z^0 -Ideals and some special commutative rings

by

Karim Samei (Hamedan and Tehran)

Abstract. In a commutative ring R, an ideal I consisting entirely of zero divisors is called a torsion ideal, and an ideal is called a z^{0} -ideal if I is torsion and for each $a \in I$ the intersection of all minimal prime ideals containing a is contained in I. We prove that in large classes of rings, say R, the following results hold: every z-ideal is a z^{0} -ideal if and only if every element of R is either a zero divisor or a unit, if and only if every maximal ideal in R (in general, every prime z-ideal) is a z^{0} -ideal, if and only if every torsion z-ideal is a z^{0} -ideal and if and only if the sum of any two torsion ideals is either a torsion ideal or R. We give a necessary and sufficient condition for every prime z^{0} -ideal to be either minimal or maximal. We show that in a large class of rings, the sum of two z^{0} -ideals is either a z^{0} -ideal or R and we also give equivalent conditions for R to be a PP-ring or a Baer ring.

1. Introduction. An ideal I of a commutative ring R is called a *z*ideal if whenever any two elements of R are contained in the same set of maximal ideals and I contains one of them, then it also contains the other (see [7, 4A.5] for an equivalent definition). These ideals, which are both algebraic and topological objects, were first introduced by Kohls and play a fundamental role in studying the ideal theory of C(X), the ring of continuous real-valued functions on a completely regular Hausdorff space X (see [7]). *z*-Ideals in general commutative rings were studied by Mason [12]. He proved that maximal ideals, minimal prime ideals and some other important ideals in commutative rings are *z*-ideals (see [12, p. 281]).

A special case of z-ideals in C(X) consisting entirely of zero divisors are z^0 -ideals (see [3]–[5]). An ideal I consisting entirely of zero divisors is called a *torsion ideal*, and an ideal is called a z^0 -*ideal* if I is torsion and for each $a \in I$ the intersection of all minimal prime ideals containing a is contained in I. z^0 -Ideals in general commutative rings were also studied by Azarpanah, Karamzadeh and Rezai [4]; these ideals play a fundamental role in studying

²⁰⁰⁰ Mathematics Subject Classification: 13A15, 54C40.

Key words and phrases: z^{0} -ideal, z-ideal, torsion ideal, Gelfand ring, Zariski topology. This research was supported in part by a grant from IPM (No. 84130032).

K. Samei

the torsion prime ideals. It was proved that the Jacobson radical of a ring R is zero if and only if every z^0 -ideal is a z-ideal (see [4, Proposition 1.10]).

In this paper we will investigate the properties of ideals consisting entirely of zero divisors, such as z^0 -ideals, torsion prime ideals, prime z^0 -ideals and so on.

Throughout, R is a commutative reduced ring with identity. By a reduced ring we mean a ring without non-zero nilpotent elements. We also say R is semiprimitive if $\bigcap Max(R) = (0)$. We denote by Spec(R), Max(R) and Min(R) the spaces of prime ideals, maximal ideals and minimal ideals of R, respectively. The topology of these spaces is the Zariski topology (see [2]). The operators cl and int denote the closure and interior. Let

$$V(a) = \{P \in \operatorname{Spec}(R) : a \in P\} \quad \text{for all } a \in R,$$
$$V(I) = \{P \in \operatorname{Spec}(R) : I \subseteq P\} \quad \text{for all ideals } I \text{ of } R$$

If $S \subseteq \operatorname{Spec}(R)$, we put

$$V_S(a) = V(a) \cap S, \quad V_S(I) = V(I) \cap S,$$

$$M(a) = V(a) \cap Max(R),$$

$$M(I) = V(I) \cap Max(R).$$

For each $P \in \text{Spec}(R)$, let $O_P = \bigcap_{P' \subseteq P} P'$, where P' ranges over all prime ideals contained in P. It is well known that if R is a reduced ring, then

$$O_P = \{ a \in R : \exists b \in R - P \text{ such that } ab = 0 \}$$

= $\{ a \in R : P \in \text{int V}(a) \}$ (see [18, p. 1482]).

