\alpha<\tau$. We need to find $\lambda \geq \alpha$ such that $x_{\lambda}=g_{X} \star \lambda^{K_{X}}$. For this fix a strictly increasing sequence $\left\langle\alpha_{n}\right\rangle_{n}$ of ordinals in $J_{X} \cap[\alpha, \tau)$ such that $x_{\alpha_{n}}=g_{X} \star x_{n, 1} \star \cdots \star x_{n, K_{X}}$, where $\alpha_{n} \leq x_{n, i}<$
α_{n+1}. Such a sequence exists by Lemma 3.1. Since $\alpha<\alpha_{n}<\tau$, we have $\lim _{n \rightarrow \infty} \alpha_{n}=\lambda>\alpha$. By continuity of $\star, \lim _{n \rightarrow \infty} g_{X} \star x_{n, 1} \star \cdots \star x_{n, K_{X}}=$ $g_{X} \star \lambda^{K_{X}}$. Since $x_{\gamma} \leftrightarrow \gamma$ is a homeomorphism of X with τ, and $\alpha_{n} \rightarrow \lambda$, we have $x_{\alpha_{n}} \rightarrow x_{\lambda}$. Thus, $x_{\lambda}=g_{X} \star \lambda^{K_{X}}$. The claim is proved.

Let I_{X} be the closure of I in τ. By the same argument as in the Claim, we can show that $x_{\alpha}=g_{X} \star \alpha^{K_{X}}$ for all $\alpha \in I_{X}$.

To show that $K_{X}>0$, assume the contrary. Then $x_{\alpha}=g_{X} \star \alpha^{K_{X}}=g_{X}$ for all $\alpha \in I$. This contradicts the fact that $x_{\alpha} \leftrightarrow \alpha$ is a homeomorphism of X with τ.

Finally, let $o(G)=N$. Since $g^{N}=e_{G}$ for all $g \in G$, we can assume without loss of generality that $K_{X}<N$.

Proposition 3.3. Let G be an Abelian topological group algebraically generated by $\tau+1 \subset G$, where τ is an uncountable regular cardinal. Suppose $o(G) \leq N$ and $S_{1}, \ldots, S_{N} \subset G$ are homeomorphic to τ. If c is the complete accumulation point for each of S_{1}, \ldots, S_{N} then S_{1}, \ldots, S_{N} are not disjoint.

Proof. Suppose the conclusion is true for all natural numbers less than N. Let $o(G)=N$. For each $i=1, \ldots, N$, let $I_{S_{i}}, K_{S_{i}}, g_{S_{i}}$ be as in the conclusion of Lemma 3.2. Since $0<K_{S_{i}}<N$ for each i, there exist distinct $i, j \in$ $\{1, \ldots, N\}$ such that $K_{S_{i}}=K_{S_{j}}=K$. By continuity of \star, we have $c=$ $g_{S_{i}} \star \tau^{K_{S_{i}}}=g_{S_{j}} \star \tau^{K_{S_{j}}}$. Therefore, $g_{S_{i}}=g_{S_{j}}=g^{*}$. Since $I_{S_{i}}, I_{S_{j}}$ are τ-sized countably compact subspaces of τ, there exists $\alpha \in I_{S_{i}} \cap I_{S_{j}}$. Therefore, $g^{*} \star \alpha^{K} \in S_{i} \cap S_{j}$.

Corollary 3.4. Let G be an Abelian group algebraically generated by $\tau+1 \subset G$, where τ is an uncountable regular cardinal. If $o(G) \leq 2^{N}-1$ then $\prod_{i \in N}(\tau+1)$ is not embeddable in G.

Proof. Observe that the topological power of N copies of $\tau+1$ contains $2^{N}-1$ disjoint copies of τ that converge to the corner point $\langle\tau, \ldots, \tau\rangle$. Now apply Proposition 3.3.

The results of this section give rise to the following questions.
QUESTION 3.5. Let G be an Abelian group generated by ω_{1} and $o(G) \leq 3$. Is it true that $\omega_{1} \times \omega_{1}$ is not embeddable in G ?

