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Mali£ky�Rie£an's entropy as a version of operator entropybyBartosz Frej (Wroªaw)
Abstrat. The paper deals with the notion of entropy for doubly stohasti opera-tors. It is shown that the entropy de�ned by Mali£ky and Rie£an in [M-R℄ is equal to theoperator entropy proposed in [D-F℄. Moreover, some ontinuity properties of the [M-R℄entropy are established.1. Operator entropy. Let µ be a probability measure on a measurablespae X. By a doubly stohasti operator we mean a linear operator T on

L1(µ) whih satis�es the following onditions:(i) Tf is positive for every positive f ∈ L1(µ),(ii) T1 = 1 (where 1(x) = 1 for all x ∈ X),(iii) TTf dµ =
T
f dµ for every f ∈ L1(µ).It is well known that suh an operator preserves eah of the spaes Lp(µ)(1 ≤ p ≤ ∞) and that a linear operator on L∞(µ) satisfying (i)�(iii) has aunique extension to a doubly stohasti operator on L1(µ). Thus the name�doubly stohasti� may be used for operators on any Lp(µ) (1 ≤ p ≤ ∞); theases of L1(µ), L2(µ) and L∞(µ) are most often studied. Our onsiderationswill not depend on the hoie of the domain.Sine the Koopman operator of a measure-preserving transformation isdoubly stohasti, one an interpret doubly stohasti operators as gener-alizations of lassial dynamial systems. This justi�es attempts to lift wellknown pointwise notions, like for instane entropy, to the operator ase. No-tie that the existene of a de�nition of entropy at the operator level doesnot ollide with the well known fat that entropy in measure-preserving sys-tems is not a spetral invariant. Several results have already been publishedin this area, the most reent being probably the theory developed in [D-F℄.One of the theorems proved there states that all entropy notions set upfor doubly stohasti operators are equal if only they follow some standardonstrution sheme (in partiular, they are based on distinguished �nite2000 Mathematis Subjet Classi�ation: 28D20, 37A30, 37A35.Key words and phrases: doubly stohasti operator, Markov operator, entropy.[185℄



186 B. Frejolletions of funtions with an appropriate joining operation) and satisfya few natural onditions like monotoniity, subadditivity, ontinuity (withrespet to the olletion of funtions whih replaes a partition) and somesort of ompatibility with the lassial entropy of a partition. Besides thisaxiomati approah, one also needs a more expliit formula whih would beonvenient in proving properties of the entropy. To make the urrent paperself-ontained we reall below the version of entropy proposed in [D-F℄ andformulate some of the results that an be found in that artile.For a funtion f : X → [0, 1] let
Af = {(x, t) ∈ X × [0, 1] : t ≤ f(x)}and denote by Af the partition of X× [0, 1] onsisting of Af and its omple-ment. For a olletion F of measurable funtions we de�ne AF =

∨
f∈F Af .Clearly, AF ∪G = AF ∨ AG . To shorten notation we write TnF = {Tnf :

f ∈ F} and Fn =
⋃n−1
k=0 T

kF , where n ∈ N. Let λ be the Lebesgue measureon the unit interval. We de�ne
HDF(F) = Hµ×λ(AF ) = −

∑

A∈AF

(µ× λ)(A) · log(µ× λ)(A),

hDF(T,F) = lim
n→∞

1

n
HDF(Fn), hDF(T ) = sup

F
hDF(T,F),with the supremum ranging over all �nite olletions of measurable funtionsfrom X to [0, 1]. The existene of the limit in the seond de�nition has beenproved in [D-F℄. The onditional entropy is given by

HDF(F | G) = HDF(F ∪ G) − HDF(G).Note that it is always nonnegative, sine(1.1) HDF(G) ≤ HDF(F ∪ G) ≤ HDF(F) + HDF(G).For a partition A of the underlying spae X, let 1A denote the set of har-ateristi funtions of all elements of A. The following property of HDF is aonretization of the domination axiom from [D-F℄:For every r ∈ N and ε > 0 there exists a positive number γ suhthat for every olletion F = {f1, . . . , fr} and every partition α of theunit interval into �nitely many subintervals of lengths not exeeding
γ we have

