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Mali£ky�Rie£an's entropy as a version of operator entropybyBartosz Frej (Wro
ªaw)
Abstra
t. The paper deals with the notion of entropy for doubly sto
hasti
 opera-tors. It is shown that the entropy de�ned by Mali£ky and Rie£an in [M-R℄ is equal to theoperator entropy proposed in [D-F℄. Moreover, some 
ontinuity properties of the [M-R℄entropy are established.1. Operator entropy. Let µ be a probability measure on a measurablespa
e X. By a doubly sto
hasti
 operator we mean a linear operator T on

L1(µ) whi
h satis�es the following 
onditions:(i) Tf is positive for every positive f ∈ L1(µ),(ii) T1 = 1 (where 1(x) = 1 for all x ∈ X),(iii) TTf dµ =
T
f dµ for every f ∈ L1(µ).It is well known that su
h an operator preserves ea
h of the spa
es Lp(µ)(1 ≤ p ≤ ∞) and that a linear operator on L∞(µ) satisfying (i)�(iii) has aunique extension to a doubly sto
hasti
 operator on L1(µ). Thus the name�doubly sto
hasti
� may be used for operators on any Lp(µ) (1 ≤ p ≤ ∞); the
ases of L1(µ), L2(µ) and L∞(µ) are most often studied. Our 
onsiderationswill not depend on the 
hoi
e of the domain.Sin
e the Koopman operator of a measure-preserving transformation isdoubly sto
hasti
, one 
an interpret doubly sto
hasti
 operators as gener-alizations of 
lassi
al dynami
al systems. This justi�es attempts to lift wellknown pointwise notions, like for instan
e entropy, to the operator 
ase. No-ti
e that the existen
e of a de�nition of entropy at the operator level doesnot 
ollide with the well known fa
t that entropy in measure-preserving sys-tems is not a spe
tral invariant. Several results have already been publishedin this area, the most re
ent being probably the theory developed in [D-F℄.One of the theorems proved there states that all entropy notions set upfor doubly sto
hasti
 operators are equal if only they follow some standard
onstru
tion s
heme (in parti
ular, they are based on distinguished �nite2000 Mathemati
s Subje
t Classi�
ation: 28D20, 37A30, 37A35.Key words and phrases: doubly sto
hasti
 operator, Markov operator, entropy.[185℄



186 B. Frej
olle
tions of fun
tions with an appropriate joining operation) and satisfya few natural 
onditions like monotoni
ity, subadditivity, 
ontinuity (withrespe
t to the 
olle
tion of fun
tions whi
h repla
es a partition) and somesort of 
ompatibility with the 
lassi
al entropy of a partition. Besides thisaxiomati
 approa
h, one also needs a more expli
it formula whi
h would be
onvenient in proving properties of the entropy. To make the 
urrent paperself-
ontained we re
all below the version of entropy proposed in [D-F℄ andformulate some of the results that 
an be found in that arti
le.For a fun
tion f : X → [0, 1] let
Af = {(x, t) ∈ X × [0, 1] : t ≤ f(x)}and denote by Af the partition of X× [0, 1] 
onsisting of Af and its 
omple-ment. For a 
olle
tion F of measurable fun
tions we de�ne AF =

∨
f∈F Af .Clearly, AF ∪G = AF ∨ AG . To shorten notation we write TnF = {Tnf :

f ∈ F} and Fn =
⋃n−1
k=0 T

kF , where n ∈ N. Let λ be the Lebesgue measureon the unit interval. We de�ne
HDF(F) = Hµ×λ(AF ) = −

∑

A∈AF

(µ× λ)(A) · log(µ× λ)(A),

hDF(T,F) = lim
n→∞

1

n
HDF(Fn), hDF(T ) = sup

F
hDF(T,F),with the supremum ranging over all �nite 
olle
tions of measurable fun
tionsfrom X to [0, 1]. The existen
e of the limit in the se
ond de�nition has beenproved in [D-F℄. The 
onditional entropy is given by

