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Dehn twists on nonorientable surfa
esbyMi
haª Stukow (Gda«sk)
Abstra
t. Let ta be the Dehn twist about a 
ir
le a on an orientable surfa
e. It is wellknown that for ea
h 
ir
le b and an integer n, I(tn

a(b), b) = |n|I(a, b)2, where I(·, ·) is thegeometri
 interse
tion number. We prove a similar formula for 
ir
les on nonorientablesurfa
es. As a 
orollary we prove some algebrai
 properties of twists on nonorientablesurfa
es. We also prove that if M(N) is the mapping 
lass group of a nonorientablesurfa
e N , then up to a �nite number of ex
eptions, the 
entraliser of the subgroup of
M(N) generated by the twists is equal to the 
entre of M(N) and is generated by twistsabout 
ir
les isotopi
 to boundary 
omponents of N .1. Introdu
tion. Let N s

g,r be a smooth, nonorientable, 
ompa
t surfa
eof genus g with r boundary 
omponents and s pun
tures. If r and/or s iszero then we omit it from the notation. If we do not want to emphasisethe numbers g, r, s, we simply write N for a surfa
e N s
g,r. Re
all that Ngis a 
onne
ted sum of g proje
tive planes and N s

g,r is obtained from Ng byremoving r open disks and spe
ifying a set Σ of s distinguished points inthe interior of N .Let H(N) be the group of all di�eomorphisms h : N → N su
h that
h is the identity on ea
h boundary 
omponent and h(Σ) = Σ. By M(N)we denote the quotient group of H(N) by the subgroup 
onsisting of themaps isotopi
 to the identity, where we assume that the isotopies �x Σ andare the identity on ea
h boundary 
omponent. M(N) is 
alled the mapping
lass group of N . The mapping 
lass group of an orientable surfa
e is de�nedanalogously, but we 
onsider only orientation preserving maps. Usually wewill use the same letter for a map and its isotopy 
lass.1.1. Ba
kground. In 
ontrast to the mapping 
lass groups of orientablesurfa
es, the nonorientable 
ase has not been studied mu
h. The �rst sig-ni�
ant result is due to Li
korish [9℄, who proved that the mapping 
lass2000 Mathemati
s Subje
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118 M. Stukowgroup of a 
losed nonorientable surfa
e is generated by Dehn twists and aso-
alled 
ross
ap slide (or a Y-homeomorphism). Later this generating setwas simpli�ed by Chillingworth [2℄, and extended to the 
ase of pun
turedsurfa
es by Korkmaz [8℄. Korkmaz also 
omputed the �rst homology groupof the mapping 
lass groups of pun
tured nonorientable surfa
es [7, 8℄. It isalso known that the group M(N s
g ) is generated by involutions [11, 12℄.At �rst glan
e it seems that it should be possible to derive some propertiesof M(N) from the properties of the mapping 
lass group of its orientabledouble 
over. Surprisingly, although it is known that M(N) is isomorphi
 tothe 
entraliser of some involution in the mapping 
lass group of the double
over of N (see [1℄), this idea has not led to any signi�
ant results.One of the most fundamental properties of the mapping 
lass group isthat it a
ts on the set C of isotopy 
lasses of 
ir
les. In the 
ase of an ori-entable surfa
e this observation leads to the most powerful tools in the studyof mapping 
lass groups.For example the set C has simple stru
tures of a simpli
ial 
omplex, whi
hlead to de�nitions of 
omplexes of 
urves. This idea was the basi
 tool in�nding a presentation of the mapping 
lass group and also in obtaining somedes
riptions of its (
o)homology groups (
f. [5℄ and referen
es there).Another example is the extension of the a
tion of the mapping 
lass groupon C to the a
tion on equivalen
e 
lasses of measured foliations. This idealeads to the Thurston theory of surfa
e di�eomorphisms (
f. [4℄).In either of these examples, it is of fundamental importan
e to understandthe a
tion of generators of M(N) on a single 
ir
le. Throughout this paper,we 
on
entrate on a very basi
 result in this dire
tion, namely on the wellknown formula for the interse
tion number(1.1) I(tna(b), b) = |n|I(a, b)2,whi
h holds for any two 
ir
les a and b on an orientable surfa
e and anyinteger n (
f. Proposition 3.3 of [10℄).1.2. Main results. Our �rst result provides a formula for the a
tion of atwist on a nonorientable surfa
e, similar to (1.1) (
f. Theorem 3.3). To bemore pre
ise, we show that for generi
 two-sided 
ir
les a and b on N su
hthat I(a, b) = |a ∩ b|, and any integer n 6= 0, we have

I(tna(b), b) = |n|I(a, b)2 −
u∑

i=1

k2
i ,where k1, . . . , ku are nonnegative integers depending only on the mutualposition of a and b.As an appli
ation of this result, we prove in Se
tion 4 some algebrai
properties of twists on nonorientable surfa
es. Finally, in Se
tion 6 we showthat up to a �nite number of ex
eptions, the 
entraliser of the subgroup
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es 119generated by the twists is equal to the 
entre of M(N s
g,r) and is generatedby r boundary twists (
f. Theorem 6.2). We end the paper with an ap-pendix, whi
h 
ontains the des
ription of two rather ex
eptional mapping
lass groups, namely those of a Klein bottle with one pun
ture and of aKlein bottle with one boundary 
omponent.All the results presented are well known in the orientable 
ase (
f. [6, 10℄),but for nonorientable surfa
es they are new. Moreover, we believe that themethods we develop will 
ontribute to a further study of mapping 
lassgroups of nonorientable surfa
es.Sin
e the strategy we follow is similar to that in [10℄, in some 
ases weomit detailed proofs referring the reader to the above arti
le.2. Preliminaries. By a 
ir
le on N we mean an oriented simple 
losed
urve on N \Σ, whi
h is disjoint from the boundary of N . Usually we identifya 
ir
le with its image. If a1 and a2 are isotopi
, we write a1 ≃ a2. If two
ir
les a and b interse
t, we always assume that they interse
t transversely.A

ording to whether a regular neighbourhood of a 
ir
le is an annulus ora Möbius strip, we 
all the 
ir
le two-sided or one-sided respe
tively. Wesay that a 
ir
le is essential if it does not bound a disk disjoint from Σ,and generi
 if it bounds neither a disk with fewer than two pun
tures nora Möbius strip disjoint from Σ. Noti
e that the nonorientable surfa
e N s

g,radmits a generi
 two-sided 
ir
le if and only if N 6= N s
1 with s ≤ 2 and

N 6= N1,1.Following [10℄ we will say that 
ir
les a and b 
obound a bigon if thereexists a disk whose boundary is the union of an ar
 of a and an ar
 of b.Moreover, we assume that ex
ept the end points, these ar
s are disjoint from
a ∩ b.For any two 
ir
les a and b we de�ne their geometri
 interse
tion numberas follows:

I(a, b) = inf{|a′ ∩ b| : a′ ≃ a}.In parti
ular, if a is a two-sided 
ir
le and a ≃ b then I(a, b) = 0.The following proposition (
f. Proposition 3.2 of [10℄) provides a veryuseful tool for 
he
king if two 
ir
les are in a minimal position (with respe
tto |a ∩ b|).Proposition 2.1. Let a and b be essential 
ir
les on N . Then |a∩ b| =
I(a, b) if and only if a and b do not 
obound a bigon.Let a be a two-sided 
ir
le. By de�nition, a regular neighbourhood of
a is an annulus Sa, so if we �x one of two possible orientations of Sa, we
an de�ne the Dehn twist ta about a in the usual way. We emphasise thatsin
e we are dealing with nonorientable surfa
es, there is no 
anoni
al wayto 
hoose the orientation of Sa. Therefore by a twist about a we always



120 M. Stukowmean one of two possible twists about a (the se
ond one is then its inverse).By a boundary twist we mean a twist about a 
ir
le isotopi
 to a boundary
omponent. If a is not generi
 then the Dehn twist ta is trivial. We will showthat the 
onverse is also true (
f. Corollary 4.5).Other important examples of di�eomorphisms of a nonorientable surfa
eare the 
ross
ap slide and the pun
ture slide. They are de�ned as a slide of a
ross
ap and of a pun
ture, respe
tively, along a one-sided 
ir
le (for pre
isede�nitions and properties see [8℄).3. A
tion of a Dehn twist on a two-sided 
ir
le. For the rest of thisse
tion let us �x two-sided generi
 
ir
les a and b su
h that |a∩ b| = I(a, b).3.1. De�nitions. By a segment of b (with respe
t to a) we mean anyunoriented ar
 p of b satisfying a ∩ p = ∂p. Similarly we de�ne an orientedsegment. If p is an oriented segment, by −p we mean the segment equalto p as an unoriented segment but with reversed orientation, and by |p|the unoriented segment determined by p. We 
all a segment p of b one-sided[two-sided ℄ if the union of p and an ar
 of a 
onne
ting ∂p is a one-sided [two-sided℄ 
ir
le. An oriented segment is one-sided [two-sided℄ if the underlyingunoriented segment is one-sided [two-sided℄.Oriented segments PP ′ and QQ′ (not ne
essarily distin
t) of b are 
alledadja
ent if both are one-sided and there exists an open disk ∆ on N \ Σwith the following properties:(1) ∂∆ 
onsists of the segments PP ′, QQ′ of b and the ar
s PQ, P ′Q′of a;(2) ∆ is disjoint from a ∪ b (see Figure 1).