HDF(F |1∨
i f

−1

i (α) ∪ α) < ε,where α is some set of onstant funtions, whih depends only on α(not on F).For two olletions of funtions F = {f1, . . . , fr} and G = {g1, . . . , gr′},
r′ ≤ r, we de�ne

dist(F ,G) = min
π

{
max
1≤i≤r

\
|fi − gπ(i)| dµ

}
,



Mali£ky�Rie£an's entropy 187where the minimum ranges over all permutations π of the set {1, . . . , r} andwhere G is onsidered an r-element family by setting gi ≡ 0 for r′ < i ≤ r. Fora funtion f and onstants a < b let f ba = (f ∨ a)∧ b, where ∨ and ∧ denotemaximum and minimum, respetively. We say that f has property CZ(δ) if\
|Tn(f ba) − (Tnf)ba| dµ < δfor every n ≥ 0 and every pair of onstants a < b.Lemma 1.1 ([D-F, Lemma 2.3℄). For every bounded funtion f and every

δ > 0 there exists an integer l suh that T lf has property CZ(δ).Lemma 1.2 ([D-F, Lemma 2.5℄). Let F onsist of r funtions with rangesin [0, 1], having property CZ(δ3). Then there is a partition Ξ of [0, 1] intosubintervals of lengths not exeeding 2rδ suh that for every n and f ∈ F ,\
|Tn1{x : f(x)≥ξ} − 1{x :Tnf(x)≥ξ}| dµ < 4δ,where the values ξ are breakpoints of Ξ.Lemma 1.3 ([D-F, Lemma 2.6℄). Let F = {f1, . . . , fr} onsist of fun-tions with ranges in [0, 1], all having property CZ(δ3), and let α be a partitionof [0, 1] into m piees A0 = [0, ξ1), Aj = [ξj, ξj+1) (j = 1, . . . ,m − 2) and

Am−1 = [ξm−1, 1], where the points ξj all satisfy the assertion of Lemma 1.2.Then
dist(Tn(1∨

i f
−1

i (α)),1∨
i T

nf−1

i (α)) < 8rmrδfor every n ≥ 0.2. Mali£ky�Rie£an's entropy. Another de�nition of entropy was pro-posed in [M-R℄ (a paper muh earlier than [D-F℄). It is based on the notionof a partition of unity, i.e. a �nite olletion of nonnegative, measurable fun-tions whose sum is 1. For instane, if A is a �nite measurable partition of thespae X then 1A forms a partition of unity. Instead of using some kind ofjoining operation, Mali£ky and Rie£an introdue the following order relationon the set of partitions of unity: Ψ � Φ if Ψ is the union of pairwise disjointolletions of funtions Ψϕ, ϕ ∈ Φ, suh that ∑
ψ∈Ψϕ

ψ = ϕ (in fat, to en-sure that the relation is antisymmetri we should exlude funtions equal to 0almost everywhere). Note that partitions of unity may have equal elements�for example {1/n, 1/n, . . . , 1/n} ontains n elements although they are allidential.The entropy of a partition of unity is given by
HMR(Φ) = −

∑

ϕ∈Φ

\
ϕdµ · log

\
ϕdµ.For several partitions Φ1, . . . , Φn we put

HMR(Φ1, . . . , Φn) = inf{HMR(Γ ) : Γ � Φ1, . . . , Γ � Φn}.



188 B. FrejAbbreviating HMR(Φ, TΦ, . . . , Tn−1Φ) by HMR(Φ, n) we de�ne
hMR(T, Φ) = lim

n→∞

1

n
HMR(Φ, n).It is not hard to verify that the sequene HMR(Φ, n) is subadditive, thus thede�nition is orret. Finally, for any set R of partitions of unity we put

hMR
R (T ) = sup

Φ∈R
hMR(T, Φ).It is quite obvious that if T is a transformation and R ontains all partitionsof unity into measurable harateristi funtions then hMR

R (T ) is not smallerthan the lassial Kolmogorov�Sinai entropy of T . The key tool here is thefollowing easy lemma:Lemma 2.1. If Γ � 1A and Γ � 1A′ for partitions A, A′ of the spae X,then Γ � 1A∨A′.We know from [M-R℄ that if T is a pointwise transformation and R isthe set of all partitions of unity onsisting of simple funtions with rationaloe�ients then hMR
R (T ) is equal to the lassial entropy of T . Beause ofthe lak of a joining operation, Mali£ky�Rie£an's onstrution does not fol-low the axiomati sheme mentioned in the �rst setion. Thus the equalitybetween hMR

R and hDF for any doubly stohasti operator annot be estab-lished by veri�ation of the axioms. We devote the next setion to provingthis equality. Below we formulate a theorem whih is a diret answer to thequestion posed in [M-R℄�in the pointwise ase, extending R from simplefuntions to all measurable partitions of unity does not inrease hMR
R . Sinethis result is overed by Theorem 3.7, we refrain from presenting a detailedproof. However, we give a sketh of the argument, as it is based on someelementary alulations, without use of operator tehniques.Theorem 2.2. If T : X → X is a measure preserving transformationand R denotes the set of all measurable partitions of unity then hMR
R (T ) isequal to the Kolmogorov�Sinai entropy of T .Sketh of proof. The goal is to �nd, for an arbitrary partition of unity

