A connection between multiplication in $C(X)$ and the dimension of X

by
Andrzej Komisarski (Łódź)

Abstract

Let X be a compact Hausdorff topological space. We show that multiplication in the algebra $C(X)$ is open iff $\operatorname{dim} X<1$. On the other hand, the existence of non-empty open sets $U, V \subset C(X)$ satisfying $\operatorname{Int}(U \cdot V)=\emptyset$ is equivalent to $\operatorname{dim} X>1$. The preimage of every set of the first category in $C(X)$ under the multiplication map is of the first category in $C(X) \times C(X)$ iff $\operatorname{dim} X \leq 1$.

Let X be a compact (Hausdorff) topological space. We consider the algebra $C(X)$ of real-valued continuous functions on X with the pointwise addition and multiplication and the norm $\|f\|=\sup _{x \in X}|f(x)|$. Other two natural operations on $C(X)$ are minimum and maximum. All these operations are continuous but, in general, only addition, maximum and minimum are open as mappings from $C(X) \times C(X)$ to $C(X)$ (see [1], [4], [5]).

We recall from [1] the definition of a weakly open map:
Definition. A map of topological spaces is weakly open if the image of every non-empty open set has a non-empty interior.

In [1], [4], [5] it is shown that multiplication in $C([0,1])$ is weakly open. We extend this result as follows:

Theorem. Let X be a compact topological space. The following equivalences hold:
(1) multiplication in $C(X)$ is open iff $\operatorname{dim} X<1$,
(2) multiplication in $C(X)$ is weakly open and not open iff $\operatorname{dim} X=1$,
(3) multiplication in $C(X)$ is not weakly open iff $\operatorname{dim} X>1$, where $\operatorname{dim} X$ denotes the topological (covering) dimension of X.

The first of these equivalences was suggested by D. H. Fremlin in January 2004 (oral communication).

For $A, B \subset C(X)$ set $A \cdot B=\{f \cdot g: f \in A, g \in B\}$, and for $f \in C(X)$ and $r>0$ write $B(f, r)=\{g \in C(X):\|g-f\|<r\}$.

Proof of Theorem. It is enough to show the implications: $(1) \Leftarrow,(1) \Rightarrow$, $(3) \Leftarrow$ and $(2) \Leftarrow$.
$(1) \Leftarrow$: If $\operatorname{dim} X=-1$ (i.e. $X=\emptyset$) then there is nothing to prove. Let $\operatorname{dim} X=0$. We need to prove that for every pair of open sets $U, V \subset C(X)$ the set $U \cdot V \subset C(X)$ is open. Let $h \in U \cdot V$, i.e. $h=f \cdot g$ for some $f \in U$ and $g \in V$. There exists $\varepsilon>0$ such that $B(f, \varepsilon) \subset U$ and $B(g, \varepsilon) \subset V$. We will show that $B\left(h, \varepsilon^{2} / 4\right) \subset U \cdot V$.

Let $\widehat{h} \in B\left(h, \varepsilon^{2} / 4\right)$. We define open subsets of X :

$$
\begin{aligned}
& F=\{x \in X:|f(x)|>\varepsilon / 4\}, \quad G=\{x \in X:|g(x)|>\varepsilon / 4\} \\
& H=\{x \in X:|f(x)|<\varepsilon / 3 \text { and }|g(x)|<\varepsilon / 3\}
\end{aligned}
$$

 disjoint sets $\widetilde{F} \subset F, \widetilde{G} \subset G$ and $\widetilde{H} \subset H$ such that $\widetilde{F} \cup \widetilde{G} \cup \widetilde{H}=X$. We define $\widehat{f} \in B(f, \varepsilon)$ and $\widehat{g} \in B(g, \varepsilon)$ such that $\widehat{h}=\widehat{f} \cdot \widehat{g}$ as follows:

$$
\begin{array}{lll}
\widehat{f}(x)=f(x), & \widehat{g}(x)=\frac{\widehat{h}(x)}{f(x)} & \text { for } x \in \widetilde{F} \\
\widehat{f}(x)=\frac{\widehat{h}(x)}{g(x)}, & \widehat{g}(x)=g(x) & \text { for } x \in \widetilde{G} \\
\widehat{f}(x)=\sqrt{|\widehat{h}(x)|}, & \widehat{g}(x)=\sqrt{|\widehat{h}(x)|} \cdot \operatorname{sgn}(\widehat{h}(x)) & \text { for } x \in \widetilde{H}
\end{array}
$$

