MATHEMATICAE
174 (2002)

Heterodimensional cycles, partial hyperbolicity
and limit dynamics

by

L. J. Diaz (Rio de Janeiro) and J. Rocha (Porto)

To J. Palis on the occasion of his 60th birthday

Abstract. We study one-parameter families of diffeomorphisms unfolding heterodi-
mensional cycles (i.e. cycles containing periodic points of different indices). We construct
an open set of such arcs such that, for a subset of the parameter space with positive rela-
tive density at the bifurcation value, the resulting nonwandering set is the disjoint union
of two hyperbolic basic sets of different indices and a strong partially hyperbolic set which
is robustly transitive.

The dynamics of the diffeomorphisms we consider is partially hyperbolic with one-
dimensional central direction. The main tool for proving our results is the construction
of a one-dimensional model given by an iterated function system which describes the
limit dynamics in the central direction. For selected parameters of the arc, we translate
properties of the model family to the diffeomorphisms.

INTRODUCTION

It is well known that there are two main mechanisms to destroy the
stability of a system: loss of hyperbolicity of some periodic point and creation
of a cycle. In this paper we focus our attention on the second one.

In dimension two, the creation of cycles is associated to homoclinic or
heteroclinic tangencies, and all the hyperbolic periodic points involved in the
cycle have the same index (equidimensional cycles). This kind of bifurcations
is a well studied subject since the seventies; see, for instance, [PT3] for an
overview on this matter.

In higher dimensions there are cycles involving hyperbolic periodic points
of different indices (heterodimensional cycles). The unfolding of this kind of
cycles may lead to dynamical features completely different from the ones in
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the equidimensional case (for instance, the creation of robustly transitive
sets of partially hyperbolic type). The study of some of these dynamical
features is the goal of this paper.

Let us introduce some definitions and state the main result of this article.

Let M be a compact, connected and boundaryless n-dimensional Rie-
mannian manifold, n > 3, and denote by Diff**(M) and P>°(M) the spaces
of C'°°-diffeomorphisms and of one-parameter families of diffeomorphisms of
M, respectively, endowed with the usual C''-topologies.

A diffeomorphism f defined on M exhibits a heterodimensional cycle
associated to the hyperbolic periodic points P and Q if W*(P) and W"(Q)
have a nontrivial transverse intersection, and W"(P) and W*(Q) have a
quasi-transverse intersection (of codimension one) along the orbit of some
point X. In this case, index(P) = index(Q) + 1, where index(R) denotes the
dimension of the stable manifold of the hyperbolic periodic point R.

Given f with a heterodimensional cycle as above we can consider com-
pact parts K°(Q) of W3(Q) and K"(P) of W"(P) such that

(0.1) K(Q) N K*(P) = int(K*(Q)) Nint(K*(P)) = { X},

where X is a point of quasi-transverse intersection. Consider a C'-neigh-
bourhood U of f such that the analytic continuations of P, @, K*(Q) and
K"(Q) are defined for all g € U and let I" be the set of diffeomorphisms g in
U such that the continuations K*(Q,) and K"(FP,) have an intersection as
in (0.1). If U is small then I is a codimension one submanifold of Diff>* (M)
such that U \ I" has two connected components, say L{}r and U

We consider arcs (ft)te[—l,l} unfolding generically a heterodimensional
cycle in I' at t = 0, i.e., the curve (fi);cj—1,1) is transverse to I" at t = 0.
Here we suppose that the cycles correspond to a first bifurcation, that is
(for instance), the difftomorphisms in the component U are hyperbolic.
Observe that associated to the submanifold I" there is an open set U in
P> (M) consisting of arcs unfolding generically cycles in I" (say at ¢t = 0,
for simplicity). We assume that f; € U for t <0 and f; € Z/{}r fort > 0.

Given an arc (f¢)ie[—1,1] our objective is to describe the dynamics of the
diffeomorphisms f; in L{IT for a large set of parameters (a set of nonzero
Lebesgue measure with positive relative density at the bifurcation t = 0).

