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A onnetion between multipliation in C(X) andthe dimension of XbyAndrzej Komisarski (�ód¹)
Abstrat. Let X be a ompat Hausdor� topologial spae. We show that multipli-ation in the algebra C(X) is open i� dim X < 1. On the other hand, the existene ofnon-empty open sets U, V ⊂ C(X) satisfying Int(U · V ) = ∅ is equivalent to dim X > 1.The preimage of every set of the �rst ategory in C(X) under the multipliation map isof the �rst ategory in C(X) × C(X) i� dim X ≤ 1.Let X be a ompat (Hausdor�) topologial spae. We onsider the al-gebra C(X) of real-valued ontinuous funtions on X with the pointwiseaddition and multipliation and the norm ‖f‖ = supx∈X |f(x)|. Other twonatural operations on C(X) are minimum and maximum. All these opera-tions are ontinuous but, in general, only addition, maximum and minimumare open as mappings from C(X) × C(X) to C(X) (see [1℄, [4℄, [5℄).We reall from [1℄ the de�nition of a weakly open map:
Definition. A map of topologial spaes is weakly open if the image ofevery non-empty open set has a non-empty interior.In [1℄, [4℄, [5℄ it is shown that multipliation in C([0, 1]) is weakly open.We extend this result as follows:
Theorem. Let X be a ompat topologial spae. The following equiva-lenes hold :(1) multipliation in C(X) is open i� dimX < 1,(2) multipliation in C(X) is weakly open and not open i� dimX = 1,(3) multipliation in C(X) is not weakly open i� dimX > 1,where dimX denotes the topologial (overing) dimension of X.The �rst of these equivalenes was suggested by D. H. Fremlin in January2004 (oral ommuniation).2000 Mathematis Subjet Classi�ation: Primary 54C35; Seondary 54F45, 46E25.Key words and phrases: weakly open map, funtion algebra, topologial dimension.[149℄



150 A. KomisarskiFor A,B ⊂ C(X) set A · B = {f · g : f ∈ A, g ∈ B}, and for f ∈ C(X)and r > 0 write B(f, r) = {g ∈ C(X) : ‖g − f‖ < r}.Proof of Theorem. It is enough to show the impliations: (1)⇐, (1)⇒,(3)⇐ and (2)⇐.(1)⇐: If dimX = −1 (i.e. X = ∅) then there is nothing to prove. Let
dimX = 0. We need to prove that for every pair of open sets U, V ⊂ C(X)the set U · V ⊂ C(X) is open. Let h ∈ U · V , i.e. h = f · g for some f ∈ Uand g ∈ V . There exists ε > 0 suh that B(f, ε) ⊂ U and B(g, ε) ⊂ V . Wewill show that B(h, ε2/4) ⊂ U · V .Let ĥ ∈ B(h, ε2/4). We de�ne open subsets of X:

F = {x ∈ X : |f(x)| > ε/4}, G = {x ∈ X : |g(x)| > ε/4},

H = {x ∈ X : |f(x)| < ε/3 and |g(x)| < ε/3}.We have F ∪ G ∪ H = X. Sine dimX = 0, there exist lopen, pairwisedisjoint sets F̃ ⊂ F , G̃ ⊂ G and H̃ ⊂ H suh that F̃ ∪ G̃ ∪ H̃ = X. Wede�ne f̂ ∈ B(f, ε) and ĝ ∈ B(g, ε) suh that ĥ = f̂ · ĝ as follows:
f̂(x) = f(x), ĝ(x) =

ĥ(x)

f(x)
for x ∈ F̃ ,

f̂(x) =
ĥ(x)

g(x)
, ĝ(x) = g(x) for x ∈ G̃,

f̂(x) =

√
|ĥ(x)|, ĝ(x) =

√
|ĥ(x)| · sgn(ĥ(x)) for x ∈ H̃.It is lear that ĥ = f̂ · ĝ. The funtions f̂ and ĝ are ontinuous beause theyare ontinuous on eah of the lopen sets F̃ , G̃ and H̃ overing X.It remains to show that f̂ ∈ B(f, ε) and ĝ ∈ B(g, ε). If x ∈ F̃ then

|f̂(x) − f(x)| = 0 < ε, |ĝ(x) − g(x)| =

∣∣∣∣
ĥ(x) − h(x)

f(x)

∣∣∣∣ <
ε2/4

ε/4
= ε,and similarly for x ∈ G̃. Finally, if x ∈ H̃ then |h(x)| = |f(x)| |g(x)| < ε2/9.It follows that |ĥ(x)| ≤ |h(x)| + ε2/4 < ε2/9 + ε2/4 and |f̂(x)| = |ĝ(x)| <√

ε2/9 + ε2/4. Then |f̂(x)−f(x)| ≤ |f̂(x)|+|f(x)| <
√
ε2/9 + ε2/4+ε/3 < εand similarly |ĝ(x) − g(x)| < ε. Hene ‖f̂ − f‖ < ε and ‖ĝ − g‖ < ε.(1)⇒: We will show that if dimX > 0 then multipliation is not open.Sine dimX > 0, there exists a onneted omponent S of X whih has atleast two elements, say x1 and x2 (f. [2℄). Let f : X → R be a ontinuousfuntion suh that f(x1) = −1 and f(x2) = 1. We will prove that f · fis not an interior point of B(f, 1) · B(f, 1). Consider an arbitrary element