Fig. 1. Adja
ent segments of b

Remark 3.1. Let p, q, p′, q′ be oriented segments su
h that p is adja
entto q through a disk ∆ and p′ is adja
ent to q′ through ∆′. Then sin
e ∆ and
∆′ are disjoint from a ∪ b, either ∆ = ∆′ or ∆ ∩ ∆′ = ∅. In parti
ular if
{p, q} 6= {p′, q′} and {p, q} 6= {−p′,−q′} then ∆ ∩ ∆′ = ∅.Oriented segments p 6= q are 
alled joinable if there exist oriented seg-ments p1, . . . , pk su
h that p1 = p, pk = q and pi is adja
ent to pi+1 for
i = 1, . . . , k − 1.
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es 121Unoriented segments are 
alled adja
ent [joinable℄ if they are adja
ent[joinable℄ as oriented segments for some 
hoi
e of orientations.Remark 3.2. Observe that if p is a segment of b then there are at mosttwo segments of b adja
ent to p (one on ea
h side of p).We now de�ne a graph Γ (a, b), whi
h will help us to measure how mu
h
I(tna(b), b) di�ers from |n|I(a, b)2 (
f. formula (1.1)). The verti
es of Γ (a, b)
orrespond to one-sided unoriented segments of b. If we have two segmentswhi
h are adja
ent through the disk ∆, we join the verti
es 
orresponding tothese segments by an edge (labelled ∆). So in parti
ular, we do not ex
ludethe possibility that there are multiple edges or loops.Observe that segments p 6= q are joinable if and only if the 
orrespondingverti
es of Γ (a, b) 
an be 
onne
ted by a path.Having the above de�nitions, we 
an formulate the relationship betweenthe a
tion of a twist and the interse
tion number.Theorem 3.3. Let a and b be two-sided generi
 
ir
les and let k1, . . . , kube the numbers of verti
es in the 
onne
ted 
omponents of Γ (a, b). Then forevery integer n 6= 0,

I(tna(b), b) = |n|I(a, b)2 −
u∑

i=1

k2
i .The rest of this se
tion is devoted to the proof of the above theorem.The idea of the proof is very simple: 
onstru
t the 
ir
le tna(b), perform allobvious redu
tions of tna(b) ∩ b and 
ount them, �nally prove that there areno further redu
tions. However, the details of the proof are quite involved,and we �rst need some preparations.3.2. Joinable segments. For two oriented joinable segments p and q de�nethe distan
e between p and q to be the minimal k su
h that there existoriented segments p1, . . . , pk with p1 = p, pk = q and pi adja
ent to pi+1 for

i = 1, . . . , k − 1.The following three lemmas, whi
h 
ontain the 
ru
ial properties of join-able segments, will be proved simultaneously.Lemma 3.4. If p is an oriented segment of b then p and −p are notjoinable.Lemma 3.5. Let p and q be oriented , joinable segments of b at distan
e k,and let p1, . . . , pk be oriented segments su
h that p1 = p, pk = q and pi isadja
ent to pi+1 for i = 1, . . . , k − 1. Then |pi| 6= |pj | if i 6= j.Lemma 3.6. Let P1P
′
1, . . . , PkP

′
k be oriented segments of b su
h that PiP

′
iis adja
ent to Pi+1P

′
i+1 through a disk ∆i for i = 1, . . . , k − 1. Moreover ,assume that P1P

′
1 6= PkP

′
k and the distan
e between these two segments is



122 M. Stukowequal to k. Then ∆i ∩∆j = ∅ for i 6= j, and the interior ∆ of ⋃k−1
i=1 ∆i is anopen disk with the following properties:(1) ∂∆ 
onsists of the segments P1P

′
1, PkP

′
k of b and the ar
s P1Pk, P ′

1P
′
kof a;(2) ∆ ∩ b = {P1P

′
1, . . . , PkP

′
k};(3) ea
h of the sequen
es P1, . . . , Pk and P ′

1, . . . , P
′
k is stri
tly monotonewith respe
t to some orientation of a (
f. Figure 2).

Fig. 2. Con�guration of segments�Lemma 3.6Proof of Lemmas 3.4�3.6. First observe that we have the impli
ations:(A) Lemma 3.4 ⇒ Lemma 3.5,(B) Lemma 3.5 ⇒ Lemma 3.6.In fa
t, in order to prove (A), let oriented segments p1, . . . , pk of b be as inLemma 3.5. Sin
e p1 6= pk (by the de�nition of joinability) and the sequen
e
p1, . . . , pk is minimal with respe
t to k, we have pi 6= pj for i 6= j. Moreover,by Lemma 3.4, pi 6= −pj for i 6= j.To prove (B), observe that by Lemma 3.5, |PiP

′
i | 6= |PjP

′
j| for i 6= j.Hen
e by Remark 3.1, ∆i ∩ ∆j = ∅ for i 6= j and one 
an think of ∆ as theinterior of a standard re
tangle (obtained by gluing all ∆i's along 
ommonboundary 
omponents) with two opposite sides glued to a. Now it is 
learthat ∆ satis�es 
onditions (1)�(3) above.Observe that the proofs of the above impli
ations preserve distan
e, inthe sense that if Lemma 3.4 is true for segments of distan
e ≤ k (i.e. p and

−p are not joinable with distan
e ≤ k), then Lemma 3.5 is also true forsegments of distan
e ≤ k. Similarly for impli
ation (B).The rest of the proof will be by indu
tion (simultaneous for all threelemmas) on the distan
e between joinable segments.Suppose �rst that k = 2. We will prove Lemma 3.4; Lemmas 3.5 and 3.6will follow by impli
ations (A) and (B) above.If p is adja
ent to −p then there exists an open disk ∆ with boundary
onsisting of p, −p and two ar
s of a 
onne
ting ∂p. The best way to thinkabout su
h a situation is that we have a re
tangle (
orresponding to ∆)with two opposite sides glued by an orientation reversing map (these sides
orrespond to p and −p). What we get is a Möbius strip with a as theboundary 
ir
le, whi
h is a 
ontradi
tion, sin
e a is generi
.



Twists on nonorientable surfa
es 123Let k ≥ 3, and assume that Lemmas 3.4�3.6 are true for joinable segmentsof distan
e less than k. By impli
ations (A) and (B) it is enough to showthat p and −p are not joinable with distan
e k.Suppose that oriented segments p1, . . . , pk of b are su
h that pi is adja
entto pi+1 for i = 1, . . . , k − 1, pk = −p1 and the distan
e between p1 and −p1is equal to k. If pk−1 = p1 then p1 and −p1 would have distan
e 2, 
ontraryto k ≥ 3. Hen
e pk−1 6= p1 and we 
an apply Lemma 3.6 to the segments p1and pk−1. Let ∆1 be an open disk provided by that lemma and let ∆2 be adisk given by adja
en
y of pk−1 and pk = −p1. By Lemma 3.5, |pi| 6= |pj | for
i 6= j, i, j ∈ 1, . . . , k − 1, hen
e if we assume that ∆1∩∆2 6= ∅, then Remark3.1 and the 
onstru
tion of ∆1 implies that ∆2 is a disk given by adja
en
yof pk−2 and pk−1 (this is be
ause this is the only disk 
omposing ∆1 whi
hhas pk−1 as a boundary 
omponent). But this is impossible sin
e pk−2 6= −p1(otherwise the distan
e between p1 and −p1 would be less than k). Therefore
∆1∩∆2 = ∅ and we 
laim that ∆ = ∆1∪∆2 is a Möbius strip with boundaryequal to a, whi
h leads to a 
ontradi
tion, sin
e a is generi
. In fa
t, ∆ isobtained from a re
tangle (
orresponding to ∆1∪pk−1∪∆2) by identifying itstwo opposite sides (
orresponding to p1 and −p1) by an orientation reversingmap and then gluing the remaining side to a.Sin
e a is two-sided, we have the notion of being on the same side of a forgerms of transversal ar
s starting at the points of a. In parti
ular, if P is anend point of a segment p and Q of q then by P and Q being on the same sideof a, we mean that the germs of p and q starting at P and Q respe
tivelyare on the same side of a.Lemma 3.7. Initial [terminal ] points of oriented joinable segments of bare on the same side of a.Proof. In fa
t, otherwise there would exist a path, arbitrarily 
lose to a,
onne
ting points on di�erent sides of a whi
h is disjoint from a (
f. Lemma3.6).Lemma 3.8. Let p and q 6= −p be oriented segments su
h that q beginsat the terminal point of p. Then p and q are not joinable.Proof. Suppose p and q are joinable. Then p and q are one-sided and byLemma 3.7, the initial points of p and q are on the same side of a. Hen
ethe initial and terminal points of p are on di�erent sides of a. Sin
e p and qare joinable, by Lemma 3.6, there exists a disk ∆ with boundary 
onsistingof p, q and ar
s of a 
onne
ting the initial point of p with the terminal pointof p and the terminal point of p with the terminal point of q. In order toimagine possible 
on�gurations of a, p and q, it is 
onvenient to think of are
tangle with two opposite sides p and q su
h that the remaining sides areglued to di�erent sides of a in su
h a way that p and q are one-sided and



124 M. Stukowthe terminal point of p 
oin
ides with the initial point of q. There are twopossibilities to do it (see Figure 3): either the initial point of p is betweenthe end points of q, or the terminal point of q is between the end points of
p (the third possibility, that the initial point of p and the terminal point of
q 
oin
ide, is impossible sin
e b is generi
).