Suppose that S = Min(R) and $P_a = \bigcap V_S(a)$. It is known that $P_a = \{b \in R : Ann(a) \subseteq Ann(b)\}$, and it is called a *basic* z^0 -*ideal* (see [4]). A proper ideal I is a z^0 -ideal if $P_a \subseteq I$ for each $a \in I$ (see [3] and [4]). Clearly, minimal prime ideals, every intersection of z^0 -ideals, and Ann(a) and P_a for each $a \in R$ are z^0 -ideals. It is easy to see that an ideal is a z^0 -ideal if and only if $a \in I$ and $Ann(a) \subseteq Ann(b)$ imply that $b \in I$. Now let S be a dense subspace of Spec(R). Since $int V_S(a) = S - V_S(Ann(a))$, we have: $Ann(a) \subseteq Ann(b)$ if and only if $int V_S(a) \subseteq int V_S(b)$, for each $a, b \in R$. Hence I is a z^0 -ideal if and only if $a \in I$ and $int V_S(a) \subseteq int V_S(b)$ imply that $b \in I$. In particular, in a semiprimitive ring R, every z-ideal is a z^0 -ideal (we call I a z-ideal if $a \in I$ and $M(a) \subseteq M(b)$ imply that $b \in I$). For other equivalent definitions of z^0 -ideals, see [4, Proposition 1.4].

We observe that in a reduced ring R, every z^0 -ideal is a torsion ideal, but a torsion ideal need not even be a z-ideal. Clearly the following questions concerning torsion ideals, z-ideals and z^0 -ideals are natural:

When is every torsion z-ideal a z^0 -ideal? When is every torsion ideal a z^0 -ideal? When is every torsion prime z-ideal a z^0 -ideal? When is every torsion prime ideal a z^0 -ideal?

We are going to answer these questions in Section 2.

A ring is called a *Gelfand ring* (or a *pm ring*) if each prime ideal is contained in a unique maximal ideal (see [6]). For a commutative ring R, De Marco and Orsatti [6] showed that R is Gelfand if and only if Max(R) is Hausdorff, if and only if Spec(R) is normal (in general, not Hausdorff).

A ring R is called a *PP-ring* if every principal ideal is a projective R-module. A ring R is called a *Baer ring* if the annihilator Ann(I) of each ideal I in R is generated by an idempotent. A non-zero ideal I in R is said to be *essential* if it intersects every non-zero ideal non-trivially.

2. Torsion ideals and z^0 -ideals. The following are Lemmas 2.2 and 2.3 in [17].

LEMMA 2.1. Let R be a reduced ring and let S be a dense subspace of $\operatorname{Spec}(R)$ containing $\operatorname{Max}(R)$. Then A is a clopen subset of S if and only if there exists an idempotent $e \in R$ such that $A = V_S(e)$.

LEMMA 2.2. Let R be a reduced ring, $e \in R$ be an idempotent and S be a dense subspace of Spec(R). Then $(a) \subseteq (e)$ if and only if $V_S(e) \subseteq V_S(a)$, for all $a \in R$.

The following definition is well known, but it is indispensable in studying rings with zero divisors.

DEFINITION. A ring R has property A if each finitely generated ideal of R consisting of zero divisors has a non-zero annihilator. R is said to satisfy the annihilator condition, or briefly a.c., if for any $a, b \in R$ there exists an element $c \in R$ with $Ann(a) \cap Ann(b) = Ann(c)$; or equivalently, int $V(a) \cap int V(b) = int V(c)$.

It is well known that most important rings have some of these properties. For example, Noetherian rings [10, p. 56], C(X) [7], rings of Krull dimension zero (each prime ideal is maximal), the polynomial ring R[x] and rings whose classical ring of quotients are regular ([8], [13]) are examples of rings with property A. We also observe that R[x], where R is a reduced ring, C(X), Bézout rings (finitely generated ideals are principal) and many other important rings satisfy a.c. ([9], [11], [14]). The reader is referred to [9] for various examples and counterexamples of rings with these properties.

DEFINITION. A ring R is called *quasi regular* if every element of R is either a unit or a zero divisor. Clearly every regular ring is quasi regular, but a quasi regular ring is not necessarily regular (see the next proposition).

Now we give several equivalent conditions for a reduced ring to be quasi regular.

PROPOSITION 2.3. Let R be a reduced ring. The following statements are equivalent:

- (1) R is a quasi regular ring.
- (2) For every $a \in R$, $V(a) \neq \emptyset$ implies that int $V(a) \neq \emptyset$.
- (3) If $a \in R$ is a non-unit, then there exists $b \neq 1$ such that a = ab.
- (4) $\bigcup_{P \in \text{Spec}(R)} O_P$ is the set of all non-unit elements of R.
- (5) Every non-trivial principal ideal of R is non-essential.
- (6) Every (module) monomorphism from R to R is an isomorphism.