Question 3.6. Can Proposition 3.3 and/or Corollary 3.4 be proved without assuming commutativity?
4. Topological powers of ordinals in topological groups. In several lemmas we will deal with the expression $P=P\left(\left\langle x_{i}: i \in N\right\rangle\right)=$

we denote the value of $P\left(\left\langle x_{i}: i \in N\right\rangle\right)$ when

$$
x_{i}= \begin{cases}e_{G} & \text { if } i \in N \backslash S \\ \lambda & \text { if } i \in R \\ \alpha_{i} & \text { if } i \in S \backslash R\end{cases}
$$

For example, if $N=4$ then $P\left(\{0,2,3\},\{0,3\}, \lambda,\left\langle x_{2}\right\rangle\right)=\lambda^{2^{3}} \star x_{2}^{2^{2}} \star e_{G}^{2^{1}} \star$ $\lambda^{2^{0}}=\lambda^{8} \star x_{2}^{4} \star \lambda$.

In the next lemma we will use the following arithmetical facts.
(1) $2^{N-1}+\cdots+2^{0}=2^{N}-1$.
(2) Let $A=a_{n} 2^{n}+\cdots+a_{0} 2^{0}$ and $B=b_{n} 2^{n}+\cdots+b_{0} 2^{0}$, where $a_{i}, b_{i} \in$ $\{0,1\}$. If $A=B$ then $a_{i}=b_{i}$ for all i.
To prove our main results of this section (Theorems 4.7 and 4.8) we will follow the strategy of Section 2. The analogues of Lemmas 2.1-2.4 are particular cases of Lemma 4.1.

Lemma 4.1. Suppose G is an Abelian topological group, the order of every non-neutral element of G is greater than $2^{N}-1$, and $\tau \subset G$ is an uncountable regular cardinal. Suppose $\lambda<\tau, S \subset\{0, \ldots, N-1\}$, and $L, R \subset S$ are distinct. Then there exists $\lambda^{*}<\tau$ such that

$$
P\left(S, L, \lambda,\left\langle x_{i}: i \in S \backslash L\right\rangle\right) \neq P\left(S, R, \lambda,\left\langle y_{i}: i \in S \backslash R\right\rangle\right)
$$

whenever $x_{i}, y_{j} \in \tau \backslash \lambda^{*}$.
Proof. Assume the conclusion of the lemma is not true. Then we can find strictly increasing sequences $\left\langle\alpha_{n, i}\right\rangle_{n},\left\langle\beta_{n, j}\right\rangle_{n}$ for $i \in S \backslash L$ and $j \in S \backslash R$, all converging to the same limit γ, such that

P1. $\lambda<\gamma<\tau$;
P2. $P\left(S, L, \lambda,\left\langle\alpha_{n, i}: i \in S \backslash L\right\rangle\right)=P\left(S, R, \lambda,\left\langle\beta_{n, i}: i \in S \backslash R\right\rangle\right)$ for all n. Let $L_{\lambda}=i_{N-1} 2^{N-1}+\cdots+i_{0} 2^{0}$, where $i_{k}=0$ if $k \notin L$ and $i_{k}=1$ if $k \in L$. That is, L_{λ} is the exponent of λ on the left side. Similarly, we define R_{λ}. Let $E=j_{N-1} 2^{N-1}+\cdots+j_{0} 2^{0}$, where $j_{k}=1$ if $k \in N \backslash S$ and $j_{k}=0$ if $k \in S$. That is, E is the exponent of e_{G}.

By continuity and commutativity of \star, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(S, L, \lambda,\left\langle\alpha_{n, i}: i \in S \backslash L\right\rangle\right)=\lambda^{L_{\lambda}} \star \gamma^{2^{N}-1-E-L_{\lambda}} \\
& \lim _{n \rightarrow \infty} P\left(S, R, \lambda,\left\langle\beta_{n, i}: i \in S \backslash R\right\rangle\right)=\lambda^{R_{\lambda}} \star \gamma^{2^{N}-1-E-R_{\lambda}}
\end{aligned}
$$

