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Malicky—Riecan’s entropy as a version of operator entropy
by

Bartosz Frej (Wroclaw)

Abstract. The paper deals with the notion of entropy for doubly stochastic opera-
tors. It is shown that the entropy defined by Malicky and Riecan in [M-R] is equal to the
operator entropy proposed in [D-F]|. Moreover, some continuity properties of the [M-R]
entropy are established.

1. Operator entropy. Let i be a probability measure on a measurable
space X. By a doubly stochastic operator we mean a linear operator 7' on
LY(p) which satisfies the following conditions:

(i) Tf is positive for every positive f € L' (u),

(ii) 71 = 1 (where 1(z) =1 for all z € X),

(iii) §Tf dp =1 f du for every f € L'(p).

It is well known that such an operator preserves each of the spaces LP(u)
(1 < p < ) and that a linear operator on L*(u) satisfying (i)—(iii) has a
unique extension to a doubly stochastic operator on L!(x). Thus the name
“doubly stochastic” may be used for operators on any LP(u) (1 < p < 00); the
cases of L'(p1), L?(p) and L°(u) are most often studied. Our considerations
will not depend on the choice of the domain.

Since the Koopman operator of a measure-preserving transformation is
doubly stochastic, one can interpret doubly stochastic operators as gener-
alizations of classical dynamical systems. This justifies attempts to lift well
known pointwise notions, like for instance entropy, to the operator case. No-
tice that the existence of a definition of entropy at the operator level does
not collide with the well known fact that entropy in measure-preserving sys-
tems is not a spectral invariant. Several results have already been published
in this area, the most recent being probably the theory developed in [D-F].
One of the theorems proved there states that all entropy notions set up
for doubly stochastic operators are equal if only they follow some standard
construction scheme (in particular, they are based on distinguished finite

2000 Mathematics Subject Classification: 28D20, 37A30, 37A35.
Key words and phrases: doubly stochastic operator, Markov operator, entropy.

[185]



186 B. Frej

collections of functions with an appropriate joining operation) and satisfy
a few natural conditions like monotonicity, subadditivity, continuity (with
respect to the collection of functions which replaces a partition) and some
sort of compatibility with the classical entropy of a partition. Besides this
axiomatic approach, one also needs a more explicit formula which would be
convenient in proving properties of the entropy. To make the current paper
self-contained we recall below the version of entropy proposed in [D-F| and
formulate some of the results that can be found in that article.
For a function f: X — [0, 1] let
Ap ={(z,t) € X x[0,1] : t < f(2)}

and denote by Ay the partition of X x [0, 1] consisting of Ay and its comple-
ment. For a collection  of measurable functions we define Ax = \/ ;. Ay.
Clearly, Arug = Ar V Ag. To shorten notation we write T"F = {T"f:

feF}and F* = UZ;& T*F, where n € N. Let \ be the Lebesgue measure
on the unit interval. We define

HPH(F) = Hpn (Ar) = = D (1 x A)(A) -log(p x A)(A),
AcAr
hWPY(T, F) = lim S HPY(F™),  hPY(T) = sup hP¥ (T, F),
n—oo N F

with the supremum ranging over all finite collections of measurable functions
from X to [0, 1]. The existence of the limit in the second definition has been
proved in [D-F]. The conditional entropy is given by

HPP(F|G) = HPP(F U G) — HPP().
Note that it is always nonnegative, since
(1.1) HPF(G) < HPF(FuUg) <HPF(F) + HPF(G).

For a partition A of the underlying space X, let 1 4 denote the set of char-
acteristic functions of all elements of 4. The following property of HPY is a
concretization of the domination aziom from [D-F|:

For every r € N and € > 0 there exists a positive number v such
that for every collection F = { f1,..., fr} and every partition « of the
unit interval into finitely many subintervals of lengths not exceeding
v we have DF .

where @ is some set of constant functions, which depends only on «

(not on F).

