z^0-Ideals and some special commutative rings

by

Karim Samei (Hamedan and Tehran)

Abstract. In a commutative ring R, an ideal I consisting entirely of zero divisors is called a torsion ideal, and an ideal is called a z^0-ideal if I is torsion and for each $a \in I$ the intersection of all minimal prime ideals containing a is contained in I. We prove that in large classes of rings, say R, the following results hold: every z-ideal is a z^0-ideal if and only if every element of R is either a zero divisor or a unit, if and only if every maximal ideal in R (in general, every prime z-ideal) is a z^0-ideal, if and only if the sum of any two torsion ideals is either a torsion ideal or R. We give a necessary and sufficient condition for every prime z^0-ideal to be either minimal or maximal. We show that in a large class of rings, the sum of two z^0-ideals is either a z^0-ideal or R and we also give equivalent conditions for R to be a PP-ring or a Baer ring.

1. Introduction. An ideal I of a commutative ring R is called a z-ideal if whenever any two elements of R are contained in the same set of maximal ideals and I contains one of them, then it also contains the other (see [7, 4A.5] for an equivalent definition). These ideals, which are both algebraic and topological objects, were first introduced by Kohls and play a fundamental role in studying the ideal theory of $C(X)$, the ring of continuous real-valued functions on a completely regular Hausdorff space X (see [7]). z-Ideals in general commutative rings were studied by Mason [12]. He proved that maximal ideals, minimal prime ideals and some other important ideals in commutative rings are z-ideals (see [12, p. 281]).

A special case of z-ideals in $C(X)$ consisting entirely of zero divisors are z^0-ideals (see [3]–[5]). An ideal I consisting entirely of zero divisors is called a torsion ideal, and an ideal is called a z^0-ideal if I is torsion and for each $a \in I$ the intersection of all minimal prime ideals containing a is contained in I. z^0-Ideals in general commutative rings were also studied by Azarpanah, Karamzadeh and Rezai [4]; these ideals play a fundamental role in studying
the torsion prime ideals. It was proved that the Jacobson radical of a ring
R is zero if and only if every z^0-ideal is a z-ideal (see [4, Proposition 1.10]).

In this paper we will investigate the properties of ideals consisting en-
tirely of zero divisors, such as z^0-ideals, torsion prime ideals, prime z^0-ideals
and so on.

Throughout, R is a commutative reduced ring with identity. By a reduced
ring we mean a ring without non-zero nilpotent elements. We also say R is
semiprimitive if $\bigcap \text{Max}(R) = (0)$. We denote by Spec($R$), Max($R$) and
Min(R) the spaces of prime ideals, maximal ideals and minimal ideals of R,
respectively. The topology of these spaces is the Zariski topology (see [2]).
The operators cl and int denote the closure and interior. Let

$$
V(a) = \{ P \in \text{Spec}(R) : a \in P \} \quad \text{for all } a \in R,
$$

$$
V(I) = \{ P \in \text{Spec}(R) : I \subseteq P \} \quad \text{for all ideals } I \text{ of } R.
$$

If $S \subseteq \text{Spec}(R)$, we put

$$
V_S(a) = V(a) \cap S, \quad V_S(I) = V(I) \cap S,
$$

$$
M(a) = V(a) \cap \text{Max}(R), \quad M(I) = V(I) \cap \text{Max}(R).
$$

For each $P \in \text{Spec}(R)$, let $O_P = \bigcap_{P' \subseteq P} P'$, where P' ranges over all prime
ideals contained in P. It is well known that if R is a reduced ring, then