ĥ ∈ B(f, 1) ·B(f, 1). We have ĥ = f̂ · ĝ for some f̂ , ĝ ∈ B(f, 1). The funtion
f̂ satis�es f̂(x1) < −1 + 1 = 0 and f̂(x2) > 1 − 1 = 0. Thus f̂ , and hene
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ĥ, has a zero in S. It follows that none of the funtions hn = f · f + 1/n,
n ∈ N, is in B(f, 1) · B(f, 1). On the other hand, limn→∞ hn = f · f . Hene
f · f 6∈ Int(B(f, 1) ·B(f, 1)).(3)⇐: We assume that dimX ≥ 2. By the Hemmingsen Lemma (f. [2℄)there exist losed sets A1, B1, A2, B2 ⊂ X suh that A1∩B1 = ∅, A2∩B2 = ∅and if L1 is a partition between A1 and B1, and L2 is a partition between A2and B2, then L1 ∩ L2 6= ∅. (We reall that a losed set L ⊂ X is a partitionbetween disjoint losed sets A,B ⊂ X if there exist two disjoint open sets
U, V ⊂ X satisfying A ⊂ U , B ⊂ V and U ∪ V = X \ L.)Let f, g ∈ C(X) be suh that f(x) = 1 for x ∈ A1, f(x) = −1 for
x ∈ B1, g(x) = 1 for x ∈ A2 and g(x) = −1 for x ∈ B2. We will show that
B(f, 1) ·B(g, 1) is nowhere dense.Aiming at a ontradition assume that ĥ ∈ Int(B(f, 1) ·B(g, 1)). Then
ĥ + ε ∈ B(f, 1) ·B(g, 1) for some ε > 0. Let f̂ ∈ B(f, 1) and ĝ ∈ B(g, 1)be suh that ‖ĥ − f̂ · ĝ‖ < ε/2. If x ∈ A1 then f̂(x) > 1 − 1 = 0, and if
x ∈ B1 then f̂(x) < −1 + 1 = 0. It follows that A1 ⊂ {x ∈ X : f̂(x) > 0},
B1 ⊂ {x ∈ X : f̂(x) < 0} and the set L1 = {x ∈ X : f̂(x) = 0} isa partition between A1 and B1. Similarly, let f̃ ∈ B(f, 1) and g̃ ∈ B(g, 1)satisfy ‖(ĥ + ε) − f̃ · g̃‖ < ε/2. We have A2 ⊂ {x ∈ X : g̃(x) > 0}and B2 ⊂ {x ∈ X : g̃(x) < 0}, so L2 = {x ∈ X : g̃(x) = 0} is a partitionbetween A2 and B2. It follows that there exists x0 ∈ L1∩L2. By the de�nitionof L1 one has ĥ(x0) + ε > f̂(x0) · ĝ(x0)− ε/2 + ε = ε/2. On the other hand,by the de�nition of L2 we have ĥ(x0) + ε < f̃(x0) · g̃(x0) + ε/2 = ε/2. Thisontradition shows that B(f, 1) ·B(g, 1) is nowhere dense.(2)⇐: This impliation is an immediate onsequene of (1)⇒ and ofLemmas 1 and 2 below.Lemma 1. Let X be a ompat topologial spae with dimX ≤ 1 and let
U, V ⊂ C(X) be non-empty and open. Then there exist f ∈ U and g ∈ Vsuh that f−1(0) ∩ g−1(0) = ∅.Proof. Let X be any topologial spae, let (Y, d) be a metri spae andlet ϕ : X → Y be ontinuous. Following Hurewiz and Wallman ([3, Ch. VI℄),we say that a point y ∈ Y is an unstable value of ϕ if for every δ > 0 thereexists a ontinuous mapping ψ : X → Y satisfying ∀x∈X d(ϕ(x), ψ(x)) < δand y 6∈ ψ[X]. Theorem VI.1 of [3℄ states that if Y = R

n and dimX < n forsome n ∈ N then every point of Y is an unstable value of ϕ.Under the assumptions of the lemma, we pik f̃ ∈ U and g̃ ∈ V . Then
ϕ = (f̃ , g̃) maps X into R

2. Sine dimX < 2, (0, 0) is an unstable valueof (f̃ , g̃). As U and V are open, there exist f ∈ U and g ∈ V satisfying
(0, 0) 6∈ (f, g)[X], whih ompletes the proof.



