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Heterodimensional cycles, partial hyperbolicity
and limit dynamics

by

L. J. Dı́az (Rio de Janeiro) and J. Rocha (Porto)

To J. Palis on the occasion of his 60th birthday

Abstract. We study one-parameter families of diffeomorphisms unfolding heterodi-
mensional cycles (i.e. cycles containing periodic points of different indices). We construct
an open set of such arcs such that, for a subset of the parameter space with positive rela-
tive density at the bifurcation value, the resulting nonwandering set is the disjoint union
of two hyperbolic basic sets of different indices and a strong partially hyperbolic set which
is robustly transitive.

The dynamics of the diffeomorphisms we consider is partially hyperbolic with one-
dimensional central direction. The main tool for proving our results is the construction
of a one-dimensional model given by an iterated function system which describes the
limit dynamics in the central direction. For selected parameters of the arc, we translate
properties of the model family to the diffeomorphisms.

INTRODUCTION

It is well known that there are two main mechanisms to destroy the
stability of a system: loss of hyperbolicity of some periodic point and creation
of a cycle. In this paper we focus our attention on the second one.

In dimension two, the creation of cycles is associated to homoclinic or
heteroclinic tangencies, and all the hyperbolic periodic points involved in the
cycle have the same index (equidimensional cycles). This kind of bifurcations
is a well studied subject since the seventies; see, for instance, [PT2] for an
overview on this matter.

In higher dimensions there are cycles involving hyperbolic periodic points
of different indices (heterodimensional cycles). The unfolding of this kind of
cycles may lead to dynamical features completely different from the ones in
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the equidimensional case (for instance, the creation of robustly transitive
sets of partially hyperbolic type). The study of some of these dynamical
features is the goal of this paper.

Let us introduce some definitions and state the main result of this article.
Let M be a compact, connected and boundaryless n-dimensional Rie-

mannian manifold, n ≥ 3, and denote by Diff∞(M) and P∞(M) the spaces
of C∞-diffeomorphisms and of one-parameter families of diffeomorphisms of
M , respectively, endowed with the usual C1-topologies.

A diffeomorphism f defined on M exhibits a heterodimensional cycle
associated to the hyperbolic periodic points P and Q if W s(P ) and W u(Q)
have a nontrivial transverse intersection, and W u(P ) and W s(Q) have a
quasi-transverse intersection (of codimension one) along the orbit of some
point X. In this case, index(P ) = index(Q)+1, where index(R) denotes the
dimension of the stable manifold of the hyperbolic periodic point R.

Given f with a heterodimensional cycle as above we can consider com-
pact parts Ks(Q) of W s(Q) and Ku(P ) of W u(P ) such that

Ks(Q) ∩Ku(P ) = int(Ks(Q)) ∩ int(Ku(P )) = {Xf},(0.1)

where Xf is a point of quasi-transverse intersection. Consider a C1-neigh-
bourhood U of f such that the analytic continuations of P , Q, K s(Q) and
Ku(Q) are defined for all g ∈ U and let Γ be the set of diffeomorphisms g in
U such that the continuations Ks(Qg) and Ku(Pg) have an intersection as
in (0.1). If U is small then Γ is a codimension one submanifold of Diff∞(M)
such that U \ Γ has two connected components, say U+

Γ and U−Γ .
We consider arcs (ft)t∈[−1,1] unfolding generically a heterodimensional

cycle in Γ at t = 0, i.e., the curve (ft)t∈[−1,1] is transverse to Γ at t = 0.
Here we suppose that the cycles correspond to a first bifurcation, that is
(for instance), the diffeomorphisms in the component U−Γ are hyperbolic.
Observe that associated to the submanifold Γ there is an open set UΓ in
P∞(M) consisting of arcs unfolding generically cycles in Γ (say at t = 0,
for simplicity). We assume that ft ∈ U−Γ for t < 0 and ft ∈ U+

Γ for t > 0.
Given an arc (ft)t∈[−1,1] our objective is to describe the dynamics of the

diffeomorphisms ft in U+
Γ for a large set of parameters (a set of nonzero

Lebesgue measure with positive relative density at the bifurcation t = 0).
We consider a neighbourhood of the cycle, that is, an open set V con-

taining all the elements of the cycle: the periodic points Q and P , the inter-
section W s(P ) ∩W u(Q), and the orbit of the point Xf of quasi-transverse
intersection. One aims to describe the resulting nonwandering set, denoted
by Ω(ft)′, associated to the unfolding of the cycle, i.e., to characterize the
dynamics of Ω(ft)′ = Ω(ft)∩V for small t > 0. This description can be very
complicated, even in the case where the diffeomorphisms in the component
U−Γ are Morse–Smale or Axiom A.
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Let us introduce two sets of parameters:

• H(s) is the set of parameters t ∈ (0, s) such that ft is Ω-stable and
Ω(ft)′ coincides with the (disjoint) union of the homoclinic classes of Pt and
Qt (the continuations of P and Q).
• B(s) is the set of parameters t ∈ (0, s) such that the homoclinic classes

associated to Pt and to Qt have nonempty intersection.

Let us recall that the homoclinic class associated to a hyperbolic periodic
point R is the closure of the set H(R) of transverse homoclinic points of R
(i.e., the transverse intersections between the invariant manifolds of R).
Observe that, since Pt and Qt have different indices, ft is nonhyperbolic
(unstable) for every t ∈ B(s).

In [D1], [D2] and [DR1] there are constructed codimension one subman-
ifolds Γ and open sets UΓ as above such that B(s) = (0, s) for every
(ft)t∈[−1,1] ∈ UΓ and small s. Moreover, the submanifold Γ can be taken
such that U−Γ consists of Morse–Smale diffeomorphisms. We call this kind of
cycles robustly nonhyperbolic (after the bifurcation).

On the other hand, in [DR2] there is constructed a codimension one
submanifold Υ such that every diffeomorphism in U−Υ is Morse–Smale and
for every arc in UΥ ,

lim inf
t→0+

|H(t)|
t

> 0 and lim inf
t→0+

|B(t)|
t

> 0,

where |A| denotes the Lebesgue measure of A. A natural question is if, in
general, H(t)∪B(t) is equal to [0, t] or, at least, has full relative density at
the bifurcation. Our result gives a negative answer to these questions.

Clearly, the submanifolds Γ and Υ above are disjoint. However, in both
results the unstability (or nonhyperbolicity) is obtained by proving the ex-
istence of points in W s(Pt) ∩W u(Qt) belonging simultaneously to the ho-
moclinic classes of Pt and Qt, which clearly prevents the hyperbolicity.

In [D1], [D2] and [DR2] the diffeomorphisms in Γ or Υ are far from
tangencies: it is not possible to create homoclinic tangencies associated to
the periodic points P and Q by small perturbations. This condition implies
some restrictions on the geometry of the intersections W s(P ) ∩W u(Q).

Actually, there is a much more general result. Consider a codimension
one submanifold Γ as above which is far from tangencies. Then for any arc
in UΓ unfolding generically a cycle, the set B(s) has positive relative density
at t = 0 for all s > 0 (see [DR3]).

Summarizing, as far as we know, the reason of the nonhyperbolicity of
the diffeomorphisms in U+

Γ is that there are nonwandering points in W s(Pt)∩
W u(Qt) and the homoclinic classes of Pt and Qt are not disjoint.
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Thus it is natural to ask whether the resulting nonwandering set is hy-
perbolic when both H(Pt) and H(Qt) are hyperbolic (basic) sets, or when
W s(Pt)∩W u(Qt) consists of wandering points. Clearly, these two conditions
are necessary for the hyperbolicity of Ω(ft)′. In this paper we prove that
they are not sufficient. For that we construct a codimension one submani-
fold Γ of diffeomorphisms with heterodimensional cycles far from tangencies
such that U−Γ is contained in the Morse–Smale systems and, for every arc
(ft)t∈[−1,1] in UΓ , there exists a set of parameters t with positive relative
density at the bifurcation value such that:

• the homoclinic classes of Pt and Qt are hyperbolic (basic) sets,
• every point of W u(Qt) ∩W s(Qt) is wandering,
• the resulting nonwandering set is not hyperbolic, in fact, this set is

strong partially hyperbolic, that is, the resulting nonwandering set has an ft-
invariant partially hyperbolic splitting of the form Es⊕Ec⊕Eu, where Es is
uniformly contracting, Eu is uniformly expanding, and Ec is nonhyperbolic
and one-dimensional; see Section 9 for the precise definition.

Before stating our results more precisely, recall that a compact f -invari-
ant set Λf is robustly transitive if there are neighbourhoods V of Λf in the
ambient manifold and V of f in the space of C1-diffeomorphisms such that
the set

Λg =
⋂

i∈Z
gi(V ) ⊂ V

is transitive (i.e., the set is the closure of some orbit of it) for every g ∈ V.
For properties of robustly transitive sets we refer the reader to [DPU], [BDP]
and [BDPR].

Theorem. There exists a nonempty open set A ⊂ P∞(M) such that
for every arc (ft)t∈[−1,1] in A:

(1) (ft)t∈[−1,1] unfolds generically a heterodimensional cycle at t = 0
associated to two hyperbolic fixed points P0 and Q0.

(2) There are sequences of pairwise disjoint intervals [ak, bk] and of pa-
rameters ck ∈ ]ak, bk[ such that

(i) for every parameter t ∈ ⋃k[ak, bk] the homoclinic classes of Pt
and Qt are (hyperbolic) basic sets and there are a pair of hyper-
bolic periodic points At and Rt in the resulting nonwandering set
of ft such that At and Rt do not belong to H(Pt) ∪H(Qt),

(ii) fck has a heterodimensional cycle associated to Ack and Rck and
the arc unfolds generically such a cycle.

(3) For every t ∈ ]ck, bk] the resulting nonwandering set of ft is hyper-
bolic and
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Ω(ft)′ = H(Pt) ∪H(Qt) ∪ O(At) ∪ O(Rt),

where O(Y ) denotes the orbit of Y .
(4) For every t ∈ [ak, ck[ the resulting nonwandering set of ft is the

disjoint union of the homoclinic classes of Pt and of Qt and a strong partially
hyperbolic set Σt which is robustly transitive and Σt = H(At) = H(Rt).

(5) Let H =
⋃
k]ck, bk] and S =

⋃
k[ak, ck[. Then

lim inf
t→0

|H ∩ [−t, t]|
2t

> 0 and lim inf
t→0

|S ∩ [−t, t]|
2t

> 0.

To prove this result we fix a special family (ft)t∈[−1,1] of diffeomorphisms
unfolding a heterodimensional cycle and begin by constructing a sequence
of scaled intervals [ck, bk] in the parameter space converging to 0+ and such
that, for every t ∈ ]ck, bk], the resulting nonwandering set of ft is formed
by the homoclinic classes of Pt and Qt, which are (disjoint) basic sets, and
two new hyperbolic points At and Rt of indices equal to the indices of Pt
and Qt, respectively. Moreover, for these parameters, W u(Rt) and W s(At)
have a nonempty transverse intersection. Then we prove that for t = ck the
invariant manifolds W u(At) and W s(Rt) have a quasi-transverse intersec-
tion, thus at t = ck there is a heterodimensional cycle associated to At and
Rt. This is done without destroying the hyperbolicity of H(Pt) and H(Qt).
The unfolding of each of these cycles leads to the creation of the (transitive)
strong partially hyperbolic sets Σt in the statement of the theorem.

For two-dimensional arcs bifurcating from Morse–Smale systems via ho-
moclinic tangencies the set of parameters corresponding to independent
saddles (i.e., with homoclinic classes trivial) has zero relative density at the
bifurcation value. This follows from the fact that, with full relative measure
at the bifurcation, the resulting nonwandering set is a nontrivial hyperbolic
homoclinic class (the homoclinic class of the point involved in the tangency);
see the constructions in [PT1] and [PT2]. Items (3) and (5) of the theorem
show that the situation in the heterodimensional context is quite different.

A minor modification of our construction shows the existence of open sets
of arcs unfolding heterodimensional cycles such that, for a set of parameters
having positive relative measure at the bifurcation parameter value, the re-
sulting nonwandering set is equal to the disjoint union of a finite number
of hyperbolic basic sets: the homoclinic classes of Pt and Qt and an ar-
bitrarily large number of independent saddles. As far as we know, it is an
open question whether there coexist infinitely many independent saddles for
heterodimensional cycles far from tangencies.

The dynamics after the unfolding of a heterodimensional cycle associated
to P and Q (where the index of P is less than the index of Q) depends
strongly on the action of f in W s(P ) ∩ W u(Q), called central dynamics.
In our case, this intersection is a curve which is diffeomorphic to an open
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interval I. What we do is to fix a one-dimensional map Π : I → I and
construct the open set A mentioned in the theorem in such a way that the
central dynamics of arcs in A is close to Π. The key idea of the construction
is that we fix a model cycle, whose central dynamics is related to Π, and
we prove that (up to an essentially affine reparametrization and a change of
coordinates) the cycles at ck are exactly as the model one. In other words,
we have a kind of renormalization and limit dynamics. This allows us to
translate properties of the model (also in the sense of measure of parameters)
to the initial family.

More precisely, in our construction the parameters t corresponding to
secondary cycles (i.e., parameters t > 0 such that ft has a cycle associated
to Pt and Qt) play a key role. We see that there is a sequence of parameters
tk → 0+ corresponding to secondary cycles such that (up to the period) the
central dynamics is essentially the same. In fact, the one-dimensional model
Π induces an iterated function system describing such a central dynamics.
We construct an arc (ft)t∈[−1,1] unfolding a heterodimensional cycle such
that for parameters close to the tk the central dynamics is given by such an
iterated function system, which is introduced in Section 3. In Sections 3.1
and 3.3 we describe the dynamics of this model. Using this model we deduce
that the homoclinic classes of Pt and Qt are both hyperbolic for parameters
close to tk (see Section 7).

We see that the unfolding of the secondary cycles leads to the creation
of two new saddles At and Rt, with indices respectively equal to the ones
of Pt and Qt. These new saddles are dynamically independent of the points
Pt and Qt (i.e., they are not homoclinically related to Pt and Qt). On the
other hand, as the parameter changes new heterodimensional cycles (now
associated to At and Rt) are created. The unfolding of these cycles does
not affect the dynamics of the homoclinic classes of Pt and Qt, which re-
mains hyperbolic. To get the strong partially hyperbolic transitive sets Σt

in the theorem we analyze the unfolding of these new cycles associated to
At and Rt.

This analysis is done in the following way. We see that the model dynam-
ics for the secondary cycle induces a new model dynamics for the unfolding
of the cycle associated to At and Rt. Using this model we prove that after
the bifurcation the homoclinic classes of At and Rt are equal and form a
robustly transitive set (in this case the cycle is unfolded as t decreases). A
model for the unfolding of primary heterodimensional cycles and the induced
model for the cycles associated to At and Rt are presented in Sections 3.4
and 4.2.

We end this introduction with two remarks about the phenomenon of
creation and annihilation of periodic points and the topological entropy of
the diffeomorphisms ft.
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First observe that in the logistic family `λ(x) = λ−x2 (which is a model
for understanding the dynamics of homoclinic bifurcations) there are only
orbit creation parameters and no orbit annihilation parameters, meaning
that periodic orbits are created monotonically as the parameter varies (see
for instance [MT]). In [KKY] an anti-monotonicity theorem is stated in the
setting of homoclinic bifurcations: there is concurrent creation and annihi-
lation of periodic points in the unfolding of a homoclinic tangency.

Observe that the families of diffeomorphisms in this paper exhibit the
phenomenon of annihilation of robustly transitive sets: the robustly transi-
tive sets Σt are created and defined for all t ∈ [ak, ck[ and, as the parameter
increases, disappear at t = ck and split into two hyperbolic periodic points.
Using [DR3, Theorem E], which says that there are intervals Ek such that
for every t ∈ Ek the resulting nonwandering set Ω(ft)′ is a robustly transi-
tive set which is not hyperbolic, one gets immediately an anti-monotonicity
theorem for robustly transitive sets:

Anti-monotonicity Theorem (for robustly transitive sets). Consider
(ft) ∈ A, A as in the Theorem. Then in any neighbourhood of t = 0 (in
the parameter space) there are infinitely many parameters corresponding to
creation and to annihilation of robustly transitive sets.

The previous question leads naturally to the problem of the (monotonic-
ity of the) variation of the entropy. For arcs of diffeomorphisms as considered
here this question is open. Note that, since the homoclinic classes of Pt and
Qt are nontrivial for all t > 0, the topological entropy h(ft) of ft is positive
for all t > 0. Observe that the arcs in [DR1] exhibit anti-monotonicity of
the entropy: in such a case the homoclinic classes of Pt and Qt are com-
pletely destroyed for many parameters t, being simultaneously trivial, thus
h(ft) = 0 for these parameters.

This paper is organized as follows. In Section 1 we describe a special
family of diffeomorphisms unfolding a heterodimensional cycle.

In Section 2 we describe the typical trajectories of points in the result-
ing nonwandering set and introduce the families of iterated functions Gt

n,m

describing the central dynamics. The one-dimensional map Π giving the
central dynamics is introduced in Section 3. In Sections 3 and 4 we intro-
duce the iterated function systems describing the unfolding of secondary
cycles and primary cycles associated to At and Rt and study the dynamics
of these systems.

In Section 5 we construct the sequence of scaled intervals [ak, bk] referred
to in the statement of the theorem and construct reparametrizations hav-
ing uniformly bounded distortion. Moreover, for such intervals we get an
accurate control of the central dynamics in terms of the map Π.
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In Section 6 we translate the properties of the model iterated function
system to the true maps Gtn,m. In Section 7 we prove that for any parameter
t in [ak, bk] the homoclinic classes associated to Pt and Qt are hyperbolic
basic sets. For these intervals we also prove the existence of two independent
saddles At and Rt of different indices.

In Section 8 we see that for parameters in ]ck, bk] the resulting nonwan-
dering set is the (disjoint) union of the homoclinic classes of Pt and Qt and
the orbit of the saddles At and Rt. We also get generic cycles associated to
these saddles for the parameters ck.

Finally, in Section 9, using such cycles, we get the transitive strong par-
tially hyperbolic sets Σt = H(Rt) = H(At) for all t in the interval [ak, ck[.

Acknowledgements. The authors thank the referee for useful com-
ments which, in particular, contributed to improving the presentation of the
paper.

1. UNFOLDING HETERODIMENSIONAL CYCLES

1.1. Heterodimensional cycles. We begin by considering a C∞-dif-
feomorphism f : Rn → Rn having two hyperbolic fixed points, P and Q,
satisfying the following conditions:

(C1) The stable bundles of P and of Q have dimensions r + 1 and r,
respectively, i.e., the points P and Q have indices r + 1 and r.