$$
O_P = \{ a \in R : \exists b \in R - P \text{ such that } ab = 0 \}
$$

$$
= \{ a \in R : P \in \text{int } V(a) \} \quad \text{(see [18, p. 1482]).}
$$

Suppose that $S = \text{Min}(R)$ and $P_a = \bigcap V_S(a)$. It is known that $P_a = \{ b \in R : \text{Ann}(a) \subseteq \text{Ann}(b) \}$, and it is called a basic z^0-ideal (see [4]). A proper ideal I
is a z^0-ideal if $P_a \subseteq I$ for each $a \in I$ (see [3] and [4]). Clearly, minimal prime
ideals, every intersection of z^0-ideals, and Ann(a) and P_a for each $a \in R$
are z^0-ideals. It is easy to see that an ideal is a z^0-ideal if and only if $a \in I$
and Ann(a) \subseteq Ann(b) imply that $b \in I$. Now let S be a dense subspace of
Spec(R). Since int $V_S(a) = S - V_S(\text{Ann}(a))$, we have: Ann($a$) \subseteq Ann(b) if
and only if int $V_S(a) \subseteq$ int $V_S(b)$, for each $a, b \in R$. Hence I is a z^0-ideal if
and only if $a \in I$ and int $V_S(a) \subseteq$ int $V_S(b)$ imply that $b \in I$. In particular,
in a semiprimitive ring R, every z-ideal is a z^0-ideal (we call I a z-ideal if
$a \in I$ and M(a) \subseteq M(b) imply that $b \in I$). For other equivalent definitions
of z^0-ideals, see [4, Proposition 1.4].

We observe that in a reduced ring R, every z^0-ideal is a torsion ideal, but
a torsion ideal need not even be a z-ideal. Clearly the following questions
concerning torsion ideals, z-ideals and z^0-ideals are natural:

When is every torsion z-ideal a z^0-ideal?

When is every torsion ideal a z^0-ideal?
When is every torsion prime z-ideal a z^0-ideal?

When is every torsion prime ideal a z^0-ideal?

We are going to answer these questions in Section 2.

A ring is called a Gelfand ring (or a pm ring) if each prime ideal is contained in a unique maximal ideal (see [6]). For a commutative ring R, De Marco and Orsatti [6] showed that R is Gelfand if and only if $\text{Max}(R)$ is Hausdorff, if and only if $\text{Spec}(R)$ is normal (in general, not Hausdorff).

A ring R is called a PP-ring if every principal ideal is a projective R-module. A ring R is called a Baer ring if the annihilator $\text{Ann}(I)$ of each ideal I in R is generated by an idempotent. A non-zero ideal I in R is said to be essential if it intersects every non-zero ideal non-trivially.

2. Torsion ideals and z^0-ideals. The following are Lemmas 2.2 and 2.3 in [17].

Lemma 2.1. Let R be a reduced ring and let S be a dense subspace of $\text{Spec}(R)$ containing $\text{Max}(R)$. Then A is a clopen subset of S if and only if there exists an idempotent $e \in R$ such that $A = V_S(e)$.

Lemma 2.2. Let R be a reduced ring, $e \in R$ be an idempotent and S be a dense subspace of $\text{Spec}(R)$. Then $(a) \subseteq (e)$ if and only if $V_S(e) \subseteq V_S(a)$, for all $a \in R$.

The following definition is well known, but it is indispensable in studying rings with zero divisors.

Definition. A ring R has property A if each finitely generated ideal of R consisting of zero divisors has a non-zero annihilator. R is said to satisfy the annihilator condition, or briefly a.c., if for any $a, b \in R$ there exists an element $c \in R$ with $\text{Ann}(a) \cap \text{Ann}(b) = \text{Ann}(c)$; or equivalently, $\text{int} V(a) \cap \text{int} V(b) = \text{int} V(c)$.

It is well known that most important rings have some of these properties. For example, Noetherian rings [10, p. 56], $C(X)$ [7], rings of Krull dimension zero (each prime ideal is maximal), the polynomial ring $R[x]$ and rings whose classical ring of quotients are regular ([8], [13]) are examples of rings with property A. We also observe that $R[x]$, where R is a reduced ring, $C(X)$, Bézout rings (finitely generated ideals are principal) and many other important rings satisfy a.c. ([9], [11], [14]). The reader is referred to [9] for various examples and counterexamples of rings with these properties.

Definition. A ring R is called quasi regular if every element of R is either a unit or a zero divisor. Clearly every regular ring is quasi regular, but a quasi regular ring is not necessarily regular (see the next proposition).
Now we give several equivalent conditions for a reduced ring to be quasi regular.

Proposition 2.3. Let R be a reduced ring. The following statements are equivalent:

1. R is a quasi regular ring.
2. For every $a \in R$, $V(a) \neq \emptyset$ implies that $\text{int} V(a) \neq \emptyset$.
3. If $a \in R$ is a non-unit, then there exists $b \neq 1$ such that $a = ab$.
4. $\bigcup_{P \in \text{Spec}(R)} O_P$ is the set of all non-unit elements of R.
5. Every non-trivial principal ideal of R is non-essential.
6. Every (module) monomorphism from R to R is an isomorphism.