152 A. KomisarskiLemma 2. Assume that X is a ompat topologial spae, U, V ⊂ C(X)are non-empty and open and f ∈ U , g ∈ V satisfy f−1(0)∩g−1(0) = ∅. Thenthere exists δ > 0 suh that B(f · g, δ) ⊂ U · V .Proof. There exists ε > 0 satisfying B(f, ε) ⊂ U and B(g, ε) ⊂ V . Bynormality, there are losed sets F,G ⊂ X suh that F ⊂ {x ∈ X : f(x) 6= 0},
G ⊂ {x ∈ X : g(x) 6= 0} and F ∪ G = X. Let a be the smaller of thenumbers min{|f(x)| : x ∈ F} and min{|g(x)| : x ∈ G}). Clearly, a > 0.We put

δ = min

(
aε,

a2

2
,

a2ε

2a+ 2‖f‖

)
.Let ĥ ∈ B(f · g, δ). We will �nd f̂ ∈ B(f, ε) ⊂ U and ĝ ∈ B(g, ε) ⊂ Vsatisfying f̂ · ĝ = ĥ. First, set

ĝ(x) =
ĥ(x)

f(x)
for x ∈ F.For x ∈ F we have

|ĝ(x) − g(x)| =
|ĥ(x) − f(x) · g(x)|

|f(x)|
<
δ

a
.Thus the range of ĝ − g : F → R is a ompat subset of (−δ/a, δ/a). Usingthe Tietze Theorem we extend this funtion to ĝ− g : X → (−δ/a, δ/a) andput ĝ = g + (ĝ − g). Then learly ĝ ∈ B(g, ε). For x ∈ G we have

|ĝ(x)| ≥ |g(x)| − ‖ĝ − g‖ > a−
δ

a
≥ a−

a

2
=
a

2
.Now we de�ne

f̂(x) =

{
f(x) for x ∈ F,

ĥ(x)/ĝ(x) for x ∈ G.The de�nition is orret, sine by de�nition of ĝ, for x ∈ F ∩ G we have
f(x) = ĥ(x)/ĝ(x), and if x ∈ G then |ĝ(x)| ≥ a/2 > 0. Clearly f̂ · ĝ = ĥ.The funtion f̂ is ontinuous, beause f̂ |F and f̂ |G are ontinuous.We still have to prove that ‖f̂ − f‖ < ε. For x ∈ F one has f̂(x) = f(x)while if x ∈ G then
|f̂(x)−f(x)| =

∣∣∣∣
ĥ(x)

ĝ(x)
− f(x)

∣∣∣∣ ≤
∣∣∣∣
ĥ(x)

ĝ(x)
−
f(x) · g(x)

ĝ(x)

∣∣∣∣ +

∣∣∣∣
f(x) · g(x)

ĝ(x)
− f(x)

∣∣∣∣

=
|ĥ(x) − f(x) · g(x)|

|ĝ(x)|
+ |f(x)|

|g(x) − ĝ(x)|

|ĝ(x)|
<

δ

a/2
+ ‖f‖

δ/a

a/2

= δ
2a+ 2‖f‖

a2
≤ ε.
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2
) topologial spae X we denote by Cb(X) the alge-bra of real-valued ontinuous bounded funtions de�ned on X. Let βX de-note the �eh�Stone ompati�ation of X. Sine for every Tikhonov spae

X the spae βX is a ompat Hausdor� spae and the algebras Cb(X) and
C(βX) are isometrially isomorphi, we have:Corollary 1. Let X be a Tikhonov topologial spae. The followingequivalenes hold :(1) multipliation in Cb(X) is open i� dimβX < 1,(2) multipliation in Cb(X) is weakly open and not open i� dimβX = 1,(3) multipliation in Cb(X) is not weakly open i� dimβX > 1.Another orollary onerns sets of the �rst ategory:Corollary 2. Let X be a ompat topologial spae. The following on-ditions are equivalent :(i) dimX ≤ 1.(ii) For any set A ⊂ C(X) of the �rst ategory its preimage underthe multipliation map is a set of the �rst ategory in C(X)×C(X).Corollary 2 extends the results obtained by Balerzak, Wahowiz andWilzy«ski, who showed that the preimage of a residual subset of C([0, 1])under the multipliation map is a residual subset of C([0, 1])×C([0, 1]). Asa matter of fat, the proof of the impliation (i)⇒(ii) is idential to theargument in [1℄, [4℄ and [5℄.Proof of Corollary 2. Denote by B′ the preimage of a set B ⊂ C(X) un-der the multpliation map. Let dimX ≤ 1 and let A ⊂ C(X) be of the �rstategory. Clearly, A′ =

⋃
∞

n=1
A′

n, where the An ⊂ C(X) are nowhere dense.It remains to show that the sets A′

n are nowhere dense. Assume the on-trary: for some n there exists a non-empty open set U ⊂ C(X) × C(X)satisfying U ⊂ A′
n. It follows that · [U ] ⊂ · [A′

n ] ⊂ An, whih is not thease beause An is nowhere dense and Int(· [U ]) 6= ∅ (f. Theorem, (1)⇐ and(2)⇐).Conversely, let dimX > 1. There exist non-empty open open sets U, V ⊂
C(X) suh that W = U · V is nowhere dense (f. proof of Theorem, (3)⇐).On the other hand, W ′ ⊃ U × V is not of the �rst ategory in C(X) ×
C(X).
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