Proof. (1) \Rightarrow (2). For any $a \in R$, int V(a) = Spec(R) - V(Ann(a)), so int $V(a) = \emptyset$ if and only if Ann(a) = (0).

 $(2) \Rightarrow (3)$. Let ac = 0. Put b = 1 + c, so a = ab.

 $(3) \Rightarrow (4)$. It is sufficient to show that every non-unit element a of R is in O_P for some $P \in \operatorname{Spec}(R)$. By (3), there is $b \in R$ such that a = ab. Put c = 1 - b, so $c \neq 0$ and ac = 0. Hence $\emptyset \neq \operatorname{Spec}(R) - \operatorname{V}(c) \subseteq \operatorname{V}(a)$ implies that int $\operatorname{V}(a) \neq \emptyset$. This shows that $a \in O_P$ for all $P \in \operatorname{int} \operatorname{V}(a)$.

 $(4) \Rightarrow (5)$. Let $(0) \neq (a) \neq R$ be a principal ideal in R. Then a is a nonunit element and therefore $a \in O_P$ for some $P \in \text{Spec}(R)$. Thus int $V(a) \neq \emptyset$ and this implies that $\text{Ann}(a) \neq (0)$, i.e., (a) is non-essential.

 $(5) \Rightarrow (1)$ is evident.

 $(1) \Rightarrow (6)$. Let $\phi : R \to R$ be a monomorphism. Then $\phi(b) = b\phi(1)$ for all $b \in R$. This shows that $\phi(1)$ is a non-zero divisor, hence $\phi(1)$ is unit, i.e., there exists $c \in R$ such that $c\phi(1) = 1$. Thus $\phi(c) = 1$ and $\phi(ac) = a$ for all $a \in R$. So ϕ is an isomorphism.

 $(6) \Rightarrow (1)$. Let $a \in R$ be a non-zero divisor and define $\phi : R \to R$ by $\phi(b) = ab$ for $b \in R$. Clearly, ϕ is a monomorphism and therefore it is also an epimorphism, hence there exists $b \in R$ such that $\phi(b) = ab = 1$. This completes the proof.

LEMMA 2.4. Let R be a semiprimitive Gelfand ring. If A and B are disjoint closed subsets of Max(R), then there exists $a \in R$ such that $A \subseteq int M(a)$ and $B \subseteq int M(a-1)$.

Proof. By our hypothesis the space Max(R) is Hausdorff and compact. Therefore by [7, Theorem 1.15] there are closed sets E and F in Max(R) such that

$$A \subseteq \operatorname{int} E \subseteq E, \quad B \subseteq \operatorname{int} F \subseteq F, \quad E \cap F = \emptyset.$$

Hence there are ideals I and J such that E = M(I) and F = M(J). We claim that I + J = R. Otherwise there exists $M \in Max(R)$ such that $I + J \subseteq M$. So $M \in M(I) \cap M(J)$, and this is a contradiction. Therefore a + b = 1 for

102

some $a \in I$ and $b \in J$. Thus

 $A \subseteq \operatorname{int} \mathcal{M}(I) \subseteq \operatorname{int} \mathcal{M}(a), \quad B \subseteq \operatorname{int} \mathcal{M}(J) \subseteq \operatorname{int} \mathcal{M}(a-1). \blacksquare$

Next we have the following equivalent conditions in a semiprimitive Gelfand ring with property A.

THEOREM 2.5. Let R be a semiprimitive Gelfand ring with property A. The following statements are equivalent:

- (1) R is a quasi regular ring.
- (2) M(a) = cl(int M(a)) for every $a \in R$.
- (3) Every z-ideal in R is a z^0 -ideal.
- (4) Every torsion z-ideal is a z^0 -ideal.
- (5) Every maximal ideal in R (in general, every prime z-ideal) is a z^0 -ideal.
- (6) Every maximal ideal in R is a torsion ideal.
- (7) For each non-unit element $a \in R$, there exists $0 \neq b \in R$ with $P_a \subseteq \operatorname{Ann}(b)$.
- (8) The sum of any two torsion ideals is either R or a torsion ideal.

Proof. $(1) \Rightarrow (2)$. Let $a \in R$ and $M \in M(a) - cl(int M(a))$. As cl(int M(a)) is closed, by Lemma 2.4 there exists $b \in R$ such that $M \in int M(b)$ and $cl(int M(a)) \cap int M(b) = \emptyset$. By hypothesis, $int M(a) \neq \emptyset$ and since R has property A, it follows that $Ann(a) \cap Ann(b) \neq (0)$, i.e., $int M(a) \cap int M(b) \neq \emptyset$, a contradiction.