Proof. $(1) \Rightarrow (2)$. For any $a \in R$, $\text{int} V(a) = \text{Spec}(R) - V(\text{Ann}(a))$, so $\text{int} V(a) = \emptyset$ if and only if $\text{Ann}(a) = (0)$.

$(2) \Rightarrow (3)$. Let $ac = 0$. Put $b = 1 + c$, so $a = ab$.

$(3) \Rightarrow (4)$. It is sufficient to show that every non-unit element a of R is in O_P for some $P \in \text{Spec}(R)$. By (3), there is $b \in R$ such that $a = ab$. Put $c = 1 - b$, so $c \neq 0$ and $ac = 0$. Hence $\emptyset \neq \text{Spec}(R) - V(c) \subseteq V(a)$ implies that $\text{int} V(a) \neq \emptyset$. This shows that $a \in O_P$ for all $P \in \text{int} V(a)$.

$(4) \Rightarrow (5)$. Let $(0) \neq (a) \neq R$ be a principal ideal in R. Then a is a non-unit element and therefore $a \in O_P$ for some $P \in \text{Spec}(R)$. Thus $\text{int} V(a) \neq \emptyset$ and this implies that $\text{Ann}(a) \neq (0)$, i.e., (a) is non-essential.

$(5) \Rightarrow (1)$ is evident.

$(1) \Rightarrow (6)$. Let $\phi : R \to R$ be a monomorphism. Then $\phi(b) = b\phi(1)$ for all $b \in R$. This shows that $\phi(1)$ is a non-zero divisor, hence $\phi(1)$ is unit, i.e., there exists $c \in R$ such that $c\phi(1) = 1$. Thus $\phi(c) = 1$ and $\phi(ac) = a$ for all $a \in R$. So ϕ is an isomorphism.

$(6) \Rightarrow (1)$. Let $a \in R$ be a non-zero divisor and define $\phi : R \to R$ by $\phi(b) = ab$ for $b \in R$. Clearly, ϕ is a monomorphism and therefore it is also an epimorphism, hence there exists $b \in R$ such that $\phi(b) = ab = 1$. This completes the proof.

Lemma 2.4. Let R be a semiprimitive Gelfand ring. If A and B are disjoint closed subsets of $\text{Max}(R)$, then there exists $a \in R$ such that $A \subseteq \text{int} M(a)$ and $B \subseteq \text{int} M(a - 1)$.

Proof. By our hypothesis the space $\text{Max}(R)$ is Hausdorff and compact. Therefore by [7, Theorem 1.15] there are closed sets E and F in $\text{Max}(R)$ such that

$$A \subseteq \text{int} E \subseteq E, \quad B \subseteq \text{int} F \subseteq F, \quad E \cap F = \emptyset.$$

Hence there are ideals I and J such that $E = M(I)$ and $F = M(J)$. We claim that $I + J = R$. Otherwise there exists $M \in \text{Max}(R)$ such that $I + J \subseteq M$. So $M \in M(I) \cap M(J)$, and this is a contradiction. Therefore $a + b = 1$ for
some \(a \in I \) and \(b \in J \). Thus

\[
A \subseteq \text{int } M(I) \subseteq \text{int } M(a), \quad B \subseteq \text{int } M(J) \subseteq \text{int } M(a - 1).
\]

Next we have the following equivalent conditions in a semiprimitive Gelfand ring with property \(A \).

Theorem 2.5. Let \(R \) be a semiprimitive Gelfand ring with property \(A \). The following statements are equivalent:

1. \(R \) is a quasi regular ring.
2. \(M(a) = \text{cl}(\text{int } M(a)) \) for every \(a \in R \).
3. Every \(z \)-ideal in \(R \) is a \(z^0 \)-ideal.
4. Every torsion \(z \)-ideal is a \(z^0 \)-ideal.
5. Every maximal ideal in \(R \) (in general, every prime \(z \)-ideal) is a \(z^0 \)-ideal.
6. Every maximal ideal in \(R \) is a torsion ideal.
7. For each non-unit element \(a \in R \), there exists \(0 \neq b \in R \) with \(P_a \subseteq \text{Ann}(b) \).
8. The sum of any two torsion ideals is either \(R \) or a torsion ideal.