Fig. 3. Con�guration of p, q and a�Lemma 3.8Geometri
ally, it is quite 
lear that the situation shown in Figure 3 isnot possible. In fa
t, this �gure implies that b �winds� in�nitely many timesalong the 
ore of a Möbius strip (it 
annot turn ba
k, be
ause a and b donot 
obound a bigon, and sin
e everything is smooth there is no risk ofpathologies).In order to have a more formal argument, re
all that Lemma 3.6 impliesthat ∆ ∩ b 
onsists of k segments P1P
′
1, . . . , PkP

′
k of b su
h that P1P

′
1 = pand PkP

′
k = q. In parti
ular, ea
h of the ar
s P1Pk and P ′

1P
′
k of a ∩ ∆
ontains k points of b. But this is impossible sin
e either P1Pk ⊂ P ′

1P
′
k and

P ′
k ∈ P ′

1P
′
k \ P1Pk (Figure 3(i)), or P ′

1P
′
k ⊂ P1Pk and P1 ∈ P1Pk \ P ′

1P
′
k(Figure 3(ii)).

Definitions. By a double segment of b we mean an unordered pair oftwo di�erent oriented segments of b whi
h have the same initial point.Clearly ea
h point of a ∩ b determines exa
tly one double segment, so inparti
ular, there are |a ∩ b| double segments.Two double segments are 
alled joinable if there exists an oriented seg-ment p in the �rst double segment and q in the other su
h that p and q arejoinable.Lemma 3.9. Suppose I(a, b) > 1. Then for ea
h double segment P thereexists a double segment Q 6= P whi
h is not joinable to P .Proof. Assume that every double segment is joinable to P . Let p1, p2 beoriented segments forming P . Sin
e I(a, b) > 1, p1 6= −p2. Let us adopt thenotation of 
onse
utive segments of b as in Figure 4. We have the following
Fig. 4. Segments of b�Lemma 3.9relationships:
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• s and p2 are joinable: this is be
ause by Lemma 3.4, −p1 is not joinableto p1 and by Lemma 3.8, it is not joinable to p2. Therefore s must bejoinable either to p1 or p2 (sin
e we assumed that every double segmentis joinable to P ). Lemma 3.8 implies that it is joinable to p2.
• The initial and terminal points of p1 are on the same side of a: thisfollows by Lemma 3.7, from joinability of s and p2.
• q and p1 are joinable: this is be
ause −p2 is joinable neither to p2(Lemma 3.4) nor to p1 (Lemma 3.8), and q is not joinable to p2 (Lemma3.8).
• The initial and terminal points of p2 are on the same side of a: thisfollows by Lemma 3.7, from joinability of q and p1.
• r and p2 are joinable: this is be
ause −q is joinable neither to p2(Lemma 3.7) nor to p1 (be
ause q is joinable to p1), and r is notjoinable to p1 (Lemma 3.7).Figures 5(i)�(iii) show re
onstru
tion of a and b due to the above proper-ties (here, as in the proof of Lemma 3.8, one should think of joinability asa re
tangle with two edges glued to a). Let K be an annulus with sides:

Fig. 5. Segments of b�Lemma 3.9
p1, q, r, s, the ar
 of a 
onne
ting the initial point of p2 with the terminalpoint of s and the ar
 of a 
onne
ting the terminal points of r and p2, i.e. Kis the shaded region in Figure 5(iv). Clearly this �gure implies that b windsin�nitely many times along the 
ore of K.More formally, as in Lemma 3.8, Lemma 3.6 implies that ea
h of the twosides of K 
ontained in a 
ontains the same number of points of a∩ b, whi
his impossible.3.3. Properties of Γ (a, b). Re
all that a 
y
le in a graph with the set ofverti
es V is any sequen
e of di�erent edges (u1, u2), (u2, u3), . . . , (uk, u1),where u1, . . . , uk ∈ V .



126 M. StukowProposition 3.10. Every vertex in Γ (a, b) has degree at most 2. More-over Γ (a, b) is a forest , i.e. it does not 
ontain 
y
les (in parti
ular there areneither loops nor multiple edges).Proof. The �rst statement follows from Remark 3.2.Suppose that there is a 
y
le in Γ (a, b). By Lemma 3.4, this means thatthere exists a sequen
e p1, . . . , pk of oriented segments of b su
h that p1 = pkand pi is adja
ent to pi+1 through a disk ∆i for i = 1, . . . , k − 1. Moreover,sin
e every vertex has degree at most 2, our 
y
le is simple (i.e. all its verti
esare di�erent), hen
e |pi| 6= |pj | for i 6= j, i, j ∈ {1, . . . , k − 1}.Suppose �rst that k = 1, i.e. there exists a loop in Γ (a, b) and ∆1 is adisk given by adja
en
y of p1 to itself. Now think of ∆ as obtained by thefollowing 
onstru
tion: identify two opposite sides (
orresponding to p1) of are
tangle (
orresponding to ∆)�this gives us an annulus, and then we haveto glue the remaining sides to a. There are two possibilities to do it and weobtain either a torus or a Klein bottle. The �rst 
ase is not possible sin
e
p1 is one-sided and in the se
ond 
ase Γ (a, b) = ∅ (be
ause there is onlyone isotopy 
lass of generi
 two-sided 
ir
les on a Klein bottle�
f. CorollaryA.4).If k > 1, sin
e |pi| 6= |pj | for i 6= j, i, j ∈ {1, . . . , k − 1}, and ∆1 6= ∆k−1,we have ∆i ∩ ∆k−1 = ∅ for i = 1, . . . , k − 2 (
f. Remark 3.1). Therefore if
∆ is an open disk obtained by applying Lemma 3.6 to the segments p1 and
pk−1, then ∆ ∩ ∆k−1 = ∅. Hen
e we 
an 
omplete the reasoning as in the
ase k = 1, but with ∆′ = ∆ ∪ pk−1 ∪ ∆k−1.The following proposition shows that Γ (a, b) 
ould be de�ned not onlyfor 
ir
les a, b but for their isotopy 
lasses. Sin
e we will not use this resultwe skip its proof.Proposition 3.11. Let a, a′, b, b′ be two-sided 
ir
les on N su
h that
a ≃ a′, b ≃ b′ and |a ∩ b| = |a′ ∩ b′| = I(a, b). Then Γ (a, b) is isomorphi
 to
Γ (a′, b′).3.4. Proof of Theorem 3.3. The theorem is trivial if I(a, b) = 0, so assumethat I(a, b) ≥ 1.Constru
tion of tna(b). Let Sa and Sb be oriented regular neighbourhoodsof a and b respe
tively su
h that Sa ∪ Sb is a regular neighbourhood of
a ∪ b. De�ne also S◦

b ⊂ Sb to be a 
ollar neighbourhood of b and let b′ bethe boundary 
omponent of S◦
b di�erent from b. In parti
ular, b and b′ aredisjoint, isotopi
 and |a∩ b′| = |a∩ b|. The set S◦

b ∩Sa 
onsists of m = I(a, b)disjoint 4-gons. We 
an label their verti
es by Ei, E
′
i, F

′
i , Fi for 1 ≤ i ≤ m insu
h a way that the following 
onditions are satis�ed:
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es 127(1) EiFi and E′
iF

′
i are ar
s of b and b′, respe
tively;(2) the orientation of the 4-gon EiE

′
iF

′
iFi indu
ed by a 
y
li
 orderingof verti
es agrees with the orientation of Sa (see Figure 6).

Fig. 6. Interse
tions of Sa and S◦

bLet also Gi = EiFi∩a and let us adopt the 
onvention that unless otherwisestated the ar
 EiFi (or E′
iF

′
i ) means that of the two ar
s of b (or b′) withend points Ei, Fi (or E′

i, F
′
i ) whi
h is 
ontained in Sa.Outside Sa the twist ta a
ts as the identity, so the 
ir
le c = tna(b′) hasthe following properties:(1) outside Sa, c is equal to b′;(2) ea
h ar
 of c ∩ Sa 
ir
les |n| times around Sa.Due to the above properties, ea
h of the m ar
s E′

iF
′
i of c 
rosses b in |n|mpoints (see Figure 7). In parti
ular

|c ∩ b| = |n|I(a, b)2.Observe that the notation is 
hosen in su
h a way that every time c entersthe neighbourhood Sa through a point E′
i, it 
rosses EiFi (
f. Figure 7).