 $(2) \Rightarrow (3)$. Let I be a z-ideal, int M(a) = int M(b) and $a \in I$. By hypothesis we have

$$\mathcal{M}(a) = \operatorname{cl}(\operatorname{int} \mathcal{M}(a)) = \operatorname{cl}(\operatorname{int} \mathcal{M}(b)) = \mathcal{M}(b).$$

Therefore $a \in I$ implies that $b \in I$.

 $(3) \Rightarrow (4)$ is clear.

 $(4) \Rightarrow (5)$. Suppose that every torsion z-ideal is a z^0 -ideal. We show that every maximal ideal in R is a torsion ideal. First we show that for any zero divisor $a \in R$, cl(int M(a)) = M(a). Suppose not; then there are $M \in$ M(a) - cl(int M(a)) and $b \in R$ such that $cl(int M(a)) \subseteq M(b)$ and $b \notin M$. On the other hand, $I = \bigcap M(a)$ is a torsion z-ideal, for if $a' \in I$, then $M(a) \subseteq M(a')$, and this implies that $\emptyset \neq int M(a) \subseteq int M(a')$, i.e., a' is a zero divisor. Hence by hypothesis, I is a z^0 -ideal. Thus int $M(a) \subseteq int M(b)$ implies that $b \in I \subseteq M$, a contradiction.

Now we show that every non-zero divisor is a unit. Suppose that $a \in R$ is a non-zero divisor, so $M(a) \neq Max(R)$ and int $M(a) = \emptyset$. Hence by Lemma 2.4, there exists $b \in R$ such that int $M(b) \neq \emptyset$ and $M(a) \cap M(b) = \emptyset$. Thus b is a zero divisor and we have

$$\begin{split} \mathbf{M}(a) \cup \mathbf{M}(b) &= \mathrm{cl}(\mathrm{int}(\mathbf{M}(ab))) = \mathrm{cl}(\mathrm{int}(\mathbf{M}(a) \cup \mathbf{M}(b))) \\ &= \mathrm{cl}(\mathrm{int}(\mathbf{M}(b))) = \mathbf{M}(b). \end{split}$$

Therefore $M(a) \subseteq M(b)$, which implies that $M(a) = \emptyset$, i.e., a is a unit. Thus every maximal ideal in R is a torsion ideal.

 $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8)$ are evident.

 $(8) \Rightarrow (1)$. Let $a \in R$ be a non-unit element and $M \neq M' \in Max(R)$. By Lemma 2.4, there are $b, c \in R$ such that $b \in O_M$ and $c \in O_{M'}$ with $M(b) \cap M(c) = \emptyset$. Hence (b) + (c) = R and so $(ab) + (ac) = (a) \neq R$. Since (ab) and (ac) are torsion ideals, a is a zero divisor.

In Theorem 2.5, it is shown that every torsion z-ideal is a z^0 -ideal if and only if R is a quasi regular ring. We give a necessary and sufficient condition for every torsion prime z-ideal to be a z^0 -ideal. First we give the following definition:

DEFINITION. A ring R is called *weak quasi regular* if for any $a, b \in R$ with $Ann(a) \subseteq Ann(b)$, there exists a non-zero divisor $c \in R$ such that $M(a) \subseteq M(bc)$. Clearly every quasi regular ring is weak quasi regular.

THEOREM 2.6. Let R be a semiprimitive ring. Then every torsion prime z-ideal is a z^0 -ideal if and only if R is weak quasi regular.

Proof. First suppose that every torsion z-ideal is a z^0 -ideal. To the contrary, suppose $\operatorname{Ann}(a) \subseteq \operatorname{Ann}(b)$ and for every non-zero divisor $c \in R$, $\operatorname{M}(bc)$ does not contain $\operatorname{M}(a)$. So $bc \notin I = \bigcap \operatorname{M}(a)$ for any non-zero divisor $c \in R$. Now we define

 $T = \{b^n c : c \in R \text{ is a non-zero divisor}, n = 0, 1, \dots\}.$

Clearly, T is closed under multiplication and $I \cap T = \emptyset$, for M(a) is a z-ideal and $M(b^n c) = M(bc)$ for all $n \in \mathbb{N}$. Now by Theorem 1.1 in [12], there exists a prime z-ideal P such that $I \subseteq P$ and $P \cap S = \emptyset$. So P is a torsion ideal and hence by hypothesis, P must be a z^0 -ideal. But $Ann(a) \subseteq Ann(b)$, $a \in P$ and $b \notin P$, a contradiction.