Proof. (1)⇒(2). Let \(a \in R \) and \(M \in M(a) - \text{cl}(\text{int } M(a)) \). As \(\text{cl}(\text{int } M(a)) \) is closed, by Lemma 2.4 there exists \(b \in R \) such that \(M \in \text{int } M(b) \) and \(\text{cl}(\text{int } M(a)) \cap \text{int } M(b) = \emptyset \). By hypothesis, \(\text{int } M(a) \neq \emptyset \) and since \(R \) has property \(A \), it follows that \(\text{Ann}(a) \cap \text{Ann}(b) \neq (0) \), i.e., \(\text{int } M(a) \cap \text{int } M(b) \neq \emptyset \), a contradiction.

(2)⇒(3). Let \(I \) be a \(z \)-ideal, \(\text{int } M(a) = \text{int } M(b) \) and \(a \in I \). By hypothesis we have

\[
M(a) = \text{cl}(\text{int } M(a)) = \text{cl}(\text{int } M(b)) = M(b).
\]

Therefore \(a \in I \) implies that \(b \in I \).

(3)⇒(4) is clear.

(4)⇒(5). Suppose that every torsion \(z \)-ideal is a \(z^0 \)-ideal. We show that every maximal ideal in \(R \) is a torsion ideal. First we show that for any zero divisor \(a \in R \), \(\text{cl}(\text{int } M(a)) = M(a) \). Suppose not; then there are \(M \in M(a) - \text{cl}(\text{int } M(a)) \) and \(b \in R \) such that \(\text{cl}(\text{int } M(a)) \subseteq M(b) \) and \(b \not\in M \). On the other hand, \(I = \bigcap M(a) \) is a torsion \(z \)-ideal, for if \(a' \in I \), then \(M(a) \subseteq M(a') \), and this implies that \(\emptyset \neq \text{int } M(a) \subseteq \text{int } M(a') \), i.e., \(a' \) is a zero divisor. Hence by hypothesis, \(I \) is a \(z^0 \)-ideal. Thus \(\text{int } M(a) \subseteq \text{int } M(b) \) implies that \(b \in I \subseteq M \), a contradiction.

Now we show that every non-zero divisor is a unit. Suppose that \(a \in R \) is a non-zero divisor, so \(M(a) \neq \text{Max}(R) \) and \(\text{int } M(a) = \emptyset \). Hence by Lemma 2.4, there exists \(b \in R \) such that \(\text{int } M(b) \neq \emptyset \) and \(M(a) \cap M(b) = \emptyset \). Thus \(b \)
is a zero divisor and we have

\[M(a) \cup M(b) = \text{cl}(\text{int}(M(ab))) = \text{cl}(\text{int}(M(a) \cup M(b))) = \text{cl}(\text{int}(M(b))) = M(b). \]

Therefore \(M(a) \subseteq M(b) \), which implies that \(M(a) = \emptyset \), i.e., \(a \) is a unit. Thus every maximal ideal in \(R \) is a torsion ideal.

(5) \(\Rightarrow \) (6) \(\Rightarrow \) (7) \(\Rightarrow \) (8) are evident.

(8) \(\Rightarrow \) (1). Let \(a \in R \) be a non-unit element and \(M \neq M' \in \text{Max}(R) \). By Lemma 2.4, there are \(b, c \in R \) such that \(b \in O_M \) and \(c \in O_{M'} \) with \(M(b) \cap M(c) = \emptyset \). Hence \((b) + (c) = R \) and so \((ab) + (ac) = (a) \neq R \). Since \((ab) \) and \((ac) \) are torsion ideals, \(a \) is a zero divisor. \(\blacksquare \)

In Theorem 2.5, it is shown that every torsion \(z \)-ideal is a \(z^0 \)-ideal if and only if \(R \) is a quasi regular ring. We give a necessary and sufficient condition for every torsion prime \(z \)-ideal to be a \(z^0 \)-ideal. First we give the following definition:

Definition. A ring \(R \) is called **weak quasi regular** if for any \(a, b \in R \) with \(\text{Ann}(a) \subseteq \text{Ann}(b) \), there exists a non-zero divisor \(c \in R \) such that \(M(a) \subseteq M(bc) \). Clearly every quasi regular ring is weak quasi regular.

Theorem 2.6. Let \(R \) be a semiprimitive ring. Then every torsion prime \(z \)-ideal is a \(z^0 \)-ideal if and only if \(R \) is weak quasi regular.