We consider a neitghbourhood of the cycle, that is, an open set V con-
taining all the elements of the cycle: the periodic points ) and P, the inter-
section W*5(P) N W"(Q), and the orbit of the point Xy of quasi-transverse
intersection. One aims to describe the resulting nonwandering set, denoted
by £2(f;)’, associated to the unfolding of the cycle, i.e., to characterize the
dynamics of £2(f:)" = £2(f;)NV for small t > 0. This description can be very
complicated, even in the case where the diffeomorphisms in the component
U are Morse-Smale or Axiom A.
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Let us introduce two sets of parameters:

e H(s) is the set of parameters ¢ € (0,s) such that f; is f2-stable and
Q(f:) coincides with the (disjoint) union of the homoclinic classes of P, and
Q: (the continuations of P and Q).

e B(s) is the set of parameters t € (0, s) such that the homoclinic classes
associated to P; and to ; have nonempty intersection.

Let us recall that the homoclinic class associated to a hyperbolic periodic
point R is the closure of the set H(R) of transverse homoclinic points of R
(i.e., the transverse intersections between the invariant manifolds of R).
Observe that, since P; and @; have different indices, f; is nonhyperbolic
(unstable) for every t € B(s).

In [Dy], [D2] and [DR;] there are constructed codimension one subman-
ifolds I and open sets Ur as above such that B(s) = (0,s) for every
( ft)te[—m} € Ur and small s. Moreover, the submanifold I" can be taken
such that U consists of Morse-Smale diffeomorphisms. We call this kind of
cycles robustly nonhyperbolic (after the bifurcation).

On the other hand, in [DRs] there is constructed a codimension one
submanifold 1" such that every diffeomorphism in ¢/, is Morse-Smale and
for every arc in Uy,

H
lim inf M >0 and liminf

> 0,
t—0+ t t—0+

[B(1)]
t
where |A| denotes the Lebesgue measure of A. A natural question is if, in
general, H(t) U B(t) is equal to [0, ] or, at least, has full relative density at

the bifurcation. Our result gives a negative answer to these questions.

Clearly, the submanifolds I" and 7" above are disjoint. However, in both
results the unstability (or nonhyperbolicity) is obtained by proving the ex-
istence of points in W*(P;) N W™ (Q;) belonging simultaneously to the ho-
moclinic classes of P, and ()¢, which clearly prevents the hyperbolicity.

In [Dy], [D2] and [DRs] the diffeomorphisms in I" or 1" are far from
tangencies: it is not possible to create homoclinic tangencies associated to
the periodic points P and @ by small perturbations. This condition implies
some restrictions on the geometry of the intersections W*(P) N W™(Q).

Actually, there is a much more general result. Consider a codimension
one submanifold I" as above which is far from tangencies. Then for any arc
in Uy unfolding generically a cycle, the set B(s) has positive relative density
at t = 0 for all s > 0 (see [DR3)).

Summarizing, as far as we know, the reason of the nonhyperbolicity of
the diffeomorphisms in /;} is that there are nonwandering points in W*(P;)N
W' (Q;) and the homoclinic classes of P; and @; are not disjoint.
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Thus it is natural to ask whether the resulting nonwandering set is hy-
perbolic when both H(P;) and H(Q:) are hyperbolic (basic) sets, or when
WH3(P)NW(Qy) consists of wandering points. Clearly, these two conditions
are necessary for the hyperbolicity of £2(f;)’. In this paper we prove that
they are not sufficient. For that we construct a codimension one submani-
fold I" of diffeomorphisms with heterodimensional cycles far from tangencies
such that U is contained in the Morse-Smale systems and, for every arc
(ft)te[—l,l} in Up, there exists a set of parameters ¢ with positive relative
density at the bifurcation value such that:

e the homoclinic classes of P, and @, are hyperbolic (basic) sets,

e every point of W*(Q:) N W*3(Q:) is wandering,

e the resulting nonwandering set is not hyperbolic, in fact, this set is
strong partially hyperbolic, that is, the resulting nonwandering set has an fy-
invariant partially hyperbolic splitting of the form F*@® E°@ E", where E® is
uniformly contracting, E" is uniformly expanding, and E° is nonhyperbolic
and one-dimensional; see Section 9 for the precise definition.