Φ = {ϕ1, . . . , ϕr} and a positive number ε, a partition of unity S onsistingof simple funtions with rational oe�ients and satisfying hMR(T, Φ) ≤
hMR(T,S) + ε. For i = 1, . . . , r we denote by si suh a simple funtionapproximating ϕi from below and de�ne S = {s0, s1, . . . , sr}, where s0 =
1−

∑r
i=1 si. Note that Ts0 dµ is small if the approximation is suitably exat.In addition we de�ne a partition of unity SΦ onsisting of s1, . . . , sr (ommonwith S) and new funtions s−i = ϕi − si (i = 1, . . . , r).Sine SΦ � Φ, we have HMR(Φ, n) ≤ HMR(SΦ, n).We then show that theright hand side is dominated by HMR(S, n) + (n + 1)ε. This is done in the



Mali£ky�Rie£an's entropy 189following way: for a �xed n we pik a partition of unity Γ suh that Γ � T kSfor eah k < n and HMR(Γ ) ≤ HMR(S, n) + ε. For every k < n the set Γsplits into disjoint subsets Γ ki whose elements sum to T ksi. For γ ∈ Γ let
K(γ) denote the set of all numbers k < n suh that γ ∈ Γ k0 , and let

P ki (x) =





T ks−i(x)

T ks0(x)
if T ks0(x) 6= 0,

0 if T ks0(x) = 0,where i ranges over {1, . . . , r}. If K(γ) has m > 0 elements, we de�ne forany m numbers i1, . . . , im belonging to {1, . . . , r} the funtion
γ̃i1,...,im = γ ·

∏

k∈K(γ)

P kik .Clearly,
r∑

i1=1

· · ·

r∑

im=1

γ̃i1,...,im = γ.Thus the set ΓΦ onsisting of all funtions γ̃i1,...,im , 1 ≤ i1, . . . , im ≤ r, andall elements γ ∈ Γ for whih K(γ) is empty forms a partition of unity.Moreover, ΓΦ � T kSΦ for every k < n and |HMR(ΓΦ) − HMR(Γ )| < nε,sine produing ΓΦ we have modi�ed a relatively small set of insigni�antelements of Γ . �3. Results. The de�nition of hDF is based on partitions of the prod-ut X × [0, 1], while hMR
R exploits partitions of unity. In order to omparethese notions we will introdue operations interhanging between partitionsof unity and olletions of funtions induing reasonable partitions of theprodut.Let F be a olletion of r funtions X → [0, 1]. We may assume that theelements of F are pairwise unequal, beause inluding in F multiple opiesof the same funtion does not a�et the partition AF . We will say that F isinreasing if its elements an be numbered in suh a way that fi+1 ≥ fi for

i = 1, . . . , r − 1. From now on, every inreasing olletion of funtions willbe numbered in inreasing order.An arbitrary olletion of funtions may be transformed into an inreas-ing one in the following way. Fix a numbering of F = {f1, . . . , fr}. Denote by�2� the lexiographi order on the set of words {0, 1}r. For every β ∈ {0, 1}rwe de�ne
θβ =

{
1 for β = 11 . . . 1,
sup
α2β

inf{fi : αi = 0} otherwise.It is lear that the funtions θβ form a olletion whih is inreasing withrespet to the lexiographi order on {0, 1}r�the outome depends, however,



190 B. Frejon the initial numbering. Exluding from θβ 's spare opies of funtions andadding the zero funtion we obtain an inreasing olletion whih will bedenoted by Θ(F). It seems intuitively obvious (and is not hard to prove)that(3.1) AΘ(F) = AF ,irrespetive of the numbering of F .Next, we denote by PU(F) the partition of unity onsisting of the fun-tions θi − θi−1, where θi's are elements of Θ(F) in inreasing order. Clearly,(3.2) HMR(PU(F)) = HDF(Θ(F)) = HDF(F).On the other hand, an inreasing olletion of funtions is obtained froma numbered partition of unity Φ = {ϕ1, . . . , ϕs} by means of the operation
Σ(Φ) =

