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0-Ideals and some special commutative rings
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Karim Samei (Hamedan and Tehran)

Abstract. In a commutative ring R, an ideal I consisting entirely of zero divisors is
called a torsion ideal, and an ideal is called a z

0-ideal if I is torsion and for each a ∈ I

the intersection of all minimal prime ideals containing a is contained in I. We prove that
in large classes of rings, say R, the following results hold: every z-ideal is a z

0-ideal if and
only if every element of R is either a zero divisor or a unit, if and only if every maximal
ideal in R (in general, every prime z-ideal) is a z

0-ideal, if and only if every torsion z-ideal
is a z

0-ideal and if and only if the sum of any two torsion ideals is either a torsion ideal
or R. We give a necessary and sufficient condition for every prime z

0-ideal to be either
minimal or maximal. We show that in a large class of rings, the sum of two z

0-ideals is
either a z

0-ideal or R and we also give equivalent conditions for R to be a PP -ring or a
Baer ring.

1. Introduction. An ideal I of a commutative ring R is called a z-
ideal if whenever any two elements of R are contained in the same set of
maximal ideals and I contains one of them, then it also contains the other
(see [7, 4A.5] for an equivalent definition). These ideals, which are both
algebraic and topological objects, were first introduced by Kohls and play a
fundamental role in studying the ideal theory of C(X), the ring of continuous
real-valued functions on a completely regular Hausdorff space X (see [7]).
z-Ideals in general commutative rings were studied by Mason [12]. He proved
that maximal ideals, minimal prime ideals and some other important ideals
in commutative rings are z-ideals (see [12, p. 281]).

A special case of z-ideals in C(X) consisting entirely of zero divisors are
z0-ideals (see [3]–[5]). An ideal I consisting entirely of zero divisors is called
a torsion ideal, and an ideal is called a z0-ideal if I is torsion and for each
a ∈ I the intersection of all minimal prime ideals containing a is contained
in I. z0-Ideals in general commutative rings were also studied by Azarpanah,
Karamzadeh and Rezai [4]; these ideals play a fundamental role in studying
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the torsion prime ideals. It was proved that the Jacobson radical of a ring
R is zero if and only if every z0-ideal is a z-ideal (see [4, Proposition 1.10]).

In this paper we will investigate the properties of ideals consisting en-
tirely of zero divisors, such as z0-ideals, torsion prime ideals, prime z0-ideals
and so on.

Throughout, R is a commutative reduced ring with identity. By a reduced

ring we mean a ring without non-zero nilpotent elements. We also say R

is semiprimitive if
⋂

Max(R) = (0). We denote by Spec(R), Max(R) and
Min(R) the spaces of prime ideals, maximal ideals and minimal ideals of R,
respectively. The topology of these spaces is the Zariski topology (see [2]).
The operators cl and int denote the closure and interior. Let

V(a) = {P ∈ Spec(R) : a ∈ P} for all a ∈ R,

V(I) = {P ∈ Spec(R) : I ⊆ P} for all ideals I of R.

If S ⊆ Spec(R), we put

VS(a) = V(a) ∩ S, VS(I) = V(I) ∩ S,

M(a) = V(a) ∩ Max(R),

M(I) = V(I) ∩ Max(R).

For each P ∈ Spec(R), let OP =
⋂

P ′⊆P P ′, where P ′ ranges over all prime
ideals contained in P . It is well known that if R is a reduced ring, then

OP = {a ∈ R : ∃b ∈ R − P such that ab = 0}

= {a ∈ R : P ∈ int V(a)} (see [18, p. 1482]).