Before stating our results more precisely, recall that a compact f-invari-
ant set Ay is robustly transitive if there are neighbourhoods V' of Ay in the
ambient manifold and V of f in the space of C'-diffeomorphisms such that
the set

Ag=g(V)cCV
i€Z
is transitive (i.e., the set is the closure of some orbit of it) for every g € V.
For properties of robustly transitive sets we refer the reader to [DPU], [BDP]
and [BDPR].

THEOREM. There exists a nonempty open set A C P>(M) such that
for every arc (ft)te[—l,l} in A:

(1) (ft)te[—Ll] unfolds generically a heterodimensional cycle at t = 0
associated to two hyperbolic fized points Py and Q.

(2) There are sequences of pairwise disjoint intervals [ay,by] and of pa-
rameters cy, € |ag, bi| such that

(i) for every parameter t € \J,[ak, bi] the homoclinic classes of P,
and Qq are (hyperbolic) basic sets and there are a pair of hyper-
bolic periodic points A, and Ry in the resulting nonwandering set
of ft such that Ay and Ry do not belong to H(P;) U H(Q:),

(ii) fe, has a heterodimensional cycle associated to A, and R, and
the arc unfolds generically such a cycle.

(3) For every t € |ck, bg] the resulting nonwandering set of f; is hyper-
bolic and
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Qf) = H(P;) UH(Q) UO(A) UO(Ry),

where O(Y') denotes the orbit of Y.

(4) For every t € [ax,ck| the resulting nonwandering set of f; is the
disjoint union of the homoclinic classes of P, and of QQ; and a strong partially
hyperbolic set Xy which is robustly transitive and Xy = H(A:) = H(Ry).

(5) Let H = Ji]ck, bi] and S = J,lak, cx[. Then

HNl— _
lim inf M >0 and liminf M
t—0 2t t—0 2t

> 0.

To prove this result we fix a special family (f¢);e[—1,1) of diffeomorphisms
unfolding a heterodimensional cycle and begin by constructing a sequence
of scaled intervals [c, bg] in the parameter space converging to 07 and such
that, for every t € |cg, b, the resulting nonwandering set of f; is formed
by the homoclinic classes of P, and @, which are (disjoint) basic sets, and
two new hyperbolic points A; and R; of indices equal to the indices of P;
and @, respectively. Moreover, for these parameters, W"(R;) and W5(A;)
have a nonempty transverse intersection. Then we prove that for ¢t = ¢ the
invariant manifolds W"(A4;) and W*(R;) have a quasi-transverse intersec-
tion, thus at ¢t = ¢, there is a heterodimensional cycle associated to A; and
R;. This is done without destroying the hyperbolicity of H(F;) and H(Q:).
The unfolding of each of these cycles leads to the creation of the (transitive)
strong partially hyperbolic sets X} in the statement of the theorem.

For two-dimensional arcs bifurcating from Morse-Smale systems via ho-
moclinic tangencies the set of parameters corresponding to independent
saddles (i.e., with homoclinic classes trivial) has zero relative density at the
bifurcation value. This follows from the fact that, with full relative measure
at the bifurcation, the resulting nonwandering set is a nontrivial hyperbolic
homoclinic class (the homoclinic class of the point involved in the tangency);
see the constructions in [PT;] and [PTs]. Items (3) and (5) of the theorem
show that the situation in the heterodimensional context is quite different.

A minor modification of our construction shows the existence of open sets
of arcs unfolding heterodimensional cycles such that, for a set of parameters
having positive relative measure at the bifurcation parameter value, the re-
sulting nonwandering set is equal to the disjoint union of a finite number
of hyperbolic basic sets: the homoclinic classes of P; and @Q; and an ar-
bitrarily large number of independent saddles. As far as we know, it is an
open question whether there coexist infinitely many independent saddles for
heterodimensional cycles far from tangencies.