{ j∑

i=1

ϕi : j = 0, 1, . . . , s
}

(the empty sum is interpreted as 0). Veri�ation of the following easy for-mulas is left to the reader:(3.3) T Σ(Φ) = Σ(TΦ), Σ(PU(F)) = Θ(F), PU(Σ(Φ)) = Φ.Proposition 3.1. Let F = {f0, . . . , fr} and G = {g0, . . . , gs} be inreas-ing olletions of funtions with f0 = g0 ≡ 0, fr = gs ≡ 1. If AG < AF then
PU(G) � PU(F).Proof. The partition AF onsists of the sets

Ai = {(x, y) : fi−1(x) < y ≤ fi(x)}, i = 1, . . . , r.For eah i the set Ai+1 lies �above� Ai in the sense that fi is simultaneouslyan upper bound for Ai and a lower bound for Ai+1. Analogous statementsare valid for AG . Sine every Ai is a union of elements of AG , for every
i = 1, . . . , r one an �nd integers 0 = j0 < j1 < · · · < jr = s suh that
Ai =

⋃ji
j=ji−1+1Bj , where Bj = {(x, y) : gj−1(x) < y ≤ gj(x)}. Thus forevery i = 1, . . . , r,

fi − fi−1 =

ji∑

j=ji−1+1

(gj − gj−1),i.e. PU(G) � PU(F).Remark 3.2. The onverse impliation fails. For example, let F onsistof the onstant funtions 1/3 and 1, and let G onsist of the onstants 2/3and 1. The partitions AF and AG are not omparable, though PU(F) and
PU(G) form the same partition of unity.The next lemma is a part of the lassial theory of entropy (f. Proposi-tion 11.10 of [D-G-S℄).



Mali£ky�Rie£an's entropy 191Lemma 3.3. For every ε > 0 there exists δ > 0 suh that if A =
{A1, . . . , As} and A′={A′

1, . . . , A
′
s} are partitions of X satisfying µ(Ai△A′

i)
< δ for i = 1, . . . , s, then for any partition B < A,

Hµ(B ∨A′) < Hµ(B) + ε.Lemma 3.4. For every ε > 0 and s ∈ N there exists δ > 0 suh that if Φand Ψ are partitions of unity having at most s elements eah and satisfying
dist(Φ, Ψ) < δ, then for any partition of unity Γ � Φ there is a partition ofunity Γ̃ with the properties:(i) Γ̃ � Γ ,(ii) Γ̃ � Ψ ,(iii) HMR(Γ̃ ) − HMR(Γ ) < ε.Proof. Number the elements of Φ and Ψ so that T|ϕi−ψi| dµ < δ (if theardinalities of Φ and Ψ are not equal, we supply the smaller olletion withan appropriate number of zeros). Then number Γ in suh a way that theelements forming ϕi preede those used in the sum for ϕi+1. De�ne

Γ̃ = PU(Σ(Γ ) ∪Σ(Ψ)).Then
A
Σ(Γ̃ )

= AΘ(Σ(Γ )∪Σ(Ψ))
(3.1)
= AΣ(Γ )∪Σ(Ψ) = AΣ(Γ ) ∨ AΣ(Ψ).By Proposition 3.1 and (3.3), Γ̃ � Γ and Γ̃ � Ψ .Note that if dist(Φ, Ψ) < δ then dist(Σ(Φ), Σ(Ψ)) < sδ and the measureof the symmetri di�erene between eah pair of orresponding elements of

AΣ(Φ) and AΣ(Ψ) is smaller than 2sδ. Sine HMR(PU(F)) = Hµ×λ(AF ),ondition (iii) follows from the preeding lemma by letting A = AΣ(Φ),
A′ = AΣ(Ψ), B = AΣ(Γ ).Lemma 3.5. For every ε > 0 and s ∈ N there exists δ > 0 suh that if
Φ1, . . . , Φn and Ψ1, . . . , Ψn are partitions of unity having at most s elementseah and satisfying dist(Φi, Ψi) < δ for all i = 1, . . . , n, then

|HMR(Φ1, . . . , Φn) − HMR(Ψ1, . . . , Ψn)| < (n+ 1)ε.Proof. Pik a partition of unity Γ0 suh that Γ0 � Φk for k = 1, . . . , nand HMR(Γ0) ≤ HMR(Φ1, . . . , Φn) + ε. Aording to the previous lemma wehoose a partition of unity Γ1 satisfying Γ1 � Γ0, Γ1 � Ψ1 and HMR(Γ1) −
HMR(Γ0) < ε. We ontinue the onstrution, in the kth step using the lemmafor Φ = Φk, Ψ = Ψk and Γ = Γk−1. After n steps we obtain a partition ofunity Γn �ner than Φk and Ψk for all k = 1, . . . , n, and satisfying HMR(Γn) <
HMR(Γ0) + nε. Hene

HMR(Ψ1, . . . , Ψn) ≤ HMR(Γn) < HMR(Φ1, . . . , Φn) + (n+ 1)ε.