Suppose that S = Min(R) and Pa =
⋂

VS(a). It is known that Pa = {b ∈ R :
Ann(a) ⊆ Ann(b)}, and it is called a basic z0-ideal (see [4]). A proper ideal I

is a z0-ideal if Pa ⊆ I for each a ∈ I (see [3] and [4]). Clearly, minimal prime
ideals, every intersection of z0-ideals, and Ann(a) and Pa for each a ∈ R

are z0-ideals. It is easy to see that an ideal is a z0-ideal if and only if a ∈ I

and Ann(a) ⊆ Ann(b) imply that b ∈ I. Now let S be a dense subspace of
Spec(R). Since intVS(a) = S − VS(Ann(a)), we have: Ann(a) ⊆ Ann(b) if
and only if intVS(a) ⊆ int VS(b), for each a, b ∈ R. Hence I is a z0-ideal if
and only if a ∈ I and int VS(a) ⊆ intVS(b) imply that b ∈ I. In particular,
in a semiprimitive ring R, every z-ideal is a z0-ideal (we call I a z-ideal if
a ∈ I and M(a) ⊆ M(b) imply that b ∈ I). For other equivalent definitions
of z0-ideals, see [4, Proposition 1.4].

We observe that in a reduced ring R, every z0-ideal is a torsion ideal, but
a torsion ideal need not even be a z-ideal. Clearly the following questions
concerning torsion ideals, z-ideals and z0-ideals are natural:

When is every torsion z-ideal a z0-ideal?

When is every torsion ideal a z0-ideal?
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When is every torsion prime z-ideal a z0-ideal?

When is every torsion prime ideal a z0-ideal?

We are going to answer these questions in Section 2.

A ring is called a Gelfand ring (or a pm ring) if each prime ideal is
contained in a unique maximal ideal (see [6]). For a commutative ring R,
De Marco and Orsatti [6] showed that R is Gelfand if and only if Max(R)
is Hausdorff, if and only if Spec(R) is normal (in general, not Hausdorff).

A ring R is called a PP-ring if every principal ideal is a projective R-
module. A ring R is called a Baer ring if the annihilator Ann(I) of each
ideal I in R is generated by an idempotent. A non-zero ideal I in R is said
to be essential if it intersects every non-zero ideal non-trivially.

2. Torsion ideals and z0-ideals. The following are Lemmas 2.2 and
2.3 in [17].

Lemma 2.1. Let R be a reduced ring and let S be a dense subspace of

Spec(R) containing Max(R). Then A is a clopen subset of S if and only if

there exists an idempotent e ∈ R such that A = VS(e).

Lemma 2.2. Let R be a reduced ring , e ∈ R be an idempotent and S be

a dense subspace of Spec(R). Then (a) ⊆ (e) if and only if VS(e) ⊆ VS(a),
for all a ∈ R.

The following definition is well known, but it is indispensable in studying
rings with zero divisors.

Definition. A ring R has property A if each finitely generated ideal
of R consisting of zero divisors has a non-zero annihilator. R is said to
satisfy the annihilator condition, or briefly a.c., if for any a, b ∈ R there
exists an element c ∈ R with Ann(a) ∩ Ann(b) = Ann(c); or equivalently,
int V(a) ∩ int V(b) = int V(c).

It is well known that most important rings have some of these prop-
erties. For example, Noetherian rings [10, p. 56], C(X) [7], rings of Krull
dimension zero (each prime ideal is maximal), the polynomial ring R[x] and
rings whose classical ring of quotients are regular ([8], [13]) are examples of
rings with property A. We also observe that R[x], where R is a reduced ring,
C(X), Bézout rings (finitely generated ideals are principal) and many other
important rings satisfy a.c. ([9], [11], [14]). The reader is referred to [9] for
various examples and counterexamples of rings with these properties.

Definition. A ring R is called quasi regular if every element of R is
either a unit or a zero divisor. Clearly every regular ring is quasi regular,
but a quasi regular ring is not necessarily regular (see the next proposition).
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Now we give several equivalent conditions for a reduced ring to be quasi
regular.

Proposition 2.3. Let R be a reduced ring. The following statements

are equivalent :

(1) R is a quasi regular ring.

(2) For every a ∈ R, V(a) 6= ∅ implies that intV(a) 6= ∅.
(3) If a ∈ R is a non-unit , then there exists b 6= 1 such that a = ab.

(4)
⋃

P∈Spec(R) OP is the set of all non-unit elements of R.

(5) Every non-trivial principal ideal of R is non-essential.

(6) Every (module) monomorphism from R to R is an isomorphism.