HDF(F | G) = HDF(F ∪ G) − HDF(G).Note that it is always nonnegative, sin
e(1.1) HDF(G) ≤ HDF(F ∪ G) ≤ HDF(F) + HDF(G).For a partition A of the underlying spa
e X, let 1A denote the set of 
har-a
teristi
 fun
tions of all elements of A. The following property of HDF is a
on
retization of the domination axiom from [D-F℄:For every r ∈ N and ε > 0 there exists a positive number γ su
hthat for every 
olle
tion F = {f1, . . . , fr} and every partition α of theunit interval into �nitely many subintervals of lengths not ex
eeding
γ we have

HDF(F |1∨
i f

−1

i (α) ∪ α) < ε,where α is some set of 
onstant fun
tions, whi
h depends only on α(not on F).For two 
olle
tions of fun
tions F = {f1, . . . , fr} and G = {g1, . . . , gr′},
r′ ≤ r, we de�ne

dist(F ,G) = min
π

{
max
1≤i≤r

\
|fi − gπ(i)| dµ

}
,



Mali£ky�Rie£an's entropy 187where the minimum ranges over all permutations π of the set {1, . . . , r} andwhere G is 
onsidered an r-element family by setting gi ≡ 0 for r′ < i ≤ r. Fora fun
tion f and 
onstants a < b let f ba = (f ∨ a)∧ b, where ∨ and ∧ denotemaximum and minimum, respe
tively. We say that f has property CZ(δ) if\
|Tn(f ba) − (Tnf)ba| dµ < δfor every n ≥ 0 and every pair of 
onstants a < b.Lemma 1.1 ([D-F, Lemma 2.3℄). For every bounded fun
tion f and every

δ > 0 there exists an integer l su
h that T lf has property CZ(δ).Lemma 1.2 ([D-F, Lemma 2.5℄). Let F 
onsist of r fun
tions with rangesin [0, 1], having property CZ(δ3). Then there is a partition Ξ of [0, 1] intosubintervals of lengths not ex
eeding 2rδ su
h that for every n and f ∈ F ,\
|Tn1{x : f(x)≥ξ} − 1{x :Tnf(x)≥ξ}| dµ < 4δ,where the values ξ are breakpoints of Ξ.Lemma 1.3 ([D-F, Lemma 2.6℄). Let F = {f1, . . . , fr} 
onsist of fun
-tions with ranges in [0, 1], all having property CZ(δ3), and let α be a partitionof [0, 1] into m pie
es A0 = [0, ξ1), Aj = [ξj, ξj+1) (j = 1, . . . ,m − 2) and

Am−1 = [ξm−1, 1], where the points ξj all satisfy the assertion of Lemma 1.2.Then
dist(Tn(1∨

i f
−1

i (α)),1∨
i T

nf−1

i (α)) < 8rmrδfor every n ≥ 0.2. Mali£ky�Rie£an's entropy. Another de�nition of entropy was pro-posed in [M-R℄ (a paper mu
h earlier than [D-F℄). It is based on the notionof a partition of unity, i.e. a �nite 
olle
tion of nonnegative, measurable fun
-tions whose sum is 1. For instan
e, if A is a �nite measurable partition of thespa
e X then 1A forms a partition of unity. Instead of using some kind ofjoining operation, Mali£ky and Rie£an introdu
e the following order relationon the set of partitions of unity: Ψ � Φ if Ψ is the union of pairwise disjoint
olle
tions of fun
tions Ψϕ, ϕ ∈ Φ, su
h that ∑
ψ∈Ψϕ

ψ = ϕ (in fa
t, to en-sure that the relation is antisymmetri
 we should ex
lude fun
tions equal to 0almost everywhere). Note that partitions of unity may have equal elements�for example {1/n, 1/n, . . . , 1/n} 
ontains n elements although they are allidenti
al.The entropy of a partition of unity is given by
HMR(Φ) = −

∑

ϕ∈Φ

\
ϕdµ · log

\
ϕdµ.For several partitions Φ1, . . . , Φn we put

HMR(Φ1, . . . , Φn) = inf{HMR(Γ ) : Γ � Φ1, . . . , Γ � Φn}.