It is clear that $\widehat{h}=\widehat{f} \cdot \widehat{g}$. The functions \widehat{f} and $\underset{\sim}{\hat{g}}$ are continuous because they are continuous on each of the clopen sets $\widetilde{F}, \widetilde{G}$ and \widetilde{H} covering X.

It remains to show that $\widehat{f} \in B(f, \varepsilon)$ and $\widehat{g} \in B(g, \varepsilon)$. If $x \in \widetilde{F}$ then

$$
|\widehat{f}(x)-f(x)|=0<\varepsilon, \quad|\widehat{g}(x)-g(x)|=\left|\frac{\widehat{h}(x)-h(x)}{f(x)}\right|<\frac{\varepsilon^{2} / 4}{\varepsilon / 4}=\varepsilon
$$

and similarly for $x \in \widetilde{G}$. Finally, if $x \in \widetilde{H}$ then $|h(x)|=|f(x)||g(x)|<\varepsilon^{2} / 9$. It follows that $|\widehat{h}(x)| \leq|h(x)|+\varepsilon^{2} / 4<\varepsilon^{2} / 9+\varepsilon^{2} / 4$ and $|\widehat{f}(x)|=|\widehat{g}(x)|<$ $\sqrt{\varepsilon^{2} / 9+\varepsilon^{2} / 4}$. Then $|\hat{f}(x)-f(x)| \leq|\widehat{f}(x)|+|f(x)|<\sqrt{\varepsilon^{2} / 9+\varepsilon^{2} / 4}+\varepsilon / 3<\varepsilon$ and similarly $|\widehat{g}(x)-g(x)|<\varepsilon$. Hence $\|\widehat{f}-f\|<\varepsilon$ and $\|\widehat{g}-g\|<\varepsilon$.
$(1) \Rightarrow$: We will show that if $\operatorname{dim} X>0$ then multiplication is not open. Since $\operatorname{dim} X>0$, there exists a connected component S of X which has at least two elements, say x_{1} and x_{2} (cf. [2]). Let $f: X \rightarrow \mathbb{R}$ be a continuous function such that $f\left(x_{1}\right)=-1$ and $f\left(x_{2}\right)=1$. We will prove that $f \cdot f$ is not an interior point of $B(f, 1) \cdot B(f, 1)$. Consider an arbitrary element $\widehat{h} \in B(f, 1) \cdot B(f, 1)$. We have $\widehat{h}=\widehat{f} \cdot \widehat{g}$ for some $\widehat{f}, \widehat{g} \in B(f, 1)$. The function \widehat{f} satisfies $\widehat{f}\left(x_{1}\right)<-1+1=0$ and $\widehat{f}\left(x_{2}\right)>1-1=0$. Thus \widehat{f}, and hence
\widehat{h}, has a zero in S. It follows that none of the functions $h_{n}=f \cdot f+1 / n$, $n \in \mathbb{N}$, is in $B(f, 1) \cdot B(f, 1)$. On the other hand, $\lim _{n \rightarrow \infty} h_{n}=f \cdot f$. Hence $f \cdot f \notin \operatorname{Int}(B(f, 1) \cdot B(f, 1))$.
$(3) \Leftarrow$: We assume that $\operatorname{dim} X \geq 2$. By the Hemmingsen Lemma (cf. [2]) there exist closed sets $A_{1}, B_{1}, A_{2}, B_{2} \subset X$ such that $A_{1} \cap B_{1}=\emptyset, A_{2} \cap B_{2}=\emptyset$ and if L_{1} is a partition between A_{1} and B_{1}, and L_{2} is a partition between A_{2} and B_{2}, then $L_{1} \cap L_{2} \neq \emptyset$. (We recall that a closed set $L \subset X$ is a partition between disjoint closed sets $A, B \subset X$ if there exist two disjoint open sets $U, V \subset X$ satisfying $A \subset U, B \subset V$ and $U \cup V=X \backslash L$.)