Proof. (1)⇒(2). For any a ∈ R, intV(a) = Spec(R) − V(Ann(a)), so
int V(a) = ∅ if and only if Ann(a) = (0).

(2)⇒(3). Let ac = 0. Put b = 1 + c, so a = ab.
(3)⇒(4). It is sufficient to show that every non-unit element a of R is

in OP for some P ∈ Spec(R). By (3), there is b ∈ R such that a = ab. Put
c = 1 − b, so c 6= 0 and ac = 0. Hence ∅ 6= Spec(R) − V(c) ⊆ V(a) implies
that intV(a) 6= ∅. This shows that a ∈ OP for all P ∈ int V(a).

(4)⇒(5). Let (0) 6= (a) 6= R be a principal ideal in R. Then a is a non-
unit element and therefore a ∈ OP for some P ∈ Spec(R). Thus intV(a) 6= ∅
and this implies that Ann(a) 6= (0), i.e., (a) is non-essential.

(5)⇒(1) is evident.
(1)⇒(6). Let φ : R → R be a monomorphism. Then φ(b) = bφ(1) for all

b ∈ R. This shows that φ(1) is a non-zero divisor, hence φ(1) is unit, i.e.,
there exists c ∈ R such that cφ(1) = 1. Thus φ(c) = 1 and φ(ac) = a for all
a ∈ R. So φ is an isomorphism.

(6)⇒(1). Let a ∈ R be a non-zero divisor and define φ : R → R by
φ(b) = ab for b ∈ R. Clearly, φ is a monomorphism and therefore it is also
an epimorphism, hence there exists b ∈ R such that φ(b) = ab = 1. This
completes the proof.

Lemma 2.4. Let R be a semiprimitive Gelfand ring. If A and B are

disjoint closed subsets of Max(R), then there exists a ∈ R such that A ⊆
int M(a) and B ⊆ int M(a − 1).

Proof. By our hypothesis the space Max(R) is Hausdorff and compact.
Therefore by [7, Theorem 1.15] there are closed sets E and F in Max(R)
such that

A ⊆ intE ⊆ E, B ⊆ intF ⊆ F, E ∩ F = ∅.

Hence there are ideals I and J such that E = M(I) and F = M(J). We claim
that I + J = R. Otherwise there exists M ∈ Max(R) such that I + J ⊆ M .
So M ∈ M(I) ∩ M(J), and this is a contradiction. Therefore a + b = 1 for
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some a ∈ I and b ∈ J . Thus

A ⊆ int M(I) ⊆ intM(a), B ⊆ intM(J) ⊆ int M(a − 1).

Next we have the following equivalent conditions in a semiprimitive
Gelfand ring with property A.

Theorem 2.5. Let R be a semiprimitive Gelfand ring with property A.

The following statements are equivalent :

(1) R is a quasi regular ring.

(2) M(a) = cl(int M(a)) for every a ∈ R.

(3) Every z-ideal in R is a z0-ideal.

(4) Every torsion z-ideal is a z0-ideal.

(5) Every maximal ideal in R (in general , every prime z-ideal) is a

z0-ideal.

(6) Every maximal ideal in R is a torsion ideal.

(7) For each non-unit element a ∈ R, there exists 0 6= b ∈ R with

Pa ⊆ Ann(b).
(8) The sum of any two torsion ideals is either R or a torsion ideal.

Proof. (1)⇒(2). Let a ∈ R and M ∈ M(a)−cl(intM(a)). As cl(intM(a))
is closed, by Lemma 2.4 there exists b ∈ R such that M ∈ intM(b) and
cl(int M(a)) ∩ int M(b) = ∅. By hypothesis, int M(a) 6= ∅ and since R has
property A, it follows that Ann(a) ∩ Ann(b) 6= (0), i.e., intM(a) ∩ int M(b)
6= ∅, a contradiction.

(2)⇒(3). Let I be a z-ideal, int M(a) = int M(b) and a ∈ I. By hypoth-
esis we have

M(a) = cl(int M(a)) = cl(intM(b)) = M(b).

Therefore a ∈ I implies that b ∈ I.

(3)⇒(4) is clear.