(C2) W u(Q)∩W s(P ) = W u(Q) tW s(P ) = γ, where γ is an f -invariant
curve with endpoints P and Q.

(C3) There exist N2 ∈ N and a point X0 such that

• fN2(W u
loc(P )) ∩W s

loc(Q) = {X0},
• dim(TX0W

u(P ) + TX0W
s(Q)) = n− 1,

• W u(P ) ∩W s(Q) =
⋃
n∈Z f

n(X0),

i.e., the invariant manifolds W s(P ) and W u(Q) are quasi-transverse
at the heteroclinic point X0.

(C4) There are compact neighbourhoods of P and Q, say UP and UQ,
such that f |UP and f |UQ are linear (or C1-linearizable).

(C5) The derivative of f at P , Df(P ), (resp. at Q, Df(Q)) has a posi-
tive contracting (resp. expanding) eigenvalue of multiplicity one, λ
(resp. β), such that |σ| < λ < 1 (resp. 1 < β < |σ|) for every con-
tracting (resp. expanding) eigenvalue σ of Df(P ) (resp. of Df(Q))
different from λ (resp. β).

(C6) γ ∩UP (resp. γ ∩UQ) is contained in the eigenspace associated to λ
(resp. β).

(C7) Hyperbolicity of the positive limit set at the bifurcation: the diffeo-
morphism f is at the boundary of the Morse–Smale systems and its
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positive limit set, L+(f), is hyperbolic and the points P and Q are
isolated in L+(f).

Let us make some comments about the conditions above:
Conditions (C1)–(C3) mean that the diffeomorphism f has a heterodi-

mensional cycle associated to the points P and Q (see Figure 1).

PSfrag replacements Q P

γ

W u(P )

W s(Q)

X0

W u(Q)

W s(P )

Fig. 1. A heterodimensional cycle

Condition (C4) is a technical assumption and can be guaranteed by im-
posing a finite number of nonresonance (open) conditions on the eigenvalues
of Df(P ) and of Df(Q).

Condition (C5) is a necessary condition for the cycle associated to f to
be a first bifurcation (see the arguments in [DR2, Section 3]).

Condition (C6) is assured when the curve γ is transverse to both the
strong stable and the strong unstable foliations of P and Q (see definitions
in Section 1.2 below). This condition means that γ is simultaneously a sep-
aratrix of a centre stable manifold of P and of a centre unstable manifold
of Q.

Condition (C7) allows us to localize the nonwandering set after the
unfolding of the cycle and implies that there is a spectral decomposition
{Λi}di=1 of L+(f) with P = Λ1 and Q = Λ2 (see [N1]). Write

Λ =
(⋃

i∈Z
f i(X0)

)
∪ {P,Q} ∪ γ.

Given i ∈ {3, . . . , d} we say that Λi > Λ (resp. Λi < Λ) if there exists
a sequence i1, . . . , im, with i1 ∈ {1, 2} and im = i, such that W u(Λij+1) ∩
W s(Λij ) 6= ∅ (resp. W s(Λij+1) ∩W u(Λij ) 6= ∅) for every j ∈ {1, . . . ,m− 1}.
Let

Λ− =
⋃

Λi<Λ

Λi and Λ+ =
⋃

Λi>Λ

Λi.
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By [N1] there exists a filtration associated to L+(f), that is, there are com-
pact sets M1 and M2, M1 ⊂M2, such that

Λ− ⊂ int(M1), Λ+ ⊂M \M2, Λ ⊂M2 \M1,

f(M1) ⊂ int(M1), f(M2) ⊂ int(M2).

In what follows we assume that the neighbourhoods UP and UQ in (C4)
and the local invariant manifolds of P and Q are chosen such that

W i
loc(R) = CC(W i(R) ∩ UR, R), i = s or u and R = P or Q,

where CC(A,Z) denotes the connected component of the set A that contains
the point Z.

1.2. Product structure of the cycle. We assume that in our local
linearizing coordinates in UP and UQ, say (xs, xc, xu), xs ∈ Rr, xc ∈ R, and
xu ∈ Rn−r−1, we have P = (0s, 0, 0u) and Q = (0s, 0, 0u). Moreover,

W s
loc(P ) = {xu = 0u}, W u

loc(P ) = {(xs, xc) = (0s, 0)},
W s

loc(Q) = {(xc, xu) = (0, 0u)}, W u
loc(Q) = {xs = 0s},

W ss
loc(P ) = {(xc, xu) = (0, 0u)}, W uu

loc(P ) = {(xc, xs) = (0, 0s)}.
In this way the leaves of the local strong stable, strong unstable and

central foliations in UP and UQ are parallel to Rr × {(0, 0u)}, {(0s, 0u)} ×
Rn−r−1, and {0s}×R×{0u}, respectively. We denote these foliations by F s,
Fu and Fc, respectively. The leaf of F j containing X is denoted by F j(X).

Let I be a fundamental domain of f |γ∩UQ andN1 the first natural number
such that fN1(I) = J is contained in the interior of UP (we call N1 the

s

PSfrag replacements

Q P

I J

fN1

fN2

V1 fN1(V1)

V2

UQ UP

X0

Fu
Q

F s
Q

Fc
Q

Fu
P

F s
P

Fc
P

Fig. 2. Elements of the cycle
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transition time from UQ to UP ). Observe that we can (and do) assume that
the heteroclinic point X0 and the natural number N2 in (C3) are such that
f−N2(X0) ∈ int(UP ) and f−i(X0) 6∈ UP for all i = 0, 1, . . . , N2 − 1. We say
that N2 is the transition time from UP to UQ.

Consider now neighbourhoods V1 of I and V2 of X0 such that fN1(V1)
is contained in the interior of UP , V2 is contained in the interior of UQ and
disjoint from f(V2), f−N2(V2) is contained in UP , and f−j(V2) ∩ (UQ ∪ UP )
= ∅ for all 1 ≤ j ≤ N2.

Assume that for all Z in V1 or V2 and every i ∈ {s, c,u} one has:

(F1) f -invariance of the foliations:
If Z ∈ V1 then CC(fN1(F i(Z)) ∩ UP , fN1(Z)) ⊆ F i(fN1(Z)).
If Z ∈ f−N2(V2) then CC(fN2(F i(Z)) ∩ UQ, fN2(Z)) ⊆ F i(fN2(Z)).

Condition (F1) assures the f -invariance of the foliations along the cycle
(the transition maps fN1 from UQ to UP and fN2 from UP to UQ keep
invariant the stable, unstable, and central foliations).

Using the f -invariance of the foliations F s, Fu and Fu we extend these
foliations to the open set V given by

V = UP ∪ UQ ∪
(N1−1⋃

i=1

f i(V1)
)
∪
(N2−1⋃

i=1

f−i(V2)
)
.(1.1)

In this way we get f -invariant foliations defined in the whole V that, for
notational simplicity, we also denote by F s, Fu and Fc.

We now consider holonomies and projections along the leaves of the
stable and unstable foliations above. First, using our local coordinates, we
define the local centre-stable and centre-unstable manifolds of Q and P by

W cs
loc(Q) = {X ∈ UQ : X = (xs, xc, 0u)},

W cu
loc(P ) = {X ∈ UP : X = (0s, xc, xu)}.

(1.2)

Observe that in these coordinates we have W s
loc(P ) = {(xs, xc, 0u)} and

W u
loc(Q) = {(0s, xc, xu)}.

Let

W cs
N2

(Q) = f−N2(W cs
loc(Q)), W cu

N2
(P ) = fN2(W cu

loc(P )).

By shrinking the size of the local manifold W s
loc(P ) and recalling condition

(C3), we can assume that for each point X ∈ W s
loc(P ) the leaf F u(X) in-

tersects W cs
N2

(Q) transversely just in one point. Analogously, we can assume
that for each X ∈ W u

loc(Q) the leaf F s(X) intersects W cu
N2

(P ) transversely
just in one point. We now define the following holonomies associated to these
foliations:

πu : W s
loc(P )→W cs

N2
(Q), Z 7→ πu(Z) = F u(Z) ∩W cs

N2
(Q),

πs : W u
loc(Q)→W cu

N2
(P ), Z 7→ πs(Z) = F s(Z) ∩W cu

N2
(P ).
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Consider the curve

γ̂ = γ ∪ {Z = (0s, z, 0u) : Z ∈ UP } ∪ {Z = (0s, z, 0u) : Z ∈ UQ}
and the projections π̃s and π̃u fromW cs

loc(Q) to γ̂ and fromW cu
loc(P ) to γ̂ along

the leaves of the stable and the unstable foliations, respectively. Associated
to these holonomies we define projections in the central direction as follows:

πc
P = π̃s

Q ◦ fN2 ◦ πu : W s
loc(P )→ γ̂, πc

Q = π̃u
P ◦ f−N2 ◦ πs : W u

loc(Q)→ γ̂.

We assume

(F2) Isometry and order preserving conditions:

• the maps fN2 ◦ πu and f−N2 ◦ πs are isometries,
• the restrictions to γ̂ of πc

Q and of πc
P are isometries and preserve

the natural ordering < of γ (i.e., given X,Y ∈ γ̂ we write X < Y
if the distance from P to X along γ̂ is less than the distance from
P to Y along γ̂).

Note that if the cycle corresponds to a first bifurcation then the projec-
tions above necessarily preserve the natural ordering in γ (see [DR2]). On
the other hand, as in the case of condition (F1), condition (F2) does not
hold in general, but in the general setting these projections can be viewed
as quasi-isometries (see [DR3, Section 6.2]).

1.3. A model for the unfolding of the heterodimensional cy-
cle. In order to get a one-parameter family of diffeomorphisms unfolding
the heterodimensional cycle of f associated to P and Q above, we consider
the arc (ft)t∈[−t0,t0] defined by ft = Φt ◦ f , where
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• Φ0 is the identity and, for each t, Φt is a diffeomorphism with support
contained in a small neighbourhood W2 of V2 contained in UQ such that
W2 ∩ f(W2) = ∅,
• in the coordinates (xs, xc, xu), one has Φt(xs, xc, xu) = (xs, φt(xc), xu)

with φt(xc) = xc + t if (xs, xc, xu) ∈ V2, and φt(xc) = xc if (xs, xc, xu) 6∈ W2,
for all t ∈ [−t0, t0].

We observe that this arc has the following properties:

• Suppose that the heteroclinic point X0 = fN2
0 (W u

loc(P0)) ∩W s
loc(Q0)

above is of the form X0 = (xs
0, 0, 0

u). Then, for each t > 0, the points
Xt = (xs

0, t, 0
u) and Yt = (xs

0, 0, 0
u) are homoclinic points associated to Pt

and Qt (the continuations of P and Q for ft), respectively. We say that these
homoclinic points are the continuations of the heteroclinic point X0.
• The foliations F s, Fu and Fc are ft-invariant for all t (recall condition

(F1)).
• For each t we can define (in the natural way) projections πu

t , πs
t , π

c
t,P

and πc
t,Q. Then fN2

t ◦ πu
t and f−N2

t ◦ πs
t are isometries, and the restrictions

to γ of πc
t,P and πc

t,Q are isometries that preserve the natural ordering of γ
(recall condition (F2)).
• The arc is constructed in such a way that ft is Morse–Smale for every

t < 0 (i.e., the arc has a first bifurcation at t = 0).
• The open set V defined in (1.1) is contained in M2 \M1. We say that

V is a neighbourhood of the cycle and define the maximal ft-invariant set
associated to V by

Λt = Λt(V) =
⋂

n∈Z
fnt (V).(1.3)

Due to the existence of the filtration and the choice of V it follows that

Ω(ft)′ = Ω(ft) ∩ V ⊂ Λt;
we call Ω(ft)′ the resulting nonwandering set. Hence, from now on we can
restrict our attention to the maximal invariant set of ft in V.

2. RETURNS AND CENTRAL DYNAMICS

2.1. Returns. A key idea of our construction is to reduce the study of
the dynamics of ft in the neighbourhood V of the cycle to one-dimensional
dynamics. For that, having in mind that every nonwandering point created
by the bifurcation has some iterate in V1 (excluding the possible nonwander-
ing points in the connexion γ), we analyze the returns of points in Λt∩V1 to
V1 and study the dynamics of such returns in the central direction: relative
positions of the returns and expansion or contraction of the derivative of the
return map in the central direction. Recall that, in our model, the central
direction is ft-invariant. Let us now explain all that in detail.
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Consider a point Z ∈ Λt ∩ V1 such that Z 6∈ W s(Pt) ∪W s(Qt) (since
the points Pt and Qt do not change with the parameter, from now on we
will omit their dependence on t). Then, after r1 positive iterations, r1 =
j2 +N2 + j1 +N1, this point has a first return to V1 as follows:

• fN1
t (Z) ∈ UP ,

• f j1+N1
t (Z) ∈ f−N2

t (V2) and f i+N1
t (Z) ∈ UP for all i ∈ {0, . . . , j1},

• fN2+j1+N1
t (Z) ∈ UQ,

• f j2+N2+j1+N1
t (Z) ∈ V1 and f i+N2+j1+N1

t (Z) ∈ UQ for all i ∈ {0, . . . , j2},
where j2 is defined to be the minimal one with this property.

It is clear that j1 and j2 (and thus r1) depend on Z. We will see later
that j1 and j2 tend to infinity as t goes to zero.

Let Z0 = Z and Zi = f it (Z). If possible, we inductively define the suc-
cessive return times and returning points of Z to V1 by ri(Z) = r1(Zri−1)
and Zri = f

ri−ri−1
t (Zri−1).

Condition (F1) and the definition of the arc (ft)t∈[−t0,t0] assure that the
leaves Fu, F s and Fc are invariant under f r1t ; that is,

• f r1t (F s(Z)) ⊂ F s(Zr1),
• F u(Zr1) ⊂ f r1t (F u(Z)),
• F c(Zr1) ∩ f r1t (F c(Z)) is a curve containing Zr1 in its interior.

In particular, if Ei(W ) is the tangent space to F i(W ) at W , then we
have Df r1t (Ei(Z)) = Ei(Zr1), i = s,u, c. We call Es, Eu and Ec the stable,
unstable and central directions, respectively.

Condition (F2) means that, for every W ∈ V2, the restriction of DfN2
t

to the central direction is an isometry.
Let λs (resp. βu) be the maximum (resp. minimum) of the moduli of the

contracting (resp. expanding) eigenvalues of both P and Q. Then it is clear
that, for small t:

(R1) The restriction of Df r1t to Eu(Z) is an expansion of factor (at least)
βj1+j2

u .
(R2) The restriction of Df r1t to Es(Z) is a contraction of factor (at least)

λj1+j2
s .

(R3) The restriction of Df r1t to the one-dimensional bundle Ec(Z) is a
multiplication by a factor of order of βj2λj1(DfN1

t )|Ec(W ) for some
point W ∈ V1.

Similar considerations can be made for the backward orbit of any point
Z ∈ Λt ∩ V1 such that Z 6∈W u(P ) ∪W u(Q).

In view of (R1)–(R3), the hyperbolicity of invariant subsets of Λt depends
exclusively on the action of DfN1

t on Ec(W ) for W ∈ V1. Let us now analyze
the central dynamics of a first return to V1.
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2.2. Central dynamics of returns. Consider now a point Z =
(zs, zc, zu) ∈ V1 such that zc ∈ I and a first return r1 = j2 +N2 + j1 +N1 of
Z to V1 as above. Using the product structure of the cycle and the definition
of the unfolding we see that if Zr1 = (zs

1, z
c
1, z

u
1 ) = f j2+N2+j1+N1

t (Z), then

zc
1 = (f j2+N2+j1+N1

t (Z))c = βj2(λj1fN1
0 (0s, zc, 0u) + t)

= βj2λj1fN1
0 (0s, zc, 0u) + βj2t,

where
βj2(λj1fN1

0 (0s, zc, 0u) + t) ∈ I.
Thus we have

λj1fN1
0 (0s, zc, 0u) + t > 0 ⇒ λj1fN1

0 (0s, zc, 0u) ∈ (−t, 0].

Since fN1
0 (0s, zc, 0u) ∈ J = fN1

0 (I) we see immediately that there is mt

independent of the point (0s, zc, 0u) in I such that

j1 = mt +m, m ≥ 0, λmt ' t.
Similarly, there is nt independent of the point (0s, zc, 0u) of I such that

j2 = nt + n, n ≥ 0, βnt ' 1/t.

Observe that points close to Z have the same type of return as Z. This
return defines the following map from a subinterval K t

n,m (that we consider
maximal) of I into I:

Gtn,m : Kt
n,m → I, Gtn,m(z)=βnt+n(λmt+mΠ(zc) + t)(2.1)

=(βntλmt)βnλmΠ(zc) + βntβnt.

where Π : I → J is the restriction of fN1
0 to I.

We will select parameters t > 0 (see Section 5) such that

βntλmt ' 1 and βntt ' 1.
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For these parameters the maps Gt
n,m are close to maps of the form

Tµn,m(z) = βn(λmΠ(z) + 1 + µ)

for some small |µ|. In the next section we study the dynamics of the maps
Tµn,m.

3. THE ONE-DIMENSIONAL MODEL FOR THE RETURNS

Consider 0 < λ < 1 < β and the linear maps defined on R by x 7→ λx
and x 7→ βx. Given a, b ∈ (1, 2) consider their fundamental domains J =
[−a,−λa] and I = [αb, b], α = β−1.

Consider also a strictly increasing differentiable map Π from I to J with
Π(I) = J and, for µ in a small neighbourhood of 0, the family of maps

Hµ : [−2, 0]→ [−2, 2], Hµ(y) = y + 1 + µ.

We now define the parametrized family of endomorphisms T µ = (Tµn,m)n,m≥0
by

Tµn,m = βn ◦Hµ ◦ λm ◦Π, n,m ≥ 0,

defined for each pair n,m, n,m ≥ 0, from a subinterval of I into I. In
general, these maps are not defined in the whole I, so for each pair (n,m)
we consider the maximal subinterval Kµ

n,m of I where T µn,m is defined. We
observe that there are choices of (n,m) such that Kµ

n,m = ∅ (see Lemmas 3.3
and 3.4).
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We say that Π and Hµ are the transition and the unfolding maps of the
iterated function system T µ.

In our construction we assume that the map Π from I to J has the
properties listed below. There is a partition of I into four closed subinter-
vals, denoted by I1, I2, I3 and I4, with pairwise disjoint interiors, such that
αb ∈ I4, b ∈ I1, and x4 ≤ x3 ≤ x2 ≤ x1 for any points x4, x3, x2 and x1
with xi ∈ Ii. We let Ji = Π(Ii). Thus Ji is a partition of J . We require that
Π and the subdivisions of I and J above satisfy the following conditions,
illustrated in Figure 5.