By P2, we have $\lambda^{L_{\lambda}} \star \gamma^{2^{N}-1-E-L_{\lambda}}=\lambda^{R_{\lambda}} \star \gamma^{2^{N}-1-E-R_{\lambda}}$. By the above mentioned arithmetical facts, if $R_{\lambda}=L_{\lambda}$ then $L=R$, contradicting the hypothesis. Therefore, we may assume that $L_{\lambda}>R_{\lambda}$. Then we have $\lambda^{L_{\lambda}-R_{\lambda}}=$ $\gamma^{L_{\lambda}-R_{\lambda}}$, that is, $\left(\lambda \star \gamma^{-1}\right)^{L_{\lambda}-R_{\lambda}}=e_{G}$. Thus, $o\left(\lambda \star \gamma^{-1}\right) \leq L_{\lambda}-R_{\lambda} \leq 2^{N}-1$. Therefore, $\lambda \star \gamma^{-1}=e_{G}$ and $\lambda=\gamma$, contradicting P1.

Lemma 4.2. Suppose G is an Abelian topological group, the order of every non-neutral element of G is greater than $2^{N}-1$, and $\tau+1 \subset G$, where τ is an infinite regular cardinal. Suppose $\lambda<\tau, S \subset\{0, \ldots, N-1\}$, and $L, R \subset S$ are distinct. Then there exists $\lambda^{*}<\tau$ such that

$$
P\left(S, L, \lambda,\left\langle x_{i}: i \in S \backslash L\right\rangle\right) \neq P\left(S, R, \lambda,\left\langle y_{i}: i \in S \backslash R\right\rangle\right)
$$

whenever $x_{i}, y_{j} \in(\tau+1) \backslash \lambda^{*}$.
Proof. Assume the conclusion of the lemma is not true. Then we can find non-decreasing sequences $\left\langle\alpha_{\gamma, i}\right\rangle_{\gamma},\left\langle\beta_{\gamma, j}\right\rangle_{\gamma}$ for $i \in S \backslash L$ and $j \in S \backslash R$, all converging to τ, such that

$$
P\left(S, L, \lambda,\left\langle\alpha_{\gamma, i}: i \in S \backslash L\right\rangle\right)=P\left(S, R, \lambda,\left\langle\beta_{\gamma, i}: i \in S \backslash R\right\rangle\right)
$$

for all γ. The rest of the argument is as in Lemma 4.1.
We denote by \star^{N-1} the map from $\prod_{i \in N} G$ to G defined by

$$
\star^{N-1}\left(\left\langle x_{0}, \ldots, x_{N-1}\right\rangle\right)=x_{0} \star \cdots \star x_{N-1} .
$$

Lemma 4.3. Suppose G is an Abelian topological group, the order of every non-neutral element of G is greater than $2^{N}-1$, and $\tau \subset G$ is an uncountable regular cardinal. Then there exists $T \subset \tau$ homeomorphic to τ such that \star^{N-1} is one-to-one on $\prod_{i \in N}\left\{t^{2^{i}}: t \in T\right\}$.

Proof. We will construct $T=\left\{\lambda_{\alpha}: \alpha<\tau\right\}$ inductively. Assume that for all $\beta<\alpha$, we have defined λ_{β} and λ_{β}^{*} that meet the following conditions:
(1) $\lambda_{\gamma}^{*}<\lambda_{\beta}^{*}<\tau$ for all $\gamma<\beta$;
(2) $\lambda_{\beta}=\sup \left\{\lambda_{\gamma}^{*}: \gamma<\beta\right\}$;
(3) $\lambda_{\beta}<\lambda_{\beta}^{*}$;
(4) $P\left(S, L, \lambda_{\beta},\left\langle x_{i}: i \in S \backslash L\right\rangle\right) \neq P\left(S, R, \lambda_{\beta},\left\langle y_{i}: i \in S \backslash R\right\rangle\right)$ whenever $x_{i}, y_{j} \geq \lambda_{\beta}^{*}, S \subset N$, and $L, R \subset S$ are distinct.
If $\alpha=0$ put $\lambda_{\alpha}=0$. If $\alpha>0$ put $\lambda_{\alpha}=\sup \left\{\lambda_{\beta}^{*}: \beta<\alpha\right\}$. Let λ_{α}^{*} be any ordinal strictly between λ_{α} and τ that meets condition (4). Such an ordinal exists by Lemma 4.1.