Proof. First suppose that every torsion \(z \)-ideal is a \(z^0 \)-ideal. To the contrary, suppose \(\text{Ann}(a) \subseteq \text{Ann}(b) \) and for every non-zero divisor \(c \in R \), \(M(bc) \) does not contain \(M(a) \). So \(bc \notin I = \bigcap M(a) \) for any non-zero divisor \(c \in R \). Now we define

\[T = \{ b^n c : c \in R \text{ is a non-zero divisor}, n = 0, 1, \ldots \}. \]

Clearly, \(T \) is closed under multiplication and \(I \cap T = \emptyset \), for \(M(a) \) is a \(z \)-ideal and \(M(b^n c) = M(bc) \) for all \(n \in \mathbb{N} \). Now by Theorem 1.1 in [12], there exists a prime \(z \)-ideal \(P \) such that \(I \subseteq P \) and \(P \cap S = \emptyset \). So \(P \) is a torsion ideal and hence by hypothesis, \(P \) must be a \(z^0 \)-ideal. But \(\text{Ann}(a) \subseteq \text{Ann}(b) \), \(a \in P \) and \(b \notin P \), a contradiction.

Conversely, let \(P \) be a torsion \(z \)-ideal in \(R \), \(\text{Ann}(a) \subseteq \text{Ann}(b) \) and \(a \in P \). By hypothesis, there exists a non-zero divisor \(c \in R \) with \(M(a) \subseteq M(bc) \). Since \(P \) is a \(z \)-ideal, we have \(bc \in P \). But \(c \notin P \), for \(c \) is not a zero divisor, hence \(b \in P \), i.e., \(P \) is a \(z^0 \)-ideal. \(\blacksquare \)

Next we give some necessary and sufficient conditions, in a reduced ring \(R \) with property a.c., for every prime \(z^0 \)-ideal to be minimal (see [4, Proposition 1.26]).

Proposition 2.7. Let \(R \) be a reduced ring with property a.c. The following statements are equivalent:
(1) Every prime z^0-ideal is minimal.
(2) $\text{Min}(R)$ is compact.
(3) For any $a \in R$, there exists $b \in \text{Ann}(a)$ such that
$$\text{Ann}(a) \cap \text{Ann}(b) = (0).$$
(4) For any $a \in R$, there exists $b \in R$ such that
$$\text{cl}(\text{int} \, V(a)) = \text{cl}(\text{Spec}(R) - V(b)).$$

Proof. (1)\Leftrightarrow(2) follows from Proposition 1.26 and Theorem 1.28 in [4].
(2)\Leftrightarrow(3). Let $S = \text{Min}(R)$. By [8, Lemma 3.1(iv) and Theorem 3.4], $\text{Min}(R)$ is compact if and only if for each $a \in R$, there exists $b \in R$ such that $V_S(b) = V_S(\text{Ann}(a))$. By hypothesis, there exists $c \in R$ such that $\text{Ann}(a) \cap \text{Ann}(b) = \text{Ann}(c)$. Therefore we have
$$\text{Ann}(a) \cap \text{Ann}(b) = (0) \Leftrightarrow V_S(c) = \emptyset \Leftrightarrow V_S(b) \subseteq V_S(\text{Ann}(a)).$$
Also, $b \in \text{Ann}(a) \Leftrightarrow V_S(\text{Ann}(a)) \subseteq V_S(b)$, and we are done.
(3)\Leftrightarrow(4). For every $a, b \in R$ we have
$$\text{int} \, V(a) \cap \text{int} \, V(b) = \emptyset \Leftrightarrow \text{cl}(\text{int} \, V(a)) \subseteq \text{Spec}(R) - \text{int} \, V(b)$$
$$= \text{cl}(\text{Spec}(R) - V(b)),$$
and
$$b \in \text{Ann}(a) \Leftrightarrow \text{Spec}(R) - V(b) \subseteq \text{int} \, V(a)$$
$$\Leftrightarrow \text{cl}(\text{Spec}(R) - V(b)) \subseteq \text{cl}(\text{int} \, V(a)).$$
This completes the proof.

Corollary 2.8. Let R be a semiprimitive Gelfand quasi regular ring with property A. The following statements are equivalent:

(1) R is a PP-ring.
(2) R is a regular ring.
(3) $\text{Min}(R)$ is compact.