Inclusion properties:

(E1) The interior of H0(J3) contains β−1I3.
(E2) H0(J1) is contained in the interior of β−1I1.
(E3) The right endpoint of H0(J3) is less than the left endpoint of β−1I1

(in particular, β−1I2 is not contained in H0(J3)).
(E4) The interior of H0(λJ3) contains I3 ∪ I4.
(E5) The right endpoint of H0(λJ3) is less than the right endpoint of I2

(in particular, I2 is not contained in H0(λJ3)).
(E6) The right endpoint of I2 is less than the left endpoint of H0(λJ1)

(in particular, H0(λJ1) is contained in the interior of I1).
(E7) Every point of the interval H0(J4) is less than zero (in particular,

0 ∈ H0(J3)).

Properties of derivatives. Distortion properties:

(E8) The map Π is a contraction of factor (at least) %s < α = β−1 < 1
in I1 and an expansion of factor (at least) %u > λ−1 > 1 in I3.

(E9) T 0
0,1 has exactly two fixed points in the interior of I2, say Ã and R̃,

Ã < R̃, which are hyperbolic and whose derivatives DT 0
0,1(Ã) = λA

and DT 0
0,1(R̃) = βR satisfy

0 < λA < 1 < βR.

Moreover, there is ξ > 1 such that

min
{

λ2
A

2(1− β−1
R )(1 + λA)β2

R

,
λ2
A

2(1− λA)(1 + β−1
R )β2

R

}
> 2ξ.

There are N3 > 1 and points C̃ and D̃ with Ã < C̃ < D̃ < R̃ and
C̃ − Ã = R̃− D̃ such that

• T 0
0,1 is linear in [Ã, C̃] and [D̃, R̃].

• (T 0
0,1)N3([β−1

R D̃, D̃]) = [λAC̃, C̃],

• 1− λA
1− βR

≤ D((T 0
0,1)N3)(x) ≤ 2

1− λA
1− βR

.
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Fixed point properties:

(E10) T 0
1,0 has no fixed points in I2.

(E11) T 0
1,0(y) > T 0

0,1(y) for all y ∈ I2.

(E12) R̃ = βH0(Π(Ã)) = T 0
1,0(Ã).

Finally, we also assume that

(E13) β > 131.

Let us make some comments about these conditions.

Remark 3.1. Conditions (E1)–(E11) and (E13) are open properties.
Thus there is µ0 > 0 such that these conditions hold for Hµ, Tµ1,0 and
Tµ0,1 for all µ ∈ (−µ0, µ0). Observe that to get the second part of (E9) it is
enough to take the eigenvalues βR and λA close enough to 1.

Remark 3.2. • The maps T µn,m are increasing for all (n,m) for every |µ|
small enough. Moreover, T µ0,1 (for small |µ|) has no fixed points in (Ãµ, R̃µ).
• We can assume that for every µ ∈ (−µ0, µ0) there are defined the

continuations of the hyperbolic points Ã and R̃ of T 0
0,1 for all Tµ0,1, denoted

by Ãµ and R̃µ. Then Tµ1,0(Ãµ) ≥ R̃µ for every µ ≥ 0.

Proof. The first item of the remark is obvious. For the second one we
refer the reader to Lemma 3.12, where we will prove a stronger version of this
remark: the map U(µ) = T µ1,0(Ãµ)− R̃µ has positive derivative at µ = 0.

Let us now explain how these conditions can be achieved by choosing
appropriate lengths for the subintervals Ii and Ji and by making some as-
sumptions on λ, α = β−1, a and b. Write

I1 = [(1− ε1)a, a], J1 = [(−1 + δ1)b,−λb],
I2 = [(1− ε2)a, (1− ε1)a], J2 = [(−1 + δ2)b, (−1 + δ1)b],

I3 = [(1− ε3)a, (1− ε2)a], J3 = [(−1 + δ3)b, (−1 + δ2)b],

I4 = [αa, (1− ε3)a], J4 = [−b, (−1 + δ3)b],

where

0 < ε1 < ε2 < ε3 < 1− α and 0 < δ3 < δ2 < δ1 < 1− λ.
It is not difficult to see that if a and b are close enough to 1 then conditions
(E1)–(E6) are satisfied if one chooses:

(D1) α <
1

1 + λ
, λ <

1
1 + α

, α+ λ > 1,

(D2) (1 − α)λ < ε2 <
1− α
λ−1 − α (in fact, ε2 must be chosen near this

maximal value),
(D3) λ2 < ε1 < 1 + α−1(λ−1ε2 − 1),
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(D4) δ3 <
α+ λ− 1

λ
,

(D5) 1− λ−1ε2 < δ2 < α(1− ε1),
(D6) 1− λ−1ε1 < δ1 < 1− λ.

In fact, after a straightforward calculation it is easy to check that (D1)–(D6)
imply (E1)–(E6) when a = b = 1. Since (E1)–(E6) are open conditions the
same holds when a and b are close to 1.

Observe that (E7) is automatically satisfied if b is close to 1 and δ3 is
sufficiently small (δ3 < 1− 1/b).

It is easy to verify that if we choose εi and δi as above, i = 1, . . . , 4, and
b/a close to 1 then the following conditions are also satisfied:

|J1|
|I1|

α−1 < % < 1 < % <
|J3|
|I3|

λ

for some % and %, where |K| denotes the length of the interval K. These
conditions imply that we can take a transition Π from I to J satisfying
(E8) and (E9).

Let us now explain how one can obtain (E12). Observe that this condition
is equivalent to

αR̃ = Π(Ã) + 1 = λ−1(Ã− 1) + 1,

where the last equality follows from the fact that Ã is a fixed point of
T 0

0,1 = H0 ◦ f ◦ Π. Therefore, if we write R̃ = Ã + τ for some τ > 0, the
previous formula gives

τ = Ã(−1 + α−1λ−1)− α−1λ−1 + α−1, i.e.,

R̃ = Ãα−1λ−1 − α−1λ−1 + α−1,
(3.2)

which determines τ depending on Ã.
On the other hand, by construction, the points Ã and R̃ belong to

I2 \H0(λJ3), thus Ã is to the right of the left extreme of I2, a(1 − ε2).
Thus Ã = a(1− ε2 + ξ) for some ξ > 0. Now it is enough that Ã and R̃ sat-
isfy the following inequalities obtained by replacing the value of R̃ in (3.2)
(the first one meaning that Ã is to the right of H0(λJ3) and the second one
meaning that R̃ is to the left of I1),

λb(−1 + δ2) + 1 < a(1− ε2 + ξ),

a(1− ε2 + ξ)α−1λ−1 − α−1λ−1 + α−1 < a(1− ε1).
(3.3)

If we take
ξ = a−1λb(−1 + δ2) + a−1 + ε2 − 1,

which turns the first inequality of (3.3) into equality, then the second in-
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equality in (3.3) is equivalent to

α−1δ2 < ab−1(1− ε1) + α−1(1− b−1),

which is guaranteed by condition (D5) if a and b are close to 1. Thus, if we
take ξ greater than a−1λb(−1 + δ2) + a−1 + ε2− 1 but near this value, then
(3.3) is satisfied.

Observe that (E13) is compatible with (D1). Also, (E5) and (E6) imply
that H0(λΠ(I2)) ∩ I2 6= ∅ and (E1)–(E3) imply that βH0(Π(I2)) ∩ I2 6= ∅.

Condition (E11) means that

βH0(Π(y)) > H0(λΠ(y)) for every y ∈ I2,(3.4)

in other words,

(β − λ)Π(y) + (β − 1) > 0 for all y ∈ I2.

Now Π(y) ∈ J2 for all y ∈ I2, therefore (by (D5))

Π(y) ≥ b(−1 + δ2) > b(−1 + 1− λ−1ε2) = −bλ−1ε2.

Thus to get (3.4) it is enough that

(β − λ)Π(y) + (β − 1) ≥ (β − λ)(−bλ−1ε2) + (β − 1) > 0.

Thus (3.4) is satisfied if

ε2 <
β − 1
β − λ λb

−1 =
1− α
λ−1 − α b

−1,

a condition that is satisfied for b close to 1 (recall (D2)).
Finally, observe that (E10) is compatible with the previous conditions.

3.1. Transitions and iterated function systems. In this section we
study the iterations and compositions of the maps T µn,m,

Tµn,m : Kµ
n,m → I, x 7→ βnHµ(λmΠ(x)) = βnλmΠ(x) + βn(1 + µ).

We begin by stating some lemmas about the localization of the iterates
of points x ∈ I under the maps T µn,m.

Given x ∈ I we define a(x) ∈ {1, 2, 3, 4} as follows. If x ∈ Ij , j = 1 or 3,
then we let a(x) = j. If x ∈ int(Ij), j = 2 or 4, we let a(x) = j. Finally,
a(α) = 4.

Lemma 3.3. Let µ ∈ (−µ0, µ0) and consider a map T µn,m with m ≥ 2
such that Kµ

n,m 6= ∅. Then n = 0. Moreover , Kµ
0,m = I and a(Tµ0,m(x)) = 1

for all x ∈ I.

Proof. Since m ≥ 2, λmΠ(x) is to the right of λJ1 for every x in I. Thus
Hµ(λmΠ(x)) is also to the right of Hµ(λJ1). By (E6) and Remark 3.1,
Hµ(λJ1) ⊂ I1, which implies all the assertions in the lemma.
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Lemma 3.4. Consider µ ∈ (−µ0, µ0) and x ∈ I1 ∪ I2 such that Tµn,m(x)
is defined (i.e., x ∈ Kµ

n,m). Then:

(1) If m = 1 then n = 0 and a(T µ0,1(x)) = 1 if x ∈ I1, while it is 1 or 2
if x ∈ I2.

(2) If m = 0 then n = 1 and a(T µ1,0(x)) = 1 if x ∈ I1, while it is 1 or 2
if x ∈ I2.

(3) If m ≥ 2 then n = 0 and a(T µ0,m(x)) = 1.

Proof. Suppose that x ∈ I1 ∪ I2 and m = 1. Observe that Hµ(λΠ(x)) is
to the right of Hµ(λJ3). Thus, by (E3), Hµ(λΠ(x)) ∈ I2 ∪ I1. Thus n = 0.
This also implies that a(T µ0,1(x)) = 1 or 2. To end the proof of (1) it remains
to see that this number is 1 if x ∈ I1. But this follows immediately from (E6).

To prove (2) observe that if m = 0 then, by (E1) and since x ∈ I1 ∪ I2,
it follows that Hµ(Π(x)) is to the right of β−1I3 and, by (E2), it is to the
left of I4, thus we must iterate once to return to I, that is, n = 1. Also
(E2) implies that a(T µ1,0(x)) = 1 if x ∈ I1, and (E1) and (E2) imply that
a(Tµ1,0(x)) = 1 or 2 if x ∈ I2.

Finally, item (3) follows from Lemma 3.3.

The next lemma follows from conditions (E2), (E4), (E6) and (E7) and
its proof is analogous to the one of the previous lemma.

Lemma 3.5. Consider µ ∈ (−µ0, µ0) and x ∈ I4 such that Tµn,m(x) is
defined. Then m ≥ 1. Moreover , if m = 1 then n = 1, and if m > 1 then
n = 0. In any case, a(T µn,m(x)) = 1.

Proof. By (E7) we have m ≥ 1. If m = 1 then, by (E2) and (E4), we
have Hµ(λJ4) ⊂ β−1I1, thus n = 1 and a(T µ1,1) = 1. If m > 1 then, by (E6),
Hµ(λmJ4) ⊂ I1, thus n = 0 and a(T µ0,1) = 1.

By Lemmas 3.4 and 3.5, if we are interested in returns of points of
I1 ∪ I2 ∪ I4 under (T µn,m) we only need to consider three kinds of maps, T µ1,0,
Tµ1,1 and Tµ0,m, where m ≥ 1.

3.2. Orbits and itineraries. For a fixed µ ∈ (−µ0, µ0) consider the
pseudo-group generated by the family T µ = (Tµn,m) of maps. Given a point
z ∈ I we say that a sequence (nj ,mj)kj=1, nj ,mj ≥ 0, of pairs of integers is
admissible for z if the sequence of points

zµnj ,mj
= Tµnj ,mj

(zµnj−1,mj−1
)

is well defined for every j = 1, . . . , k, where zn0,m0 = z. In this case we say
that (zµnj ,mj )j is the T µ-orbit of z for the sequence (nj ,mj)j. To the orbit
(zµnj ,mj )j we associate its itinerary defined by

iµnj ,mj
(z) = a(zµnj ,mj

).
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Lemma 3.6. Given z ∈ I and an orbit (zµnj ,mj )j of z, one of the follow-
ing situations hold :

• There is j0 such that iµnj ,mj (z) = 1 for all j ≥ j0.
• There is j0 such that iµnj ,mj (z) = 2 for all j ≥ j0.
• iµnj ,mj (z) = 3 for all j ≥ 0.

Proof. On the one hand, by Lemma 3.4,

• if iµnj ,mj (z) = 1 then iµnj+k,mj+k(z) = 1 for all k ≥ 0,
• if iµnj ,mj (z) = 2 then iµnj+k,mj+k(z) = 1 or 2 for all k ≥ 0.

On the other hand, by Lemma 3.5,

• if iµnj ,mj (z) = 4 then iµnj+1,mj+1(z) = 1.

These assertions imply the lemma.

3.3. Localization of the nonwandering set of T µ. We say that a
point z belongs to the nonwandering set of T µ, denoted by Ω(T µ), if for
every neighbourhood V of z there is a point w ∈ V and an admissible
sequence (nj ,mj)kj=1, k ≥ 1, for w such that wµnk,mk ∈ V . For each i ∈
{1, . . . , 4} let Ωµ

i = Ω(T µ) ∩ Ii.
The ω-limit set of x for T µ, denoted by ωµ(x), is the set of points z such

that for every neighbourhood V of z there is a T µ-orbit xµnj ,mj of x such
that xµnk,mk ∈ V for some k > 0.

Proposition 3.7. Let µ ∈ (−µ0, µ0).

(a) If z ∈ Ωµ
1 then z ∈ ωµ(x) for every x ∈ I1.

(b) If z ∈ Ωµ
2 then z ∈ [Ãµ, R̃µ]. Moreover , if µ ≥ 0 then z = Ãµ or R̃µ.

(c) If z ∈ Ωµ
3 then there is a T µ-orbit zµnj ,mj of z such that iµnj ,mj (z) = 3

for all j ≥ 0.
(d) Ωµ

4 = ∅.
Write now β%s = % < 1 and λ%u = % > 1, where %s and %u are the constants
in (E8).

(e) Let x ∈ I1 and suppose that xµn,m ∈ I1. Then n = 0 or 1 and

0 < (Tµn,m)′(x) < % < 1.

(f) Let x ∈ I3 and suppose that xµn,m ∈ I3. Then m = 0 or 1 and

(Tµn,m)′(x) > % > 1.

Proof. Items (c) and (d) follow immediately from Lemma 3.6.
To prove (a), first observe that if z ∈ Ωµ

1 then z ∈ int(I1) (this follows
immediately from conditions (E2) and (E6)). We need the following fact
whose proof (which is omitted here) also follows easily from (E2) and (E6).
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Fact 3.8. Let (nj,mj)j be an admissible sequence for x ∈ I1. Then
(nj ,mj)j is an admissible sequence for any point of I1.

Consider now small ε > 0 and a neighbourhood Vε = (z − ε, z + ε) of z
in the interior of I1. Since z ∈ Ω(T µ) there are w ∈ Vε and an admissible
sequence (nj,mj)kj=1 for w such that

%k < ε/2 and |wµnk,mk
− z| < ε/2.

Take now any x ∈ I1. By Fact 3.8, the orbit xµnj ,mj is well defined. By (E8)
and since nj = 0 or 1 and mj ≥ 0 (recall Lemma 3.4), we have

|wµnk,mk
− xµnk,mk

| ≤ (β%s)k = %k < ε/2.

Thus |z − xµnk,mk | < ε. Since this construction can be done for every ε > 0
and every point x ∈ I1, one has z ∈ ωµ(x) for every x ∈ I1, ending the proof
of (a).

To prove the first part of (b), Ωµ
2 ⊂ [Ãµ, R̃µ], recall that, by Lemma 3.4,

if w ∈ I2 and wµn,m ∈ I2 then n,m ∈ {0, 1} and n + m = 1. Thus there are
two kind of returns of points of I2 to I2: returns under T µ1,0 and under T µ0,1.

Observe also that every nonwandering point of I2 belongs to its interior.
This follows from the fact that the right extreme of I2 always returns to the
interior of I1 and the left extreme of I2 always returns to the interior of I2
or of I1 (see Figure 5).

We now need the following remark, which is an immediate consequence
of (E9) and (E11).

Remark 3.9. Let x∈I2 be such that x<Ãµ or x>R̃µ. Then Tµ1,0(x)>x
and Tµ0,1(x) > x.

Remark 3.9, (E9), (E11) and (E12) imply the following.

Remark 3.10. Let x ∈ I2 with x < Ãµ. Then Tµ0,1(x) < Ãµ. Moreover,

if Tµ1,0(x) > Ãµ then xµnj ,mj > Ãµ for every admissible sequence (nj,mj)j
for x with n1 = 1 and m1 = 0.

Suppose that z < Ãµ or z > R̃µ. By Remark 3.9 there is a small ε > 0
such that

Tµ1,0(y) > z + ε and T µ0,1(y) > z + ε for all y ∈ Vε = (z − ε, z + ε) ⊂ I2,

where z + ε < Ãµ if z < Ãµ and z − ε > R̃µ if z > R̃µ.
Take now x ∈ Vε and an admissible sequence (nj,mj)kj=1 for x such that

xµnk,mk ∈ Vε. By Lemma 3.4, iµnj ,mj (x) = 2 for all j, and, by the choice of Vε,
xn1,m1 > z + ε. Moreover, by Remark 3.10, if z < Ãµ then xµn1,m1 < Ãµ.

Inductively, we have xµnj ,mj >z+ε. Moreover, if z<Ãµ then xµnj ,mj <Ãµ.
In both cases, xµnj ,mj 6∈ Vε for all j = {1, . . . , k}, which is a contradiction.
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We now prove the second part of (b), i.e., if µ ≥ 0 then Ω(T µ) ∩
(Ãµ, R̃µ) = ∅. Consider any x ∈ (Ãµ, R̃µ). Then, by (E9) and Remark 3.2,
Tµ0,1(x) < x for all x ∈ (Ãµ, R̃µ), thus there is a neighbourhood Vε =

(z − ε, z + ε) ⊂ (Ãµ, R̃µ) such that

Tµ0,1(y) < z − ε for all y ∈ Vε.
Consider an admissible sequence (nj,mj)kj=1 for x with xµnk,mk ∈ Vε. By

Lemma 3.4, iµnj ,mj (x) = 2 for all j. Moreover, observing that if x > Ãµ then
Tµ1,0(x) and Tµ0,1(x) are both greater than Ãµ, we have xµnj ,mj > Ãµ for all j.