Let $f, g \in C(X)$ be such that $f(x)=1$ for $x \in A_{1}, f(x)=-1$ for $x \in B_{1}, g(x)=1$ for $x \in A_{2}$ and $g(x)=-1$ for $x \in B_{2}$. We will show that $B(f, 1) \cdot B(g, 1)$ is nowhere dense.

Aiming at a contradiction assume that $\widehat{h} \in \operatorname{Int}(\overline{B(f, 1) \cdot B(g, 1)})$. Then $\widehat{h}+\varepsilon \in \overline{B(f, 1) \cdot B(g, 1)}$ for some $\varepsilon>0$. Let $\widehat{f} \in B(f, 1)$ and $\widehat{g} \in B(g, 1)$ be such that $\|\widehat{h}-\widehat{f} \cdot \widehat{g}\|<\varepsilon / 2$. If $x \in A_{1}$ then $\widehat{f}(x)>1-1=0$, and if $x \in B_{1}$ then $\widehat{f}(x)<-1+1=0$. It follows that $A_{1} \subset\{x \in X: \widehat{f}(x)>0\}$, $B_{1} \subset\{x \in X: \widehat{f}(x)<0\}$ and the set $L_{1}=\{x \in X: \widehat{f}(x)=0\}$ is a partition between A_{1} and B_{1}. Similarly, let $\widetilde{f} \in B(f, 1)$ and $\widetilde{g} \in B(g, 1)$ satisfy $\|(\widehat{h}+\varepsilon)-\widetilde{f} \cdot \widetilde{g}\|<\varepsilon / 2$. We have $A_{2} \subset\{x \in X: \widetilde{g}(x)>0\}$ and $B_{2} \subset\{x \in X: \widetilde{g}(x)<0\}$, so $L_{2}=\{x \in X: \widetilde{g}(x)=0\}$ is a partition between A_{2} and B_{2}. It follows that there exists $x_{0} \in L_{1} \cap L_{2}$. By the definition of L_{1} one has $\widehat{h}\left(x_{0}\right)+\varepsilon>\widehat{f}\left(x_{0}\right) \cdot \widehat{g}\left(x_{0}\right)-\varepsilon / 2+\varepsilon=\varepsilon / 2$. On the other hand, by the definition of L_{2} we have $\widehat{h}\left(x_{0}\right)+\varepsilon<\widetilde{f}\left(x_{0}\right) \cdot \widetilde{g}\left(x_{0}\right)+\varepsilon / 2=\varepsilon / 2$. This contradiction shows that $B(f, 1) \cdot B(g, 1)$ is nowhere dense.
$(2) \Leftarrow$: This implication is an immediate consequence of $(1) \Rightarrow$ and of Lemmas 1 and 2 below.

Lemma 1. Let X be a compact topological space with $\operatorname{dim} X \leq 1$ and let $U, V \subset C(X)$ be non-empty and open. Then there exist $f \in U$ and $g \in V$ such that $f^{-1}(0) \cap g^{-1}(0)=\emptyset$.

Proof. Let X be any topological space, let (Y, d) be a metric space and let $\varphi: X \rightarrow Y$ be continuous. Following Hurewicz and Wallman ([3, Ch. VI]), we say that a point $y \in Y$ is an unstable value of φ if for every $\delta>0$ there exists a continuous mapping $\psi: X \rightarrow Y$ satisfying $\forall_{x \in X} d(\varphi(x), \psi(x))<\delta$ and $y \notin \psi[X]$. Theorem VI. 1 of [3] states that if $Y=\mathbb{R}^{n}$ and $\operatorname{dim} X<n$ for some $n \in \mathbb{N}$ then every point of Y is an unstable value of φ.