For two collections of functions F = {f1,...,f-} and G = {g1,..., 9},
r’ < r, we define

dist(F,9) = mgn{llgggrﬁ |fi = 9o du},



Malicky—Riecan’s entropy 187

where the minimum ranges over all permutations 7 of the set {1,...,r} and
where G is considered an r-element family by setting g; = 0 for v’ < ¢ < r. For
a function f and constants a < b let f° = (fVa) Ab, where V and A denote
maximum and minimum, respectively. We say that f has property CZ(9) if

V1T (fa) = (T" )l dp < 6
for every n > 0 and every pair of constants a < b.

LEMMA 1.1 (|[D-F, Lemma 2.3]). For every bounded function f and every
8 > 0 there exists an integer | such that T'f has property CZ(5).

LEMMA 1.2 (|[D-F, Lemma 2.5]). Let F consist of r functions with ranges
n [0,1], having property CZ(83). Then there is a partition = of [0,1] into
subintervals of lengths not exceeding 2rd such that for every n and f € F,

S|Tnﬂ{r:f(m)2~£} — Lip.rnp(e)>ey| dp < 49,
where the values & are breakpoints of =.

LEMMA 1.3 ([D-F, Lemma 2.6]). Let F = {fi1,..., fr} consist of func-
tions with ranges in [0, 1], all having property CZ(83), and let a be a partition
of [0,1] into m pieces Ag = [0,&1), Aj = [§,&+1) (4 =1,...,m —2) and
Apm—1 = [&m-1,1], where the points &; all satisfy the assertion of Lemma 1.2.
Then

diSt(Tn(]lvifjl(a))’ ]lViT"fi_l(a)) < 8rm"d

for every n > 0.

2. Mali¢ky—Rie¢an’s entropy. Another definition of entropy was pro-
posed in [M-R] (a paper much earlier than [D-F]). It is based on the notion
of a partition of unity, i.e. a finite collection of nonnegative, measurable func-
tions whose sum is 1. For instance, if A is a finite measurable partition of the
space X then 14 forms a partition of unity. Instead of using some kind of
joining operation, Mali¢ky and Rie¢an introduce the following order relation
on the set of partitions of unity: ¥ > @ if ¥ is the union of pairwise disjoint
collections of functions ¥, ¢ € @, such that Zwe% 1 = ¢ (in fact, to en-
sure that the relation is antisymmetric we should exclude functions equal to 0
almost everywhere). Note that partitions of unity may have equal elements—
for example {1/n,1/n,...,1/n} contains n elements although they are all
identical.

The entropy of a partition of unity is given by

HY (@) = =) " {pdu-log|pdp.
ped
For several partitions @,...,®P, we put

HMR(@),... @) =inf{HMR(): I = &y,..., ] = &,}.



188 B. Frej
Abbreviating HMR (¢, Td, ..., T""1®) by HMR (&b n) we define

1
WMR(T, @) = lim — HMR (@, n).
n—oo n
It is not hard to verify that the sequence HMR (&, n) is subadditive, thus the
definition is correct. Finally, for any set R of partitions of unity we put

h¥R(T) = sup hWMR(T, @),
PER

It is quite obvious that if T" is a transformation and R contains all partitions
of unity into measurable characteristic functions then h¥®(7) is not smaller
than the classical Kolmogorov—Sinai entropy of T'. The key tool here is the
following easy lemma:

LEMMA 2.1. If I" = 14 and I’ = 1 4 for partitions A, A" of the space X,
then I’ b ﬂ.A\/.A’-

We know from [M-R]| that if 7" is a pointwise transformation and R is
the set of all partitions of unity consisting of simple functions with rational
coefficients then h%R(T) is equal to the classical entropy of 1. Because of
the lack of a joining operation, Malicky—RieCan’s construction does not fol-
low the axiomatic scheme mentioned in the first section. Thus the equality
between h%{R and hP¥ for any doubly stochastic operator cannot be estab-
lished by verification of the axioms. We devote the next section to proving
this equality. Below we formulate a theorem which is a direct answer to the
question posed in [M-R|—in the pointwise case, extending R from simple
functions to all measurable partitions of unity does not increase h%R. Since
this result is covered by Theorem 3.7, we refrain from presenting a detailed
proof. However, we give a sketch of the argument, as it is based on some
elementary calculations, without use of operator techniques.