By (1)-(3), $T=\left\{\lambda_{\alpha}: \alpha<\tau\right\}$ is homeomorphic to τ. To finish the proof we need to show that $P\left(\left\langle x_{i}: i \in N\right\rangle\right) \neq P\left(\left\langle y_{i}: i \in N\right\rangle\right)$ whenever $\left\langle x_{i}: i \in N\right\rangle \neq\left\langle y_{i}: i \in N\right\rangle$ and $x_{i}, y_{i} \in T$.

To prove this, let $S \subset N$ be the set of all indices i such that $x_{i} \neq y_{i}$. Put $\lambda=\min \left\{x_{i}, y_{i}: i \in S\right\}$. Let $L \subset S$ be the set of all indices i such that $x_{i}=\lambda$. Let $R \subset S$ be the set of all indices i such that $y_{i}=\lambda$. Since λ exists, R or L is not empty. Then $R \neq L$, since otherwise R and L would be in the complement of S. By the definition of $S, x_{i}=y_{i}$ for all $i \in N \backslash S$. Therefore, the equality $P\left(\left\langle x_{i}: i \in N\right\rangle\right)=P\left(\left\langle y_{i}: i \in N\right\rangle\right)$ is equivalent to $P\left(S, L, \lambda,\left\langle x_{i}: i \in S \backslash L\right\rangle\right)=P\left(S, R, \lambda,\left\langle y_{i}: i \in S \backslash R\right\rangle\right)$. By the definition of λ, if $i \in S \backslash R$ then $y_{i}>\lambda$. By (1)-(3), $y_{i} \geq \lambda^{*}$. Similarly, $x_{i} \geq \lambda^{*}$ for
all $i \in S \backslash L$. Applying (4), we conclude that $P\left(S, L, \lambda,\left\langle x_{i}: i \in S \backslash L\right\rangle\right) \neq$ $P\left(S, R, \lambda,\left\langle y_{i}: i \in S \backslash R\right\rangle\right)$.

Lemma 4.4. Suppose G is an Abelian topological group, the order of every non-neutral element of G is greater than $2^{N}-1$, and $\tau+1 \subset G$, where τ is an infinite regular cardinal. Then there exists $T \subset \tau+1$ homeomorphic to $\tau+1$ such that \star^{N-1} is one-to-one on $\prod_{i \in N}\left\{t^{2^{i}}: t \in T\right\}$.

Proof. The proof is word by word that of Lemma 4.3 except that $T=$ $\left\{\lambda_{\beta}: \beta<\tau+1\right\}$, where $\lambda_{\tau}=\tau$. For $\beta<\tau, \lambda_{\beta}$ is constructed as in Lemma 4.3 with reference to Lemma 4.2 instead of Lemma 4.1.

To state and prove our next statement we need a bit more terminology. Let τ be an uncountable regular cardinal. A set $L \subset \prod_{i \in N} \tau$ is a τ-line if there exist a non-empty subset $S \subset N$ and a sequence $\left\langle\lambda_{i}: i \in N \backslash S\right\rangle$ such that $L=\left\{\mathbf{x}_{\alpha}: \alpha<\tau\right\}$, where $\mathbf{x}_{\alpha}(i)=\alpha$ if $i \in S$ and $\mathbf{x}_{\alpha}(i)=\lambda_{i}$ if $i \in N \backslash S$. If a space X is a continuous one-to-one image of $\prod_{i \in N} \tau$ then τ-lines in X are the images of τ-lines in $\prod_{i \in N} \tau$ under the map under consideration.

Proposition 4.5. Let f be a continuous one-to-one function on $\prod_{i \in N} \tau$, where τ is an uncountable regular cardinal. Suppose f is a homeomorphism on every τ-line. Then there exists $\lambda<\tau$ such that f is a homeomorphism on $\prod_{i \in N}(\tau \backslash \lambda)$.