(4)⇒(5). Suppose that every torsion z-ideal is a z0-ideal. We show that
every maximal ideal in R is a torsion ideal. First we show that for any
zero divisor a ∈ R, cl(intM(a)) = M(a). Suppose not; then there are M ∈
M(a) − cl(int M(a)) and b ∈ R such that cl(intM(a)) ⊆ M(b) and b 6∈ M .
On the other hand, I =

⋂
M(a) is a torsion z-ideal, for if a′ ∈ I, then

M(a) ⊆ M(a′), and this implies that ∅ 6= int M(a) ⊆ intM(a′), i.e., a′ is a
zero divisor. Hence by hypothesis, I is a z0-ideal. Thus intM(a) ⊆ int M(b)
implies that b ∈ I ⊆ M , a contradiction.

Now we show that every non-zero divisor is a unit. Suppose that a ∈ R is
a non-zero divisor, so M(a) 6= Max(R) and int M(a) = ∅. Hence by Lemma
2.4, there exists b ∈ R such that int M(b) 6= ∅ and M(a) ∩ M(b) = ∅. Thus b
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is a zero divisor and we have

M(a) ∪ M(b) = cl(int(M(ab))) = cl(int(M(a) ∪ M(b)))

= cl(int(M(b))) = M(b).

Therefore M(a) ⊆ M(b), which implies that M(a) = ∅, i.e., a is a unit. Thus
every maximal ideal in R is a torsion ideal.

(5)⇒(6)⇒(7)⇒(8) are evident.
(8)⇒(1). Let a ∈ R be a non-unit element and M 6= M ′ ∈ Max(R).

By Lemma 2.4, there are b, c ∈ R such that b ∈ OM and c ∈ OM ′ with
M(b) ∩ M(c) = ∅. Hence (b) + (c) = R and so (ab) + (ac) = (a) 6= R. Since
(ab) and (ac) are torsion ideals, a is a zero divisor.

In Theorem 2.5, it is shown that every torsion z-ideal is a z0-ideal if and
only if R is a quasi regular ring. We give a necessary and sufficient condition
for every torsion prime z-ideal to be a z0-ideal. First we give the following
definition:

Definition. A ring R is called weak quasi regular if for any a, b ∈ R

with Ann(a) ⊆ Ann(b), there exists a non-zero divisor c ∈ R such that
M(a) ⊆ M(bc). Clearly every quasi regular ring is weak quasi regular.

Theorem 2.6. Let R be a semiprimitive ring. Then every torsion prime

z-ideal is a z0-ideal if and only if R is weak quasi regular.

Proof. First suppose that every torsion z-ideal is a z0-ideal. To the con-
trary, suppose Ann(a) ⊆ Ann(b) and for every non-zero divisor c ∈ R, M(bc)
does not contain M(a). So bc 6∈ I =

⋂
M(a) for any non-zero divisor c ∈ R.

Now we define

T = {bnc : c ∈ R is a non-zero divisor, n = 0, 1, . . . }.

Clearly, T is closed under multiplication and I ∩T = ∅, for M(a) is a z-ideal
and M(bnc) = M(bc) for all n ∈ N. Now by Theorem 1.1 in [12], there exists
a prime z-ideal P such that I ⊆ P and P ∩S = ∅. So P is a torsion ideal and
hence by hypothesis, P must be a z0-ideal. But Ann(a) ⊆ Ann(b), a ∈ P

and b 6∈ P , a contradiction.
Conversely, let P be a torsion z-ideal in R, Ann(a) ⊆ Ann(b) and a ∈ P .

By hypothesis, there exists a non-zero divisor c ∈ R with M(a) ⊆ M(bc).
Since P is a z-ideal, we have bc ∈ P . But c 6∈ P , for c is not a zero divisor,
hence b ∈ P , i.e., P is a z0-ideal.

Next we give some necessary and sufficient conditions, in a reduced ring
R with property a.c., for every prime z0-ideal to be minimal (see [4, Propo-
sition 1.26]).

Proposition 2.7. Let R be a reduced ring with property a.c. The fol-

lowing statements are equivalent :
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(1) Every prime z0-ideal is minimal.