THEOREM 2.2. If T: X — X is a measure preserving transformation
and R denotes the set of all measurable partitions of unity then h%R(T) is
equal to the Kolmogorov—-Sinai entropy of T .

Sketch of proof. The goal is to find, for an arbitrary partition of unity
@ ={p1,...,¢r} and a positive number ¢, a partition of unity S consisting
of simple functions with rational coefficients and satisfying hMR(T, @) <
hMR(T,S) + ¢. For i = 1,...,r we denote by s; such a simple function
approximating ¢; from below and define S = {sq, s1,...,$,}, where sg =
1—>"7_, s;. Note that {sqdp is small if the approximation is suitably exact.
In addition we define a partition of unity S¢ consisting of s, ..., s, (common
with §) and new functions s_; = p; —s; (i =1,...,7r).

Since Sg = @, we have HME (@, n) < HMR(Sg, n). We then show that the
right hand side is dominated by HM®(S,n) + (n + 1)e. This is done in the
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following way: for a fixed n we pick a partition of unity I" such that I" = T*S
for each & < n and HMR(I") < HMR(S n) + ¢. For every k < n the set I’

splits into disjoint subsets Ff whose elements sum to T*s;. For v € I let

K(7) denote the set of all numbers k < n such that v € I'}, and let

TFs_i(x)
= if T* 0,
PH(a) = Tso () if T"so(x) # 0,

0 if T*sq(z) =0,
where i ranges over {1,...,7}. If K(vy) has m > 0 elements, we define for
any m numbers i1, ..., iy, belonging to {1,...,r} the function

Virrim =7 1] P
keK(v)

Clearly,

T T

Do Y Firim =7

i1=1 im=1
Thus the set I's consisting of all functions ;. ., 1 < 41,...,%, < 7, and
all elements v € I' for which K(v) is empty forms a partition of unity.
Moreover, I'p = T*Sg for every k < n and [HME(Ip) — HMR(I)| < ne,
since producing Iy we have modified a relatively small set of insignificant
elements of I O

3. Results. The definition of hP¥ is based on partitions of the prod-
uct X x [0, 1], while h%[R exploits partitions of unity. In order to compare
these notions we will introduce operations interchanging between partitions
of unity and collections of functions inducing reasonable partitions of the
product.

Let F be a collection of r functions X — [0, 1]. We may assume that the
elements of F are pairwise unequal, because including in F multiple copies
of the same function does not affect the partition Axr. We will say that F is
increasing if its elements can be numbered in such a way that f;y; > f; for
1 =1,...,7 — 1. From now on, every increasing collection of functions will
be numbered in increasing order.

An arbitrary collection of functions may be transformed into an increas-
ing one in the following way. Fix a numbering of 7 = {f1, ..., f.}. Denote by
“=" the lexicographic order on the set of words {0,1}". For every 3 € {0,1}"
we define

1 for 6 =11...1,
05 {

sup inf{f;: a; =0} otherwise.
aXp

It is clear that the functions 63 form a collection which is increasing with
respect to the lexicographic order on {0, 1}"—the outcome depends, however,
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on the initial numbering. Excluding from 63’s spare copies of functions and
adding the zero function we obtain an increasing collection which will be
denoted by O(F). It seems intuitively obvious (and is not hard to prove)
that

(3.1) Ao(ry = Ar,

irrespective of the numbering of F.
Next, we denote by PU(F) the partition of unity consisting of the func-
tions 6; — 0;_1, where 0;’s are elements of @(F) in increasing order. Clearly,

(3.2) HMER(Py(F)) = HPF (O(F)) = HPF (7).
On the other hand, an increasing collection of functions is obtained from
a numbered partition of unity @ = {¢1,...,¥s} by means of the operation

() = {zj:gpi:jzo,l,...,s}
i=1

(the empty sum is interpreted as 0). Verification of the following easy for-
mulas is left to the reader:
(3.3) TX(P)=X(TP), X(PUF)) =06(F), PUXD)) =®o.