Proof. Assume the contrary and let \tilde{f} be the continuous extension of f over $\prod_{i \in N}(\tau+1)$. Assume we have defined $\alpha_{k-1}<\tau, \mathbf{x}_{k-1} \in\left[\prod_{i \in N}(\tau+1 \backslash\right.$ $\left.\left.\alpha_{k-1}\right)\right] \backslash\left[\prod_{i \in N}\left(\tau \backslash \alpha_{k-1}\right)\right]$, and $\mathbf{p}_{k-1} \in \prod_{i \in N}\left(\tau \backslash \alpha_{k-1}\right)$.

Step $k<\omega$. Let α_{k} be any ordinal below τ and above the maximum of the set $\left\{\mathbf{x}_{k-1}(0), \mathbf{p}_{k-1}(0), \ldots, \mathbf{x}_{k-1}(N-1), \mathbf{p}_{k-1}(N-1)\right\} \backslash\{\tau\}$. Since \tilde{f} is one-to-one and not a homeomorphism on $\prod_{i \in N}\left(\tau \backslash \alpha_{k}\right)$, there exists $\mathbf{x}_{k} \in\left[\prod_{i \in N}\left(\tau+1 \backslash \alpha_{k}\right)\right] \backslash\left[\prod_{i \in N}\left(\tau \backslash \alpha_{k}\right)\right]$ such that $\widetilde{f}\left(\mathbf{x}_{k}\right)=f\left(\mathbf{p}_{k}\right)$ for some $\mathbf{p}_{k} \in \prod_{i \in N}\left(\tau \backslash \alpha_{k}\right)$.

We may assume that there exists a non-empty subset T of N such that for any $k, \mathbf{x}_{k}(i)=\tau$ iff $i \in T$. Put $p=\lim _{n \rightarrow \infty} \alpha_{n}$. By construction, $\lim _{n \rightarrow \infty} \mathbf{p}_{n}(i)=p$ for all $i \in N$ and $\lim _{n \rightarrow \infty} \mathbf{x}_{n}(j)=p$ for all $j \in N \backslash T$. We have $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x}$, where $\mathbf{x}(i)=\tau$ if $i \in T$ and $\mathbf{x}(i)=p$ if $i \in N \backslash T$. Put $\mathbf{p}=\langle p: i \in N\rangle$. Then \mathbf{p} belongs to the τ-line $L=\left\{\mathbf{y}_{\alpha}: \alpha<\tau\right\}$, where $\mathbf{y}_{\alpha}(i)$ is τ if $i \in T$ and p otherwise. The point \mathbf{x} belongs to the closure of L in $\prod_{i \in N}(\tau+1)$. By continuity of $\widetilde{f}, \widetilde{f}(\mathbf{x})=f(\mathbf{p})$. Therefore, f is not a homeomorphism on L, contradicting the hypothesis.

Lemma 4.6. Suppose G is an Abelian topological group, the order of every non-neutral element of G is greater than $N>1$, and $\tau \subset G$ is an uncountable regular cardinal. Then there exists $T \subset \tau$ such that $\left\{\alpha^{N}: \alpha \in T\right\}$ is homeomorphic to τ.

Proof. Since the order of every non-neutral element is greater than N, $\alpha^{N} \neq \beta^{N}$ for distinct $\alpha, \beta \in \tau$. Therefore, $\left\{\alpha^{N}: \alpha<\tau\right\}$ is a continuous one-to-one image of the diagonal $\Delta=\{\langle\alpha: i \in N\rangle: \alpha<\tau\}$ of $\prod_{i \in N} \tau$ under \star^{N-1}. If \star^{N-1} is a homeomorphism on Δ then we are done. Otherwise, there exists $\lambda<\tau$ such that $f(\langle\lambda: i \in N\rangle)=f(\langle\tau: i \in N\rangle)$, where f is the continuous extension of \star^{N-1} over $\prod_{i \in N}(\tau+1)$. Then $\left\{\alpha^{N}: \lambda<\alpha<\tau\right\}$ is naturally homeomorphic to τ. Put $T=\tau \backslash(\lambda+1)$.