188 B. FrejAbbreviating HMR(Φ, TΦ, . . . , Tn−1Φ) by HMR(Φ, n) we de�ne
hMR(T, Φ) = lim

n→∞

1

n
HMR(Φ, n).It is not hard to verify that the sequen
e HMR(Φ, n) is subadditive, thus thede�nition is 
orre
t. Finally, for any set R of partitions of unity we put

hMR
R (T ) = sup

Φ∈R
hMR(T, Φ).It is quite obvious that if T is a transformation and R 
ontains all partitionsof unity into measurable 
hara
teristi
 fun
tions then hMR

R (T ) is not smallerthan the 
lassi
al Kolmogorov�Sinai entropy of T . The key tool here is thefollowing easy lemma:Lemma 2.1. If Γ � 1A and Γ � 1A′ for partitions A, A′ of the spa
e X,then Γ � 1A∨A′.We know from [M-R℄ that if T is a pointwise transformation and R isthe set of all partitions of unity 
onsisting of simple fun
tions with rational
oe�
ients then hMR
R (T ) is equal to the 
lassi
al entropy of T . Be
ause ofthe la
k of a joining operation, Mali£ky�Rie£an's 
onstru
tion does not fol-low the axiomati
 s
heme mentioned in the �rst se
tion. Thus the equalitybetween hMR

R and hDF for any doubly sto
hasti
 operator 
annot be estab-lished by veri�
ation of the axioms. We devote the next se
tion to provingthis equality. Below we formulate a theorem whi
h is a dire
t answer to thequestion posed in [M-R℄�in the pointwise 
ase, extending R from simplefun
tions to all measurable partitions of unity does not in
rease hMR
R . Sin
ethis result is 
overed by Theorem 3.7, we refrain from presenting a detailedproof. However, we give a sket
h of the argument, as it is based on someelementary 
al
ulations, without use of operator te
hniques.Theorem 2.2. If T : X → X is a measure preserving transformationand R denotes the set of all measurable partitions of unity then hMR
R (T ) isequal to the Kolmogorov�Sinai entropy of T .Sket
h of proof. The goal is to �nd, for an arbitrary partition of unity

Φ = {ϕ1, . . . , ϕr} and a positive number ε, a partition of unity S 
onsistingof simple fun
tions with rational 
oe�
ients and satisfying hMR(T, Φ) ≤
hMR(T,S) + ε. For i = 1, . . . , r we denote by si su
h a simple fun
tionapproximating ϕi from below and de�ne S = {s0, s1, . . . , sr}, where s0 =
1−

∑r
i=1 si. Note that Ts0 dµ is small if the approximation is suitably exa
t.In addition we de�ne a partition of unity SΦ 
onsisting of s1, . . . , sr (
ommonwith S) and new fun
tions s−i = ϕi − si (i = 1, . . . , r).Sin
e SΦ � Φ, we have HMR(Φ, n) ≤ HMR(SΦ, n).We then show that theright hand side is dominated by HMR(S, n) + (n + 1)ε. This is done in the



Mali£ky�Rie£an's entropy 189following way: for a �xed n we pi
k a partition of unity Γ su
h that Γ � T kSfor ea
h k < n and HMR(Γ ) ≤ HMR(S, n) + ε. For every k < n the set Γsplits into disjoint subsets Γ ki whose elements sum to T ksi. For γ ∈ Γ let
K(γ) denote the set of all numbers k < n su
h that γ ∈ Γ k0 , and let

P ki (x) =





T ks−i(x)

T ks0(x)
if T ks0(x) 6= 0,

0 if T ks0(x) = 0,where i ranges over {1, . . . , r}. If K(γ) has m > 0 elements, we de�ne forany m numbers i1, . . . , im belonging to {1, . . . , r} the fun
tion
γ̃i1,...,im = γ ·

∏

k∈K(γ)