Fig. 7. Points of interse
tion of c and bAdmissible 
ir
les. Now we are going to de�ne a 
lass of 
ir
les whi
h
ontains c and is 
losed under 
ertain deformations (de�ned later).Suppose γ is a 
ir
le 
ontained in Sa ∪ Sb and su
h that outside Sa,
γ 
onsists of m disjoint ar
s ea
h of whi
h is disjoint from b and has endpoints on di�erent 
omponents of P∩Sa, where P is the 
omponent of Sb\Sa
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ontaining this ar
. Moreover, if we identify Sa with a × [0, 1] so that ea
hof the ar
s b ∩ Sa has 
onstant �rst 
oordinate, then we assume that ea
har
 of γ ∩ Sa is monotone with respe
t to the �rst 
oordinate. We then 
all
γ admissible. Observe that in parti
ular, b′ and c are admissible.We 
an extend the notion of [oriented℄ segments to any admissible 
ir
le
γ, de�ning them to be 
omponents of γ \ Sa. Moreover, sin
e Sa is orientable,we 
an speak about one-sided [two-sided℄ segments. In addition every ori-ented segment of γ uniquely determines an oriented segment of b, so we havea well de�ned map from the set of oriented segments of γ into the set oforiented segments of b. Denote this map by γb. Clearly γb indu
es a map be-tween the sets of unoriented segments of γ and of b. By abuse of notation wealso use the symbol γb for this map. We will use the notion of an [oriented℄segment of b starting at Ei (or Fi), meaning the [oriented℄ segment of b withinitial point Gi whi
h passes through Ei (or Fi).Redu
tions of types I and II. The 
onstru
ted 
ir
le c, in 
ontrast to theoriented 
ase, usually does not satisfy I(c, b) = |c∩b|. However we will de�netwo types of redu
tion whi
h will enable us to deform, in a very 
ontrolledway, c into a 
ir
le d satisfying I(d, b) = |d ∩ b|.Let p be an oriented one-sided segment of b with initial point Gi andterminal point Gj . Let q be an oriented segment of an admissible 
ir
le
γ su
h that γb(q) = p. Suppose further that if we orient the ar
 q̃ of γ
omplementary to q in su
h a way that it has the same initial and terminalpoints as q then the �rst interse
tion point of γ ∩ b lying on q̃ is on EiFiand the last one is on EjFj . Moreover, assume that between p and q thereare no other segments of γ (see Figure 8). Now we see that we 
an push

Fig. 8. Redu
tion of type Ithe segment q of γ towards p to obtain a 
ir
le γ′ isotopi
 to γ su
h that
I(γ′, b) = I(γ, b)−2. Observe also that γ′ is admissible and γb = γ′

b (modulothe identi�
ation of q and its deformation q′). We 
all every su
h deformationof γ a redu
tion of type I.Suppose now that we have two adja
ent oriented segments p, p′ of b withinitial points Gi, Gj and terminal points Gk, Gl respe
tively. Let q be anoriented segment of an admissible 
ir
le γ su
h that γb(q) = p′. Supposefurther that if q̃ is 
onstru
ted as above then the �rst interse
tion point of
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γ ∩ b lying on q̃ is on EiFi and the last one is on EkFk. Moreover, assumethat between p and q there are no other segments of γ (see Figure 9). As

Fig. 9. Redu
tion of type IIbefore we 
an push q towards p obtaining a 
ir
le γ′ isotopi
 to γ su
h that
I(γ′, b) = I(γ, b)−2. Observe also that γ′ is admissible and if we denote by q′the segment resulting from the deformation of q, we have γ′

b(q
′) = p whereas

γb(q) = p′. Outside the segments q for γb and q′ for γ′
b these two maps areidenti
al. We 
all every su
h deformation of γ a redu
tion of type II.Redu
ing c. Let p = GiGj be an oriented segment of b. Then by the
onstru
tion of c, there exists a unique oriented segment q of c with cb(q) = p.Suppose further that p and q determine a redu
tion of type I (see Figure 8).We 
laim that if q′ is obtained from q by performing this redu
tion, then

p and q′ do not allow a redu
tion of type I. In fa
t, if we orient the ar
 q̃ ′
omplementary to q′ in su
h a way that it has the same initial and terminalpoints as q′, then the �rst point of q̃ ′ ∩ b on q̃ ′ 
annot be on EiFi (be
ausebefore q̃ ′ goes ba
k to EiFi it must interse
t ea
h ElFl for l 6= i). Therefore if
p1, . . . , pk are all segments of b whi
h determine a redu
tion of type I (withrespe
t to c), and c′ is the 
ir
le obtained from c by performing these kredu
tions, then c′ admits no further redu
tions of type I.

Fig. 10. Possible 
on�gurations of segments of bIn order to determine the number k, observe that if E = {E1, . . . , Em}and F = {F1, . . . , Fm} then a segment p of b is one-sided if and only if both



130 M. Stukowits end points are in E or F (see Figure 10). Moreover, if p′ is a segmentof c with cb(p
′) = p then p and p′ determine a redu
tion of type I if andonly if both end points of p are in E (
f. Figure 7). Observe also that theabove 
hara
terisation of one-sided and two-sided segments of b in termsof their end points shows that the number of one-sided segments with endpoints in E is equal to the number of one-sided segments with end points in

F (they alternate along b). Sin
e the total number of one-sided segments of
b is ∑u

i=1 ki, where k1, . . . , ku are the numbers of verti
es in the 
onne
ted
omponents of Γ (a, b), we see that k = 1
2

∑u
i=1 ki. Therefore

|c′ ∩ b| = |c ∩ b| −
u∑

i=1

ki.Noti
e also that c′ is admissible and c′b = cb (up to the obvious identi�
ationof domains).By Proposition 3.10, every 
onne
ted 
omponent Ki of Γ (a, b) is a path,so every su
h 
omponent determines a sequen
e p1, . . . , pki
(ki being thenumber of verti
es in Ki) of segments of b su
h that pi is adja
ent to pi+1 for

i = 1, . . . , ki − 1. Therefore we see that Ki determines 1 + 2 + · · ·+ (ki − 1)redu
tions of c′ of type II (see Figure 11). Let d be the 
ir
le obtained by

Fig. 11. Segments of b and c′ 
orresponding to Kiperforming all these redu
tions, in parti
ular
|d ∩ b| = |c′ ∩ b| −

u∑

i=1

ki(ki − 1) = |c ∩ b| −
u∑

i=1

k2
i = |n|I(a, b)2 −

u∑

i=1

k2
i .We 
laim that d admits no further redu
tions. First observe that everyredu
tion of type II is determined by two adja
ent segments p and p′ of b. Bythe 
onstru
tion of d at least one of the preimages d−1

b (p) or d−1
b (p′) is empty.Hen
e d admits no redu
tion of type II. In order to show that d admits noredu
tion of type I, suppose that p = GiGj is an oriented one-sided segmentof b and q is an oriented segment of d su
h that db(q) = p. Denote also by

q̃ the ar
 
omplementary to q oriented in su
h a way that Gi is its initialpoint. By the 
onstru
tion of d it is 
lear that the �rst point of d∩ b lying on
q̃ 
annot be on EiFi (be
ause before q̃ goes ba
k to EiFi it must interse
tea
h ElFl for l 6= i).
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es 131To �nish the proof it is enough to show that |d ∩ b| = I(d, b), i.e. that band d do not 
obound a bigon (
f. Proposition 2.1).Denote by Ed
1 , . . . , Ed

m, F d
1 , . . . , F d

m the points of interse
tion of d withthe boundary of Sa 
orresponding to the points E′
1, . . . , E

′
m, F ′

1, . . . , F
′
m of c(i.e. the segment Ed

i F d
i of d is the deformation of E′

iF
′
i ).Before we pro
eed further we need the following 
orollary of Lemma 3.9.Lemma 3.12. If I(a, b) > 1, then for every 1 ≤ i ≤ m, ea
h of the ar
s

EiFi and Ed
i F d

i interse
ts the set (b ∩ d) \ (EiFi ∩ Ed
i F d

i ).Proof. For a �xed i, by Lemma 3.9, there exists a double segment Pwhi
h is not joinable to the double segment determined by EiFi. Assumethat P is determined by an ar
 EjFj for some j 6= i (see Figure 12). Now

Fig. 12. Con�guration of segments�Lemma 3.12one should think that d is obtained from c by unwinding along adja
entsegments. Sin
e no oriented segment of P is joinable to an oriented segmentof the double segment EiFi, E′
jF