Conversely, let P be a torsion z-ideal in R, $\operatorname{Ann}(a) \subseteq \operatorname{Ann}(b)$ and $a \in P$. By hypothesis, there exists a non-zero divisor $c \in R$ with $\operatorname{M}(a) \subseteq \operatorname{M}(bc)$. Since P is a z-ideal, we have $bc \in P$. But $c \notin P$, for c is not a zero divisor, hence $b \in P$, i.e., P is a z^0 -ideal.

Next we give some necessary and sufficient conditions, in a reduced ring R with property a.c., for every prime z^0 -ideal to be minimal (see [4, Proposition 1.26]).

PROPOSITION 2.7. Let R be a reduced ring with property a.c. The following statements are equivalent:

104

- (1) Every prime z^0 -ideal is minimal.
- (2) Min(R) is compact.
- (3) For any $a \in R$, there exists $b \in Ann(a)$ such that

 $\operatorname{Ann}(a) \cap \operatorname{Ann}(b) = (0).$

(4) For any $a \in R$, there exists $b \in R$ such that

 $\operatorname{cl}(\operatorname{int} \operatorname{V}(a)) = \operatorname{cl}(\operatorname{Spec}(R) - \operatorname{V}(b)).$

Proof. $(1) \Leftrightarrow (2)$ follows from Proposition 1.26 and Theorem 1.28 in [4].

 $(2) \Leftrightarrow (3)$. Let S = Min(R). By [8, Lemma 3.1(iv) and Theorem 3.4], Min(R) is compact if and only if for each $a \in R$, there exists $b \in R$ such that $V_S(b) = V_S(Ann(a))$. By hypothesis, there exists $c \in R$ such that $Ann(a) \cap Ann(b) = Ann(c)$. Therefore we have

$$\operatorname{Ann}(a) \cap \operatorname{Ann}(b) = (0) \Leftrightarrow \operatorname{V}_S(c) = \emptyset \Leftrightarrow \operatorname{V}_S(b) \subseteq \operatorname{V}_S(\operatorname{Ann}(a)).$$

Also, $b \in Ann(a) \Leftrightarrow V_S(Ann(a)) \subseteq V_S(b)$, and we are done.

(3) \Leftrightarrow (4). For every $a, b \in R$ we have

$$\operatorname{int} \mathcal{V}(a) \cap \operatorname{int} \mathcal{V}(b) = \emptyset \iff \operatorname{cl}(\operatorname{int} \mathcal{V}(a)) \subseteq \operatorname{Spec}(R) - \operatorname{int} \mathcal{V}(b)$$
$$= \operatorname{cl}(\operatorname{Spec}(R) - \mathcal{V}(b)),$$

and

$$b \in \operatorname{Ann}(a) \Leftrightarrow \operatorname{Spec}(R) - \operatorname{V}(b) \subseteq \operatorname{int} \operatorname{V}(a)$$
$$\Leftrightarrow \operatorname{cl}(\operatorname{Spec}(R) - \operatorname{V}(b)) \subseteq \operatorname{cl}(\operatorname{int} \operatorname{V}(a)).$$

This completes the proof. \blacksquare

COROLLARY 2.8. Let R be a semiprimitive Gelfand quasi regular ring with property A. The following statements are equivalent:

(1) R is a PP-ring.

- (2) R is a regular ring.
- (3) Min(R) is compact.

Proof. $(1) \Rightarrow (2)$. For every $a \in R$, (1) implies that M(Ann(a)) = Max(R)- int M(a) is clopen. Also by Theorem 2.5(2), M(a) = cl(int M(a)), hence M(a) is clopen, for every $a \in R$. This implies that $O_M = M$ for every $M \in Max(R)$, i.e., every prime ideal in R is maximal. Thus Proposition 1.3 in [14] implies that R is a regular ring.

 $(2) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$. Let $a \in R$. By Proposition 2.7(3), there exists $b \in R$ such that $b \in Ann(a)$ and $Ann(a) \cap Ann(b) = (0)$. Hence $V(a) \cup V(b) = Spec(R)$ and $int(V(a) \cap V(b)) = \emptyset$. But since R is a quasi regular ring, we must have $V(a) \cap V(b) = \emptyset$, i.e., V(a) = int V(a), for all $a \in R$, and this completes the proof. \blacksquare

K. Samei

For an ideal I in R we define $P_I = \bigcap_{a \in I} P_a$. Next we have the following LEMMA 2.9. Let R be a reduced ring with property a.c. and $a \in R$. Then $\sum_{c \in \text{Ann}(a)} P_{(a,c)} = \bigcup_{c \in \text{Ann}(a)} P_{(a,c)}$ is a z^0 -ideal in R.