P kik .Clearly,
r∑

i1=1

· · ·

r∑

im=1

γ̃i1,...,im = γ.Thus the set ΓΦ 
onsisting of all fun
tions γ̃i1,...,im , 1 ≤ i1, . . . , im ≤ r, andall elements γ ∈ Γ for whi
h K(γ) is empty forms a partition of unity.Moreover, ΓΦ � T kSΦ for every k < n and |HMR(ΓΦ) − HMR(Γ )| < nε,sin
e produ
ing ΓΦ we have modi�ed a relatively small set of insigni�
antelements of Γ . �3. Results. The de�nition of hDF is based on partitions of the prod-u
t X × [0, 1], while hMR
R exploits partitions of unity. In order to 
omparethese notions we will introdu
e operations inter
hanging between partitionsof unity and 
olle
tions of fun
tions indu
ing reasonable partitions of theprodu
t.Let F be a 
olle
tion of r fun
tions X → [0, 1]. We may assume that theelements of F are pairwise unequal, be
ause in
luding in F multiple 
opiesof the same fun
tion does not a�e
t the partition AF . We will say that F isin
reasing if its elements 
an be numbered in su
h a way that fi+1 ≥ fi for

i = 1, . . . , r − 1. From now on, every in
reasing 
olle
tion of fun
tions willbe numbered in in
reasing order.An arbitrary 
olle
tion of fun
tions may be transformed into an in
reas-ing one in the following way. Fix a numbering of F = {f1, . . . , fr}. Denote by�2� the lexi
ographi
 order on the set of words {0, 1}r. For every β ∈ {0, 1}rwe de�ne
θβ =

{
1 for β = 11 . . . 1,
sup
α2β

inf{fi : αi = 0} otherwise.It is 
lear that the fun
tions θβ form a 
olle
tion whi
h is in
reasing withrespe
t to the lexi
ographi
 order on {0, 1}r�the out
ome depends, however,



190 B. Frejon the initial numbering. Ex
luding from θβ 's spare 
opies of fun
tions andadding the zero fun
tion we obtain an in
reasing 
olle
tion whi
h will bedenoted by Θ(F). It seems intuitively obvious (and is not hard to prove)that(3.1) AΘ(F) = AF ,irrespe
tive of the numbering of F .Next, we denote by PU(F) the partition of unity 
onsisting of the fun
-tions θi − θi−1, where θi's are elements of Θ(F) in in
reasing order. Clearly,(3.2) HMR(PU(F)) = HDF(Θ(F)) = HDF(F).On the other hand, an in
reasing 
olle
tion of fun
tions is obtained froma numbered partition of unity Φ = {ϕ1, . . . , ϕs} by means of the operation
Σ(Φ) =

{ j∑

i=1

ϕi : j = 0, 1, . . . , s
}

(the empty sum is interpreted as 0). Veri�
ation of the following easy for-mulas is left to the reader:(3.3) T Σ(Φ) = Σ(TΦ), Σ(PU(F)) = Θ(F), PU(Σ(Φ)) = Φ.Proposition 3.1. Let F = {f0, . . . , fr} and G = {g0, . . . , gs} be in
reas-ing 
olle
tions of fun
tions with f0 = g0 ≡ 0, fr = gs ≡ 1. If AG < AF then
PU(G) � PU(F).Proof. The partition AF 
onsists of the sets

Ai = {(x, y) : fi−1(x) < y ≤ fi(x)}, i = 1, . . . , r.For ea
h i the set Ai+1 lies �above� Ai in the sense that fi is simultaneouslyan upper bound for Ai and a lower bound for Ai+1. Analogous statementsare valid for AG . Sin
e every Ai is a union of elements of AG , for every
i = 1, . . . , r one 
an �nd integers 0 = j0 < j1 < · · · < jr = s su
h that
Ai =

⋃ji
j=ji−1+1Bj , where Bj = {(x, y) : gj−1(x) < y ≤ gj(x)}. Thus forevery i = 1, . . . , r,

fi − fi−1 =

ji∑

j=ji−1+1

(gj − gj−1),i.e. PU(G) � PU(F).Remark 3.2. The 
onverse impli
ation fails. For example, let F 
onsistof the 
onstant fun
tions 1/3 and 1, and let G 
onsist of the 
onstants 2/3and 1. The partitions AF and AG are not 
omparable, though PU(F) and
PU(G) form the same partition of unity.The next lemma is a part of the 
lassi
al theory of entropy (
f. Proposi-tion 11.10 of [D-G-S℄).