192 B. FrejWe �nish the proof by exhanging the roles of Φk and Ψk in the aboveargument.Proposition 3.6 (Continuity of Mali£ky�Rie£an's entropy). The fol-lowing ontinuity laws hold :(i) For every ε > 0 and s ∈ N there exists δ > 0 suh that if Φ and
Ψ have at most s elements eah and satisfy dist(Φ, Ψ) < δ then forevery n ∈ N,

|HMR(Φ, n) − HMR(Ψ, n)| < nε.(ii) For every ε > 0 and s ∈ N there exists δ > 0 suh that if Φ and Ψhave at most s elements eah and satisfy dist(Φ, Ψ) < δ then
|hMR(T, Φ) − hMR(T, Ψ)| < ε.Proof. The preeding lemma used for Φk = T kΦ, Ψk = T kΨ immediatelyimplies (i), and (ii) follows from (i) and the de�nition of hMR(T, Φ).Theorem 3.7. hMR

R (T ) = hDF(T ), where R is the set of all measurablepartitions of unity.Proof. We start by proving that hMR
R (T ) ≤ hDF(T ). Let Φ be a partitionof unity. Denote by ΦnΣ the olletion ⋃n−1

k=0 T
k(Σ(Φ)). For every n ∈ N and

k < n we have
AΘ(Φn

Σ
) = AΦn

Σ
=

n−1∨

k=0

AT k(Σ(Φ)) < AT k(Σ(Φ)).It follows from Lemma 3.1 that PU(ΦnΣ) � T kΦ for every n ∈ N and k < n.Thus
HMR(Φ, n) ≤ HMR(PU(ΦnΣ))

(3.2)
= HDF(ΦnΣ).Dividing both sides by n and letting n→ ∞ we get

hMR(T, Φ) ≤ hDF(T,Σ(Φ)).For the reverse inequality we modify the proof of Theorem 2.1 of [D-F℄.We �x ε > 0 and a olletion F = {f1, . . . , fr}. Let γ be as spei�ed in thedomination axiom for the ardinality r and ε > 0. Choose m between 1/γand 2/γ. For s = mr and ε pik δ aording to Lemma 3.5. Having in mindthat hDF(T,F) = hDF(T, T lF), we an use Lemma 1.1 to replae F by T lFsuh that every f ∈ F has property CZ((δ/8rmr)3). The number δ/4mrmajorizes the distanes between the points ξ in Lemma 1.2 (with δ replaedby δ/8rmr), and beause it is smaller than γ/2, we an pik m− 1 of themreating a partition α of [0, 1] into m intervals of lengths smaller than γ. Bythe domination axiom, for every k ∈ N we have
HDF(T kF |1∨

f∈TkF
f−1(α) ∪ α) < ε,
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HDF(Fn |1∨

f∈Fn f−1(α) ∪ α) < nε.Lemma 1.3 yields(3.4) dist(1∨
f∈TkF

f−1(α), T
k(1∨

f∈F
f−1(α))) < δ.Then

HDF(Fn) ≤ HDF(1∨
f∈Fn f−1(α) ∪ α) + nε

(1.1), Lem. 2.1

≤ HMR(1∨
f∈F

f−1(α), . . . ,1∨
f∈Tn−1F

f−1(α))

+HDF(α) + nε.Using (3.4) and Lemma 3.5, we bound the right hand side of the aboveinequality by
HMR(1∨

f∈F
f−1(α), n) + HDF(α) + (2n+ 1)ε.Thus hDF(T,F) ≤ hMR(T,1∨

f∈F
f−1(α)) + 2ε ≤ hMR

R (T ) + 2ε.Remark 3.8. One might hope to simplify the seond part of the proofby extending Lemma 2.1 to olletions of arbitrary funtions. Unfortunately,it is not true that Γ � Φ, Γ � Ψ imply Γ � PU(Σ(Φ)∪Σ(Ψ)). For example,take X = [0, 1], Φ = {x, 1−x}, Ψ =
{

1
3x+ 1

3 ,
2
3 −

1
3x

} and Γ =
{
γ1, . . . , γ6

},where γ1 = γ2 = γ3 = 1
3x, γ4 = γ5 = γ6 = 1

3 − 1
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