′
j 
annot unwind along EiFi and vi
e versa(
rossed disks in Figure 12 represent obsta
les to the unwinding). Hen
e thear
 Ed

j F d
j interse
ts EiFi and Ed

i F d
i interse
ts EjFj .Minimality of d ∩ b. Suppose that b and d 
obound a bigon ∆ withverti
es X, Y . Assume that X is on the ar
s EiFi, Ed

j F d
j , and Y on EkFk,

Ed
l F d

l .First 
onsider the 
ase m = 1. Sin
e there are at least two points ofinterse
tion b∩d, we have |n| ≥ 2. Observe that sin
e there are no one-sidedsegments of b, we have d = c. Now there are two possibilities: either the ar

b ∩ ∂∆ is 
ontained in Sa or it passes through E1 and F1. Similarly, thereare two possibilities for the position of the se
ond ar
 of ∂∆ (see Figure 13;observe that 
ases (ii) and (iii) are possible only if |n| = 2). In ea
h of these
ases, the path indi
ated in Figure 13 (running along b) 
onne
ts points ondi�erent sides of ∂∆ and is disjoint from ∂∆, a 
ontradi
tion.Therefore we further assume that I(a, b) > 1. Now the proof splits intotwo 
ases.
Case 1: i = k. There are two ar
s of b joining X and Y : the one 
on-tained in Sa and another one, running through Ei and Fi. Observe that
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Fig. 13. Points of interse
tion of c and b if I(a, b) = 1only the �rst one 
an be a boundary ar
 of the bigon ∆. This follows fromthe observation that by the assumption I(a, b) > 1 and by Lemma 3.12, Xand Y 
annot be 
onse
utive on the se
ond of these ar
s. Now dependingon the position of the se
ond boundary ar
 of ∆, we dedu
e that either theboundary of ∆ is a nonseparating 
ir
le, or a and b 
obound a bigon�seeFigure 14.

Fig. 14. The 
ase i = k

Case 2: i 6= k. Sin
e X and Y are 
onse
utive on b, there exists an ar
of b with end points X and Y whose interior is disjoint from d. By Lemma3.12, this ar
 outside Sa is equal to the segment p of b with end points Giand Gk.If j = l then a and b would 
obound a bigon (see Figure 15), so j 6= l.

Fig. 15. The 
ase i 6= k, j = lSin
e X and Y are 
onse
utive on d, there exists an ar
 of d with endpoints X and Y whose interior is disjoint from b. As before, by Lemma 3.12,
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es 133this ar
 outside Sa is equal to the segment q of d with one end point Ed
j or

F d
j and the other one Ed

l or F d
l �see Figure 16.

Fig. 16. The 
ase i 6= k, j 6= lFirst observe that q is one-sided. In fa
t, otherwise the ar
 XY of ∂∆
orresponding to q at one end would interse
t db(q) and at the other wouldnot (see Figure 10). This would imply that db(q) = p and db(q) 6= p at thesame time�a 
ontradi
tion. From this it follows that p is also one-sided(otherwise ∂∆ would be one-sided).Therefore the existen
e of ∆ implies that if db(q) 6= p then db(q) and pare adja
ent and we 
an perform a redu
tion of type II�see Figure 17(i).In 
ase db(q) = p it is possible to perform a redu
tion of type I�see Figure17(ii). Hen
e in both 
ases we obtain a 
ontradi
tion with the 
onstru
tionof d.

Fig. 17. The 
ase i 6= k, j 6= l

3.5. Further remarksRemark 3.13. Observe that if Γ (a, b) = ∅, i.e. if a regular neighbour-hood of a ∪ b is orientable, then c = d and the proof of Theorem 3.3 workswithout the assumption that a and b are generi
 (Lemma 3.12 is not needed).In parti
ular, if I(a, b) > 0, Theorem 3.3 implies that ta 6= 1, hen
e a isgeneri
.Proposition 3.14. Let n 6= 0 be an integer. Then(1) I(tna(b), b) = |n| if I(a, b) = 1;(2) I(tna(b), b) ≥ I(a, b);(3) I(tna(b), b) ≥ (|n| − 1)I(a, b)2 + 2I(a, b) − 2.In parti
ular , if I(a, b) 6= 0, then I(tna(b), b) > 0.



134 M. StukowProof. The assertion is trivial for I(a, b) = 0, so let I(a, b) ≥ 1. By theproof of Theorem 3.3, I(tna(b), b) = |d∩ b|. If I(a, b) = 1 then |d∩ b| = |c∩ b|
= |n|, whi
h proves (1). The inequality (2) follows from (1) if I(a, b) = 1,and if I(a, b) ≥ 2 then by Lemma 3.12, |d ∩ b| ≥ I(a, b).In order to prove (3), �rst observe that if k1, . . . , ku are as in the statementof Theorem 3.3, then by (2), ∑u

i=1 k2
i < I(a, b)2 (otherwise I(ta(b), b) = 0).Therefore Γ (a, b) is not a path with I(a, b) verti
es, i.e. u > 1. Now it is aneasy exer
ise that if a and b are positive integers su
h that a + b = m, then

a2 + b2 ≤ 1 + (m − 1)2. Hen
e
u∑

i=1

k2
i ≤ k2

1 +
( u∑

i=2

ki

)2
≤ 1 + (I(a, b) − 1)2.By Theorem 3.3, the above inequality yields (3).4. Algebrai
 properties of twistsLemma 4.1. Assume that s+r ≥ 2 if g = 2, and let a1, . . . , au be generi
two-sided 
ir
les on N = N s

g,r su
h that :(1) ai ∩ aj = ∅ if i 6= j;(2) ai is isotopi
 neither to aj nor to a−1
j if i 6= j;(3) none of the ai is isotopi
 to a boundary 
omponent of N ;(4) if we 
ut N along those ai whi
h separate N , then every 
omponenthomeomorphi
 to a Klein bottle with one boundary 
omponent is dis-joint from a1.Then there exists a generi
 two-sided 
ir
le b su
h that ai ∩ b = ∅ if i 6= 1,and |a1 ∩ b| = I(a1, b) > 0.Proof. Let N ′ be the 
onne
ted 
omponent of N \

⋃u
j=2 aj 
ontaining a1.Clearly it is enough to 
onstru
t a generi
 two-sided 
ir
le b on N ′ su
h that

|a1∩b| = I(a1, b) > 0. Now if we 
ut N ′ open along a1 we obtain a surfa
e N ′′with two more boundary 
omponents; denote them by α1 and α2. Moreover,if we �x the orientation of a1, then α1 and α2 inherit orientations from a1.Consider two 
ases:
Case 1: N ′′ is 
onne
ted. If N ′′ is nonorientable then we 
an represent

N ′′ as a 
onne
ted sum of an oriented surfa
e and a number of proje
tiveplanes. Now depending on mutual orientations of α1 and α2, one of the two
urves indi
ated in Figure 18 proje
ts to a two-sided 
ir
le b on N ′ (theshaded disk in Figure 18 represents a 
ross
ap on N ′′).If N ′′ and N ′ are orientable then the 
onstru
tion of b is shown in Figure19(i). If N ′′ is orientable and N ′ is nonorientable then either N ′′ has genus atleast 1 or by assumption, it has at least two pun
tures/boundary 
omponents
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Fig. 18. Constru
tion of b if N ′′ is nonorientabledi�erent from α1 and α2. The 
onstru
tion of b in ea
h of these 
ases is shownin Figures 19(ii) and 19(iii) respe
tively.

Fig. 19. Constru
tion of b if N ′′ is orientable
Case 2: N ′′ is dis
onne
ted. Let M1 and M2 be 
onne
ted 
omponentsof N ′′ su
h that αk is a boundary 
omponent of Mk, k = 1, 2. Observe thatfor k = 1, 2, we have:(1) if Mk has genus 0 then it has at least two pun
tures/boundary 
om-ponents di�erent from αk (sin
e a1 is generi
 and isotopi
 neither toa boundary 
omponent of N nor to any of a±1

j , j ≥ 2);(2) if Mk is nonorientable of genus 1, then it has at least one pun
tureor a boundary 
omponent di�erent from αk (sin
e a1 is generi
);(3) if Mk is orientable of genus at least 1 or nonorientable of genus atleast 2, then Mk is a 
onne
ted sum of a torus/Klein bottle withboundary 
omponent αk and some other surfa
e.Therefore, in any 
ase we 
an 
onstru
t an ar
 βk on ea
h of Mk, k = 1, 2,su
h that proje
tions of β1 and β2 onto N ′ give a two-sided 
ir
le b su
h that
|a1 ∩ b| = I(a1, b) = 2 (see Figure 20).

Fig. 20. Constru
tion of b if N ′′ is dis
onne
tedObserve that in ea
h 
ase, Γ (a1, b) = ∅, hen
e by Remark 3.13, b isgeneri
.