Proof. (1)\Rightarrow(2). For every $a \in R$, (1) implies that $\text{M}(\text{Ann}(a)) = \text{Max}(R) - \text{int} \, M(a)$ is clopen. Also by Theorem 2.5(2), $M(a) = \text{cl}(\text{int} \, M(a))$, hence $M(a)$ is clopen, for every $a \in R$. This implies that $O_M = M$ for every $M \in \text{Max}(R)$, i.e., every prime ideal in R is maximal. Thus Proposition 1.3 in [14] implies that R is a regular ring.
(2)\Rightarrow(3) is clear.
(3)\Rightarrow(1). Let $a \in R$. By Proposition 2.7(3), there exists $b \in R$ such that $b \in \text{Ann}(a)$ and $\text{Ann}(a) \cap \text{Ann}(b) = (0)$. Hence $V(a) \cup V(b) = \text{Spec}(R)$ and $\text{int}(V(a) \cap V(b)) = \emptyset$. But since R is a quasi regular ring, we must have $V(a) \cap V(b) = \emptyset$, i.e., $V(a) = \text{int} \, V(a)$, for all $a \in R$, and this completes the proof.
For an ideal I in R we define $P_I = \bigcap_{a \in I} P_a$. Next we have the following

Lemma 2.9. Let R be a reduced ring with property a.c. and $a \in R$. Then $\sum_{c \in \text{Ann}(a)} P_{(a,c)} = \bigcup_{c \in \text{Ann}(a)} P_{(a,c)}$ is a z^0-ideal in R.

Proof. The inclusion $\bigcup_{c \in \text{Ann}(a)} P_{(a,c)} \subseteq \sum_{c \in \text{Ann}(a)} P_{(a,c)}$ is clear. Now we let $b \in \sum_{c \in \text{Ann}(a)} P_{(a,c)}$; then $b = b_1 + \cdots + b_n$, where $b_i \in P_{(a,c_i)}$, $c_i \in \text{Ann}(a)$ and $i = 1, \ldots, n$. By hypothesis, there exists $c \in R$ such that $\bigcap_{i=1}^n \text{Ann}(c_i) = \text{Ann}(c)$, hence $c \in \text{Ann}(a)$. But $\text{Ann}(a) \cap \text{Ann}(c) \subseteq \text{Ann}(b_i)$ for all $i = 1, \ldots, n$, so

$$
\text{Ann}(a) \cap \text{Ann}(c) = \bigcap_{i=1}^n (\text{Ann}(a) \cap \text{Ann}(c_i)) \subseteq \bigcap_{i=1}^n \text{Ann}(b_i) \subseteq \text{Ann}(b)
$$

and this implies $b \in P_{(a,c)}$, showing that $\sum_{c \in \text{Ann}(a)} P_{(a,c)} \subseteq \bigcup_{c \in \text{Ann}(a)} P_{(a,c)}$. Finally, since every $P_{(a,c)}$ is a z^0-ideal, clearly, $\bigcup_{c \in \text{Ann}(a)} P_{(a,c)}$ is also a z^0-ideal.

Theorem 2.10. Let R be a reduced ring with property a.c. and $a \in R$. The following statements are equivalent:

1. Every prime z^0-ideal is minimal or maximal.
2. For any $M \in \text{Max}(R)$ and $a, b \in M$, there are $c \in \text{Ann}(a)$ and $d \not\in M$ such that $\text{Ann}(a) \cap \text{Ann}(c) \subseteq \text{Ann}(bd)$.

Proof. Suppose that every prime z^0-ideal is minimal or maximal but (2) does not hold. Then there are $M \in \text{Max}(R)$ and $a, b \in M$ such that for every $c \in \text{Ann}(a)$ and $d \not\in M$, $\text{Ann}(a) \cap \text{Ann}(c) \not\subseteq \text{Ann}(bd)$. Consider

$$
T = \{b^n d : d \in R - M, n = 1, 2, \ldots \}, \quad I = \bigcup_{c \in \text{Ann}(a)} P_{(a,c)}.
$$

Obviously, T is closed under multiplication. We also have $I \cap T = \emptyset$, for if $b^n d \in P_{(a,c)}$ for some n and $c \in \text{Ann}(a)$, then $\text{Ann}(a) \cap \text{Ann}(c) \subseteq \text{Ann}(bd)$, which is impossible. So there exists a prime ideal P such that $I \subseteq P$ and $P \cap T = \emptyset$. We have already observed in Lemma 2.9 that I is a z^0-ideal and if P is minimal, then P is a z^0-ideal. Now $P \cap T = \emptyset$ and $R - M \subseteq S$ imply that $P \subseteq M$. On the other hand, $\text{Ann}(a) \subseteq P$ and hence P is not minimal, so it must be maximal, i.e., $P = M$. This implies that $b \in M = P$, a contradiction.