The dynamics after the unfolding of a heterodimensional cycle associated
to P and @ (where the index of P is less than the index of @) depends
strongly on the action of f in W*(P) N W"(Q), called central dynamics.
In our case, this intersection is a curve which is diffeomorphic to an open
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interval I. What we do is to fix a one-dimensional map Il : I — I and
construct the open set A mentioned in the theorem in such a way that the
central dynamics of arcs in A is close to I1. The key idea of the construction
is that we fix a model cycle, whose central dynamics is related to II, and
we prove that (up to an essentially affine reparametrization and a change of
coordinates) the cycles at ¢ are ezactly as the model one. In other words,
we have a kind of renormalization and limit dynamics. This allows us to
translate properties of the model (also in the sense of measure of parameters)
to the initial family.

More precisely, in our construction the parameters ¢ corresponding to
secondary cycles (i.e., parameters t > 0 such that f; has a cycle associated
to P; and Q)¢) play a key role. We see that there is a sequence of parameters
tr, — 0T corresponding to secondary cycles such that (up to the period) the
central dynamics is essentially the same. In fact, the one-dimensional model
II induces an iterated function system describing such a central dynamics.
We construct an arc (ft);e[—1,1) unfolding a heterodimensional cycle such
that for parameters close to the ¢; the central dynamics is given by such an
iterated function system, which is introduced in Section 3. In Sections 3.1
and 3.3 we describe the dynamics of this model. Using this model we deduce
that the homoclinic classes of P; and ()¢ are both hyperbolic for parameters
close to ti, (see Section 7).

We see that the unfolding of the secondary cycles leads to the creation
of two new saddles A; and Ry, with indices respectively equal to the ones
of P, and ;. These new saddles are dynamically independent of the points
P, and @ (i.e., they are not homoclinically related to P; and Q). On the
other hand, as the parameter changes new heterodimensional cycles (now
associated to A; and R;) are created. The unfolding of these cycles does
not affect the dynamics of the homoclinic classes of P, and @, which re-
mains hyperbolic. To get the strong partially hyperbolic transitive sets X
in the theorem we analyze the unfolding of these new cycles associated to
At and Rt.

This analysis is done in the following way. We see that the model dynam-
ics for the secondary cycle induces a new model dynamics for the unfolding
of the cycle associated to A; and R;. Using this model we prove that after
the bifurcation the homoclinic classes of A; and R; are equal and form a
robustly transitive set (in this case the cycle is unfolded as ¢ decreases). A
model for the unfolding of primary heterodimensional cycles and the induced
model for the cycles associated to A; and R; are presented in Sections 3.4
and 4.2.

We end this introduction with two remarks about the phenomenon of
creation and annihilation of periodic points and the topological entropy of
the diffeomorphisms f;.
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First observe that in the logistic family £)(x) = A — 22 (which is a model
for understanding the dynamics of homoclinic bifurcations) there are only
orbit creation parameters and no orbit annihilation parameters, meaning
that periodic orbits are created monotonically as the parameter varies (see
for instance [MT]). In [KKY] an anti-monotonicity theorem is stated in the
setting of homoclinic bifurcations: there is concurrent creation and annihi-
lation of periodic points in the unfolding of a homoclinic tangency.

Observe that the families of diffeomorphisms in this paper exhibit the
phenomenon of annihilation of robustly transitive sets: the robustly transi-
tive sets X, are created and defined for all ¢ € [a, cx[ and, as the parameter
increases, disappear at t = ¢ and split into two hyperbolic periodic points.
Using [DRg3, Theorem E|, which says that there are intervals Ej such that
for every t € Fj, the resulting nonwandering set (2(f;)" is a robustly transi-
tive set which is not hyperbolic, one gets immediately an anti-monotonicity
theorem for robustly transitive sets:

ANTI-MONOTONICITY THEOREM (for robustly transitive sets). Consider
(ft) € A, A as in the Theorem. Then in any neighbourhood of t = 0 (in
the parameter space) there are infinitely many parameters corresponding to
creation and to annihilation of robustly transitive sets.