If there is a first j ∈ {1, . . . , k} with nj = 1 (and thus mj = 0) then,
since µ ≥ 0, by the second part of Remark 3.2, one has

xµnj ,mj
= Tµ1,0(xµnj−1,mj−1

) > Tµ1,0(Ãµ) ≥ R̃µ.

Remark 3.9 yields xµnk,mk>R̃µ and thus xµnk,mk 6∈Vε, which is a contradiction.
Hence we can assume that nj = 0 for all j (thus mj = 1 for all j). Then

xµnj ,mj is a decreasing sequence and xµnj ,mj 6∈ Vε for all j, which is also a
contradiction. The proof of (b) is now complete.

To prove (e) just observe that, by Lemma 3.4, if x ∈ I1 then the return
(n,m) is of the form (0, k) or (1, n). In the first case, since x ∈ I1 and by
(E8), (Tµ0,k)

′(x) < λk%s ≤ % < 1. In the second case, we have (T µ1,0)′(x) <
β%s = % < 1, ending the proof of (e).

The proof of (f) follows analogously by observing that if x ∈ I3 then
(n,m) is of the form (k, 0) or (0, 1) and using (E8).

Corollary 3.11. For every µ ≥ 0 one has Ωµ = Ωµ
1 ∪Ω3

µ ∪ {Ãµ, R̃µ}.
Proof. This follows immediately from Proposition 3.7(a)–(d).

3.4. Unfolding of cycles associated to Ã and R̃. Consider the
family T µ = (Tµn,m) of maps. By condition (E12), T 0

1,0(Ã) = R̃; this is
expressed by saying that the family T µ has a cycle associated to Ã and R̃
at µ = 0. Let

U(µ) = Tµ1,0(Ãµ)− R̃µ,
where U(0) = 0. We say that the family T µ unfolds the cycle at µ = 0 with
positive velocity if U ′(0) > 0 (i.e., the points T µ1,0(Ãµ) and R̃µ move with
positive velocity which respect to each other).

Lemma 3.12. The family T µ of maps unfolds the cycle associated to Ã
and R̃ at µ = 0 with positive velocity , that is, U ′(0) > 0.

Proof. Observe that

Tµ1,0(x) = β(Π(x) + 1 + µ) = T 0
1,0(x) + βµ, Tµ0,1(x) = λΠ(x) + 1 + µ.
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Thus
U(µ) = Tµ1,0(Ãµ)− R̃µ = T 0

1,0(Ãµ) + βµ− R̃µ.
Then

U ′(0) = (T 0
1,0)′(Ã)

dÃµ
dµ

(0) + β − dR̃µ
dµ

(0) = βΠ ′(Ã)
dÃµ
dµ

(0) + β − dR̃µ
dµ

(0).

From (T 0
0,1)′(Ã) = λΠ ′(Ã) = λA (condition (E9)), it follows that Π ′(Ã) =

λA/λ. Since (T 0
1,0)′(Ã) = βΠ ′(Ã), one has

U ′(0) =
βλA
λ

dÃµ
dµ

(0) + β − dR̃µ
dµ

(0).

Finally, if we observe that by (E9), Ãµ ' λAÃµ+b+µ and R̃µ ' βRR̃µ+c+µ
for some b and c, a straightforward calculation gives

dÃµ
dµ

(0) =
1

1− λA
and

dR̃µ
dµ

(0) =
1

1− βR
.

Thus

U ′(0) =
βλA

λ(1− λA)
+ β − 1

1− βR
> β > 0.

4. ONE-DIMENSIONAL MODEL FOR THE UNFOLDING OF
PRIMARY CYCLES

In this section we give a model for the unfolding of cycles associated to
Ã and R̃ and study the dynamics after the unfolding of such a cycle.

4.1. Primary cycles associated to Ã and R̃. Consider 0 < λA < 1 <
βR as in condition (E9) and, as at the beginning of Section 3, the linear maps
x 7→ λAx and x 7→ βRx, and their fundamental domains J̃ = [−1,−λA] and
Ĩ = [β−1

R , 1]. Consider also a strictly increasing differentiable map ∇ from Ĩ

to J̃ with ∇(Ĩ) = J̃ having the following distortion property:

1− λA
2(1− β−1

R )
≤ ∇′(x) ≤ 2(1− λA)

1− β−1
R

for all x ∈ Ĩ .(4.5)

In our applications we will have (T 0
0,1)N3 = ∇ (recall the distortion estimate

in (E9)).
Consider differentiable monotone functions S,U : [−1, 1]→ R with

S(0) = U(0) = 0, S′(0) = κ > 0, U ′(0) = τ > 0.

For small positive ν define g(ν) by

S(−g(ν)) + U(ν) = 0.
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Observe that, for small ν > 0, g(ν) is uniquely defined. Consider the families
of maps

Sν : [−g(ν), 0]→ [0, U(ν)], Sν(·) = S(·) + U(ν).

Finally, for small ν > 0 consider the parametrized family Lν = (Lνn,m) of
endomorphisms

Lνn,m : Ĩ → Ĩ , Lνn,m(·) = βnR ◦ Sν ◦ λmA ◦ ∇(·), n,m ≥ 0,(4.6)

defined for each pair (n,m), n,m ≥ 0, from a (maximal) subinterval K̃ν
n,m

of Ĩ into Ĩ. As in the case of the sets Kµ
n,m of the family T µ, in general,

K̃ν
n,m 6= Ĩ and there are pairs (n,m) such that K̃ν

n,m = ∅ (see for instance
Remark 4.1).

We say that Lµ = (Lνn,m) is an iterated function system with a cycle
at ν = 0 having transition map ∇ and unfolding map Sν . For notational
simplicity assume that U(ν) = ν, but the general case follows identically.

PSfrag replacements

K̃ν
n+2,m

K̃ν
n+1,m K̃ν

n,m

Lνn+2,m

Lνn+1,m

Lνn,m

1

−1

0

0

0

0

Ĩ

Ĩ

J̃
J̃

∇ ∇

ν

ν

Sν

Sν

−g(ν)

−g(ν)

λmA

βnR

Fig. 6. The maps Lνn,m

For each ν > 0 define n(ν) and m(ν) by the relations

λAg(ν) ≤ λm(ν)
A < g(ν) and β−1

R ν ≤ β−n(ν)
R < ν.(4.7)

Remark 4.1. Let ν > 0 be small and m < m(ν) − 1 or n < n(ν) − 1.
Then K̃ν

n,m = ∅.
Proof. Observe that if m < m(ν)− 1 then

λmA∇(x) ∈ [−λmA ,−λm+1
A ] ⊂ ]−∞,−λm(ν)−1

A ] ⊂ ]−∞,−g(ν)[ for all x ∈ Ĩ .
Thus Sν(λmA∇(x)) < 0 and βkRS

ν(λmA∇(x)) < 0 for all k ≥ 0. In particular,
βkRS

ν(λmA∇(x)) 6∈ Ĩ for all k ≥ 0. This ends the proof under the condition
on m. The proof for n is analogous and it is omitted.
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Lemma 4.2. For every ν > 0 sufficiently small ,

Ĩ ⊂
⋃

j≥n(ν)

K̃ν
j,m(ν)+1.

Proof. By the definition of m(ν) in (4.7),

λ
m(ν)+1
A ∇(Ĩ) = λ

m(ν)+1
A J̃ ⊂ [−λAg(ν), 0].

Therefore,

Sν(λm(ν)+1
A J̃) ⊂ [S(−λAg(ν)) + ν, ν].

Since S′(0) = κ, for a fixed small ε there is ν0 such that, for every ν ∈ (0, ν0),

−(κ+ ε)λAg(ν) < S(−λAg(ν)) < −(κ− ε)λAg(ν),
ν

κ+ ε
< g(ν) <

ν

κ− ε.

Write

d+(ε) =
κ+ ε

κ− ε and d−(ε) =
κ− ε
κ+ ε

, lim
ε→0

d±(ε) = 1.

Hence
− d+(ε)λAν < S(−λAg(ν)) < −d−(ε)λAν.(4.8)

Therefore, for small ε, that is, if ν ∈ (0, ν0) and ν0 is small enough,

Sν(λm(ν)+1
A J̃) ⊂ [(1− d+(ε)λA)ν, ν] ⊂ ]0, ν].

Thus, by the definition of n(ν) in (4.7), for each x ∈ Ĩ there is j(x) ≥ 0 such
that

β
j(x)+n(ν)
R Sν(λm(ν)+1

A ∇(x)) ∈ Ĩ .
Hence x ∈ K̃ν

j(x)+n(ν),m(ν)+1. Since j(x) ≥ 0 this proves the lemma.

The definition of the sets K̃ν
j,m(ν)+1 gives immediately the following:

Remark 4.3. For every j and k the set
⋃j+k
i=j K̃

ν
i,m(ν)+1 is either empty,

a point, or a closed interval.

Lemma 4.4. Consider i ≥ n(ν) such that the sets K̃ν
i−1,m(ν)+1, K̃ν

i,m(ν)+1

and K̃ν
i+1,m(ν)+1 are all nonempty. Then Lνi,m(ν)+1(K̃ν

i,m(ν)+1) = Ĩ.

Proof. For each j = {i−1, i, i+1} let lj and rj , lj < rj , be the extremes
of K̃ν

j,m(ν)+1. Observe that lj = rj+1. The definition of the extremes of

K̃ν
i,m(ν)+1 and the fact that K̃ν

i−1,m(ν)+1 and K̃ν
i+1,m(ν)+1 are both nonempty

imply that Lνi,m(ν)+1)(li) = β−1
R and Lνi,m(ν)+1)(ri) = 1. This implies imme-

diately the lemma.



154 L. J. Dı́az and J. Rocha

Lemma 4.5. Consider j such that K̃ν
j,m(ν)+1 6= ∅. Then

(Lνj,m(ν)+1)′(x) > 2ξ > 2 for every x ∈ K̃ν
j,m(ν)+1, with ξ > 1 as in (E9).

(If x is at the boundary of K̃ν
j,m(ν)+1 we consider the right or left derivative

at x, according to the case.)

Proof. We first claim that

βjR ≥
1

(1− λ2
A)νβ2

R

.(4.9)

For that just observe that, by definition of m(ν) in (4.7), λm(ν)+1
A Ĩ ⊂

]−g(ν),−λ2
Ag(ν)]. Thus, arguing as in the proof of Lemma 4.2 (recall (4.8)),

one has

Sν(λm(ν)+1
A ∇(Ĩ)) ⊂ ]0, (1− d−(ε)λ2

A)ν].(4.10)

Since K̃ν
j,m(ν)+1 6= ∅ there is x ∈ Sν(λm(ν)+1

A ∇(Ĩ)) with βjR(x) ∈ [β−1
R , 1].

By (4.10),

βjR ≥
1

(1− d−(ε)λ2
A)νβR

>
1

(1− λ2
A)νβ2

R

if ε is small enough (i.e., ν is small). This ends the proof of (4.9).

The hypothesis on the derivative of ∇ in (4.5), the estimates of λm(ν)
A ,

β
n(ν)
R , and βjR in (4.7) and in (4.9), the expression of Lµn,m in (4.6), S′(0) = κ,
g(ν) > ν/(κ+ ε) if ν is small, d−(ε)→ 1 as ε→ 0, and condition (E9) give
immediately the following (for small ε):

(Lνj,m(ν)+1)′(x) ≥ βjR(κ− ε)λm(ν)+1
A

1− λA
2(1− β−1

R )

≥ λ2
Ag(ν)(κ− ε)(1− λA)

2(1− β−1
R )(1− λ2

A)νβ2
R

≥ λ2
A(κ− ε)(1− λA)

2(κ+ ε)(1− β−1
R )(1− λ2

A)β2
R

≥ d−(ε)λ2
A

2(1− β−1
R )(1 + λA)βR

> 2ξ > 2.

Proposition 4.6. For every small ν > 0 and every open subinterval U
of Ĩ there are a point x ∈ U , integers k ≥ 0 and m > 0, and a sequence
(ni,m(ν) + 1)ki=1, ni ≥ n(ν), of pairs such that

Sν(λmA∇(Lνnk,m(ν)+1 ◦ Lνn2+,m(ν)+1 ◦ Lνn1,m(ν)+1(x))) = 0.

Before proving the proposition let us state the following corollary:

Corollary 4.7. For every ν ∈ (0, ν0) we have Ω(Lν) = Ĩ.
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Proof. Just observe that, by Proposition 4.6, given any x ∈ Ĩ there are
an interval V arbitrarily close to x and arbitrarily small, integers k ≥ 0 and
m > 0, a sequence (ni,m(ν) + 1)ki=1, ni ≥ n(ν), of pairs and large j such
that

Sν(λmA∇(Lνnk,m(ν)+1 ◦ Lνn2+,m(ν)+1 ◦ Lνn1,m(ν)+1(V ))) = β−jR Ĩ .

This means that

Lνj,m ◦ Lνnk,m(ν)+1 ◦ Lνn2+,m(ν)+1 ◦ Lνn1,m(ν)+1(V ) = Ĩ ,

which automatically implies the corollary.

Proof of Proposition 4.6. By (4.7), g(ν) ∈ [λm(ν)
A , λ

m(ν)−1
A ]. Thus, −g(ν)

∈ λm(ν)
A J̃ ∪ λm(ν)−1

A J̃ and there are y ∈ Ĩ and m ∈ {m(ν) − 1,m(ν)} such
that

Sν(λmA∇(y)) = 0.

Thus to prove the proposition it is enough to see the following:

Claim 4.8. There are a subinterval U0 of U and finite sequences
(ni,m(ν) + 1)ki=1, ni ≥ n(ν), of pairs and (Ui)ki=0 of subintervals of Ĩ such
that

• Ui ⊂ K̃ν
ni+1,m(ν)+1,

• Ui+1 ⊂ Lνni+1,m(ν)+1(Ui),

• Uk = Ĩ.

Proof. Given a subinterval V of Ĩ there are three possibilities:

(A) there is n ≥ n(ν) such that V ⊂ K̃ν
n,m(ν)+1,

(B) there is n ≥ n(ν) such that V ⊂ K̃ν
n,m(ν)+1 ∪ K̃ν

n+1,m(ν)+1,

(C) there is n ≥ n(ν) with K̃ν
n,m(ν)+1 ⊂ V and Ln,m(ν)+1(K̃ν

n,m(ν)+1) = Ĩ .

To prove this assertion suppose, by contradiction, that (A) and (B) do not
hold. By Lemma 4.2, there is n ≥ n(ν) such that K̃ν

n,m(ν)+1 ∩ V 6= ∅. We
take the minimum n with this property. By hypothesis, V is not contained in
K̃ν
n,m(ν)+1 ∪ K̃ν

n+1,m(ν)+1. Thus the choice of n, Lemma 4.2 and Remark 4.3

imply that K̃ν
n+2,m(ν)+1 6= ∅ and K̃ν

n+1,m(ν)+1 ⊂ V . Finally, Lemma 4.4
shows that

Lνn+1,m(ν)+1(K̃ν
n+1,m(ν)+1) = Ĩ .

The assertion now follows on recalling that K̃ν
n+1,m(ν)+1 ⊂ V .

We are now ready to prove the claim. If the initial interval U satisfies (C)
we are done. Otherwise, in cases (A) and (B), to the interval U we associate
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n = n(U) as in the proof of the assertion above and write

U = U− ∪ U+, U− = U ∩ K̃ν
n+1,m(ν)+1, U+ = U ∩ K̃ν

n,m(ν)+1,

where U− = ∅ in case (A). We define

Ũ− = Ln+1,m(ν)+1(U−), Ũ+ = Ln,m(ν)+1(U+).

By Lemma 4.5,
|Ũ±| ≥ 2ξ|U±|.

Since U = U+ ∪ U−, either |U+| or |U−| is greater than or equal to |U |/2,
thus

max{|Ũ+|, |Ũ−|} ≥ ξ|U |, where ξ > 1.

If the maximum is |Ũ+| we let U0 = U+ and n1 = n. Otherwise, we take
U0 = U− and n1 = n+ 1.

Take now

U ′0 = Lνn1,m(ν)+1(U0), where |U ′0| ≥ ξ|U |.
If U ′0 satisfies (C) we are done. Otherwise, arguing as in the previous step,
we get n2 and a subinterval U1 of U ′0 such that U1 ⊂ K̃ν

n2,m(ν)+1 and

|U ′1| > ξ|U ′0| > ξ2|U |, where U ′1 = Lνn2,m(ν)+1(U1).

We are now ready to end the proof of the claim, which follows inductively.
Suppose we have defined Ui, U ′i and ni such that every Ui satisfies (A) or (B)
and |U ′i | > ξi|U |, where Ui ⊂ K̃ν

ni,m(ν)+1 and U ′i = Lνni,m(ν)+1(Ui). Since the

size of the sets K̃ν
n,m(ν)+1 is bounded there is a first k such that U ′k satisfies

(C), and we are done.

As mentioned, the proposition is a direct consequence of the claim.

Let us make a remark about the results on the iterated function system
(Lνn,m).

Remark 4.9. The constructions in Section 4 also work if the eigenvalues
λA(ν) and βR(ν) depend continuously on ν, thus the reference fundamental
domains Ĩν = [βR(ν)−1, 1] and J̃ν = [−1,−λA(ν)] also depend on ν. In this
case one considers transitions∇ν depending continuously in the C1-topology
on the parameter ν with ∇ν(Ĩ(ν)) = J̃(ν) and satisfying the distortion
property in (4.5) for every small ν.

4.2. The dynamics after the unfolding of the cycle associated to
Ã and R̃. Bearing in mind Remark 4.9 we now construct an appropriate
iterated function system Fµ = (Fµn,m) which describes the dynamics in the
unfolding of the cycle associated to Ã and R̃ for T µ.



Heterodimensional cycles 157

Given µ close to 0 let R̃µ and Ãµ be the continuations for T µ0,1 of the

fixed points R̃ and Ã of T 0
0,1. Denote by βR(µ) and λA(µ) the corresponding

eigenvalues. Consider continuations C̃µ and D̃µ of the points C̃ and D̃ in
(E9) such that

(Tµ0,1)N3([βR(µ)−1D̃µ, D̃µ]) = [λA(µ)C̃µ, C̃µ].

For each µ ∈ (−µ0, µ0) with |µ| small, consider the affine bijective maps

ψµR : [D̃µ, R̃µ]→ [0, 1] and ψµA : [Ãµ, C̃µ]→ [−1, 0]

with ψµA(Ãµ) = 0, ψµA(C̃µ) = −1, ψµR(D̃µ) = 1, and ψRµ (R̃µ) = 0.