Proof. The inclusion $\bigcup_{c \in \operatorname{Ann}(a)} P_{(a,c)} \subseteq \sum_{c \in \operatorname{Ann}(a)} P_{(a,c)}$ is clear. Now we let $b \in \sum_{c \in \operatorname{Ann}(a)} P_{(a,c)}$; then $b = b_1 + \cdots + b_n$, where $b_i \in P_{(a,c_i)}$, $c_i \in \operatorname{Ann}(a)$ and $i = 1, \ldots, n$. By hypothesis, there exists $c \in R$ such that $\bigcap_{i=1}^n \operatorname{Ann}(c_i) = \operatorname{Ann}(c)$, hence $c \in \operatorname{Ann}(a)$. But $\operatorname{Ann}(a) \cap \operatorname{Ann}(c_i) \subseteq \operatorname{Ann}(b_i)$ for all $i = 1, \ldots, n$, so

$$\operatorname{Ann}(a) \cap \operatorname{Ann}(c) = \bigcap_{i=1}^{n} (\operatorname{Ann}(a) \cap \operatorname{Ann}(c_i)) \subseteq \bigcap_{i=1}^{n} \operatorname{Ann}(b_i) \subseteq \operatorname{Ann}(b)$$

and this implies $b \in P_{(a,c)}$, showing that $\sum_{c \in \operatorname{Ann}(a)} P_{(a,c)} \subseteq \bigcup_{c \in \operatorname{Ann}(a)} P_{(a,c)}$. Finally, since every $P_{(a,c)}$ is a z^0 -ideal, clearly, $\bigcup_{c \in \operatorname{Ann}(a)} P_{(a,c)}$ is also a z^0 -ideal.

THEOREM 2.10. Let R be a reduced ring with property a.c. and $a \in R$. The following statements are equivalent:

- (1) Every prime z^0 -ideal is minimal or maximal.
- (2) For any $M \in Max(R)$ and $a, b \in M$, there are $c \in Ann(a)$ and $d \notin M$ such that $Ann(a) \cap Ann(c) \subseteq Ann(bd)$.

Proof. Suppose that every prime z^0 -ideal is minimal or maximal but (2) does not hold. Then there are $M \in Max(R)$ and $a, b \in M$ such that for every $c \in Ann(a)$ and $d \notin M$, $Ann(a) \cap Ann(c) \not\subseteq Ann(bd)$. Consider

$$T = \{b^n d : d \in R - M, n = 1, 2, ...\}, \quad I = \bigcup_{c \in \text{Ann}(a)} P_{(a,c)}.$$

Obviously, T is closed under multiplication. We also have $I \cap T = \emptyset$, for if $b^n d \in P_{(a,c)}$ for some n and $c \in \operatorname{Ann}(a)$, then $\operatorname{Ann}(a) \cap \operatorname{Ann}(c) \subseteq \operatorname{Ann}(bd)$, which is impossible. So there exists a prime ideal P such that $I \subseteq P$ and $P \cap T = \emptyset$. We have already observed in Lemma 2.9 that I is a z^0 -ideal and if P is minimal, then P is a z^0 -ideal. Now $P \cap T = \emptyset$ and $R - M \subseteq S$ imply that $P \subseteq M$. On the other hand, $\operatorname{Ann}(a) \subseteq P$ and hence P is not minimal, so it must be maximal, i.e., P = M. This implies that $b \in M = P$, a contradiction.

Conversely, suppose that (2) holds and $P \subseteq M$ is a prime z^0 -ideal, for some $M \in \operatorname{Max}(R)$. Suppose P is neither maximal nor minimal. Then there are $a \in P$ and $b \in M - P$ such that $\operatorname{Ann}(a) \subseteq P$. Now by (2) there are $c \in \operatorname{Ann}(a)$ and $d \notin M$ such that $\operatorname{Ann}(a) \cap \operatorname{Ann}(c) \subseteq \operatorname{Ann}(bd)$. Since $(a, c) \subseteq P$ and P is a z^0 -ideal, hence $bd \in P_{(a,c)} \subseteq P$. But $d \notin P$, for $d \notin M$, hence $b \in P$, a contradiction. **3.** *PP***-rings and** z^0 **-ideals.** In this section we investigate the relation between z^0 -ideals and *PP*-rings.