The previous question leads naturally to the problem of the (monotonic-
ity of the) variation of the entropy. For arcs of diffeomorphisms as considered
here this question is open. Note that, since the homoclinic classes of P; and
Q¢ are nontrivial for all ¢ > 0, the topological entropy h(f:) of f; is positive
for all ¢ > 0. Observe that the arcs in [DR4] exhibit anti-monotonicity of
the entropy: in such a case the homoclinic classes of P; and (); are com-
pletely destroyed for many parameters ¢, being simultaneously trivial, thus
h(ft) = 0 for these parameters.

This paper is organized as follows. In Section 1 we describe a special
family of diffeomorphisms unfolding a heterodimensional cycle.

In Section 2 we describe the typical trajectories of points in the result-
ing nonwandering set and introduce the families of iterated functions Gﬁhm
describing the central dynamics. The one-dimensional map II giving the
central dynamics is introduced in Section 3. In Sections 3 and 4 we intro-
duce the iterated function systems describing the unfolding of secondary
cycles and primary cycles associated to A; and R; and study the dynamics
of these systems.

In Section 5 we construct the sequence of scaled intervals [ay, by| referred
to in the statement of the theorem and construct reparametrizations hav-
ing uniformly bounded distortion. Moreover, for such intervals we get an
accurate control of the central dynamics in terms of the map II.
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In Section 6 we translate the properties of the model iterated function
system to the true maps Gfl’m. In Section 7 we prove that for any parameter
t in [ag, bg] the homoclinic classes associated to P; and @ are hyperbolic
basic sets. For these intervals we also prove the existence of two independent
saddles A; and R; of different indices.

In Section 8 we see that for parameters in |cg, b the resulting nonwan-
dering set is the (disjoint) union of the homoclinic classes of P; and Q); and
the orbit of the saddles A; and R;. We also get generic cycles associated to
these saddles for the parameters cg.

Finally, in Section 9, using such cycles, we get the transitive strong par-
tially hyperbolic sets Xy = H(R;) = H(A;) for all ¢ in the interval [ag, cg|.

Acknowledgements. The authors thank the referee for useful com-
ments which, in particular, contributed to improving the presentation of the

paper.

1. UNFOLDING HETERODIMENSIONAL CYCLES

1.1. Heterodimensional cycles. We begin by considering a C*°-dif-
feomorphism f : R™ — R" having two hyperbolic fixed points, P and Q,
satisfying the following conditions:

(C1)  The stable bundles of P and of @ have dimensions r + 1 and r,
respectively, i.e., the points P and () have indices » + 1 and 7.

(C2) WHQ)NW3(P)=WQ) h WS(P) =~, where ~ is an f-invariant
curve with endpoints P and Q.

(C3)  There exist N2 € N and a point Xy such that

o fN(WR(P)) N Wi (Q) = {Xo},
i dim(TXUWu(P> + TXOWS(Q)> =n—1,
o WH(P)NWH(Q) = U,z /" (X0),
i.e., the invariant manifolds W*(P) and W"(Q) are quasi-transverse
at the heteroclinic point Xj.

(C4)  There are compact neighbourhoods of P and @, say Up and Ug,
such that fly, and fly, are linear (or C''-linearizable).

(C5)  The derivative of f at P, Df(P), (resp. at @), Df(Q)) has a posi-
tive contracting (resp. expanding) eigenvalue of multiplicity one, A
(resp. ), such that [o] < A < 1 (resp. 1 < 8 < |o]|) for every con-
tracting (resp. expanding) eigenvalue o of D f(P) (resp. of Df(Q))
different from A (resp. f3).

(C6) vyNUp (resp. yNUg) is contained in the eigenspace associated to A
(resp. ().

(C7)  Hyperbolicity of the positive limit set at the bifurcation: the diffeo-
morphism f is at the boundary of the Morse-Smale systems and its
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positive limit set, L*(f), is hyperbolic and the points P and Q are
isolated in L*(f).
Let us make some comments about the conditions above:
Conditions (C1)—(C3) mean that the diffeomorphism f has a heterodi-
mensional cycle associated to the points P and @ (see Figure 1).