136 M. StukowRemark 4.2. It is easy to prove that if a is a generi
 two-sided 
ir
le ona Klein bottle with one boundary 
omponent, whi
h is not isotopi
 to theboundary, then a is nonseparating (
f. Lemma A.1 and its proof). Therefore,if a1, . . . , au are generi
 two-sided 
ir
les on a 
losed surfa
e, satisfying allassumptions of the above lemma but (4), then a1 is nonseparating and aj isseparating for some j > 1.For ea
h nonorientable surfa
e N , let N̂ be the surfa
e obtained by gluinga torus minus a disk to ea
h boundary 
omponent of N . Then N̂ has noboundary and the following, very useful, property (
f. Proposition 3.5 of[10℄):Proposition 4.3. Suppose a and b are 
ir
les on N . Then a is isotopi
to b in N if and only if they are isotopi
 in N̂ .It is an easy observation that the only nontrivial Dehn twist on a Kleinbottle has order 2. The next proposition shows that ex
ept for this example,Dehn twists about disjoint 
ir
les generate a free abelian group (we will usethis result in the proof of Theorem 6.2).Proposition 4.4. Suppose r + s > 0 if g = 2, and let a1, . . . , au begeneri
 two-sided 
ir
les on N = N s
g,r su
h that ai ∩ aj = ∅ if i 6= j,and ai is isotopi
 neither to aj nor to a−1

j if i 6= j. Consider the fun
tion
h : Z

u → M(N) de�ned by
h(n1, . . . , nu) = tn1

a1
· · · tnu

au
.Then h is an inje
tive homomorphism.Proof. Clearly h is a homomorphism, so let us prove that it is inje
tive.For N being a Klein bottle with a pun
ture the assertion follows from Propo-sition A.3 and Theorem A.5, so assume that N is not a Klein bottle witha pun
ture. Suppose tn1

a1
· · · tnu

au
= 1 in M(N). Clearly tn1

a1
· · · tnu

au
= 1 also in

M(N̂), where N̂ is the surfa
e des
ribed above. Without loss of generalitywe 
an assume that the �rst k of the 
ir
les a1, . . . , au are separating on N̂and the remaining ones are not. We will prove by indu
tion on i that ni = 0.Suppose that nj = 0 for j < i. By Proposition 4.3 and by Remark 4.2, the
ir
les ai, ai+1, . . . , au and the surfa
e N̂ satisfy the assumptions of Lemma4.1. Therefore, there exists a 
ir
le b on N̂ su
h that aj ∩ b = ∅ for j > i and
|ai ∩ b| = I(ai, b) > 0. Now if ni 6= 0, Proposition 3.14 yields

0 = I(b, b) = I(tni
ai
· · · tnu

au
(b), b) = I(tni

ai
(b), b) > 0.Hen
e ni = 0, whi
h 
ompletes the proof.Corollary 4.5. Suppose r + s > 0 if g = 2, and let a be a generi
two-sided 
ir
le on N = N s

g,r. Then the Dehn twist ta has in�nite order in
M(N).
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es 137If a and b are 
ir
les on an orientable surfa
e and j, k nonzero integers,then it is known (
f. Theorems 3.14�3.15 of [6℄) that:(1) tja = tkb if and only if a ≃ b and j = k;(2) tjatkb = tkb t
j
a if and only if I(a, b) = 0.Moreover if a 6≃ b±1 then(3) tjatkb t

j
a = tkb t

j
atkb if and only if I(a, b) = 1 and j = k = ±1.Clearly the �if� 
lauses of (1) and (2) also hold on nonorientable surfa
es.In 
ase (3) observe that if a and b are two-sided 
ir
les on a nonorientablesurfa
e and |a ∩ b| = I(a, b) = 1, then the regular neighbourhood of a ∪ b isa torus with one boundary 
omponent, so it makes sense to assume that theorientations of regular neighbourhoods Sa, Sb of a and b agree. Under thisassumption also the �if� 
lause of (3) holds (it is just a braid relation).The next three propositions show that under some obvious assumptions,also the �only if� 
lauses of the above statements hold on nonorientablesurfa
es.Proposition 4.6. Let a and b be generi
 two-sided 
ir
les on N = N s

g,r.If j and k are nonzero integers su
h that tja = tkb , then a is isotopi
 to b±1.Moreover if r+s > 0 for g = 2 and the orientations of regular neighbourhoodsof a and b are su
h that ta = tb, then j = k.Proof. If I(a, b) ≥ 1 then by Proposition 3.14, I(tja(b), b) > 0 and
I(tkb (b), b) = I(b, b) = 0. Therefore I(a, b) = 0.Suppose a is not isotopi
 to b±1. By Proposition 4.3, a is not isotopi
 to
b±1 in N̂ . Sin
e on a Klein bottle or a Klein bottle with one pun
ture there isonly one generi
 two-sided 
ir
le (up to isotopy and reversing orientation�
f. Proposition A.3 and Corollary A.4), N̂ is neither of these surfa
es. Noweither a1 = a, a2 = b or a1 = b, a2 = a satisfy the assumptions of Lemma4.1 (
f. Remark 4.2). In the �rst 
ase we have a 
ir
le c on N̂ su
h that byProposition 3.14, I(tja(c), c) > 0 and I(tkb (c), c) = I(c, c) = 0. Hen
e tja 6= tkb .The se
ond 
ase 
an be handled in exa
tly the same way.The last statement follows from Corollary 4.5.Proposition 4.7. Let a and b be generi
 two-sided 
ir
les on N . If jand k are nonzero integers su
h that tjatkb = tkb t

j
a, then I(a, b) = 0.Proof. The assertion is trivial for a Klein bottle (
f. Corollary A.4), soassume that N is not a Klein bottle. If c = tkb (a) then tjc = tkb t

j
at

−k
b = tja. ByCorollary 4.5, 1 6= tja = tjc, hen
e c is generi
. Therefore, by Proposition 4.6,

c is isotopi
 to a±1. If we assume that I(a, b) > 0 then by Proposition 3.14,
0 = I(c, a) = I(tkb (a), a) > 0�a 
ontradi
tion.



138 M. StukowProposition 4.8. Let a and b be generi
 two-sided 
ir
les on N = N s
g,rsu
h that a 6≃ b±1. If j and k are nonzero integers su
h that tjatkb t

j
a = tkb t

j
atkb ,then I(a, b) = 1. Moreover , if |a∩ b| = I(a, b) and the orientations of regularneighbourhoods of a and b agree, then j = k = ±1.Proof. Sin
e there is only one isotopy 
lass of 
ir
les on a Klein bottle(
f. Corollary A.4), r + s > 0 if g = 2. Moreover, we 
an assume that

|a∩ b| = I(a, b). If I(a, b) = 0 then tja = tkb , and by Proposition 4.6, a ≃ b±1.Therefore I(a, b) > 0. If c = tjatkb (a) then(4.1) tjc = tj
t
j
atk

b
(a)

= (tjat
k
b )t

j
a(t

j
at

k
b )

−1 = tkb .Hen
e by Corollary 4.5, c is generi
, and by Proposition 4.6, c ≃ b±1. Thisgives(4.2) I(a, b) = I(tkb (a), b) = I(tjat
k
b (a), tja(b)) = I(c, tja(b)) = I(b, tja(b)).Therefore by inequality (3) of Proposition 3.14,

I(a, b) ≥ (|j| − 1)I(a, b)2 + 2I(a, b) − 2.This easily implies that I(a, b) ∈ {1, 2}.Suppose �rst that I(a, b) = 2. If Γ (a, b) = ∅ then by Theorem 3.3,
I(b, tja(b)) = |j|I(a, b)2 ≥ 4,
ontrary to (4.2). Therefore Γ (a, b) has two verti
es. This implies that theregular neighbourhood of a ∪ b is a Klein bottle with two boundary 
om-ponents, i.e. the 
on�guration of a, b and their regular neighbourhood is asin the left-hand part of Figure 21. The right-hand part of the same �gure

Fig. 21. Cir
les a, b and c = tj
atk

b (a)�Lemma 4.8shows the 
ir
le c = tjatkb (a) (stri
tly speaking, sin
e we have an ambiguityin the 
hoi
e of orientations of neighbourhoods of a and b, it is one of thepossible 
ir
les c = tjatkb (a); however, other 
hoi
es yield similar pi
tures). Inparti
ular Γ (a, c) = ∅ and by Theorem 3.3,
I(c, tja(c)) = |j|I(a, c)2 ≥ 4,
ontradi
ting (4.2).
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es 139Therefore I(a, b) = 1, and by statement (1) of Proposition 3.14,
I(b, tja(b)) = |j|.Hen
e by (4.2), |j| = 1. Now if the orientations of neighbourhoods of a and

b agree, then tc = tb. Therefore by (4.1) and Proposition 4.6, j = k = ±1.5. Pantalon & skirt de
ompositions. To de
ompose nonorientablesurfa
es, besides standard pantalons of type I�III (see Figure 22 and Se
tion 4of [10℄), we need two more surfa
es, namely a Möbius strip N1
1,1 with onepun
ture and a Möbius strip N1,2 with an open disk removed, whi
h we 
all(nonorientable) skirts of type I and II, respe
tively. The mapping 
lass group