REMARK. We note that $\operatorname{int} V_S(I) = S - V_S(\operatorname{Ann}(I))$ for every dense subspace S of Spec(R) and every ideal I in R. Therefore if R is a reduced ring, then R is a PP-ring if and only if there exists a dense subspace S of Spec(R) containing Max(R) such that for each $a \in R$, $\operatorname{int} V_S(a)$ is clopen in S. Also R is a Baer ring if and only if there exists a dense subspace S of Spec(R) containing Max(R) such that every open set in S has closure open in S (i.e., S is an extremally disconnected space; see [1] and [16]).

The sum of two z^0 -ideals in a reduced ring (even in C(X)) may be a proper ideal which is not a z^0 -ideal (see [3, p. 20]). If C(X) is a *PP*-ring, then the sum of any two z^0 -ideals in C(X) is either a z^0 -ideal or C(X) (see [3, Proposition 2.13] and [15, Theorem 1.1]). Next we generalize this fact.

THEOREM 3.1. Let R be a reduced PP-ring with property a.c. The sum of any two z^0 -ideals in R is either a z^0 -ideal or R.

Proof. Let I and J be two z^0 -ideals in R and suppose that $I + J \neq R$. Let $a \in I + J$ and int $V(a) = \operatorname{int} V(b)$ for some $b \in R$. We will show that $b \in I + J$. We have a = c + d, where $c \in I$ and $d \in J$. We may assume that $c \neq 0 \neq d$, for otherwise we clearly have $b \in I + J$. Now by the Remark, int V(c) and int V(d) are clopen sets, and since I and J are z^0 -ideals, we have $\operatorname{int} V(c) \neq \emptyset \neq \operatorname{int} V(d)$. Then by Lemma 2.1, there are idempotents $e, e' \in R$ such that $\operatorname{int} V(c) = V(e)$ and $\operatorname{int} V(d) = V(e')$. Since I and J are z^0 -ideals, we infer that $e \in I$ and $e' \in J$. Now by our hypothesis, there exists $e'' \in R$ such that

 $V(e'') = V(e) \cap V(e') \subseteq int V(a) = int V(b).$

Thus Lemma 2.2 implies that $b \in (e'')$, i.e., $b \in I + J$.

DEFINITION. A ring R has property p.z. if every principal z-ideal in R is generated by an idempotent.

EXAMPLE. Suppose R is a semireal-closed F-ring, i.e., for each a > 0there exists $b \in R$ with $a = b^2$ (see [12, p. 288]). We show that R has property p.z. To see this suppose I = (a) is a non-zero z-ideal in R. Then (|a|) = (a) and so there exists $b \in R$ such that $|a| = b^2$. Hence M(|a|) =M(b) implies that $b \in (|a|)$. Therefore there is $c \in R$ such that $b = b^2c$, i.e., $M(b) \cup M(1 - bc) = Max(R)$. Since M(a) = M(|a|) = M(b), M(a) is clopen in Max(R). By Lemma 2.1, there is an idempotent $e \in R$ such that M(a) = M(e). Since (a) is a z-ideal, we have $(e) \subseteq (a)$. Also by Lemma 2.2, $(a) \subseteq (e)$, i.e., (a) = (e). Hence every principal z-ideal in R is generated by an idempotent. In particular, C(X) has property p.z.

The following theorems are generalizations of Theorem 2.10 in [3].

THEOREM 3.2. Let R be a reduced ring with property p.z. Every basic z^0 -ideal in R is principal if and only if R is a PP-ring.

Proof. Suppose every basic z^0 -ideal is principal. We will show that for each $a \in R$, int V(a) is clopen in Spec(R). It suffices to prove this for $a \in R$ which is a zero divisor, for if Ann(a) = (0), then int $V(a) = \emptyset$. Now let $P_a = (b)$ and $Ann(a) \neq (0)$. Then by hypothesis, $P_a = (e)$, where $e^2 = e$. Hence $a \in (e)$ implies that $V(e) \subseteq V(a)$, and $e \in P_a$ implies that int $V(a) \subseteq$ int V(e) = V(e). Hence V(e) = int V(a) is clopen.

Conversely, let R be a PP-ring and $a \in R$ with $Ann(a) \neq (0)$. Then int $V(a) \neq \emptyset$ is a clopen set and hence by Lemma 2.1, there exists an idempotent $e \in R$ with int V(a) = V(e). Since $P_a = \{b \in R : int V(a) \subseteq int V(b)\}$, Lemma 2.2 implies that $P_a = (e)$.