WII(P
Fig. 1. A heterodimensional cycle

Condition (C4) is a technical assumption and can be guaranteed by im-
posing a finite number of nonresonance (open) conditions on the eigenvalues
of Df(P) and of Df(Q).

Condition (C5) is a necessary condition for the cycle associated to f to
be a first bifurcation (see the arguments in [DRg, Section 3]).

Condition (C6) is assured when the curve v is transverse to both the
strong stable and the strong unstable foliations of P and @ (see definitions
in Section 1.2 below). This condition means that « is simultaneously a sep-
aratrix of a centre stable manifold of P and of a centre unstable manifold
of Q.

Condition (C7) allows us to localize the nonwandering set after the

unfolding of the cycle and implies that there is a spectral decomposition
(A}, of LT(f) with P = A; and Q = Ay (see [Ny]). Write

A= (Urixo) uip.Qrun.
i€z

Given i € {3,...,d} we say that A; > A (resp. A; < A) if there exists
a sequence i1, ..., %y, with i1 € {1,2} and i,, = 4, such that W"(4;, ,) N
W3(Ai;) # 0 (vesp. WS(Ay,, ) NW(A;;) # 0) for every j € {1,...,m —1}.
Let

A= J A and A= ] A
Ai<A Ai>A
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By [Ny] there exists a filtration associated to L™ (f), that is, there are com-
pact sets My and Ms, My C M>, such that
A_ Cint(Ml), Ay CM\MQ, ACMQ\Ml,
f(Ml) C int(Ml), f(MQ) C int(MQ).
In what follows we assume that the neighbourhoods Up and Ug in (C4)
and the local invariant manifolds of P and () are chosen such that
Wi (R) =CC(W'(R)NUR,R), i=soruand R= P or Q,

where CC(A, Z) denotes the connected component of the set A that contains
the point Z.

1.2. Product structure of the cycle. We assume that in our local
linearizing coordinates in Up and Ug, say (2%, 2 2"), 2° € R", 2¢ € R, and
2" € R"""1 we have P = (0°,0,0") and @ = (0%,0,0%). Moreover,

Wiee(P) = {z" = 0"}, Wige(P) = {(a%, 2°) = (0°,0)},
Wiee(@) = {(z,2") = (0,0")},  Wie(Q) = {z° = 07},
Wie(P) = {(z,2") = (0,0")},  Wige(P) ={(z,2%) = (0,0°)}.

In this way the leaves of the local strong stable, strong unstable and
central foliations in Up and Ug are parallel to R” x {(0,0")}, {(0%,0%)} x
R~ and {0°} x R x {0"}, respectively. We denote these foliations by F*,
FU and F¢, respectively. The leaf of F/ containing X is denoted by F7(X).

Let I be a fundamental domain of f ’vﬂUQ and N; the first natural number
such that fN1(I) = J is contained in the interior of Up (we call Ny the

73
Ug ”
]:c le
Q
o Y [0 p
F A i el
7
Vs
S
7
7
fe

Fig. 2. Elements of the cycle
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transition time from Ug to Up). Observe that we can (and do) assume that
the heteroclinic point Xy and the natural number N3 in (C3) are such that
fN2(Xg) € int(Up) and f~(Xo) € Up for all i = 0,1,..., Ny — 1. We say
that Ny is the transition time from Up to Ug.

Consider now neighbourhoods V; of I and V, of Xg such that ™V (V)
is contained in the interior of U/p, Vs is contained in the interior of Uy and
disjoint from f(Va2), f~N2(Vs) is contained in Up, and f~7(V2) N (Ug UUp)
=0 forall 1 <j<Ny.

Assume that for all Z in V; or V, and every i € {s, c,u} one has:

(F1)  f-invariance of the foliations:
If Z € V1 then CC(fN(FU(2Z)) NUp, fN(2)) C Fi(fN(2)).
If Z € f~™2(V2) then CC(fM2(F'(Z)) NUqg, Y*(Z)) € F'(f™(2)).

Condition (F1) assures the f-invariance of the foliations along the cycle
(the transition maps f™ from Ug to Up and V2 from Up to Ug keep
invariant the stable, unstable, and central foliations).