Theorem 4.7. Let G be an Abelian topological group and $\tau \subset G$ an infinite regular cardinal. If the order of every non-neutral element of G is greater than $2^{N}-1$ then $\prod_{i \in N} \tau$ is embeddable in G.

Proof. If $\tau=\omega$ then the conclusion holds since $\prod_{i \in N} \omega$ is homeomorphic to ω. Assume τ is uncountable. By Lemma 4.3, we may assume that \star^{N-1} is one-to-one on $X=\prod_{i \in N}\left\{\alpha^{2^{i}}: \alpha<\tau\right\}$. By Proposition 4.5, it suffices to show that \star^{N-1} is a homeomorphism on every τ-line of X. If L is a τ-line in X then there exist a non-empty $K \subset N$ and $\left\langle g_{i}: i \in N \backslash K\right\rangle$ such that $L=\left\{\mathbf{x}_{\alpha}: \alpha<\tau\right\}$, where $\mathbf{x}_{\alpha}(i)=\alpha^{2^{i}}$ if $i \in K$ and $\mathbf{x}_{\alpha}(i)=g_{i}^{2^{i}}$ if $i \in N \backslash K$. Put

$$
E=\sum_{i \in N} e_{i} 2^{i}, \quad \text { where } e_{i}=1 \text { if } i \in K \text { and } e_{i}=0 \text { if } i \in N \backslash K
$$

$g^{*}=g_{N-1}^{2^{N-1}} \star \cdots \star g_{0}^{2^{0}}, \quad$ where g_{i} is e_{G} if $i \in K$ and is as above if $i \in N \backslash K$.
Then $\star^{N-1}(L)=\left\{g^{*} \star \alpha^{E}: \alpha<\tau\right\}$. By Lemma 4.6, we may assume that $\alpha^{E} \leftrightarrow \alpha$ is a homeomorphic correspondence of $\left\{\alpha^{E}: \alpha<\tau\right\}$ with τ. Since multiplication by the scalar g^{*} is a homeomorphism of G with itself, we conclude that \star^{N-1} is a homeomorphism on L.

Theorem 4.8. Let G be an Abelian topological group and $\tau+1 \subset G$, where τ an infinite regular cardinal. If the order of every non-neutral element of G is greater than $2^{N}-1$ then $\prod_{i \in N} \tau$ is embeddable in G.

Proof. By Lemma 4.4, we may assume that \star^{N-1} is one-to-one on $X=$ $\prod_{i \in N}\left\{\alpha^{2^{i}}: \alpha<\tau+1\right\}$. Apply the facts that X is compact and is homeomorphic to $\prod_{i \in N}(\tau+1)$.

For our next discussion, a torsion free group is one in which the order of every non-neutral element is infinite.

Corollary 4.9. Let G be a torsion free Abelian group. If ω_{1} embeds in G then G is not hereditarily normal.

Proof. By Theorem 4.7, $\omega_{1} \times \omega_{1}$ embeds in G. Since the former is not hereditarily normal we are done.

Our results naturally lead to the following question.

Question 4.10. Let X be a countably compact non-compact space. Suppose X and βX embed in a topological group G as closed subspaces. Is G not normal? What if "countably compact" is replaced by "non-paracompact topological space"?

References

[COM] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, 1984, 1143-1263.
[ENG] R. Engelking, General Topology, rev. ed., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
[KUN] K. Kunen, Set Theory, North-Holland, 1980.
[PON] L. S. Pontryagin, Continuous Groups, Gostekhizdat, Moscow, 1939 (in Russian); English transl.: Topological Groups, Princeton Univ. Press, Princeton, 1939.
[S-T] B. V. Smith-Thomas, Free topological groups, Gen. Topology Appl. 4 (1974), 51-72.
[TKA] M. G. Tkachenko, Introduction to topological groups, Topology Appl. 86 (1998), 179-231.

Mathematics Department
UNCG
Greensboro, NC 27402, U.S.A.
E-mail: Raushan_Buzyakova@yahoo.com

> Received 1 February 2007;
> in revised form 17 May 2007

[^0]: 2000 Mathematics Subject Classification: 54H12, 54F05.
 Key words and phrases: topological group, space of ordinals.