Mali£ky�Rie£an's entropy 191Lemma 3.3. For every ε > 0 there exists δ > 0 su
h that if A =
{A1, . . . , As} and A′={A′

1, . . . , A
′
s} are partitions of X satisfying µ(Ai△A′

i)
< δ for i = 1, . . . , s, then for any partition B < A,

Hµ(B ∨A′) < Hµ(B) + ε.Lemma 3.4. For every ε > 0 and s ∈ N there exists δ > 0 su
h that if Φand Ψ are partitions of unity having at most s elements ea
h and satisfying
dist(Φ, Ψ) < δ, then for any partition of unity Γ � Φ there is a partition ofunity Γ̃ with the properties:(i) Γ̃ � Γ ,(ii) Γ̃ � Ψ ,(iii) HMR(Γ̃ ) − HMR(Γ ) < ε.Proof. Number the elements of Φ and Ψ so that T|ϕi−ψi| dµ < δ (if the
ardinalities of Φ and Ψ are not equal, we supply the smaller 
olle
tion withan appropriate number of zeros). Then number Γ in su
h a way that theelements forming ϕi pre
ede those used in the sum for ϕi+1. De�ne

Γ̃ = PU(Σ(Γ ) ∪Σ(Ψ)).Then
A
Σ(Γ̃ )

= AΘ(Σ(Γ )∪Σ(Ψ))
(3.1)
= AΣ(Γ )∪Σ(Ψ) = AΣ(Γ ) ∨ AΣ(Ψ).By Proposition 3.1 and (3.3), Γ̃ � Γ and Γ̃ � Ψ .Note that if dist(Φ, Ψ) < δ then dist(Σ(Φ), Σ(Ψ)) < sδ and the measureof the symmetri
 di�eren
e between ea
h pair of 
orresponding elements of

AΣ(Φ) and AΣ(Ψ) is smaller than 2sδ. Sin
e HMR(PU(F)) = Hµ×λ(AF ),
ondition (iii) follows from the pre
eding lemma by letting A = AΣ(Φ),
A′ = AΣ(Ψ), B = AΣ(Γ ).Lemma 3.5. For every ε > 0 and s ∈ N there exists δ > 0 su
h that if
Φ1, . . . , Φn and Ψ1, . . . , Ψn are partitions of unity having at most s elementsea
h and satisfying dist(Φi, Ψi) < δ for all i = 1, . . . , n, then

|HMR(Φ1, . . . , Φn) − HMR(Ψ1, . . . , Ψn)| < (n+ 1)ε.Proof. Pi
k a partition of unity Γ0 su
h that Γ0 � Φk for k = 1, . . . , nand HMR(Γ0) ≤ HMR(Φ1, . . . , Φn) + ε. A

ording to the previous lemma we
hoose a partition of unity Γ1 satisfying Γ1 � Γ0, Γ1 � Ψ1 and HMR(Γ1) −
HMR(Γ0) < ε. We 
ontinue the 
onstru
tion, in the kth step using the lemmafor Φ = Φk, Ψ = Ψk and Γ = Γk−1. After n steps we obtain a partition ofunity Γn �ner than Φk and Ψk for all k = 1, . . . , n, and satisfying HMR(Γn) <
HMR(Γ0) + nε. Hen
e

HMR(Ψ1, . . . , Ψn) ≤ HMR(Γn) < HMR(Φ1, . . . , Φn) + (n+ 1)ε.