Using the f-invariance of the foliations F*, F" and F" we extend these
foliations to the open set V given by

Ni—1 No—1
(1.1) vzupuuQu( U fi(Vl))U< U f_i(Vg)).
i=1 =1

In this way we get f-invariant foliations defined in the whole V that, for
notational simplicity, we also denote by F*°, F" and F°.

We now consider holonomies and projections along the leaves of the
stable and unstable foliations above. First, using our local coordinates, we
define the local centre-stable and centre-unstable manifolds of @@ and P by
S(Q)={X ey : X = (25,2 0")},

(1'2) loc
WU (P) = {X € Up : X = (0%,2°,2")}.

loc
Observe that in these coordinates we have W¢ (P) = {(«% 2 0")} and
Wi (@) = {(0%, 2%, 2")}.
Let
WiL(Q) = [ (Ws(@), WRL(P) = [ (Wii(P)).

By shrinking the size of the local manifold W} (P) and recalling condition
(C3), we can assume that for each point X € W (P) the leaf F"(X) in-
tersects Wi, (Q) transversely just in one point. Analogously, we can assume
that for each X € W{{ (Q) the leaf F°(X) intersects W (P) transversely
just in one point. We now define the following holonomies associated to these
foliations:

T W (P) = WR(Q),  Ze m'(Z) = F'(Z) NWE,(Q),

Wi (Q) — WRE(P),  Zw— 7%(2) = F3(Z) NWgL(P).
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Fig. 3. Local manifolds and projections
Consider the curve
F=yU{Z =(0°20%:ZeclUUp}U{Z = (0%2,0"):Z c Uy}

and the projections 7° and 7" from W% (Q) to 7 and from W (P) to 7 along
the leaves of the stable and the unstable foliations, respectively. Associated

to these holonomies we define projections in the central direction as follows:
mh=Tgo [N ort i Wine(P) =7,  wh=Tpof Mor®: Wh(Q) — 7.
We assume

(F2)  Isometry and order preserving conditions:

e the maps fN2 o™ and £~ o 7% are isometries,

e the restrictions to 5 of 77&2 and of 7% are isometries and preserve
the natural ordering < of v (i.e., given X, Y € 7 we write X <Y
if the distance from P to X along 7 is less than the distance from
P to Y along 7).

Note that if the cycle corresponds to a first bifurcation then the projec-
tions above necessarily preserve the natural ordering in v (see [DRg]). On
the other hand, as in the case of condition (F1), condition (F2) does not
hold in general, but in the general setting these projections can be viewed
as quasi-isometries (see [DR3, Section 6.2]).

1.3. A model for the unfolding of the heterodimensional cy-
cle. In order to get a one-parameter family of diffeomorphisms unfolding
the heterodimensional cycle of f associated to P and @ above, we consider
the arc (ft)te[—to,to} defined by f; = &; o f, where
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e &g is the identity and, for each ¢, &, is a diffeomorphism with support
contained in a small neighbourhood W> of V, contained in Ug such that
Wan fWe) =0,

e in the coordinates (2% z¢, z%), one has @ (%, ¢, z%) = (25, ¢y (x°), z")
with ¢¢(2¢) = a4+t if (25, 2, 2") € Vo, and ¢y (z€) = x© (:U x¢x") € W,
for all t € [—to, to].

We observe that this arc has the following properties:

e Suppose that the heteroclinic point Xo = fo'2(W.(Py)) N W (Qo)
above is of the form Xy = (z3,0,0"). Then, for each ¢t > 0, the points
Xy = (xf,t,0") and Y; = (x,0,0") are homoclinic points associated to P,
and @y (the continuations of P and @ for f;), respectively. We say that these
homoclinic points are the continuations of the heteroclinic point Xg.

e The foliations F°, F" and F¢ are fi-invariant for all ¢ (recall condition
(F1)).

e For each ¢ we can define (in the natural way) projections 73, 7, 7 p

N —N . . o
and 7y . Then fi 2 omit and f, ? o m} are isometries, and the restrictions
b

to v of m; p and m; , are isometries that preserve the natural ordering of v
(recall condition (F2)).