Under the assumptions of the lemma, we pick $\widetilde{f} \in U$ and $\widetilde{g} \in V$. Then $\varphi=(\widetilde{f}, \widetilde{g})$ maps X into \mathbb{R}^{2}. Since $\operatorname{dim} X<2,(0,0)$ is an unstable value of $(\tilde{f}, \widetilde{g})$. As U and V are open, there exist $f \in U$ and $g \in V$ satisfying $(0,0) \notin(f, g)[X]$, which completes the proof.

Lemma 2. Assume that X is a compact topological space, $U, V \subset C(X)$ are non-empty and open and $f \in U, g \in V$ satisfy $f^{-1}(0) \cap g^{-1}(0)=\emptyset$. Then there exists $\delta>0$ such that $B(f \cdot g, \delta) \subset U \cdot V$.

Proof. There exists $\varepsilon>0$ satisfying $B(f, \varepsilon) \subset U$ and $B(g, \varepsilon) \subset V$. By normality, there are closed sets $F, G \subset X$ such that $F \subset\{x \in X: f(x) \neq 0\}$, $G \subset\{x \in X: g(x) \neq 0\}$ and $F \cup G=X$. Let a be the smaller of the numbers $\min \{|f(x)|: x \in F\}$ and $\min \{|g(x)|: x \in G\})$. Clearly, $a>0$. We put

$$
\delta=\min \left(a \varepsilon, \frac{a^{2}}{2}, \frac{a^{2} \varepsilon}{2 a+2\|f\|}\right)
$$

Let $\widehat{h} \in B(f \cdot g, \delta)$. We will find $\widehat{f} \in B(f, \varepsilon) \subset U$ and $\widehat{g} \in B(g, \varepsilon) \subset V$ satisfying $\widehat{f} \cdot \widehat{g}=\widehat{h}$. First, set

$$
\widehat{g}(x)=\frac{\widehat{h}(x)}{f(x)} \quad \text { for } x \in F
$$

For $x \in F$ we have

$$
|\widehat{g}(x)-g(x)|=\frac{|\widehat{h}(x)-f(x) \cdot g(x)|}{|f(x)|}<\frac{\delta}{a}
$$

Thus the range of $\widehat{g}-g: F \rightarrow \mathbb{R}$ is a compact subset of $(-\delta / a, \delta / a)$. Using the Tietze Theorem we extend this function to $\widehat{g}-g: X \rightarrow(-\delta / a, \delta / a)$ and put $\widehat{g}=g+(\widehat{g}-g)$. Then clearly $\widehat{g} \in B(g, \varepsilon)$. For $x \in G$ we have

$$
|\widehat{g}(x)| \geq|g(x)|-\|\widehat{g}-g\|>a-\frac{\delta}{a} \geq a-\frac{a}{2}=\frac{a}{2}
$$

Now we define

$$
\widehat{f}(x)= \begin{cases}f(x) & \text { for } x \in F \\ \widehat{h}(x) / \widehat{g}(x) & \text { for } x \in G\end{cases}
$$

The definition is correct, since by definition of \widehat{g}, for $x \in F \cap G$ we have $f(x)=\widehat{h}(x) / \widehat{g}(x)$, and if $x \in G$ then $|\widehat{g}(x)| \geq a / 2>0$. Clearly $\widehat{f} \cdot \widehat{g}=\widehat{h}$. The function \widehat{f} is continuous, because $\left.\widehat{f}\right|_{F}$ and $\left.\widehat{f}\right|_{G}$ are continuous.

We still have to prove that $\|\widehat{f}-f\|<\varepsilon$. For $x \in F$ one has $\widehat{f}(x)=f(x)$ while if $x \in G$ then

$$
\begin{aligned}
|\widehat{f}(x)-f(x)| & =\left|\frac{\widehat{h}(x)}{\widehat{g}(x)}-f(x)\right| \leq\left|\frac{\widehat{h}(x)}{\widehat{g}(x)}-\frac{f(x) \cdot g(x)}{\widehat{g}(x)}\right|+\left|\frac{f(x) \cdot g(x)}{\widehat{g}(x)}-f(x)\right| \\
& =\frac{|\widehat{h}(x)-f(x) \cdot g(x)|}{|\widehat{g}(x)|}+|f(x)| \frac{|g(x)-\widehat{g}(x)|}{|\widehat{g}(x)|}<\frac{\delta}{a / 2}+\|f\| \frac{\delta / a}{a / 2} \\
& =\delta \frac{2 a+2\|f\|}{a^{2}} \leq \varepsilon .
\end{aligned}
$$