ProOPOSITION 3.1. Let F = {fo,..., fr} and G = {go, ..., gs} be increas-
ing collections of functions with fo = g9 =0, fr =9s = 1. If Ag = Ax then
PU(G) = PU(F).

Proof. The partition Ax consists of the sets

Ai={(z,y): fisr(z) <y < filx)}, i=1,...,m

For each i the set A;11 lies “above” A; in the sense that f; is simultaneously

an upper bound for A; and a lower bound for A;;1. Analogous statements
are valid for Ag. Since every A; is a union of elements of Ag, for every

i = 1,...,7 one can find integers 0 = jo < j1 < --- < jr = s such that
Ay = UL, 1 Bj, where B; = {(z,9): gj—1(z) < y < g;(x)}. Thus for
every 1 =1,...,7,

Ji
fi—fici=Y_ (g —gi-1),
J=Jji—1+1

ie. PUG) = PU(F). m

REMARK 3.2. The converse implication fails. For example, let F consist
of the constant functions 1/3 and 1, and let G consist of the constants 2/3
and 1. The partitions Ax and Ag are not comparable, though PU(F) and
PU(G) form the same partition of unity.

The next lemma is a part of the classical theory of entropy (cf. Proposi-
tion 11.10 of [D-G-S]).
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LEMMA 3.3. For every € > 0 there exists § > 0 such that if A =
{A1,..., As} and A ={A}, ..., AL} are partitions of X satisfying p(A4; AA})
<0 fori=1,...,s, then for any partition B = A,

H,(BVA) <H,(B)+e.

LEMMA 3.4. For every e > 0 and s € N there exists § > 0 such that if ©
and ¥ are partitions of unity having at most s elements each and satisfying
dist(®@,¥) < 9§, then for any partition of unity I = & there is a partition of
unity I' with the properties:

(i) L =T,
(i) I' = ¥,

(iii) HMR(I) — HMR(IN) < &.

Proof. Number the elements of @ and ¥ so that {|¢; — ;| dp < & (if the
cardinalities of @ and ¥ are not equal, we supply the smaller collection with

an appropriate number of zeros). Then number I" in such a way that the
elements forming ¢; precede those used in the sum for ¢; 1. Define

I'=PUS(T)U Z(W)).

Then
(3.1)
Aspy = Aoznuzw) = Asusw) = Asr) V Asw)-
By Proposition 3.1 and (3.3), I'= " and I = W.

Note that if dist(®,¥) < 0 then dist(X(®), X'(¥)) < sd and the measure
of the symmetric difference between each pair of corresponding elements of
As@) and Agy) is smaller than 2s6. Since HMR(PU(F)) = H o\ (Ar),
condition (iii) follows from the preceding lemma by letting A = Ay,
.A/ — Ag(lp), B = -AE(F)- L]

LEMMA 3.5. For every € > 0 and s € N there exists § > 0 such that if
D1,..., P, and ¥y, ..., ¥, are partitions of unity having at most s elements
each and satisfying dist(P;,¥;) < d for alli=1,...,n, then

HMR(@,, ..., @,) —HMRWy, ... @) < (n+1e.