By Remark 3.2, for small µ < 0 there is a unique Ẽµ ∈ ]Ãµ, C̃µ[ with
Tµ1,0(Ẽµ) = R̃µ, where Ẽµ → Ãµ as µ→ 0−.

The iterated function system Fµ = (Fµn,m), µ < 0, is defined as follows.
For each small µ < 0 consider the fundamental domains Ĩµ = [βR(µ)−1, 1]
and J̃µ = [−1,−λA(µ)].

• The transition map of Fµ is the map ∇µ defined by

∇µ : Ĩµ → J̃µ, ∇µ(·) = ψµA ◦ ((Tµ0,1)N3) ◦ (ψµR)−1(·).
Observe that by construction ∇µ(Ĩµ) = J̃µ and that ∇µ has the distortion
property (4.5), i.e.,

1− λA
1− βR

≤ D(∇µ)(x) ≤ 2
1− λA
1− βR

.

For the last assertion just observe that, by condition (E9), (T µ0,1)N3 has this

property for points in [βR(µ)−1, D̃µ] and that for every x ∈ [−1, 0] and
y ∈ [0, 1],

lim
µ→0−

(ψµA)′(x)((ψµR)−1)′(y) = lim
µ→0−

C̃µ − Ãµ
R̃µ − D̃µ

=
C̃ − Ã
R̃− D̃

= 1;

for the last equality recall (E9).

• For µ < 0 close to 0 let −g(µ) = ψµA(Ẽµ). The unfolding map (defined
for negative µ) of Fµ is

V µ : [−g(µ), 0]→ [0, 1], V µ(x) = (ψµR)−1 ◦ Tµ1,0 ◦ ψ
µ
A(x).

Finally, for small negative µ, the system Fµ is defined by

Fµn,m : Ĩµ → Ĩµ, Fµn,m(·) = βR(µ)n ◦ V µ ◦ λA(µ)m ◦ ∇µ(·), n,m ≥ 0.

Remark 4.10. Observe that, up to a change of coordinates, the system
Fµ only involves iterations under T µ1,0 and Tµ0,1 and points in I2.

It is now immediate to check that we can repeat the arguments and
the constructions of Section 4 using the map V µ instead of Sν . Thus by
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Remark 4.10, Proposition 4.6 and Corollary 4.7 we immediately have the
following results for the system Fµ:

Proposition 4.11. For every small µ > 0 and every open subinterval
U of I2 there are a point x ∈ U , integers k ≥ 0 and m > 0, and a sequence
(ni,m(µ) + 1)ki=1, ni ≥ n(µ), of pairs such that

V µ(λA(µ)m∇µ(Fµnk,m(µ)+1 ◦ F
µ
n2,m(µ)+1 ◦ F

µ
n1,m(µ)+1(x))) = 0.

Corollary 4.12. For every µ ∈ (−µ0, 0) we have Ωµ
2 = I2.

We end this section with a remark that we will use in Section 9. We
define the inverse iterated function system F̃µ of Fµ as follows. For each
small µ consider the map

Υµ = (∇µ)−1 = (Tµ0,1)−N3 : J̃µ → Ĩµ.

Then Υµ is the transition map of the inverse system and, by (E9), it has the
distortion property (4.5).

The unfolding map of F̃µ is obtained as follows. For each µ ∈ (−µ0, µ0)
with |µ| small, consider the affine bijective maps

ϑµR : [D̃µ, R̃µ]→ [−1, 0] and ϑµA : [Ãµ, C̃µ]→ [0, 1]

with ϑµA(Ãµ) = 0, ϑµA(C̃µ) = 1, ϑµR(D̃µ) = −1, and ϑµR(R̃µ) = 0.

For small µ < 0 let T µ1,0(Aµ) = Ẽ′µ. Write−g̃(µ) = ϑµR(Ẽ′µ). The unfolding
map (defined for negative µ) is

Ṽ µ : [−g̃(µ), 0]→ [0, 1], Ṽ µ(x) = (ϑµA)−1 ◦ (Tµ1,0)−1 ◦ ϑµR(x).

Finally, the inverse system F̃µ is defined for negative µ by

F̃µn,m : J̃µ → J̃µ, F̃µn,m(·) = λA(µ)−n ◦ Ṽ µ ◦ βR(µ)−m ◦ Υµ(·), n,m ≥ 0.

Remark 4.13. Proposition 4.11 holds for the system F̃µ.

5. CHOICE OF PARAMETERS

In this section we construct sequences of intervals Lk = [ak, bk] and
reparameterizations µk : Lk → [−µ0/2, µ0/2] such that the maps Gtm,n de-
fined in (2.1) of Section 2.2 are arbitrarily C0-close to the model maps
T
µk(t)
n,m for all t ∈ Lk. In fact, for fixed n0 and m0, we get C1-proximity if
n ∈ {0, . . . , n0} and m ∈ {0, . . . ,m0}. Observe that in our one-dimensional
model the eigenvalues λ and β of P and Q do not depend on t. Having in
mind that we want to prove the results for families close to our model, in
this section we assume that these eigenvalues (denoted by λ(t) and β(t)) are
C1-functions.
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Lemma 5.1. There is N0 ∈ N such that for every n ≥ N0 there exists
tn > 0 satisfying

λ(tn)n = tn.

Moreover , limn→∞ tn = 0.

Proof. As λ(t) is a continuous function and λ = λ(0) ∈ ]0, 1[, there is
t0 > 0 such that λ(t) ∈ ]0, 1[ for all t ∈ [0, t0]. Thus there exists N0 ∈ N
such that λ(t0)n < λ(t0)N0 < t0 for every n ≥ N0. Now the lemma follows
from the mean value theorem by just observing that 0 < λ(0)n. The second
assertion is trivial.

To get the positive density at zero of the intervals Ln we need to estimate
the frequency of the tn. This is done in the next lemma.

Lemma 5.2. The sequence (tn)n of parameters in Lemma 5.1 satisfies

lim
n→∞

tn+1/tn = λ(0).

Proof. First observe that

tn − tn+1 = λ(tn)n − λ(tn+1)n+1

= (n+ 1)λ(ζ)nλ′(ζ)(tn − tn+1) + tn(1− λ(tn))

for some ζ ∈ ]tn+1, tn[. Therefore,

tn(λ(tn)− (n+ 1)λ(ζ)nλ′(ζ)) = tn+1(1− (n+ 1)λ(ζ)nλ′(ζ)).

Hence,
tn+1

tn
=
λ(tn)− (n+ 1)λ(ζ)nλ′(ζ)

1− (n+ 1)λ(ζ)nλ′(ζ)
→ λ(0).

Now we define ν = log(β(0))/log(λ(0)−1). First assume that ν is irra-
tional. Then for any fixed ε > 0 there are sequences nk ∈ N and mk ∈ Z
such that nk → +∞ and mk → −∞ and for every k one has

nkν +mk ∈ [0, ε[.(5.1)

Lemma 5.3. Given ε > 0 there is Nε ∈ N such that the sequences nk
and mk in (5.1) can be chosen to satisfy

0 < nk+1 − nk ≤ Nε and |mk+1 −mk| ≤ Nε for every k ∈ N.

Proof. Observe that nk+1 − nk is uniformly bounded if and only if
|mk+1−mk| is. Thus it is enough to prove the result for the sequence (nk)k.
For that choose n1 and n2 in N such that

n1ν ∈ [0, ε/2[ mod Z and n2ν ∈ ]−ε/2, 0] mod Z
and let Nε = max{n1, n2}. We argue inductively: put n1 = n1 and suppose
that n1, . . . , nk are defined satisfying

0 < ni+1 − ni ≤ Nε and niν ∈ [0, ε[ mod Z.
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We now define

nk+1 =
{
nk + n1 if nkν ∈ [0, ε/2[ mod Z,
nk + n2 if nkν ∈ [ε/2, ε[ mod Z.

In both cases, we have nk+1ν ∈ [0, ε[ mod Z and nk+1 − nk ≤ Nε, ending
the proof of the lemma.

By Lemma 5.1, for each mk there is tk = t−mk such that λ(tk)
−mk = tk.

From Lemmas 5.2 and 5.3 for every large k we get

tk+1

tk
=

t−mk+1

t−mk+1−1
· t−mk+1−1

t−mk+1−2
. . .

t−mk+1

t−mk
(5.2)

'λ(0)mk−mk+1 ≥ λ(0)Nε ,

where Nε depends only on ε (see Lemma 5.3).
When ν is rational we can also get sequences nk and mk as above:

Remark 5.4. If ν = p/q, where p, q ∈ N and (p, q) = 1, then we let
nk = kq and mk = −kp, and define tk by the condition λ(tk)

kp = tk. In this
case Lemma 5.3 and the estimate in (5.2) hold with Nε = q.

From now on we assume that ν 6∈ Q, but the rational case can be handled
in exactly the same way.

The parameters tk were chosen to satisfy λ(tk)
−mk = tk. In the next re-

sult we get estimates for the values of the β(tk)
−nk . These estimates will play

a key role in getting an accurate control of the derivative of returns in the
central direction (as mentioned in Section 3.1, we need λ(tk)

−mkβ(tk)
nk ' 1,

see (5.12)).
Actually, we need to get estimates of λ(t)−mk and β(t)−nk for every t

in a scaled interval L∗k containing tk, i.e., |L∗k|t−1
k does not depend on k.

These estimates are in (5.7) below. Finally, in (5.10) we describe exactly the
intervals L∗k.

Lemma 5.5. For every large k one has

β(tk)
−nk ∈ [(λ(0)ε(1−Dk) + Ck)tk, (1−Dk + Ck)tk],

where the constants Ck and Dk satisfy limk→∞ Ck = limk→∞Dk = 0.

Proof. Since by definition nkν +mk ∈ [0, ε[ and β(0) = λ(0)−ν , we have

λ(0)nkν+mk ∈ ]λ(0)ε, 1], β(0)−nk ∈ ]λ(0)ε−mk , λ(0)−mk ].(5.3)

Now there is ζ ∈ ]0, tk[ such that

β(tk)
−nk − β(0)−nk = Cktk, Ck = −nkβ(ζ)−nk−1β′(ζ).(5.4)

Obviously, limk→∞ Ck = 0. From (5.3) and (5.4) we get

β(tk)
−nk ∈ ]λ(0)ε−mk + Cktk, λ(0)−mk + Cktk].(5.5)
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Similarly, there is ξ ∈ ]0, tk[ such that

λ(tk)
−mk − λ(0)−mk = Dktk, Dk = −mkλ(ξ)−mk−1λ′(ξ),

and limk→∞Dk = 0. Recalling that by definition λ(tk)
−mk = tk, we get

λ(0)−mk = tk(1−Dk). The result now follows from (5.5).

Now we get estimates for β(t)−nk and λ(t)−mk for t in a scaled interval
L∗k around tk. Writing t = tk(1 + %), as in the proof of Lemma 5.5, we have

λ(tk(1 + %))−mk = (1 +Dk%)tk,

β(tk(1 + %))−nk = Ck%tk + β(tk)
−nk ,

(5.6)

where Dk and Ck are not exactly the same as before (the derivatives of λ(t)
and β(t) are calculated at different points of the parameter space), but for
simplicity let us use the same notation.

We now determine an appropriate size for %; for that we take small
s = s(ε) > 0 (to be determined exactly later, see also conditions (5.11) and
(5.13)) and impose the following conditions:

λ(tk(1 + %))−mk ∈ ](1− s)tk(1 + %), (1 + s)tk(1 + %)[,

β(tk(1 + %))−nk ∈ ](1− s)tk(1 + %), (1 + s)tk(1 + %)[.
(5.7)

Using (5.6) we see that this condition is satisfied by λ(tk(1 + %))−mk if

−s
1 + s−Dk

< % <
s

1− s−Dk
.

To assure that β(tk(1 + %))−nk also satisfies (5.7) we use the second part of
(5.6) and Lemma 5.5 to get

(5.8)
β(tk(1 + %))−nk

tk
∈ [λ(0)ε(1−Dk) +Ck(1 + %), 1−Dk +Ck(1 + %)].

Thus it is enough to have

λ(0)ε(1−Dk) + Ck + Ck% ≥ (1− s)(1 + %)

and
1−Dk + Ck + Ck% ≤ (1 + s)(1 + %).

Now these inequalities are satisfied if

−1 +
1−Dk

1 + s− Ck
≤ % ≤ −1 +

λ(0)ε(1−Dk)
1− s− Ck

.

As Ck and Dk tend to zero as k →∞, it follows that if

% ∈
]
−1 +

1
1 + s

,−1 +
λ(0)ε

1− s

[
(5.9)
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then β(tk(1 + %))−nk satisfies (5.7) for every k large enough. Hence (5.7)
holds for every t in the interval L∗k (large k) defined by

L∗k = ]t−k , t
+
k [ =

]
1

1 + s
tk,

λ(0)ε

1− s tk
[
.(5.10)

We take

s = s(ε) = 2(λ(0)−ε − 1) > λ(0)−ε − 1 > 1− λ(0)ε,(5.11)

which, in particular, assures that tk belongs to the interior of L∗k.
Observe that with this choice of s (thus of %) we have

|L∗k|
tk

=
(λ(0)ε − 1) + s(λ(0)ε + 1)

1− s2 ≥ s

1− s2 λ(0)ε,

i.e., the L∗k are scaled intervals.
We now obtain some estimates on the products ∆k(t) = β(t)nkλ(t)−mk

for t ∈ L∗k, which will be used for bounding the derivative of the returns in
the central direction. First, from (5.7) we deduce that, for all t ∈ L∗k,

1− s
1 + s

< ∆k(t) = β(t)nkλ(t)−mk <
1 + s

1− s.(5.12)

We take s small enough (that is, ε close to zero) satisfying

%
1− s
1 + s

> 1 and %
1 + s

1− s < 1,(5.13)

where % = λ%u > 1 and % = β%s < 1 (see (E8) for the definitions of %u

and %s).
Now, from (5.8), writing t ∈ L∗k in the form tk(1+%) for some appropriate

%, we get ξ±k → 1 as k →∞ such that

β(t)−nk ∈ [λ(0)εξ−k tk, ξ
+
k tk].

Thus
t

tkξ
+
k

≤ β(t)nkt = 1 + µk(t) ≤
t

λ(0)εtkξ
−
k

.(5.14)

For the extreme t+k = λ(0)εtk/(1− s) of the interval L∗k the previous equa-
tion gives

β(t+k )nkt+k ≥
λ(0)ε

(1− s)ξ+
k

= 1 +
(s− 1)ξ+

k + λ(0)ε

(1− s)ξ+
k

≥ 1 + µ1,

where µ1 is given by

µ1 =
s− 1 + λ(0)ε

2(1− s) .(5.15)

Observe that condition (5.11) assures that µ1 > 0.
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Similarly, for t−k = tk/(1 + s) we get

β(t−k )nkt−k ≤
1

λ(0)ε(1 + s)ξ−k
≤ 1 + µ2,

where

µ2 =
1− (1 + s)λ(0)ε

2λ(0)ε(1 + s)
.(5.16)

Observe that µ2 < 0 is equivalent to s > λ(0)−ε− 1, which again is guaran-
teed by (5.11).

It is clear that µ1 and µ2 go to zero as ε (and thus s = s(ε)) tends to
zero. Moreover, a straightforward calculation gives

lim
ε→0

µ1

−µ2
= 1.(5.17)

We now take
µ0 = min{µ1,−µ2},

and observe that if ε is small then

[1− µ0, 1 + µ0] ⊂ I1.(5.18)

Lemma 5.6. There are constants κ1 and κ2, 0 < κ1 < κ2, such that for
every k large enough one has

yµ′k(w) ∈ [κ1, κ2] for every y, w ∈ L∗k.

In particular ,

0 < κ1/t
+
k ≤ µ′k(w) ≤ κ2/t

−
k for all w ∈ L∗k.

Proof. Observe that

yµ′k(w) = y(nkβ(w)nk−1β′(w)w + β(w)nk).(5.19)

We first claim that

ynkβ(w)nk−1β′(w)w → 0 as k →∞.(5.20)

In fact, (5.7) implies that this product is of order tknk. Now our assertion
follows using the fact that λ(tk)−mk = tk and nk ' −mk (see (5.1)).

Finally, using again (5.7) and (5.10) one gets strictly positive constants
κ′1 and κ′2 (independent of large k) such that

κ′1 < yβ(w)nk < κ′2.(5.21)

Now the lemma is a direct consequence of (5.19)–(5.21).

The next lemma follows immediately from the previous one.

Lemma 5.7. There is υ > 0 such that for every k large enough there is
a subinterval Lk = [ak, bk] of L∗k such that

• µk(ak) = −µ0/2 and µk(bk) = µ0/2,
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• β(t)nkt = 1 + µk(t) and µk(t) ∈ [−µ0/2, µ0/2] for every t ∈ Lk; in
particular , by (5.18), β(t)nkt belongs to the interior of I1,
• |Lk|/tk > υ.

The intervals Lk will be the intervals in the parameter space referred
to in the statement of the theorem. The third item in the lemma and (5.2)
give immediately the positive relative density at the bifurcation value of the
intervals Lk.

By Lemmas 5.6 and 5.7, for every k > 0 large enough the inverse tk of
µk is defined from [−µ0/2, µ0/2] to Lk.

6. PROPERTIES OF THE MAPS Gtn,m FOR t IN Lk

Observe that with the notation introduced in the previous section we
have nt = nk and mt = mk for all t ∈ Lk. Thus, for t ∈ Lk, the maps Gtn,m
in (2.1) can be written as follows:

Gtn,m(z) = βnt (∆k(t)λmt Π(z) + 1 + µk(t)), t ∈ Lk.
Recall that ∆k(t) can be taken arbitrarily close to 1 (it is sufficient to take s
in (5.12) small enough). As a consequence of the results in Section 3 we have
the following:

Proposition 6.1. Given ε > 0 there is k0 such that for every k ≥ k0

and t ∈ Lk the maps Tµk(t)
1,0 and Gt1,0 and T

µk(t)
0,1 and Gt0,1 are ε-close in

the C1-topology. In particular , for Gt0,1 the continuations Ãt and R̃t of the

hyperbolic fixed points Ãµk(t) and R̃µk(t) of T
µk(t)
0,1 are well defined.

Moreover , Gak1,0(Ãak) < R̃ak and Gbk1,0(Ãbk) > R̃bk . Thus there is ck such

that Gck1,0(Ãck) = R̃ak , that is, the family (Gtn,m)t∈Lk of maps has a cycle at

ck associated to Ãck and R̃ck .

Finally , Tµk(t)
n,m and Gtn,m are ε-close in the C0-topology for all n and m.

Proposition 6.1 gives the following:

Remark 6.2. The family Gt = (Gtn,m)t∈Lk of maps satisfies conditions
(E1)–(E11) and (E13).