(2) Min(R) is compact.

(3) For any a ∈ R, there exists b ∈ Ann(a) such that

Ann(a) ∩ Ann(b) = (0).

(4) For any a ∈ R, there exists b ∈ R such that

cl(intV(a)) = cl(Spec(R) − V(b)).

Proof. (1)⇔(2) follows from Proposition 1.26 and Theorem 1.28 in [4].

(2)⇔(3). Let S = Min(R). By [8, Lemma 3.1(iv) and Theorem 3.4],
Min(R) is compact if and only if for each a ∈ R, there exists b ∈ R such
that VS(b) = VS(Ann(a)). By hypothesis, there exists c ∈ R such that
Ann(a) ∩ Ann(b) = Ann(c). Therefore we have

Ann(a) ∩ Ann(b) = (0) ⇔ VS(c) = ∅ ⇔ VS(b) ⊆ VS(Ann(a)).

Also, b ∈ Ann(a) ⇔ VS(Ann(a)) ⊆ VS(b), and we are done.

(3)⇔(4). For every a, b ∈ R we have

int V(a) ∩ intV(b) = ∅ ⇔ cl(intV(a)) ⊆ Spec(R) − intV(b)

= cl(Spec(R) − V(b)),

and
b ∈ Ann(a) ⇔ Spec(R) − V(b) ⊆ intV(a)

⇔ cl(Spec(R) − V(b)) ⊆ cl(intV(a)).

This completes the proof.

Corollary 2.8. Let R be a semiprimitive Gelfand quasi regular ring

with property A. The following statements are equivalent :

(1) R is a PP -ring.

(2) R is a regular ring.

(3) Min(R) is compact.

Proof. (1)⇒(2). For every a ∈ R, (1) implies that M(Ann(a)) = Max(R)
− intM(a) is clopen. Also by Theorem 2.5(2), M(a) = cl(intM(a)), hence
M(a) is clopen, for every a ∈ R. This implies that OM = M for every
M ∈ Max(R), i.e., every prime ideal in R is maximal. Thus Proposition 1.3
in [14] implies that R is a regular ring.

(2)⇒(3) is clear.

(3)⇒(1). Let a ∈ R. By Proposition 2.7(3), there exists b ∈ R such that
b ∈ Ann(a) and Ann(a) ∩ Ann(b) = (0). Hence V(a) ∪ V(b) = Spec(R) and
int(V(a) ∩ V(b)) = ∅. But since R is a quasi regular ring, we must have
V(a) ∩ V(b) = ∅, i.e., V(a) = intV(a), for all a ∈ R, and this completes the
proof.



106 K. Samei

For an ideal I in R we define PI =
⋂

a∈I Pa. Next we have the following

Lemma 2.9. Let R be a reduced ring with property a.c. and a ∈ R. Then∑
c∈Ann(a) P(a,c) =

⋃
c∈Ann(a) P(a,c) is a z0-ideal in R.

Proof. The inclusion
⋃

c∈Ann(a) P(a,c) ⊆
∑

c∈Ann(a) P(a,c) is clear. Now

we let b ∈
∑

c∈Ann(a) P(a,c); then b = b1 + · · · + bn, where bi ∈ P(a,ci),

ci ∈ Ann(a) and i = 1, . . . , n. By hypothesis, there exists c ∈ R such that⋂n
i=1 Ann(ci) = Ann(c), hence c ∈ Ann(a). But Ann(a)∩Ann(ci) ⊆ Ann(bi)

for all i = 1, . . . , n, so

Ann(a) ∩ Ann(c) =
n⋂

i=1

(Ann(a) ∩ Ann(ci)) ⊆
n⋂

i=1

Ann(bi) ⊆ Ann(b)

and this implies b ∈ P(a,c), showing that
∑

c∈Ann(a) P(a,c) ⊆
⋃

c∈Ann(a) P(a,c).

Finally, since every P(a,c) is a z0-ideal, clearly,
⋃

c∈Ann(a) P(a,c) is also a z0-
ideal.

Theorem 2.10. Let R be a reduced ring with property a.c. and a ∈ R.