Proof. Pick a partition of unity Iy such that Iy = @ for k =1,....,n
and HMR (1) < HMR(@4,...,®,) + €. According to the previous lemma we
choose a partition of unity I satisfying I7 > Iy, I'1 = ¥; and HMR(H) —
HMR(FO) < €. We continue the construction, in the kth step using the lemma
for ® = &y, ¥ = ¥, and I' = [},_1. After n steps we obtain a partition of
unity I, finer than @; and ¥, for all k = 1,...,n, and satisfying HMR(I},) <
HMR () + ne. Hence

HMR (g, w,) < HMR(D,) < BMR(By, ... 0,) 4+ (n + 1)e.
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We finish the proof by exchanging the roles of &) and ¥ in the above
argument. =

PROPOSITION 3.6 (Continuity of Malicky-Rie¢an’s entropy). The fol-
lowing continuity laws hold:
(i) For every e > 0 and s € N there exists 6 > 0 such that if ¢ and
W have at most s elements each and satisfy dist(®,¥) < & then for
every n € N,
[HMB(®, n) — HMR(W, n)| < ne.

(ii) For every e >0 and s € N there exists 6 > 0 such that if & and ¥
have at most s elements each and satisfy dist(®,¥) < ¢ then

hMB(T, @) — WMB(T,¥)| < e.

Proof. The preceding lemma used for &), = T+, ¥, = T*¥ immediately
implies (i), and (ii) follows from (i) and the definition of hMR (T, ®). u

THEOREM 3.7. h¥R(T) = hP¥(T), where R is the set of all measurable
partitions of unity.
Proof. We start by proving that h¥®(T) < hP¥(T). Let @ be a partition

of unity. Denote by ®%. the collection Uz;é T*(2(®)). For every n € N and
k < n we have

n—1
k=0

It follows from Lemma 3.1 that PU(PL) = T*® for every n € N and k < n.
Thus

HMR (6, 1) < HVMR(Pu(@%)) ) HPF (1),

Dividing both sides by n and letting n — oo we get
WIR(T, $) < hOF (T, 5(8)).

For the reverse inequality we modify the proof of Theorem 2.1 of [D-F].
We fix € > 0 and a collection F = {f1,..., fr}. Let v be as specified in the
domination axiom for the cardinality r and € > 0. Choose m between 1/7
and 2/~. For s = m" and ¢ pick § according to Lemma 3.5. Having in mind
that hP¥ (T, F) = hP¥(T, T'F), we can use Lemma 1.1 to replace F by T'F
such that every f € F has property CZ((6/8rm")3). The number §/4m"
majorizes the distances between the points £ in Lemma 1.2 (with § replaced
by §/8rm™), and because it is smaller than 7/2, we can pick m — 1 of them
creating a partition a of [0, 1] into m intervals of lengths smaller than . By
the domination axiom, for every k € N we have

HDF(Tk]:| ﬂerka f1(a) U a) <eg,
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SO
HDF(fn ’ ﬂerf-n F~1(a) ua) < ne.

Lemma 1.3 yields

. k
(3.4) dlst(llvaTka—l(a),T (]l\/fef f1(a))) <0
Then
HR(FY) < B (Ly, ., i V@) e
(1.1), Lem. 2.1

MR
< H (]l\/fe]-" Fa)r - ]lerTnfly-'fil(O‘))
+HPY (@) + ne.

Using (3.4) and Lemma 3.5, we bound the right hand side of the above
inequality by

HMR(HVW F1(@):n) + HPY (@) + (2n + 1)e.
Thus hP¥(T, F) < hWMB(T, Ly, 1) + 26 < hMR(T) + 2¢. u

REMARK 3.8. One might hope to simplify the second part of the proof
by extending Lemma 2.1 to collections of arbitrary functions. Unfortunately,
it is not true that I" = &, I' > ¥ imply I' = PU(X(L)U X (¥)). For example,

take X = [0,1], d ={z,1—2}, ¥ = {%x—l—%,%—%x} and I' = {71,...,76},

where 71 =9 =3 = 52, 4 = V5 = V6 = 5 — 5.
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