In Lemma 6.4 we will obtain a cycle condition analogous to (E12) (now
the cycle occurs at ck) for the family Gt. In fact, in Lemma 6.4 we will prove
that such a cycle is unfolded with scaled positive velocity (recall Lemma 3.12
where this result is stated for the cycles of T µn,m). In particular, this implies
that ck is unique if µ0 is small.

As in Section 3 we define the maximal interval of definition K t
n,m of

Gtn,m, the admissible sequences (nj ,mj) for a point x, the orbit xtnj ,mj
, the

position a(x) of x ∈ I and its itinerary itnj ,mj
(x).
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Remark 6.2 allows us to translate Lemma 3.4 to the families Gt
n,m for

t ∈ Lk.

Lemma 6.3. Consider t ∈ Lk for large k, and x ∈ I1 ∪ I2 such that
Gtn,m(x) is defined (i.e., x ∈ Kt

n,m). Then:

(1) If m = 1 then n = 0 and a(Gt0,1(x)) = 1 if x ∈ I1, while it is 1 or 2
if x ∈ I2.

(2) If m = 0 then n = 1 and a(Gt1,0(x)) = 1 if x ∈ I1, while it is 1 or 2
if x ∈ I2.

(3) If m ≥ 2 then n = 0 and a(Gt0,m(x)) = 1.

By Lemma 6.3 the orbits of points xtnj ,mj
such that itnj ,mj

(x) = 2 for all
j only involve iterations under Gt

1,0 and Gt0,1.

6.1. Cycles associated to Ãt and R̃t. In the next lemma we prove
that there is ck ∈ Lk with a cycle associated to Ãck and R̃ck . In order to
prove the existence of such a cycle we need to use condition (E13). In fact,
in the proof of Lemma 6.4 we will see that β is the scaled velocity of the
relative motion of R̃t and Gt1,0(Ãt). Observe that the coexistence of the

hyperbolic points Ãt and R̃t occurs only in a very small (scaled) interval of
the parameter space. Thus to detect the unfolding of the cycle we need a
large β. Our estimates can be improved in order to get a smaller value of β,
but this is not relevant in view of the statement of the theorem.

As in Lemma 3.12 we consider the maps

Uk : Lk → R, Uk(t) = Gt1,0(Ãt)− R̃t.

Clearly, Uk(c) = 0 or Gc1,0(Ãc) = R̃c gives a cycle at c. The scaled velocity
of the unfolding of the cycle is cdUk(c)/dt.

Lemma 6.4. For every k sufficiently large there exists ck ∈ Lk such that
Gck1,0(Ãck) = R̃ck and Gt unfolds such a cycle with positive scaled velocity of
order of β.

Proof. To get the cycle it is enough to see that there is t ∈ Lk such that

β(t)−1(R̃t) = Gt0,0(Ãt).(6.1)

The map Uk defined in Lk is of the form

Uk(t) = β(t)Gt0,0(Ãt)− R̃t = Gt1,0(Ãt)− R̃t.
To prove (6.1), i.e., Uk(t) = 0 for some t ∈ Lk, it is enough to see that

Uk(ak) ≤ −µ0/4 and Uk(bk) ≥ µ0/4.(6.2)



166 L. J. Dı́az and J. Rocha

By the definition of Gtn,m for t ∈ Lk (see (2.1) and Lemma 5.7), one has

Uk(ak) = β(ak)(∆k(ak)Π(Ãak) + 1− µ0/2)− R̃ak
= ∆k(ak)(β(ak)Π(Ãak) + β(ak)− R̃ak)

+ R̃ak(∆k(ak)− 1)− β(ak)µ0/2.

(6.3)

Observe that

• 1− s
1 + s

≤ ∆k(t) ≤
1 + s

1− s for all t ∈ Lk (see (5.12)),

• the map F (k) = β(ak)Π(Ãak) + β(ak) − R̃ak tends to zero as k goes
to infinity (this follows from the cycle condition (E12)),
• R̃ak is close to R̃ and 0 < β−1 < R̃ < 2,
• β(ak) > β/2.

Therefore,

R̃ak(∆k(ak)− 1)− β(ak)
µ0

2
≤4
(

1 + s

1− s − 1
)
− β µ0

4
(6.4)

=
µ0

4

(
16

2s
1− s ·

1
µ0
− β

)
.

Using the definition of s = s(ε) in (5.11) and of µ1 in (5.15) it is immediate
to verify that

lim
ε→0

s

1− s ·
1
µ1

= 4.

Thus, by (5.17), limε→0 µ1/(−µ2) = 1 and since µ0 = min{µ1,−µ2}, we
have

lim
ε→0

s

1− s ·
1
µ0

= 4.(6.5)

Therefore, for sufficiently small ε, one has
s

1− s ·
1
µ0
≤ 65

16
.

Now, from (6.3) and (6.4), we get

Uk(ak) ≤ ∆k(ak)F (k) +
µ0

4
(130− β) ≤ −µ0

4
if k is sufficiently large and β > 131 (condition (E13)).

Exactly in the same way we get

Uk(bk) ≥ ∆k(bk)F̃ (k) +
µ0

4

(
β−1 −2s

1 + s
· 1
µ0

+ β

)

where
F̃ (k) = β(bk)Π(Ãbk) + β(bk)− R̃bk .

As above, by (E12), F̃k tends to zero as k goes to infinity.
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We claim that if k is large enough then

Uk(bk) > ∆k(bk)F̃ (k) + µ0/4.

To prove the claim it is enough to see that

β−1 −2s
1 + s

· 1
µ0

+ β > 1.

From (6.5) taking ε small we have
s

1− s ·
1
µ0
≤ 9

2
.

Thus, since (1 + s)/(1− s) > 1, to prove the claim it is enough to see that

β − 9β−1 > 1,

which holds when β > 4.
Finally, since ∆k(bk) is bounded and F̃ (k) → 0 as k → ∞, we have

Uk(bk) ≥ µ0/4 for sufficiently large k.
Now, by the mean value theorem, there is ck such that Uk(ck) = 0. This

ends the proof of the first part of the lemma (existence of a cycle).
We now see that the arc unfolds such a cycle with scaled positive velocity

of order of β. Recall that if t ∈ Lk then

Gt0,1(·) = β(t)∆k(t)Π(·) + β(t)(1 + µk(t)).

Recalling that

Uk(t) = β(t)Gt0,0(Ãt)− R̃t = Gt1,0(Ãt)− R̃t.
one has

dUk
dt

(t) =
dβ

dt
(t)∆k(t)Π(Ãt) + β(t)

d∆k

dt
(t)Π(Ãt)

+ β(t)∆k(t)DΠ(Ãt)
dÃ

dt
(t) +

dβ

dt
(t)(1 + µk(t))

+ β(t)
dµk
dt

(t)− dR̃

dt
(t).

To estimate this sum observe that

• d∆k(t)/dt is of order of nk − mk and, by (5.1), this sum is of order
of −mk,
• the maps ∆k, β and Π are uniformly bounded,
• the derivative dµk(t)/dt is of order of 1/t (see Lemma 5.6),
• the derivatives DΠ, dβ/dt, dÃ/dt and dR̃/dt are uniformly bounded

(recall the proof of Lemma 3.12).

In view of these considerations we have
dUk
dt
' const0 − const1mk + const2

β

tk
.
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Since t is in the scaled interval L∗k, and hence it is of order of tk = λ(tk)−mk ,
we have

t
dUk
dt
' λ(tk)−mk (const−mk) + β(tk) ' β(tk),(6.6)

where the last relation follows by observing that λ(tk)−mk mk → 0 as k →∞
and t ' tk if t ∈ Lk.

Let us make a comment about the proof of Lemma 6.4 which follows
immediately from (6.6).

Remark 6.5. There is a unique ck ∈ Lk such that Uk(ck) = 0. Moreover,

Gt1,0(Ãt) > R̃t for all t ∈ ]ck, bk],

Gt1,0(Ãt) < R̃t for all t ∈ [ak, ck[.

Recalling that Uk(ak) ≤ −µ0/4 and Uk(bk) ≥ µ0/4 (see (6.2)), and
Uk(ck) = 0, we get

µ0/4 ≤ |Uk(bk)− Uk(ck)| = |U ′k(ψ)| · |bk − ck|,
µ0/4 ≤ |Uk(ak)− Uk(ck)| = |U ′k(ξ)| · |ak − ck|.

Now (6.6) and the definition of Lk imply that

|bk − ck|
tk

≥ C µ0

4β
and

|ak − ck|
tk

≥ C µ0

4β
,(6.7)

for some C > 0 independent of k.
The next lemma is a direct consequence of (6.7) and (5.2).

Lemma 6.6. The sequences ak, bk and ck satisfy

lim inf
t→0+

|(⋃k[ck, bk]) ∩ [0, t]|
t

> 0 and lim inf
t→0+

|(⋃k[ak, ck]) ∩ [0, t]|
t

> 0.

Observe that the intervals ]ck, bk] and [ak, ck[ will be the parameter in-
tervals in (5) in the statement of the theorem.

As in Section 3.1 denote by Ωt
i the set Ω(Gt) ∩ Ii, i = {1, . . . , 4}. Using

Lemmas 6.3 and 6.4 and formula (6.5) one gets the following reformulation
of Proposition 3.7 and Corollaries 3.11 and 4.12.

Proposition 6.7. Let t ∈ Lk with k sufficiently large. Then:

(a) If z ∈ Ωt
1 then z ∈ ωt(x) for all x ∈ I1.

(b) If z ∈ Ωt
2 then z ∈ [Ãt, R̃t]. Moreover , if t ≥ ck then z = Ãt or R̃t.

(c) If z ∈ Ωt
3 then there is a Gt-orbit ztnj ,mj

of z such that itnj ,mj
(z) = 3

for all j ≥ 0.
(d) Ωt

4 = ∅.
(e) Let x ∈ I1 and xtn,m ∈ I1. Then n = 0 or 1 and

0 < (Gtn,m)′(x) < β%s = % < 1.
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(f) Let x ∈ I3 and xtn,m ∈ I3. Then m = 0 or 1 and

(Gtn,m)′(x) > λ%u = % > 1.

(g) If t ∈ ]ck, bk] then Ω(Gt) = Ωt
1 ∪Ωt

3 ∪ {Ãt, R̃t}.
(h) For every t ∈ [ak, ck[, Ωt

2 = [Ãt, R̃t] and Ω(Gt) = Ωt
1 ∪Ωt

3 ∪ [Ãt, R̃t].

6.2. How things work in higher dimensions. Recall that the maps
Gtn,m give the central coordinate of returns of points to the reference neigh-
bourhood V1. Bearing this in mind we will obtain the following:

1. For t ∈ Lk the points Ãt and R̃t are the central coordinates of two
hyperbolic periodic points At and Rt of indices r + 1 and r and period
mt +N2 + nt + 1 +N1 (see Lemma 8.1).

2. For each k the parameter ck corresponds to a heterodimensional cycle
associated to At and Rt (see Lemma 8.2).

3. For every t ∈ ]ck, bk] the homoclinic classes of Pt and Qt, H(Pt)
and H(Qt), are hyperbolic and the resulting nonwandering set after the
bifurcation is Ω(ft)′ = H(Pt)∪H(Qt)∪O(At)∪O(Rt) (see Propositions 7.11
and 7.14 and Lemma 8.3).

4. Observe that, for t ∈ [ck, bk], the point β(t)ntt corresponds to the cen-
tral coordinate of the homoclinic point of Pt which is the continuation of the
heteroclinic point X0. Thus every Gtn,m(β(t)nt) (if well defined) corresponds
to the central coordinate of some homoclinic point of Pt.

5. If X ∈ H(Qt) and its central coordinate Xc belongs to I then Xc is
accumulated by the left extremes of the intervals K t

n,m.

6. For every t ∈ [ak, ck[ one has Gt1,0(Ãt) ∈ (Ãt, R̃t) and this point is the

central coordinate of the homoclinic point of Ãt associated to the unfolding
of the cycle at ck.

7. For every t ∈ [ak, ck[ the resulting nonwandering set is Ω(ft)′ =

H(Pt) ∪H(Qt) ∪H(Ãt) (disjoint union; see Section 9).

7. THE HOMOCLINIC CLASSES ASSOCIATED TO Pt AND Qt

We first prove the theorem for the special family constructed in Sec-
tion 1.3 and then we explain why it remains valid for a neighbourhood of
this family (see Section 7.3).

7.1. Returns and associated sequences. In what follows we fix a
large k and a parameter t ∈ Lk. Given Z = (zs, zc, zu) ∈ V1, its central
coordinate, denoted by Zc, is the point of coordinates (0s, zc, 0u). Define

Ii =
{
{Z ∈ V1 : Zc ∈ Ii} if i = 1, 3,
{Z ∈ V1 : Zc ∈ int(Ii)} if i = 2, 4.
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For simplicity assume that V1 is the union of the four sets above. Observe
that every Z in Λt = Λt(V) =

⋂
n∈Z f

n
t (V) (see (1.3)) different from Pt and

Qt has a return in I1 ∪ . . . ∪ I4. Given Z ∈ V1 we define the position a0(Z)
of Z by

a0(Z) = i if Z ∈ Ii, i ∈ {1, 2, 3, 4}.
Suppose now that Z ∈ V1∩Λt. If Z returns to V1 under positive iterations

then we define the forward return time of Z to V1, denoted by r1 = r1(Z),
as the first positive integer such that f r1t (Z) ∈ V1. Set

Zj = f jt (Z) and Z0 = Z.

We define a1(Z) ∈ {1, 2, 3, 4} according to the position of Zr1 as before, i.e.,

a1(Z) = a0(Zr1).

If the forward orbit of Zr1 returns to V1 we let

r2 = r2(Z) = r1(Zr1) and a2(Z) = a1(Zr1) = a0(Zr2).

In this way, if the orbit of Z returns i + 1 times to V1, for j ≤ i we define
inductively the forward returns rj = rj(Z) and positions aj(Z) of Z as
follows:

rj+1(Z) = r1(Zrj ) = rj(Zr1),

aj+1(Z) = a0(Zrj+1) = a1(Zrj ) = aj(Zr1).

It is clear that we can do the same for the backward orbit of Z, defining,
if possible, ri = ri(Z) and ai(Z) for negative i. For completeness we let
r0(Z) = 0.

Given Z ∈ V1 ∩ Λt let I(Z) be the maximal set of integers such that
if i1 and i2, i1 ≤ i2, belong to I(Z) then ri(Z) is defined for all integers i
with i1 ≤ i ≤ i2. Now to each point Z of V1 ∩Λt we associate the sequences
(rj(Z))j∈I(Z) of return times, (aj(Z))j∈I(Z) of positions and (Zrj )j∈I(Z) of
iterates.

Due to the geometry of the cycle it is easy to get the following lemma
whose proof we omit.

Lemma 7.1. Consider small t > 0 and Z ∈ Λt ∩ V1. Then:

• I(Z) = {0} if and only if Z ∈ γ.
• I(Z) is upper bounded if and only if Z ∈W s(Pt) ∪W s(Qt).
• I(Z) is lower bounded if and only if Z ∈W u(Pt) ∪W u(Qt).

Let us also state the following remark, which is a consequence of the
existence of the filtration (condition (C7)) and the geometry of the cycle.

Remark 7.2. For every t > 0 small enough we have:

• If Z = (zs, zc, zu) belongs to UQ ∩ Ω(ft)′ then zc ≥ 0. Similarly, if
Z ∈ (UP ∩Ω(ft)′) then zc ≤ 0.
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• Suppose that Z ∈ V and that f it (Z) is a forward (resp. backward)
iterate of Z which does not belong to V. Then there is j0 = j0(Z) such that
f jt (Z) 6∈ V for all j > j0 (resp. j < j0).

7.1.1. Central dynamics. In this section we analyze the dynamics of the
returns to V1. The central coordinate of such returns is given by the maps
Gtn,m defined in (2.1) (see also (7.1) above).

Consider a point Z ∈ V1 such that 1 ∈ I(Z). Let r1 = r1(Z) > 0 and
recall that we split the segment {0, 1, . . . , r1} of the orbit of Z as follows:

r1 = r1(Z) = q1(Z) +N2 + p1(Z) +N1,

where N1 and N2 are the transition times from UQ to UP and from UP to UQ,
respectively, and p1 = p1(Z) and q1 = q1(Z) are the numbers of consecutive
iterates of this orbit segment in UP and UQ, respectively. We claim that if
t ∈ Lk then

p1 ≥ −mk and q1 ≥ nk
(see (5.1) for the definitions of nk and mk).

To see (for instance) that p1 ≥ −mk observe that, by definition of p1,
Zi ∈ UP for all i ∈ {N1, . . . , p1 + N1} and Zp1+N1 ∈ f−N2

t (V2). By the
construction of the arc and (F2),

zc
N2+p1+N1

= zc
p1+N1

+ t = λ(t)p1zc
N1

+ t.

Remark 7.2 and the fact that ZN2+p1+N1 6∈ W s
loc(Qt) (otherwise the orbit

of Z does not return to V1) imply that zc
p1+N1

+ t > 0. Thus zc
p1+N1

> −t.
Also recall that zc

N1
belongs to J = [−b,−λb]. Thus

λ(t)p1(−λb) ≥ λ(t)p1zc
N1

> −t ≥ −1
1− s λ(t)−mk ,

where the last inequality follows from (5.7). As b and s are close to 1 and 0,
respectively, we conclude that p1+1 > −mk, that is, p1 ≥ −mk. Analogously
one proves that q1 ≥ nk.

From the previous arguments it follows that there are n(Z),m(Z) ∈ N0
such that

r1 = q1+N2+p1+N1, where q1 = nk+n(Z) and p1 = (−mk)+m(Z),

where

• Zi ∈ UP for all i ∈ {N1, N1 + 1, . . . , N1 + p1},
• Zp1+N1 ∈ f−N2

t (V2),
• Zi ∈ UQ for all i ∈ {N1 + p1 +N2, . . . , N1 + p1 +N2 + q1}.

In this case we say that r1 is a return of type (n(Z),m(Z)).
By definition, if Zi = (zs

i , z
c
i , z

u
i ) belongs to UP∪UQ then Zc

i = (0s, zc
i , 0

u).
Observe that by the ft-invariance of the foliations (condition (F1)), the
definitions of N1 and Π, and our construction, we have
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• Zc
N1

= Π(Zc),
• Zc

p1+N1
= λ(t)p1Zc

N1
,

• Zc
N2+p1+N1

= Ht(Zc
p1+N1

) = λ(t)p1Zc
N1

+ t = λ(t)p1Π(Zc) + t.

Therefore, using the definitions of p1 and q1, one has

Zc
r1 = β(t)n(Z)+nk(λ(t)m(Z)−mkΠ(Zc) + t).