The following statements are equivalent :

(1) Every prime z0-ideal is minimal or maximal.

(2) For any M ∈ Max(R) and a, b ∈ M , there are c ∈ Ann(a) and

d 6∈ M such that Ann(a) ∩ Ann(c) ⊆ Ann(bd).

Proof. Suppose that every prime z0-ideal is minimal or maximal but (2)
does not hold. Then there are M ∈ Max(R) and a, b ∈ M such that for
every c ∈ Ann(a) and d 6∈ M , Ann(a) ∩ Ann(c) 6⊆ Ann(bd). Consider

T = {bnd : d ∈ R − M, n = 1, 2, . . . }, I =
⋃

c∈Ann(a)

P(a,c).

Obviously, T is closed under multiplication. We also have I ∩ T = ∅, for if
bnd ∈ P(a,c) for some n and c ∈ Ann(a), then Ann(a) ∩ Ann(c) ⊆ Ann(bd),
which is impossible. So there exists a prime ideal P such that I ⊆ P and
P ∩ T = ∅. We have already observed in Lemma 2.9 that I is a z0-ideal
and if P is minimal, then P is a z0-ideal. Now P ∩ T = ∅ and R − M ⊆ S

imply that P ⊆ M . On the other hand, Ann(a) ⊆ P and hence P is not
minimal, so it must be maximal, i.e., P = M . This implies that b ∈ M = P ,
a contradiction.

Conversely, suppose that (2) holds and P ⊆ M is a prime z0-ideal,
for some M ∈ Max(R). Suppose P is neither maximal nor minimal. Then
there are a ∈ P and b ∈ M − P such that Ann(a) ⊆ P . Now by (2) there
are c ∈ Ann(a) and d 6∈ M such that Ann(a) ∩ Ann(c) ⊆ Ann(bd). Since
(a, c) ⊆ P and P is a z0-ideal, hence bd ∈ P(a,c) ⊆ P . But d 6∈ P , for d 6∈ M ,
hence b ∈ P , a contradiction.
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3. PP -rings and z0-ideals. In this section we investigate the relation
between z0-ideals and PP -rings.

Remark. We note that int VS(I) = S − VS(Ann(I)) for every dense
subspace S of Spec(R) and every ideal I in R. Therefore if R is a reduced
ring, then R is a PP -ring if and only if there exists a dense subspace S of
Spec(R) containing Max(R) such that for each a ∈ R, intVS(a) is clopen
in S. Also R is a Baer ring if and only if there exists a dense subspace S of
Spec(R) containing Max(R) such that every open set in S has closure open
in S (i.e., S is an extremally disconnected space; see [1] and [16]).

The sum of two z0-ideals in a reduced ring (even in C(X)) may be a
proper ideal which is not a z0-ideal (see [3, p. 20]). If C(X) is a PP -ring,
then the sum of any two z0-ideals in C(X) is either a z0-ideal or C(X) (see
[3, Proposition 2.13] and [15, Theorem 1.1]). Next we generalize this fact.

Theorem 3.1. Let R be a reduced PP -ring with property a.c. The sum

of any two z0-ideals in R is either a z0-ideal or R.

Proof. Let I and J be two z0-ideals in R and suppose that I + J 6= R.
Let a ∈ I + J and int V(a) = int V(b) for some b ∈ R. We will show that
b ∈ I + J . We have a = c + d, where c ∈ I and d ∈ J . We may assume that
c 6= 0 6= d, for otherwise we clearly have b ∈ I + J . Now by the Remark,
int V(c) and intV(d) are clopen sets, and since I and J are z0-ideals, we
have intV(c) 6= ∅ 6= int V(d). Then by Lemma 2.1, there are idempotents
e, e′ ∈ R such that intV(c) = V(e) and int V(d) = V(e′). Since I and J are
z0-ideals, we infer that e ∈ I and e′ ∈ J . Now by our hypothesis, there exists
e′′ ∈ R such that

V(e′′) = V(e) ∩ V(e′) ⊆ intV(a) = intV(b).

Thus Lemma 2.2 implies that b ∈ (e′′), i.e., b ∈ I + J .