192 B. FrejWe �nish the proof by ex
hanging the roles of Φk and Ψk in the aboveargument.Proposition 3.6 (Continuity of Mali£ky�Rie£an's entropy). The fol-lowing 
ontinuity laws hold :(i) For every ε > 0 and s ∈ N there exists δ > 0 su
h that if Φ and
Ψ have at most s elements ea
h and satisfy dist(Φ, Ψ) < δ then forevery n ∈ N,

|HMR(Φ, n) − HMR(Ψ, n)| < nε.(ii) For every ε > 0 and s ∈ N there exists δ > 0 su
h that if Φ and Ψhave at most s elements ea
h and satisfy dist(Φ, Ψ) < δ then
|hMR(T, Φ) − hMR(T, Ψ)| < ε.Proof. The pre
eding lemma used for Φk = T kΦ, Ψk = T kΨ immediatelyimplies (i), and (ii) follows from (i) and the de�nition of hMR(T, Φ).Theorem 3.7. hMR

R (T ) = hDF(T ), where R is the set of all measurablepartitions of unity.Proof. We start by proving that hMR
R (T ) ≤ hDF(T ). Let Φ be a partitionof unity. Denote by ΦnΣ the 
olle
tion ⋃n−1

k=0 T
k(Σ(Φ)). For every n ∈ N and

k < n we have
AΘ(Φn

Σ
) = AΦn

Σ
=

n−1∨

k=0

AT k(Σ(Φ)) < AT k(Σ(Φ)).It follows from Lemma 3.1 that PU(ΦnΣ) � T kΦ for every n ∈ N and k < n.Thus
HMR(Φ, n) ≤ HMR(PU(ΦnΣ))

(3.2)
= HDF(ΦnΣ).Dividing both sides by n and letting n→ ∞ we get

hMR(T, Φ) ≤ hDF(T,Σ(Φ)).For the reverse inequality we modify the proof of Theorem 2.1 of [D-F℄.We �x ε > 0 and a 
olle
tion F = {f1, . . . , fr}. Let γ be as spe
i�ed in thedomination axiom for the 
ardinality r and ε > 0. Choose m between 1/γand 2/γ. For s = mr and ε pi
k δ a

ording to Lemma 3.5. Having in mindthat hDF(T,F) = hDF(T, T lF), we 
an use Lemma 1.1 to repla
e F by T lFsu
h that every f ∈ F has property CZ((δ/8rmr)3). The number δ/4mrmajorizes the distan
es between the points ξ in Lemma 1.2 (with δ repla
edby δ/8rmr), and be
ause it is smaller than γ/2, we 
an pi
k m− 1 of them
reating a partition α of [0, 1] into m intervals of lengths smaller than γ. Bythe domination axiom, for every k ∈ N we have
HDF(T kF |1∨

f∈TkF
f−1(α) ∪ α) < ε,
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HDF(Fn |1∨

f∈Fn f−1(α) ∪ α) < nε.Lemma 1.3 yields(3.4) dist(1∨
f∈TkF

f−1(α), T
k(1∨

f∈F
f−1(α))) < δ.Then

HDF(Fn) ≤ HDF(1∨
f∈Fn f−1(α) ∪ α) + nε

(1.1), Lem. 2.1

≤ HMR(1∨
f∈F

f−1(α), . . . ,1∨
f∈Tn−1F

f−1(α))

+HDF(α) + nε.Using (3.4) and Lemma 3.5, we bound the right hand side of the aboveinequality by
HMR(1∨

f∈F
f−1(α), n) + HDF(α) + (2n+ 1)ε.Thus hDF(T,F) ≤ hMR(T,1∨

f∈F
f−1(α)) + 2ε ≤ hMR

R (T ) + 2ε.Remark 3.8. One might hope to simplify the se
ond part of the proofby extending Lemma 2.1 to 
olle
tions of arbitrary fun
tions. Unfortunately,it is not true that Γ � Φ, Γ � Ψ imply Γ � PU(Σ(Φ)∪Σ(Ψ)). For example,take X = [0, 1], Φ = {x, 1−x}, Ψ =
{

1
3x+ 1

3 ,
2
3 −

1
3x

} and Γ =
{
γ1, . . . , γ6

},where γ1 = γ2 = γ3 = 1
3x, γ4 = γ5 = γ6 = 1

3 − 1
3x.A
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