Using (5.12) and (5.14) and since t ∈ Lk we get

(7.1) Gtn(Z),m(Z)(Z
c) = Zc

r1 = β(t)n(Z)(λ(t)m(Z)∆k(t)Π(Zc) + 1 + µk(t)),

where µk(t) ∈ [−µ0/2, µ0/2] (recall Lemma 5.7).
Thus the family of the functions Gt

n,m defines the central dynamics for
points having a forward return of type (n,m).

Define V tn,m as the set of points in V1 having a return of type (n,m).
Observe that this set is an n-dimensional box such that {Zc ∈ Vtn,m} =
Kt
n,m, where Kt

n,m is defined as in Section 3.

7.1.2. Itineraries. The next lemma characterizes the sequences of pos-
sible positions for points Z ∈ Λt ∩ V1 for t ∈ Lk and is a consequence of the
comments above and of Lemmas 3.4 and 3.6 for the Gt

n,m maps.

Lemma 7.3. Given t ∈ Lk consider Z ∈ Λt ∩ V1 and j ∈ I(Z). Then:

(1) If aj(Z) = 1 and j+1 ∈ I(Z), then aj+1(Z) = 1 and Zrj+1 ∈ int(I1).
(2) If aj(Z) = 2 and j + 1 ∈ I(Z), then aj+1(Z) = 1 or 2.
(3) If aj(Z) = 2 and j − 1 ∈ I(Z), then aj−1(Z) = 2 or 3.
(4) If aj(Z) = 3 and j−1 ∈ I(Z), then aj−1(Z) = 3 and Zrj−1 ∈ int(I3).
(5) If aj(Z)=4 and j+1∈I(Z), then aj+1(Z)=1 and Zrj+1∈ int(I1).
(6) If aj(Z)=4 and j−1∈I(Z), then aj−1(Z)=3 and Zrj−1∈ int(I3).

Observe that if aj(Z) = 1 and j − 1 ∈ I(Z), then aj−1(Z) (a priori)
can take any value in {1, 2, 3, 4}. The same holds when aj(Z) = 3 and
j + 1 ∈ I(Z), i.e., aj+1(Z) = 1, 2, 3 or 4.

Remark 7.4. The previous lemma also holds for any Z ∈ V1 having a
forward (resp. backward) return r1 to V1 such that Z, Z1, . . . , Zr1 (resp.
Z, Z−1, . . . Zr1) belong to V.

Corollary 7.5. Consider t ∈ Lk with k large enough, and let Z ∈
Ω(ft) ∩ V1 be such that I(Z) = Z. Then there are three possibilities:

(1) aj(Z) = 1 for every j ∈ I(Z).
(2) aj(Z) = 2 for every j ∈ I(Z).
(3) aj(Z) = 3 for every j ∈ I(Z).
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Proof. First observe that if Z ∈ Ii and fmt (Z) ∈ int(Ij) then there is a
neighbourhood V of Z with the same property, i.e., fmt (V ) ⊂ int(Ij). The
corollary now follows from Lemma 7.3 and Remark 7.4.

The next three lemmas are similar to Steps B, C and D of [DR2, Section
4.2], therefore we just sketch their proofs. Observe that if Z ∈ Λt \ {Pt, Qt}
then there exists k = k(Z) ∈ Z such that f kt (Z) ∈ V1. This means that by
replacing Z by some iterate we can (and do) assume that Z ∈ V1.

Lemma 7.6. Let t ∈ Lk with k sufficiently large.

(1) If Z ∈W u(Pt)∩ (Ω(ft)∩ V1) and Z 6= Pt, then aj(Z) = 1 for every
j ∈ I(Z).

(2) If Z ∈W s(Qt)∩ (Ω(ft)∩V1) and Z 6= Qt, then aj(Z) = 3 for every
j ∈ I(Z).

Proof. Let us prove (1); the proof of (2) runs analogously by considering
the backward orbit of Z, so we omit it.

Take any Z as in the first item of the lemma. Then there is l ∈ Z such
that f lt(Z) ∈ W u

loc(Pt) ∩ V2. Thus fN2+l
t (Z) ∈ fN2

t (W u
loc(Pt)) ∩ UQ. Recall

now that Xt = (xs
0, t, 0

u) is the homoclinic point of Pt defined as the the
continuation of X0 (see Section 1.3). Thus by (F1),

(fN2+l
t (Z))c = (0s, t, 0u) = Xc

t .

Write W = fnk+N2+l
t (Z). Then, by the definition of nk and Lemma 5.7, we

have
W c = fnkt (Xc

t ) = (0s, β(t)nkt, 0u),

where

β(t)nkt ∈ [1− µ0/2, 1 + µ0/2] ⊂ int(I1).(7.2)

Therefore a0(W ) = 1 and W ∈ I1. By the arguments in the proof of Corol-
lary 7.5, aj(W ) = 1 for all j ∈ I(W ) and j ≥ 0.

By construction, f−it (W ) ∈ UP for all i ≥ nk + N2 + l, thus I(W )
consists only of nonnegative numbers. This completes the proof of the result
for the point W . The lemma follows by observing that there is h such that
aj(Z) = aj+h(W ) for all j ∈ I(Z).

The previous lemma shows that every homoclinic point of Pt (resp. of
Qt) in V1 is in the interior of I1 (resp. of I3). By continuity we have the
following:

Corollary 7.7. Suppose that the point Z belongs to the closure of
H(Pt) (resp. H(Qt)). Then aj(Z) = 1 (resp. aj(Z) = 3) for all j ∈ I(Z).

Lemma 7.8. Let t ∈ Lk with k sufficiently large. Then:

(1) W u(Pt) ∩W s(Qt) ∩ (Ω(ft) ∩ V) = ∅ (no-cycles condition).
(2) W s(Pt) ∩W u(Qt) ∩ (Ω(ft) ∩ V) = ∅.
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(3) The intersections between W s(Pt) and W u(Pt) and between W s(Qt)
and W u(Qt) are transverse.

Proof. Item (3) follows easily from the geometry of the cycle and the ex-
istence of the filtration (conditions (C1)–(C7)); for details see [DR2, Section
4.2].

To prove (1) we see that any Z ∈ W u(Pt) ∩W s(Qt) is wandering. We
can assume that Z ∈ V1. On the one hand, if Z is nonwandering, by
Lemma 7.6(1), we have aj(Z) = 1 for all j ∈ I(Z). On the other hand,
by Lemma 7.6(2), aj(Z) = 3 for all j ∈ I(Z), which is a contradiction.

To prove (2) we first claim that if Z ∈W s
loc(Pt)∩ V (resp. Z ∈W u

loc(Qt)
∩V) then there exists a neighbourhoodW of Z such that a0(WY ) = 1 (resp.
a0(WY ) = 3) for every Y ∈ W whose forward orbit intersects V1; here WY

denotes the first forward (resp. backward) iterate of Y in V1.
This claim can be seen as follows. Observe that (7.2) implies that fnkt (Xt)

belongs to the interior of I1. Taking a small neighbourhood W of Z, by the
λ-lemma, we see that W c

Y is close to (fnkt (Xt))c, thus WY is in the inte-
rior of I1. If Z ∈ W u

loc(Qt) ∩ V the argument is similar by taking backward
iterates.

If Z ∈W s(Pt)∩W u(Qt), then replacing it by some iterate, we can assume
that Z ∈ V1.

First, if Z 6∈ I1, since Zi ∈ W s
loc(Pt) for all i large enough, from the

previous observation and Remark 7.4, there exists a neighbourhoodW such
that for every Y ∈ W one has Y 6∈ I1 and aj(Y ) = 1 for all j ∈ I(Y ) with
j > 0. As in the proof of Corollary 7.5, this implies that fnt (W)∩W = ∅ for
every n ∈ N. Thus Z is wandering.

Second, if Z ∈ I1 then there exists a neighbourhood W such that
Y 6∈ I3 for every Y ∈ W. Since Z−i ∈ W u

loc(Qt) for all i large enough,
by the arguments before we have aj(Y ) = 3 for all j < 0 in I(Y ). As
above, it follows that f−nt (W) ∩ W = ∅ for all n ∈ N, hence Z is wander-
ing.

From the proof of the previous lemma we get the following fact:

Remark 7.9. Consider t ∈ Lk with k large. Then:

• If Z ∈W s,u(Pt) ∩ (Ω(ft) ∩ V1) then aj(Z) = 1 for all j ∈ I(Z).
• If Z ∈W s,u(Qt) ∩ (Ω(ft) ∩ V1) then aj(Z) = 3 for all j ∈ I(Z).

Lemma 7.10. Let t ∈ Lk with k sufficiently large. If Z ∈ Ω(ft)∩V1 then
there are three possibilities:

(1) aj(Z) = 1 for every j ∈ I(Z).
(2) aj(Z) = 2 for every j ∈ I(Z).
(3) aj(Z) = 3 for every j ∈ I(Z).
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Proof. There are four possibilities for the set I(Z): (i) I(Z) = Z, (ii)
I(Z) is infinite and lower bounded, (iii) I(Z) is infinite and upper bounded,
and (iv) I(Z) is finite.

In the first case the result follows from Corollary 7.5.
If I(Z) is finite (case (iv)) then, by Lemma 7.1,

Z ∈ (W s(Pt) ∪W s(Qt)) ∩ (W u(Pt) ∪W u(Qt)).

As Z is nonwandering, from Lemma 7.8, one gets

Z ∈W s(Pt) tW u(Pt) = H(Pt) or Z ∈W s(Qt) tW u(Qt) = H(Qt).

By Corollary 7.7, if Z ∈ H(Pt) then aj(Z) = 1 for all j ∈ I(Z), and if
Z ∈ H(Qt) then aj(Z) = 3 for all j ∈ I(Z).

Now consider case (ii) (case (iii) follows similarly). Observe first that, as
in the proof of Corollary 7.5, one has aj(Z) 6= 4 for all j. We now argue
by contradiction: assume that the sequence of positions ai(Z) of Z does
not satisfy the conclusion of the lemma. Then (in particular) there exists
j ∈ I(Z) such that aj(Z) 6= aj+1(Z). By replacing Z by some iterate (if
necessary) we can assume that j = 0. By Lemma 7.3(1), (4), it follows that
a0(Z) 6= 1 and a1(Z) 6= 3. Therefore there are two possibilities:

• a0(Z) = 2 and a1(Z) = 1 (since a0(Z) 6= a1(Z), from Lemma 7.3(2)
we get a1(Z) = 1).
• a0(Z) = 3 and a1(Z) = 1 or 2 (observe that a0(Z) 6= a1(Z) and

ai(Z) 6= 4).

In the first case, by Lemma 7.3(1), aj(Z) = 1 for all j ≥ 1. In the second
cases, by Lemma 7.3(1), (2), aj(Z) = 1 or 2 for every j ≥ 1. In both cases
we get aj(Z) 6= a0(Z) for all j ≥ 1. As in the proof of Corollary 7.5 this
implies that the point Z is wandering, which is a contradiction.

7.2. Hyperbolicity of the homoclinic classes of Pt and Qt for
t in Lk. In the last section we proved that for any t ∈ Lk every point
of W s(Pt) ∩W u(Qt) is wandering and the diffeomorphism ft has no cycles
associated to Pt and Qt (Lemma 7.8). Moreover, the sequence of positions
of any nonwandering point Z of V, different from Pt and Qt, is constant
and equal to 1, 2 or 3 (Lemma 7.10). The next step is to characterize the
points having a sequence of positions equal to 1 or 3: every Z ∈ Ω(ft)′

with a constant sequence of positions equal to 1 or 3 belongs either to the
homoclinic class of Pt (if the sequence consists of 1’s) or to the homoclinic
class of Qt (otherwise) (see Proposition 7.11). The converse of this assertion
was stated in Corollary 7.7. Thereafter we prove that the homoclinic classes
of Pt and Qt are hyperbolic basic sets. In Section 8 we will consider the case
where the sequence of positions is constant and equal to 2.
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The next two results are similar to steps (E), (F) and (G) of [DR2, Section
4.2]. Therefore we just sketch the main ideas involved in their proofs.

For each i ∈ {1, 2, 3} let

Hi(t) = {Z ∈ Ω(ft) ∩ V : aj(Z) = i for every j ∈ I(Z)}.
Proposition 7.11. One has

{Pt} ∪H1(t) = H(Pt) and {Qt} ∪H3(t) = H(Qt).

Proof. By Corollary 7.7 it remains to prove the inclusionsH1(t) ⊂ H(Pt)
and H3(t) ⊂ H(Qt). Let us prove this fact for H3(t); the other assertion fol-
lows similarly by considering backward orbits. We need the following lemma.

Lemma 7.12. Consider Z ∈ H3(t) and any (n − r)-dimensional disk D
containing Z in its interior and transverse to the foliation F s. There exists
a sequence of disks in W s(Qt), say (Hn)n∈N, such that :

• every Hn intersects D transversely in a point Zn,
• the angles of intersection between D and Hn at Zn are uniformly

bounded from below , and
• the sequence (Zn)n∈N converges to Z.

Proof. For simplicity assume that D is foliated by (n − r − 1)-disks
contained in leaves of Fu. First observe that if I(Z) is bounded from above
then, by Lemma 7.1, Z ∈ W s(Qt) ∪W s(Pt). Moreover, by Remark 7.9, if
Z ∈W s(P ) ∩Ω(ft)′ then aj(Z) = 1 for all j ∈ I(Z). Thus, since aj(Z) = 3
for all j, we have Z ∈ W s(Qt). Now the result is immediate: we can take
Zn = Z for all n with the sequence Hn being disks in W s(Qt) containing Zn.

If I(Z) is not bounded from above then, due to geometry of the cycle and
the fact that one has expansion in the u-direction (parallel to Fu), there is a
first j ∈ I(Z) such that the connected component of f rjt (D)∩V1 containing
Zrj intersects W s(Pt) along a curve α0 which is transverse to the stable
foliation. Since aj(Z) = 3, by shrinking the size of D in the central direction
(if necessary), we can assume that α0 is contained in I3.

Given a curve α in W cs
loc(Qt)∩UQ (see (1.2) for the definition of W cs

loc(Qt))
denote by αc the set of the points Xc where X ∈ α (i.e., αc is the projection
of α in γ along the leaves of F s). With this notation, the previous arguments
imply that

αc
0 ⊂ I3.(7.3)

Denote by D0 the component of f rjt (D) ∩ V1 containing α0 and write
W = W0 = Zrj . Observe that aj(W ) = 3 for all j ≥ 0. We now let

hj = hj(W ) = rj+1(W )−rj(W ) = n(Wrj )+nk+N2+m(Wrj)+(−mk)+N1.

Recall that n(Wrj)+nk and m(Wrj)+(−mk) are the numbers of consecutive
iterates of the orbit of Wrj in UQ and in UP , respectively. Since aj(W ) = 3,
by Proposition 6.7(f), m(Wrj) = 0 or 1.
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Let D1 be the connected component of fh1
t (D0)∩V1 containing Wr1 and

α1 = D1 ∩W cs
loc(Qt) ⊂ D1 ∩W s(Pt).

Write W cs
r1 = (ws

r1 , w
c
r1 , 0

u) and observe that (by construction and (F1)) this
point belongs to α1. Also observe that the curve α1 is transverse to the
stable foliation. Then

αc
1 = Gtn(Wr1),m(Wr1 )(α

c
0).

From (7.3) and Proposition 6.7(f) we get

|αc
1| > %|αc

0|, % > 1.

We now argue inductively by considering disks Di+1 defined as the
connected components of fhi+1(Di) ∩ V containing Wri+1 , curves αi+1 de-
fined as the intersection between Di+1 and W cs

loc(Qt), and points W cs
ri =

(ws
ri , w

c
ri , 0

u) ∈ αi.
To estimate the lengths of the curves αi+1 we need to pay special atten-

tion to the previous construction (it is not true, in general, that |αc
i+1| >

%|αc
i | as in the case i = 0). For that, for each i ≥ 0, we consider the curves

α+
i and α−i defined as the closures of the connected components of αi \W cs

ri
to the right and to the left of W cs

ri , respectively. Observe that

(α±i+1)c = Gtn(Wri),m(Wri )
((α±i )c).

Therefore, the calculation above for i = 0 also shows that if (α±i )c is con-
tained in I3 then

|(α±i+1)c| ≥ %|(α±i )c|.
First consider the curves α+

i . As above, if (α+
j )c is contained in I3 for all

j = 0, 1, . . . , i, then

|(α+
i+1)c| > %|(α+

i )c| > %i+1|(α+
0 )c|, % > 1.

As the maps Gtn,m preserve orientation, there is a (first) k+ such that (α+
k+)c

intersects the right extreme of I3. Then, using conditions (E1) and (E4), we
find that (α+

i )c intersects the right extreme of I3 for all i ≥ k+.
Arguing analogously with the curves α−j we get k− such that (α−i )c

intersects the left extreme of I3 for all i ≥ k−. Taking k = max{k+, k−} we
see that αc

k contains I3.
We now need the following fact.

Claim 7.13. Given t ∈ Lk with k large, consider the (n − r)-disk H
defined by

H =
⋃

X∈α
CC(F u(X) ∩ V1,X),

where α is a curve in W cs
loc(Q) transverse to F s such that the interior of αc

contains I3. Then W s(Qt) intersects H transversely.
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Proof. Observe that the condition t ∈ Lk implies that the homoclinic
point associated to Qt given by Zt = f−N2+mk

t (Yt) (Yt as in Section 1.3) is
such that Zc

t belongs to the interior of J3. Observe now that

G = CC(W s(Qt) ∩ UQ, f−N1
t (Zt)) = {(xs, (f−N1

t (zt))c, ẑ u
t )},

where (xs, 0c, 0u) ∈ UQ and ẑ u
t ∈ Ru. Since zc

t ∈ J3 we infer that (f−N1
t (zt))c

belongs to the interior of I3. Thus G intersects H (transversely), ending the
proof of the claim.

Using the claim we deduce that f rkt (D0) intersects W s(Qt) transversely.
Moreover, due to the geometry of the cycle, the angle of this intersection is
bounded from below.

Finally, to get the sequence Zn it is enough to consider a nested sequence
of disks Dn contained in D and containing Z in their interiors and argue as
before.

End of the proof of Proposition 7.11 (H3(t) ⊂ H(Qt)). If I(Z) is lower
bounded then, by Lemma 7.1, Z belongs to W u(Qt) ∪ W u(Pt), and, as
Z ∈ H3(t), by Remark 7.9, one has Z ∈ W u(Qt). Thus we can take the
disk D in Lemma 7.12 contained in W u(Qt) and containing Z in its interior.
Now applying Lemma 7.12 to the disk D we get a sequence of points Zn
such that

Zn ∈ D tW s(Qt) ⊂W u(Qt) tW s(Qt) ⊂ H(Qt), Zn → Z.