For a Tikhonov (T3 $\frac{1}{2}$) topological space X we denote by $C_{\mathrm{b}}(X)$ the algebra of real-valued continuous bounded functions defined on X. Let βX denote the Čech-Stone compactification of X. Since for every Tikhonov space X the space βX is a compact Hausdorff space and the algebras $C_{\mathrm{b}}(X)$ and $C(\beta X)$ are isometrically isomorphic, we have:

Corollary 1. Let X be a Tikhonov topological space. The following equivalences hold:
(1) multiplication in $C_{\mathrm{b}}(X)$ is open iff $\operatorname{dim} \beta X<1$,
(2) multiplication in $C_{\mathrm{b}}(X)$ is weakly open and not open iff $\operatorname{dim} \beta X=1$,
(3) multiplication in $C_{\mathrm{b}}(X)$ is not weakly open iff $\operatorname{dim} \beta X>1$.

Another corollary concerns sets of the first category:
Corollary 2. Let X be a compact topological space. The following conditions are equivalent:
(i) $\operatorname{dim} X \leq 1$.
(ii) For any set $A \subset C(X)$ of the first category its preimage under the multiplication map is a set of the first category in $C(X) \times C(X)$.
Corollary 2 extends the results obtained by Balcerzak, Wachowicz and Wilczyński, who showed that the preimage of a residual subset of $C([0,1])$ under the multiplication map is a residual subset of $C([0,1]) \times C([0,1])$. As a matter of fact, the proof of the implication (i) \Rightarrow (ii) is identical to the argument in [1], [4] and [5].

Proof of Corollary 2. Denote by B^{\prime} the preimage of a set $B \subset C(X)$ under the multplication map. Let $\operatorname{dim} X \leq 1$ and let $A \subset C(X)$ be of the first category. Clearly, $A^{\prime}=\bigcup_{n=1}^{\infty} A_{n}^{\prime}$, where the $A_{n} \subset C(X)$ are nowhere dense. It remains to show that the sets A_{n}^{\prime} are nowhere dense. Assume the contrary: for some n there exists a non-empty open set $U \subset C(X) \times C(X)$ satisfying $U \subset \overline{A_{n}^{\prime}}$. It follows that $\cdot[U] \subset \cdot\left[\overline{A_{n}^{\prime}}\right] \subset \bar{A}_{n}$, which is not the case because A_{n} is nowhere dense and $\operatorname{Int}(\cdot[U]) \neq \emptyset($ cf. Theorem, $(1) \Leftarrow$ and $(2) \Leftarrow)$.

Conversely, let $\operatorname{dim} X>1$. There exist non-empty open open sets $U, V \subset$ $C(X)$ such that $W=U \cdot V$ is nowhere dense (cf. proof of Theorem, $(3) \Leftarrow)$. On the other hand, $W^{\prime} \supset U \times V$ is not of the first category in $C(X) \times$ $C(X)$.

References

[1] M. Balcerzak, A. Wachowicz and W. Wilczyński, Multiplying balls in the space of continuous functions on [0, 1], Studia Math. 170 (2005), 203-209.
[2] R. Engelking, Theory of Dimensions Finite and Infinite, Sigma Series in Pure Math. 10, Heldermann, Lemgo, 1995.
[3] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Ser. 4, Princeton Univ. Press, Princeton, 1948.
[4] A. Wachowicz, Baire category and standard operations on pairs of continuous functions, Tatra Mt. Math. Publ. 24 (2002), 141-146.
[5] -, On some residual sets, PhD dissertation, Łódź Technical Univ., Łódź, 2004 (in Polish).

Department of Probability Theory and Statistics
Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: andkom@math.uni.lodz.pl
URL: http://www.math.uni.lodz.pl/~ andkom/

Received 16 November 2004;
in revised form 7 November 2005