THEOREM 3.3. Let R be a semiprimitive Gelfand ring with property p.z. Every intersection of basic z^0 -ideals in R is principal if and only if R is a Baer ring.

Proof. Suppose every intersection of basic z^{0} -ideals is principal and G is an open set in Max(R). Then by Lemma 2.4, there is $T \subseteq R$ such that $G = \bigcup_{a \in T} \operatorname{int} M(a)$. By hypothesis, there is an idempotent $e \in R$ such that $\bigcap_{a \in T} P_a = (e)$. We now claim that $\operatorname{cl} G = M(e)$ and this implies that $\operatorname{cl} G$ is clopen. To see this, we note that $e \in P_a$ for all $a \in T$, i.e., $\operatorname{int} M(a) \subseteq \operatorname{int} M(e)$ for all $a \in T$. Hence $G \subseteq M(e)$ implies that $\operatorname{cl} G \subseteq M(e)$. Now suppose for contradiction that $M \in M(e) - \operatorname{cl} G$. Then by Lemma 2.4, there exists $b \in R$ such that $\operatorname{cl} G \subseteq M(b)$ and $M \in M(b-1)$, so $\operatorname{int} M(a) \subseteq M(b)$ for all $a \in T$, hence $b \in P_a$ for all $a \in T$. This shows that $b \in \bigcap_{a \in T} P_a = (e)$. But $M \in M(e) \cap M(b-1)$, so $M(e) \not\subseteq M(b)$, i.e., $b \notin (e)$, a contradiction.

Conversely, let R be a Baer ring and let $I = \bigcap_{a \in T} P_a$ for some $T \subseteq R$. By hypothesis, $G = \operatorname{cl}(\bigcup_{a \in T} \operatorname{int} M(a))$ is an open set, so Lemma 2.1 implies that G = M(e) for some idempotent $e \in R$. Clearly, int $M(a) \subseteq \operatorname{int} M(e)$ for all $a \in T$, which means that $e \in P_a$ for all $a \in T$. Hence $(e) \subseteq I$. Now let $b \in I$. Then $\operatorname{int} M(a) \subseteq \operatorname{int} M(b)$ for all $a \in T$, which means that $G \subseteq M(b)$. Thus by Lemma 2.2, $b \in (e)$, i.e., $I \subseteq (e)$ and therefore I = (e).

Acknowledgments. The author is deeply grateful to the referee for his/her helpful suggestions on this paper.

References

- H. Al-Ezeh, M. A. Natsheh and D. Hussein, Some properties of the ring of continuous functions, Arch. Math. (Basel) 51 (1988), 60–64.
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.

- [3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, $On z^0$ -ideals in C(X), Fund. Math. 160 (1999), 15–25.
- [4] —, —, —, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), 1061–1073.
- [5] F. Azarpanah and M. Karavan, On nonregular ideals and z^0 -ideals in C(X), Czech. Math. J. 55 (130) (2005), 397–407.
- [6] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459–466.
- [7] L. Gillman and M. Jerison, *Rings of Continuous Functions*, Springer, 1976.
- [8] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110–130.
- [9] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, 1988.
- [10] I. Kaplansky, *Commutative Rings*, Allyn and Bacon, Boston, 1970.
- [11] T. Lucas, Two annihilator conditions: property (A) and (a.c.), Comm. Algebra 14 (1986), 557–580.
- [12] G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973), 280–297.
- [13] —, Prime ideals and quotient rings of reduced rings, Math. Japon. 34 (1989), 941– 956.
- [14] E. Matlis, The minimal prime spectrum of a reduced ring, Illinois J. Math. 27 (1983), 353–391.
- [15] C. W. Neville, When is C(X) a coherent ring?, Proc. Amer. Math. Soc. 110 (1990), 505–508.
- [16] R. Safakish, On commutative reduced Baer rings, J. Sci. Iran, to appear.
- [17] K. Samei, On summand ideals in commutative reduced rings, Comm. Algebra 32 (2004), 1061–1068.
- [18] —, Clean elements in commutative reduced rings, ibid., 1479–1486.

Department of Mathematics Bu Ali Sina University Hamedan, Iran Institute for Studies in Theoretical Physics and Mathematics (IPM) Tehran, Iran E-mail: samei@ipm.ir

Received 30 August 2004; in revised form 7 November 2005