Thus Z ∈ H(Qt).
If I(Z) is not lower bounded then we consider a nested sequence of

disks, say Cn, contained in F s(Z) and containing Z in their interiors with⋂
Cn = {Z}. For each Cn there exists −jn ∈ I(Z) such that f−jnt (Cn)

intersects W u(Qt) transversely at some point Yn. Taking small (n− r)-disks
in W u(Qt) around the points Yn and considering their images under f jnt one
gets a sequence of disks in W u(Qt), say Dn, converging to a disk D which
is transverse to the stable foliation.

By Lemma 7.12, W s(Q) intersects D transversely in a sequence of points
Zn converging to Z. Due to the control on the angle of intersection, to each
Zn ∈ W s(Qt) t D there corresponds a Zn ∈ Dn t W s(Qt), and (Zn)n
converges to Z. Since, by construction, each Zn ∈ H(Qt), this ends the
proof of the proposition.

Proposition 7.14. Let t ∈ Lk with k sufficiently large. The homoclinic
classes associated to Pt and Qt are hyperbolic basic sets with indices r + 1
and r, respectively. Moreover , there are no cycles related to these sets.

Proof. By definition, H(Pt) and H(Qt) are transitive sets. To see, for
example, that the homoclinic class of Pt is locally maximal consider the set

W1 = V \ (I2 ∪ I3 ∪ I4 ∪ V1,t),
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where
V1,t = {Z ∈ UQ : 0 ≤ zc < β(t)−nk−1(1− ε1)a},

the sets Ii are defined in Section 2.1 and I1 = [(1− ε1)a, a]. We claim that

H(Pt) =
⋂

n∈Z
fnt (W1).

This can be seen as follows. Suppose that Z ∈ H(Pt), Z 6= Pt. Then con-
sidering some iterate of Z we can assume that Z ∈ V1. By Corollary 7.7,
ai(Z) = 1 for all i ∈ I(Z), thus Zri ∈ I1 for all i ∈ I(Z). So what is left is
to see that if Zl ∈ UQ then Zl 6∈ V1,t. Since such a Zl is a backward iterate
of some Zrj with Zl, Zl+1, . . . , Zrj ∈ UQ, the claim is equivalent to proving
that n(Zrj−1) = 0 or 1, where

rj − rj−1 = nk + n(Zrj−1) +N2 −mk +m(Zrj−1) +N1.

But this is a consequence of Proposition 6.7(e). So H(Pt) ⊂
⋂
i∈Z f

i
t (W1).

To prove the converse observe that, by definition,
⋂

i∈Z
f it (W1) ⊂ H1(t) ∪ {Pt}.

Thus, by Proposition 7.11, it follows that
⋂
i∈Z f

i
t (W1) ⊂ H(Pt).

To prove that H(Pt) is hyperbolic of index r + 1 first observe that the
derivative of ft contracts (resp. expands) uniformly the vectors parallel to
the stable direction (tangent to F s) (resp. the unstable direction). Thus,
being hyperbolic, this set must have index either r or r+ 1. To see that the
index is r+1 we analyze the action of the derivative in the central direction.

As above, if Z ∈ H(Pt) ∩ V1 and it has a first return to V1, then by
Proposition 6.7(e), this is a uniformly contracting return in the central di-
rection. If the first return of Z is not defined then Zi belongs to W s

loc(Pt) for
all i ≥ N1 and it is clear that we have a contraction in the central direction.

Now the fact that H(Pt) is hyperbolic of index r + 1 follows from the
standard cone field construction.

In a similar way we find that H(Qt) is a hyperbolic basic set of index r.
Finally, to prove that there are no cycles associated to H(Pt) and H(Qt)

just observe that if Z ∈W s(H(Qt))∩W u(H(Pt)) then Z ∈ Ω(ft)∩V and by
Proposition 7.11 there are j, k ∈ I(Z) such that aj(Z) = 1 and ak(Z) = 3,
which contradicts Lemma 7.10.

7.3. Proof of the results for arcs close to the model family. We
end this section by pointing out that the previous results (i.e., that the ho-
moclinic classes of Pt and Qt are hyperbolic basic sets for a set of parameters
with positive relative density at t = 0) remain true for a neighbourhood of
the model arc (ft)t∈[−t0,t0].
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In fact, observe that to obtain the result above we have only used con-
ditions (C1)–(C7), (E1)–(E8) and (F1) and (F2). Clearly, conditions (C1)–
(C7) and (E1)–(E8) are open conditions (just replace (C2) by a finite number
of nonresonance conditions and (C6) by the transversality condition between
γ and the strong stable and unstable foliations of W s(P ) and W u(Q), as
explained in the comments after these conditions) and {M1,M2} is also a
filtration for diffeomorphisms close to f = f0.

Of course, (F1) and (F2) are not open conditions: in general the foliations
are not invariant along the cycle. However, they are almost-invariant in the
sense that the returns of the leaves of the strong stable and of the strong
unstable foliations are curves C1-t1+η-close to the initial leaves, for some
η > 0. This is sufficient for our purpose; for details see [DR3, Section 6.1].

Also in general the projections associated to the foliations are not isome-
tries (see (F2)) but the general case is handled as in [DR3, Section 6.2].

8. SECONDARY CYCLES

In view of the results in the previous section, to prove the theorem (for
the model family) it remains to consider points in Ω(ft) ∩ V, t ∈ Lk for
sufficiently large k (that we consider fixed in what follows), whose sequences
of positions are constant and equal to 2, i.e., Z ∈ H2(t).

Let Z ∈ Ωt ∩ V1 and assume that aj(Z) = 2 for every j ∈ I(Z). We
claim that in this case I(Z) = Z. To see this, observe that, for instance, if
I(Z) is upper bounded then, by Lemma 7.1, Z ∈ W s(Pt) ∪W s(Qt). Thus,
by Remark 7.9, aj(Z) = 1 if Z ∈ W s(Pt) and aj(Z) = 3 if Z ∈ W s(Qt) for
all j ∈ I(Z), which is a contradiction.

8.1. Central dynamics of points in H2(t). Recall that there are two
kinds of returns for points Z ∈ H2(t) to V1: (1, 0) and (0, 1)-returns. That
is, in both cases the number r1 = r1(Z) is the same,

r1 = nk +N2 + (−mk) +N1 + 1.

However, for these two types of returns the restrictions of f r1t to the central
direction are different (given by Gt

1,0 and Gt0,1).

Lemma 8.1. Let t ∈ Lk. Then the diffeomorphism ft has two hyperbolic
periodic points in V1, denoted by At and Rt, of period

πk = nk +N2 + (−mk) +N1 + 1

and of indices r + 1 and r, respectively. Moreover , Ac
t = Ãt and Rc

t = R̃t.

Proof. By Proposition 6.1, the map Gt
0,1 has two fixed points Ãt and

R̃t. Observe also that Gt0,1 corresponds to the central coordinates of returns
under fπkt . The result now follows by observing that the πk-return of the
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diffeomorphism ft to V1 contracts uniformly the vectors tangent to F s and
expands uniformly the vectors tangent to Fu.

8.2. Heterodimensional cycles associated to At and Rt. In the
next lemma we prove that there is a cycle associated to Ack and Rck , where
ck ∈ Lk is as in Lemma 6.4.

Lemma 8.2. For every k sufficiently large the diffeomorphism fck has a
cycle associated to the periodic points Ack and Rck , ck ∈ Lk. Moreover , the
arc (ft)t∈[ak,bk] unfolds generically such a cycle.

Proof. We begin by observing that, for t in Lk and for the one-dimen-
sional model Gt0,1, we have

(Ac
t , R

c
t) = (Ãt, R̃t) ⊆W s(Ac

t , G
t
0,1) ∩W u(Rc

t , G
t
0,1).

By (F1), As
t = Rs

t and Au
t = Ru

t . Thus W s(At, ft) and W u(Rt, ft) are trans-
verse along the orbit of the fπkt -invariant (πk-periodic) curve

Υt = {(As
t, z

c, Au
t ) : zc ∈ (Ac

t , R
c
t )}.(8.1)

PSfrag replacements

I II2Qt Pt

At Rt
Υt

W u(At)

W s(Rt)

W s(f−1
t (Rt))

quasitransverse heteroclinic point

ft

fπkt

fπk−1
t (W u(At))

fπk−1
t (W u(At))

fπk−1
t (W u(At))

Fig. 7. The heterodimensional cycle at ck

Observe that the numbers of iterates of the orbit of this periodic curve in UP
and UQ are −mk + 1 and nk, respectively, and that nk →∞ and −mk →∞
as k →∞. Now, using the expansion (resp. contraction) of the πk-returns in
the unstable (resp. stable) direction, it is not hard to check that Υt is close
to the segment {0s} × (Ã, R̃)× {0u}.
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By (F1) the local manifolds of At and Rt are given by

W u
loc(At) = {(As

t, A
c
t , x

u) : (0s, 0c, xu) ∈ UQ},
W s

loc(Rt) = {(xs, Rc
t , R

u
t ) : (xs, 0c, 0u) ∈ UQ}.

Observe that there is a disk D̃u
t contained in W u

loc(At) of points having a
return of type (0, 0). By construction, the image of D̃u

t under fπk−1
t contains

a disk of the form

Du
t = {(ws

0, G
t
0,0(Ac

t), x
u) : (0s, 0c, xu) ∈ UQ} ⊂ fπk−1

t (D̃u
t )

for some ws
0. On the other hand, f−1

t (W s
loc(Rt)) contains the set

Ds
t = {(xs, β(t)−1Rc

t , w
u
0) : (xs, 0c, 0u) ∈ UQ}

for some wu
0 . Thus to get an intersection between Du

t and Ds
t (which will

be necessarily quasi-transverse and will provide the cycle) it is enough to
observe that

β(t)−1Rc
t = Gt0,0(Ac

t), t = ck ∈ Lk(8.2)

(see Lemma 6.4).
It remains to see that the arc unfolds this cycle with positive velocity.

But, as this velocity is equal to the derivative of Uk(t) at ck, this also follows
from Lemma 6.4.

The next lemma together with Proposition 7.14 proves items (2) and (3)
of the theorem and shows that ck is a first bifurcation value for (ft)t∈[−t0,t0].

Lemma 8.3. Consider t ∈ ]ck, bk]. Then

Ω(ft)′ = H(Pt) ∪H(Qt) ∪ {O(At),O(Rt)}.
Proof. Fix any t ∈ ]ck, bk] with k large. In view of Corollary 7.5 and

Propositions 7.11 and 7.14, it is enough to see that H2(t) = {O(At),O(Rt)}.
Clearly, {O(At),O(Rt)} ⊂ H2(t). The other inclusion is a direct consequence
of Proposition 6.7(b).

Observe that our construction also gives the following:

(8.3) W s(At) ∩W u(Rt) =
πk⋃

i=0

f it (Υt), Υt = {{As
t} × (Ac

t , R
c
t )× {Au

t }}.

9. NONHYPERBOLIC ROBUSTLY TRANSITIVE DYNAMICS

9.1. The set H2(t) for t ∈ [ak, ck[. In this section we prove item (4)
of the theorem for the model family. This result follows immediately from:

Proposition 9.1. Let t ∈ [ak, ck[. Then H2(t) = H(At) = H(Rt).
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Observe that the cycles associated to Ack and Rck we consider here are
exactly the ones considered in [D1, Theorem 1], where it is proved that the
resulting nonwandering set is equal to the homoclinic classes of Pt and Qt.
To prove these results one only needs to have a diffeomorphism fck having
a restriction to the curve [Ãt, R̃t] with fine distortion properties (as in our
case). So we just sketch the proof of this proposition.

Proof of Proposition 9.1. Observe first that by the choice of the param-
eters, H(Rt) ⊂ H2(t) and H(At) ⊂ H2(t). Thus we need to prove

Proposition 9.2. Let t ∈ [ak, ck[. Then

H2(t) ⊂ H(Rt) and H2(t) ⊂ H(At).

Proof. To prove the first inclusion, we need the following two preparatory
lemmas:

Lemma 9.3. Let t ∈ [ak, ck[, x ∈ H2(t) and ∆ an (n − r)-dimensional
rectangle containing x foliated by segments of the strong unstable folia-
tion Fu. Then ∆ tW s(Rt) 6= ∅.

Proof. Using expansion in the unstable direction and the fact that, by
definition, aj(x) = 2 for all j, we get n > 0 such that fnt (∆) contains a
rectangle ∆′ that (in local coordinates) is of the form {xs

0} × U × [−1, 1],
where U is contained in I2.

Recall now that each map F tn,m(ν)+1 of the iterated function system F t
defined in Section 4.2 corresponds to some power of ft. By an argument as
in Section 7, Proposition 4.11 implies now that there is k > 0 such that
fkt (∆′) tW s(Rt) 6= ∅, ending the proof of the lemma.

Remark 9.4. As in Remark 7.4, Lemma 9.3 also holds if x is a point
whose forward orbit is contained in V and whose itinerary consists of 2’s.

Lemma 9.5. Let t ∈ [ak, ck[ and x ∈ H2(t). Consider any small stable
segment Υ containing x in its interior. Then Υ tW u(Rt) 6= ∅.

Proof. Just observe that there is expansion in the stable direction for
negative iterates, and that the backward iterates of x are always to the left
of Rt.

We are now ready to prove that H2(t) ⊂ H(Rt). Given x ∈ H2(t) and
ε > 0 consider a stable segment Υε of size 2ε centred at x. By Lemma 9.5,
there is z ∈ Υε t W u(Rt). So there is a rectangle ∆ε of diameter less than
ε containing z and contained in W u(Rt). Since z is in a stable segment of
x the forward orbit of z is contained in V and its forward itinerary consists
of 2’s. By Remark 9.4 and Lemma 9.3, ∆ε ∩H(Rt) 6= ∅. This implies that
there is a homoclinic point of Rt at distance less than 2ε from x. Since this
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construction holds for all ε this implies that x ∈ H(Rt), ending the proof of
H2(t) ⊂ H(Rt).

Observe that the inclusion H2(t) ⊂ H(At) follows analogously by using
the iterated function system F̃µ and Remark 4.13. The proof of Proposi-
tion 9.2 is now complete.

As we mentioned above, Proposition 9.1 follows immediately from Propo-
sition 9.2.

9.2. Proof of item (4) of the theorem: the general case. Recall
that a strongly partially hyperbolic set of a diffeomorphism f is a compact
f -invariant set Λ such that there are a splitting of the tangent bundle over
Λ into three nontrivial Df -invariant subbundles, TΛ = Ess⊕Ec⊕Euu, and
constants K > 0, 0 < % < 1 and j > 0 such that:

• Ess and Euu are uniformly hyperbolic bundles (contracting and ex-
panding, respectively).
•Write Ecs = Ess⊕Ec and Ecu = Euu⊕Ec. Then the splittings Ess⊕Ecu

and Ecs ⊕ Euu are dominated, i.e., for every x ∈ Λ one has

‖Dxf
j |Ess

x
‖ · ‖Dfj(x)f

−j|Ecu
fj(x)
‖ < K%j ,

‖Dxf
−j|Euu

x
‖ · ‖Df−j(x)f

j|Ecs
f−j (x)

‖ < K%j .

Observe that in our model the sets H(Pt), H(Qt), H(Rt), and H(At)
are strongly partially hyperbolic.

Consider an arc (hµ)µ∈[−τ,τ ], τ > 0, of diffeomorphisms in Rn unfolding
generically a heterodimensional cycle at µ = 0 associated to the hyperbolic
fixed points A0 = (0r, Ã, 0n−r−1) and R0 = (0r, R̃, 0n−r−1) of indices r + 1
and r (Ã and R̃ are the points introduced in (E9)) satisfying conditions (C1)–
(C7) of Section 1 and the conditions on the unfolding of a heterodimensional
cycle described at the beginning of Section 1.3. Moreover, the arc (hµ)µ∈[−τ,τ ]
is constructed to satisfy the following conditions:

(M1) Geometry of the intersections: W s(A0) ∩ W u(R0) = W s(A0) t
W u(R0) = {0r} × (Ã, R̃) × {0n−r−1} = Υ0; in particular, the
cycle is connected .

(M2) Central dynamics: For some small η > 0 the restriction of hµ to the
curve {0r} × [Ã − η, R̃ + η]× {0n−r−1} is given by (T µ0,1)N3 (recall

(E9)). In particular, {0r}× [Ãµ, R̃µ]×{0n−r−1} is contained in the
transverse intersection between W s(Aµ) and W u(Rµ).

(M3) Transverse dynamics: The positive eigenvalues λA and βR of the
derivative of T at A and R are such that λA is the greatest con-
tracting eigenvalue of Dh0(A) (in modulus) and βR is the smallest
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expanding eigenvalue of Dh0(R) (in modulus). Moreover, any eigen-
value σ of Dh0(A) (resp. Dh0(R)) different from λA (resp. βR) is
such that |σ| 6= |λA| (resp. |σ| 6= |βR|).

(M4) The cycle is noncritical : By (M3) one can define the strong stable
foliation of W s(A0) and the strong unstable foliation of W u(R0). We
assume that the curve Υ0 is transverse to these foliations. Moreover,
the cycle satisfies conditions (F1) and (F2) of Section 1.2.

(M5) Velocity of the unfolding of the cycle: The cycle is unfolded with
positive velocity (recall Lemma 8.2).

Finally, the neighbourhood of the cycle and the constants C, C ′ and r
above depend only on the geometry of the cycle (conditions (M1) and (M4)),
the dynamics of the restriction of h0 to Υ0 (condition (M2)), and the velocity
of the unfolding (M5). In other words, these constants do not depend on the
transverse dynamics of the cycle once condition (M3) is satisfied.

For each k large enough consider the interval Lk and the reparametriza-
tion µk : Lk → [−µ0, µ0] defined in Lemma 5.7 and its inverse tk(µ). Now
define the arc (gk,µ)µ∈[−µ0/2,µ0/2] of diffeomorphisms by

gk,µ = fπktk(µ),

where πk = nk + N2 −mk + 1 + N1 (Lemma 8.1). By Lemma 8.2, this arc
unfolds generically at θk = µk(ck) a cycle associated to the hyperbolic fixed
points Ack and Rck .

Lemma 9.6. For every large k and small µ0 the arc (gk,µ)µ∈[−µ0/2,µ0/2] is
ε-C1-close to some arc (hµ)µ∈[−µ0/2,µ0/2] satisfying conditions (M1)–(M5).

Having in mind the comments we made in Section 7.3 and the construc-
tion in Section 9.1, it is now clear that we can argue exactly in the same
way for arcs close to (ft)t∈[−t0,t0] getting the same conclusion. Moreover, us-
ing the standard cone-field construction one concludes that the sets H(Pt),
H(Qt), H(At), and H(Rt) are strongly partially hyperbolic.
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