Conversely, suppose that (2) holds and $P \subseteq M$ is a prime z^0-ideal, for some $M \in \text{Max}(R)$. Suppose P is neither maximal nor minimal. Then there are $a \in P$ and $b \in M - P$ such that $\text{Ann}(a) \subseteq P$. Now by (2) there are $c \in \text{Ann}(a)$ and $d \not\in M$ such that $\text{Ann}(a) \cap \text{Ann}(c) \subseteq \text{Ann}(bd)$. Since $(a, c) \subseteq P$ and P is a z^0-ideal, hence $bd \in P_{(a,c)} \subseteq P$. But $d \not\in P$, for $d \not\in M$, hence $b \in P$, a contradiction.
3. PP-rings and z^0-ideals. In this section we investigate the relation between z^0-ideals and PP-rings.

Remark. We note that $\text{int } V_S(I) = S - V_S(\text{Ann}(I))$ for every dense subspace S of $\text{Spec}(R)$ and every ideal I in R. Therefore if R is a reduced ring, then R is a PP-ring if and only if there exists a dense subspace S of $\text{Spec}(R)$ containing $\text{Max}(R)$ such that for each $a \in R$, $\text{int } V_S(a)$ is clopen in S. Also R is a Baer ring if and only if there exists a dense subspace S of $\text{Spec}(R)$ containing $\text{Max}(R)$ such that every open set in S has closure open in S (i.e., S is an extremally disconnected space; see [1] and [16]).

The sum of two z^0-ideals in a reduced ring (even in $C(X)$) may be a proper ideal which is not a z^0-ideal (see [3, p. 20]). If $C(X)$ is a PP-ring, then the sum of any two z^0-ideals in $C(X)$ is either a z^0-ideal or $C(X)$ (see [3, Proposition 2.13] and [15, Theorem 1.1]). Next we generalize this fact.

Theorem 3.1. Let R be a reduced PP-ring with property a.c. The sum of any two z^0-ideals in R is either a z^0-ideal or R.

Proof. Let I and J be two z^0-ideals in R and suppose that $I + J \neq R$. Let $a \in I + J$ and $\text{int } V(a) = \text{int } V(b)$ for some $b \in R$. We will show that $b \in I + J$. We have $a = c + d$, where $c \in I$ and $d \in J$. We may assume that $c \neq 0 \neq d$, for otherwise we clearly have $b \in I + J$. Now by the Remark, $\text{int } V(c)$ and $\text{int } V(d)$ are clopen sets, and since I and J are z^0-ideals, we have $\text{int } V(c) \neq \emptyset \neq \text{int } V(d)$. Then by Lemma 2.1, there are idempotents $e, e' \in R$ such that $\text{int } V(c) = V(e)$ and $\text{int } V(d) = V(e')$. Since I and J are z^0-ideals, we infer that $e \in I$ and $e' \in J$. Now by our hypothesis, there exists $e'' \in R$ such that

$$V(e'') = V(e) \cap V(e') \subseteq \text{int } V(a) = \text{int } V(b).$$

Thus Lemma 2.2 implies that $b \in (e'')$, i.e., $b \in I + J$. ■

Definition. A ring R has property p.z. if every principal z-ideal in R is generated by an idempotent.

Example. Suppose R is a semireal-closed F-ring, i.e., for each $a \succ 0$ there exists $b \in R$ with $a = b^2$ (see [12, p. 288]). We show that R has property p.z. To see this suppose $I = (a)$ is a non-zero z-ideal in R. Then $(|a|) = (a)$ and so there exists $b \in R$ such that $|a| = b^2$. Hence $M(|a|) = M(b)$ implies that $b \in (|a|)$. Therefore there is $c \in R$ such that $b = b^2c$, i.e., $M(b) \cup M(1 - bc) = \text{Max}(R)$. Since $M(a) = M(|a|) = M(b)$, $M(a)$ is clopen in $\text{Max}(R)$. By Lemma 2.1, there is an idempotent $e \in R$ such that $M(a) = M(e)$. Since (a) is a z-ideal, we have $(e) \subseteq (a)$. Also by Lemma 2.2, $(a) \subseteq (e)$, i.e., $(a) = (e)$. Hence every principal z-ideal in R is generated by an idempotent. In particular, $C(X)$ has property p.z.