Definition. A ring R has property p.z. if every principal z-ideal in R

is generated by an idempotent.

Example. Suppose R is a semireal-closed F -ring, i.e., for each a ≻ 0
there exists b ∈ R with a = b2 (see [12, p. 288]). We show that R has
property p.z. To see this suppose I = (a) is a non-zero z-ideal in R. Then
(|a|) = (a) and so there exists b ∈ R such that |a| = b2. Hence M(|a|) =
M(b) implies that b ∈ (|a|). Therefore there is c ∈ R such that b = b2c,
i.e., M(b) ∪ M(1 − bc) = Max(R). Since M(a) = M(|a|) = M(b), M(a) is
clopen in Max(R). By Lemma 2.1, there is an idempotent e ∈ R such that
M(a) = M(e). Since (a) is a z-ideal, we have (e) ⊆ (a). Also by Lemma 2.2,
(a) ⊆ (e), i.e., (a) = (e). Hence every principal z-ideal in R is generated by
an idempotent. In particular, C(X) has property p.z.

The following theorems are generalizations of Theorem 2.10 in [3].



108 K. Samei

Theorem 3.2. Let R be a reduced ring with property p.z. Every basic

z0-ideal in R is principal if and only if R is a PP -ring.

Proof. Suppose every basic z0-ideal is principal. We will show that for
each a ∈ R, intV(a) is clopen in Spec(R). It suffices to prove this for a ∈ R

which is a zero divisor, for if Ann(a) = (0), then int V(a) = ∅. Now let
Pa = (b) and Ann(a) 6= (0). Then by hypothesis, Pa = (e), where e2 = e.
Hence a ∈ (e) implies that V(e) ⊆ V(a), and e ∈ Pa implies that int V(a) ⊆
int V(e) = V(e). Hence V(e) = int V(a) is clopen.

Conversely, let R be a PP -ring and a ∈ R with Ann(a) 6= (0). Then
int V(a) 6= ∅ is a clopen set and hence by Lemma 2.1, there exists an idem-
potent e ∈ R with int V(a) = V(e). Since Pa = {b ∈ R : int V(a) ⊆ intV(b)},
Lemma 2.2 implies that Pa = (e).

Theorem 3.3. Let R be a semiprimitive Gelfand ring with property p.z.

Every intersection of basic z0-ideals in R is principal if and only if R is a

Baer ring.

Proof. Suppose every intersection of basic z0-ideals is principal and G

is an open set in Max(R). Then by Lemma 2.4, there is T ⊆ R such that
G =

⋃
a∈T int M(a). By hypothesis, there is an idempotent e ∈ R such that⋂

a∈T Pa = (e). We now claim that cl G = M(e) and this implies that clG is
clopen. To see this, we note that e ∈ Pa for all a ∈ T , i.e., int M(a) ⊆ int M(e)
for all a ∈ T . Hence G ⊆ M(e) implies that clG ⊆ M(e). Now suppose for
contradiction that M ∈ M(e)−clG. Then by Lemma 2.4, there exists b ∈ R

such that cl G ⊆ M(b) and M ∈ M(b − 1), so int M(a) ⊆ M(b) for all a ∈ T ,
hence b ∈ Pa for all a ∈ T . This shows that b ∈

⋂
a∈T Pa = (e). But

M ∈ M(e) ∩ M(b − 1), so M(e) 6⊆ M(b), i.e., b 6∈ (e), a contradiction.

Conversely, let R be a Baer ring and let I =
⋂

a∈T Pa for some T ⊆ R.
By hypothesis, G = cl(

⋃
a∈T int M(a)) is an open set, so Lemma 2.1 implies

that G = M(e) for some idempotent e ∈ R. Clearly, intM(a) ⊆ intM(e) for
all a ∈ T , which means that e ∈ Pa for all a ∈ T . Hence (e) ⊆ I. Now let
b ∈ I. Then int M(a) ⊆ intM(b) for all a ∈ T , which means that G ⊆ M(b).
Thus by Lemma 2.2, b ∈ (e), i.e., I ⊆ (e) and therefore I = (e).
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