Fig. 22. Di�erent types of pantalons and skirtsof a skirt of type II is generated by the boundary twists, and the mapping
lass group of a skirt of type I is generated by a pun
ture slide v su
h that
v2 is a twist about the boundary 
omponent.A de
omposition of a surfa
e into pantalons and skirts is 
alled a P-Sde
omposition. A P-S de
omposition is 
alled separating if ea
h of the 
ir
lesde�ning it is a boundary of two di�erent pantalons/skirts.The reason for 
onsidering separating P-S de
ompositions is that if weknow that some di�eomorphism f : N → N preserves su
h a de
omposition,then from the stru
ture of the mapping 
lass groups of pantalons/skirts we
an 
on
lude that f is of a very simple form. This remark will be of greatimportan
e in the proof of Theorem 6.2.For pre
ise de�nitions of pantalons of type I�III and a pantalon de
om-position, we refer the reader to [10℄.The Euler 
hara
teristi
 of a pantalon or skirt is −1. Therefore, noneof the surfa
es: N s

1,r with r + s ≤ 1, N2
1 nor N2 admits a P-S de
omposi-tion. Apart from these ex
eptions, every nonorientable surfa
e admits a P-Sde
omposition. Let us now spe
ify some su
h de
ompositions:

• Proje
tive plane N s
1,r with r + s ≥ 2 and (r, s) 6= (0, 2). If N is not askirt, we 
ut o� a Möbius strip with a pun
ture/boundary 
omponent;
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tures/boundary 
omponentsand we 
an de
ompose it into pantalons. The resulting de
ompositionis separating.
• Klein bottle N s

2,r with r + s ≥ 1. We 
ut N into pantalons of type IIand III. If r + s ≥ 2, this de
omposition is separating.
• Nonorientable surfa
e N s

g,r with g ≥ 3 odd. We de
ompose N into oneskirt of type II and a number of pantalons of type II and III (see Figure23; the shaded disk represents a 
ross
ap). If g ≥ 5 or r + s ≥ 1, thisde
omposition is separating.

Fig. 23. P-S de
omposition if the genus is odd
• Nonorientable surfa
e N s

g,r with g ≥ 4 even. We de
ompose N into twopantalons of type III and a number of pantalons of type II and III (seeFigure 24). This de
omposition is separating.

Fig. 24. P-S de
omposition if the genus is evenIn the following, by a P-S de
omposition we will always mean one of thede
ompositions listed above.6. Centralisers of subgroups generated by twists. Let T (N) be thetwist subgroup of M(N), i.e. the subgroup of M(N) generated by all Dehntwists. In the 
ase of a 
losed nonorientable surfa
e, T (N) is a subgroup ofindex 2 (
f. [9℄). If g ≥ 7 then the index of T (N s
g ) is 2s+1s! (
f. Corollary 6.2of [8℄).We now 
ompute the 
entraliser Z = ZM(N)(T (N)). This will allow usto 
ompute the 
entre of M(N).Observe that, as in the orientable 
ase, boundary twists are 
entral in

M(N). We are going to prove that up to a �nite number of ex
eptions, thereare no other elements of M(N) whi
h 
entralise T (N).Before we state the main theorem, we need to 
onsider some ex
eptional
ases.
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es 141The mapping 
lass group of a proje
tive plane and of a Möbius strip istrivial (
f. Theorem 3.4 of [3℄).The proje
tive plane with one pun
ture, a skirt of type I, a skirt oftype II and the Klein bottle have abelian mapping 
lass groups (respe
tively
Z2, Z, Z × Z, Z2 × Z2) so Z is equal to M(N).If N is a proje
tive plane with two pun
tures, then T (N) is trivial, so Zis equal to M(N), i.e. to the dihedral group D4 (of order 8) (
f. Corollary4.6 of [8℄).If N is a Klein bottle with one pun
ture or a Klein bottle with oneboundary 
omponent then the des
ription of Z follows from Corollaries A.6and A.8.We will now examine the 
ase of a 
losed nonorientable surfa
e N ofgenus 3. N has a double 
over Ñ whi
h is an orientable surfa
e of genus 2.Suppose that Ñ is embedded in R

3 in su
h a way that it is invariant underre�e
tions in the xy, yz and zx planes (see Figure 25). Let J ∈ M(Ñ) be

Fig. 25. Nonorientable surfa
e of genus 3 and its double 
overthe isotopy 
lass of a di�eomorphism j : Ñ → Ñ indu
ed by the 
entralsymmetry of R
3: (x, y, z) 7→ (−x,−y,−z). By [1℄, M(N) is isomorphi
 tothe quotient group S(Ñ)/〈J〉, where S(Ñ) is the 
entraliser of J in M(Ñ).Moreover, this isomorphism is indu
ed by the proje
tion p : Ñ → Ñ/〈j〉,where Ñ/〈j〉 is the orbit spa
e, whi
h from now on will be our model for N .Let ˜̺ ∈ M(Ñ) be the hyperellipti
 involution, i.e. the isotopy 
lass of adi�eomorphism indu
ed by the half turn about the y-axis (see Figure 25).Sin
e ˜̺ is 
entral, it indu
es a 
entral element ̺ of M(N) ∼= S(Ñ)/〈J〉.Observe that if a is a 
ir
le on N as in Figure 25, then ̺(a) = a−1 and ̺preserves the lo
al orientation of a neighbourhood of a.Now let h : N → N represent an element of the 
entraliser Z ⊆ M(N) ofthe twist subgroup. Sin
e th(a) = htah

−1 = ta, Proposition 4.6 implies that
h(a) is isotopi
 to a±1. So we 
an assume that h(a) = a±1. Moreover, h mustpreserve the lo
al orientation of a neighbourhood of a. Therefore we 
an
hoose ε ∈ {0, 1} su
h that h̺ε is isotopi
 to the identity in a neighbourhoodof a. Now we 
an 
ut N open along a, and 
on
lude from the mapping 
lassgroup of the skirt of type II that h̺ε = tka for some integer k. Now byLemma 4.1, there exists a two-sided generi
 
ir
le b su
h that I(a, b) > 0



142 M. Stukow(see Figure 25). Sin
e tka = h̺ε 
ommutes with the twist tb, Proposition 4.7implies that k = 0. Therefore we have proved the following:Proposition 6.1. Let N be a 
losed nonorientable surfa
e of genus 3.The 
entre of M(N) is equal to the 
entraliser Z of the twist subgroup andis generated by the involution ̺.Now we are ready to prove the general result 
on
erning the 
entraliser Z.Theorem 6.2. Suppose that g+r+s ≥ 4 and let c1, . . . , cr be the bound-ary 
urves of N = N s
g,r. Then the 
entraliser Z of the twist subgroup is equalto the 
entre of M(N). Moreover , Z is generated by tc1 , . . . , tcr and is iso-morphi
 to Z

r.Proof. Sin
e the proof follows the lines of the proof of Theorem 5.6 of[10℄, we only sket
h it.The isomorphism 〈tc1 , . . . , tcr〉
∼= Z

r follows from Proposition 4.4, so it isenough to prove that Z = 〈tc1 , . . . , tcr〉.Let a1, . . . , au be the 
ir
les de�ning a separating P-S de
omposition of
N (
f. Se
tion 5). If h ∈ Z then th(ai) = htai

h−1 = tai
, hen
e by Proposition4.6, h(ai) ≃ a±1

i for i = 1, . . . , u. Now we 
an assume that in fa
t h(ai) = a±1
i(
f. Proposition 3.10 of [10℄), hen
e h permutes pantalons/skirts.First suppose that h inter
hanges some two 
omponents M1 and M2 ofthe P-S de
omposition.If M1 and M2 are both pantalons of type II glued along a 
ir
le aj ,then the remaining boundary 
urves ak ⊂ M1 and al ⊂ M2 must be gluedtogether. In fa
t, sin
e h(ai) = a±1

i for every i, and h inter
hanges a±1
k and

a±1
l , we have ak = a±1

l . Therefore N is a Klein bottle with two pun
tures.Observe that h must preserve orientations of regular neighbourhoods of ajand ak and this is possible only if h does not inter
hange M1 and M2.If M1 and M2 are both pantalons of type III, then as before we argue that
N is a 
losed nonorientable surfa
e of genus 4 and h does not inter
hange
M1 and M2.Observe that by our 
hoi
e of P-S de
ompositions (
f. Se
tion 5), andsin
e N is nonorientable, M1 and M2 
an be neither a pantalon of type I nora skirt.Thus we have proved that h maps every pantalon/skirt onto itself. More-over, sin
e h 
entralises their boundary twists, the restri
tion of h to ea
hpantalon preserves its orientation.If N 6= N s