The following theorems are generalizations of Theorem 2.10 in [3].
Theorem 3.2. Let R be a reduced ring with property $p.z$. Every basic z^0-ideal in R is principal if and only if R is a PP-ring.

Proof. Suppose every basic z^0-ideal is principal. We will show that for each $a \in R$, $\text{int} \ V(a)$ is clopen in $\text{Spec}(R)$. It suffices to prove this for $a \in R$ which is a zero divisor, for if $\text{Ann}(a) = (0)$, then $\text{int} \ V(a) = \emptyset$. Now let $P_a = (b)$ and $\text{Ann}(a) \neq (0)$. Then by hypothesis, $P_a = (e)$, where $e^2 = e$. Hence $a \in (e)$ implies that $V(e) \subseteq V(a)$, and $e \in P_a$ implies that $\text{int} \ V(a) \subseteq \text{int} \ V(e) = V(e)$. Hence $V(e) = \text{int} \ V(a)$ is clopen.

Conversely, let R be a PP-ring and $a \in R$ with $\text{Ann}(a) \neq (0)$. Then $\text{int} \ V(a) \neq \emptyset$ is a clopen set and hence by Lemma 2.1, there exists an idempotent $e \in R$ with $\text{int} \ V(a) = V(e)$. Since $P_a = \{b \in R : \text{int} \ V(a) \subseteq \text{int} \ V(b)\}$, Lemma 2.2 implies that $P_a = (e)$. ■

Theorem 3.3. Let R be a semiprimitive Gelfand ring with property $p.z$. Every intersection of basic z^0-ideals in R is principal if and only if R is a Baer ring.

Proof. Suppose every intersection of basic z^0-ideals is principal and G is an open set in $\text{Max}(R)$. Then by Lemma 2.4, there is $T \subseteq R$ such that $G = \bigcup_{a \in T} \text{int} \ M(a)$. By hypothesis, there is an idempotent $e \in R$ such that $\bigcap_{a \in T} P_a = (e)$. We now claim that $\text{cl} G = M(e)$ and this implies that $\text{cl} G$ is clopen. To see this, we note that $e \in P_a$ for all $a \in T$, i.e., $\text{int} \ M(a) \subseteq \text{int} \ M(e)$ for all $a \in T$. Hence $G \subseteq M(e)$ implies that $\text{cl} G \subseteq M(e)$. Now suppose for contradiction that $M \in M(e) - \text{cl} G$. Then by Lemma 2.4, there exists $b \in R$ such that $\text{cl} G \subseteq M(b)$ and $M \in M(b - 1)$, so $\text{int} \ M(a) \subseteq M(b)$ for all $a \in T$, hence $b \in P_a$ for all $a \in T$. This shows that $b \in \bigcap_{a \in T} P_a = (e)$. But $M \in M(e) \cap M(b - 1)$, so $M(e) \not\subseteq M(b)$, i.e., $b \not\in (e)$, a contradiction.

Conversely, let R be a Baer ring and let $I = \bigcap_{a \in T} P_a$ for some $T \subseteq R$. By hypothesis, $G = \text{cl} (\bigcup_{a \in T} \text{int} \ M(a))$ is an open set, so Lemma 2.1 implies that $G = M(e)$ for some idempotent $e \in R$. Clearly, $\text{int} \ M(a) \subseteq \text{int} \ M(e)$ for all $a \in T$, which means that $e \in P_a$ for all $a \in T$. Hence $(e) \subseteq I$. Now let $b \in I$. Then $\text{int} \ M(a) \subseteq \text{int} M(b)$ for all $a \in T$, which means that $G \subseteq M(b)$. Thus by Lemma 2.2, $b \in (e)$, i.e., $I \subseteq (e)$ and therefore $I = (e)$. ■

Acknowledgments. The author is deeply grateful to the referee for his/her helpful suggestions on this paper.

References

Department of Mathematics Institute for Studies
Bu Ali Sina University in Theoretical Physics and Mathematics (IPM)
Hamedan, Iran Tehran, Iran
E-mail: samei@ipm.ir

Received 30 August 2004; in revised form 7 November 2005