1 then the P-S de
omposition of N 
ontains neither a pantalonof type I nor a skirt of type I (
f. Se
tion 5). By the stru
ture of the mapping
lass groups of pantalons of type II/III and skirts of type II,
h = tα1

a1
· · · tαu

au
tγ1

c1
· · · tγr

cr
.
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es 143Now for ea
h �xed 1 ≤ i ≤ u, by Lemma 4.1, there exists a generi
 two-sided
ir
le b su
h that I(ai, b) > 0 and aj ∩b = ∅ for j 6= i. Therefore tb 
ommuteswith taj
for j 6= i. It also 
ommutes with all tci

and with h, hen
e it 
ommuteswith tαi
ai
. By Proposition 4.7, this yields αi = 0, whi
h 
ompletes the proofin this 
ase.It remains to 
onsider the 
ase of N being a proje
tive plane with s ≥ 3pun
tures Σ = {P1, . . . , Ps}. For ea
h 1 ≤ i ≤ s, there exists a two-sided
ir
le c on N su
h that N \ c has two 
omponents, one of whi
h is a Möbiusstrip with a pun
ture Pi, and the other is a disk with s−1 pun
tures. Sin
e h
entralises the twist about c, it satis�es h(c) ≃ c±1. Be
ause the 
omponentsof N \ c are not homeomorphi
, h 
annot inter
hange them, so in parti
ular,

h(Pi) = Pi. Therefore h �xes Σ pointwise.Now the P-S de
omposition of N 
onsists of one skirt of type I and anumber of pantalons of type I and II; assume that ai is the 
ir
le whi
h
uts o� the skirt. Sin
e h preserves the orientation of every pantalon, by thestru
ture of the mapping 
lass groups of the pantalons and of the skirt,
h = vktα2

a2
tα3

a3
· · · tαu

au
,where v is a boundary slide. Then

h2 = tka1
t2α2

a2
· · · t2αu

au
.Now a similar argument as before yields k = α2 = α3 = · · · = αu = 0.Corollary 6.3. Suppose g + s ≥ 4. Then the 
entre of M(N s

g ) is triv-ial.Appendix A. Mapping 
lass group of a Klein bottle with onepun
ture/boundary 
omponentA.1. Mapping 
lass group of a Klein bottle with one pun
ture. For therest of this subse
tion let N = N1
2 denote a Klein bottle with one pun
ture p.Lemma A.1. Let c be a generi
 two-sided 
ir
le on N . Then N \ c is
onne
ted and orientable.Proof. Suppose that N \ c has two 
omponents M1 and M2. Then both

M1 and M2 have exa
tly one boundary 
omponent and one of them has apun
ture. The Euler 
hara
teristi
s of M1 and M2 satisfy
χ(M1) + χ(M2) = χ(N) = −1.Without loss of generality we 
an assume that χ(M1) ≥ χ(M2) and therefore

0 ≤ χ(M1) ≤ 1. If χ(M1) = 1 then M1 is a disk, whi
h is impossible sin
e
c is generi
. If χ(M1) = 0 then M1 is either a disk with a pun
ture or aMöbius strip. Both 
ases are impossible.Sin
e χ(N \ c) = −1 and N \ c has two boundary 
omponents and onepun
ture, if we glue a disk to ea
h of the boundary 
omponents and remove
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ture, we obtain a surfa
e of Euler 
hara
teristi
 2, i.e. the sphere.Therefore N \ c is orientable.Lemma A.2. If a and b are generi
 two-sided 
ir
les on N , then thereexists h ∈ H(N) su
h that h(a) = b±1.Proof. By the previous lemma, N \ a and N \ b are di�eomorphi
 aspun
tured surfa
es. We 
an 
hoose a di�eomorphism h : N \a → N \b whi
hextends to h̃ : N → N . Then h̃(a) = b±1.Proposition A.3. There are exa
tly two isotopy 
lasses of generi
 two-sided 
ir
les on N .Proof. By Lemma A.2, it is enough to prove that if we �x some generi
two-sided 
ir
le on N then a 6≃ a−1 and for any h ∈ M(N), h(a) is isotopi
either to a or to a−1. To prove this, let us des
ribe generators of M(N).Following [8℄, we represent N as the one-point 
ompa
ti�
ation of a planewith two 
ross
aps and a pun
ture (see Figure 26). Let α, β, γ, a be 
losed
urves indi
ated in Figure 26. In parti
ular, β and γ are one-sided, while αand a are two-sided. De�ne v, w, y to be the pun
ture slides along β and γ,

Fig. 26. Cir
les on a Klein bottle with pun
tureand the 
ross
ap slide along α respe
tively. Then by Theorem 4.9 of [8℄,
M(N) is generated by v, w, y and ta.It is straightforward to 
he
k that a 6≃ a−1, v(a) ≃ w(a) ≃ a−1 and
y(a) ≃ ta(a) = a.Corollary A.4. There is exa
tly one isotopy 
lass of generi
 two-sided
ir
les on a Klein bottle N2.Consider another model of N , namely the one shown in Figure 27. De�ne

Fig. 27. Cir
les on a Klein bottle with pun
ture
a and β as shown in the �gure, and let v be the pun
ture slide along β.
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es 145If we 
ut N along a, we obtain a 
ylinder with a pun
ture. Re�e
tion ofthis 
ylinder a
ross the 
ir
le parallel to boundary 
omponents and passingthrough the pun
ture indu
es a di�eomorphism σ ∈ H(N) su
h that σ(a)
= a−1.Theorem A.5. Let N be a Klein bottle with a pun
ture and v, σ asabove. Then M(N) is the produ
t (〈ta〉 ⋊ 〈v〉) × 〈σ〉 and is isomorphi
 to
(Z ⋊ Z2) × Z2.Proof. By Proposition A.3, if h ∈ H(N) is any di�eomorphism, then
h(a) is isotopi
 either to a or to a−1, so the subgroup H < M(N) 
onsistingof maps whi
h do not inter
hange the sides of a is of index 2 in M(N).Moreover, ta, v ∈ H and σ ∈ M(N) \ H.All maps h ∈ H su
h that h(a) is isotopi
 to a form a subgroup K ofindex 2 in H, and v ∈ H \ K. If k ∈ K is any di�eomorphism then we 
anassume that k(a) = a and k preserves the sides of a. If we 
ut N open along
a, we 
on
lude from the mapping 
lass group of the 
ylinder that k = tnafor some n ∈ Z. Therefore H is generated by v and ta. Sin
e v2 is a twistabout the boundary of a Möbius strip, v is of order 2. Moreover, v reversesthe orientation of a regular neighbourhood of a, so vtav

−1 = t−1
a . Therefore

H = 〈ta〉 ⋊ 〈v〉.Sin
e σtaσ
−1 = ta, σvσ−1 = v−1 = v, to 
omplete the proof it is enoughto show that ta is of in�nite order. This 
an be shown by 
omputing theindu
ed homomorphism on homology.Corollary A.6. Let N be a Klein bottle with one pun
ture and ta, v, σas above. Then the 
entre of M(N) is equal to the group of order 2 generatedby σ. The 
entraliser Z of the twist subgroup is generated by ta and σ, andis isomorphi
 to Z × Z2.A.2. Mapping 
lass group of a Klein bottle with one boundary 
omponent.Now let N = N2,1 denote the Klein bottle with one boundary 
omponent b.Observe that if N ′ is a Klein bottle with a pun
ture, then the in
lusion

i : N → N ′ indu
es a homomorphism i∗ : M(N) → M(N ′) whi
h extendsevery h ∈ M(N) by the identity on N ′ \ N (see Figure 28; note that thistime the shaded disk does not represent a 
ross
ap but a disk). We 
laimthat the kernel of i∗ is generated by the boundary twist tb on N . In fa
t,if h ∈ ker i∗ then h(a) ≃ a in N ′. By Proposition 3.5 of [10℄, we also have
h(a) ≃ a in N . Moreover, h preserves the orientation of a neighbourhoodof a, so it does not inter
hange the sides of a. Therefore h is indu
ed by amapping of N \ a, hen
e by the stru
ture of the mapping 
lass group of apantalon of type III, h = tαa tβb . Now 1 = i∗(h) = tαa and by Corollary 4.5,
α = 0.
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Fig. 28. Klein bottle with boundary as a subsurfa
e of a Klein bottle with pun
tureSin
e every di�eomorphism of N �xes the boundary, the image of i∗
onsists of elements of M(N ′) whi
h preserve the lo
al orientation aroundthe pun
ture on N ′. All su
h elements form a subgroup M+(N ′) of index 2,whi
h is generated by ta and σv. Observe that we 
an use the same de�nitionsas for the maps ta, σ, and v to de�ne di�eomorphisms ta, σ̃, ṽ : N → N su
hthat i∗(ta) = ta, i∗(σ̃) = σ, i∗(ṽ) = v. The problem is that σ̃ and ṽ do not �xthe boundary of N . However, if we de�ne
σ̃v = σ̃ṽtb,where tb is a half twist about the boundary 
ir
le b, then σ̃v : N → N �xesthe boundary and i∗(σ̃v) = σv. Now from the exa
t sequen
e

1 → 〈tb〉 → M(N)
i∗−→ M+(N ′) → 1and easily veri�able relations

σ̃v2 = tb, σ̃vtaσ̃v−1 = t−1
a ,we obtain the following theorem:Theorem A.7. Let N be a Klein bottle with one boundary 
omponentand ta, σ̃v as above. Then the mapping 
lass group of N is the semidire
tprodu
t 〈ta〉 ⋊ 〈σ̃v〉 and is isomorphi
 to Z ⋊ Z.Corollary A.8. Let N be a Klein bottle with one boundary 
omponentand ta, σ̃v, tb = σ̃v2 as above. Then the 
entre of M(N) is the 
y
li
 groupgenerated by tb. The 
entraliser Z of the twist subgroup is generated by taand tb, and is isomorphi
 to Z × Z.A
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