e The arc is constructed in such a way that f; is Morse-Smale for every
t <0 (i.e., the arc has a first bifurcation at ¢t = 0).

e The open set V defined in (1.1) is contained in M \ M;. We say that
V is a neighbourhood of the cycle and define the mazimal fi-invariant set
associated to V by
(1.3) Ay = m fi'(

nez

Due to the existence of the filtration and the choice of V it follows that

Qfy) = 2(f) NV C Ay

we call £2(f;) the resulting nonwandering set. Hence, from now on we can
restrict our attention to the maximal invariant set of f; in V.

2. RETURNS AND CENTRAL DYNAMICS

2.1. Returns. A key idea of our construction is to reduce the study of
the dynamics of f; in the neighbourhood V of the cycle to one-dimensional
dynamics. For that, having in mind that every nonwandering point created
by the bifurcation has some iterate in V; (excluding the possible nonwander-
ing points in the connexion ), we analyze the returns of points in A, NV to
V1 and study the dynamics of such returns in the central direction: relative
positions of the returns and expansion or contraction of the derivative of the
return map in the central direction. Recall that, in our model, the central
direction is fi-invariant. Let us now explain all that in detail.
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Consider a point Z € A; N V) such that Z ¢ WS5(P;) U W3(Q:) (since
the points P, and ); do not change with the parameter, from now on we
will omit their dependence on t). Then, after r; positive iterations, r1 =
jo + No + j1 + Ny, this point has a first return to V; as follows:

° tNl(Z) € Up,

o [N Z) € ;N2 (Vy) and fiTN(Z) € Up for all i € {0,..., 41},

° ng2+j1+N1 (Z) c qu

o [TNHIENY 7y e Yy and fiTVHIINY (7)€ Ug for alli € {0, .., ja )},
where jo is defined to be the minimal one with this property.

It is clear that j; and js (and thus 71) depend on Z. We will see later
that j; and j» tend to infinity as ¢ goes to zero.

Let Zg = Z and Z; = f}(Z). If possible, we inductively define the suc-
cessive return times and returning points of Z to Vi by ri(Z) = r1(Zr,_,)
and Z,, = tri_”_l(ZTi—J'

Condition (F1) and the definition of the arc (fi);c[—¢, 4, assure that the
leaves F", F* and F° are invariant under f;*; that is,

o [1(FH(2)) C F*(Zy,),

o FU(Z,) C [ (F*(2),

o F(Z,, )N f{*(F°(Z)) is a curve containing Z,, in its interior.

In particular, if E*(W) is the tangent space to F*(W) at W, then we
have Df{"(EY(Z)) = E*(Z,,), i = s,u,c. We call E5, E" and E° the stable,
unstable and central directions, respectively.

Condition (F2) means that, for every W € Vs, the restriction of D f{*?
to the central direction is an isometry.

Let Ag (resp. (y) be the maximum (resp. minimum) of the moduli of the
contracting (resp. expanding) eigenvalues of both P and Q. Then it is clear
that, for small ¢:

(R1)  The restriction of D f;* to E"(Z) is an expansion of factor (at least)
ﬂﬂl +J2 )

(R2)  The restriction of D f/* to E5(Z) is a contraction of factor (at least)
)\g1+j2_

(R3)  The restriction of D f;* to the one-dimensional bundle E°(Z) is a
multiplication by a factor of order of 472Xt (D fN*)| e (W) for some
point W € V).

Similar considerations can be made for the backward orbit of any point
Z € Ay NV such that Z € WY(P) U W™(Q).

In view of (R1)-(R3), the hyperbolicity of invariant subsets of A; depends
exclusively on the action of Df* on E°(W) for W € V. Let us now analyze
the central dynamics of a first return to V.
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2.2. Central dynamics of returns. Consider now a point Z =
(25,29 2") € V) such that 2¢ € I and a first return 1 = jo + Na + j1 + Ny of
Z to V1 as above. Using the product structure of the cycle and the definition
of the unfolding we see that if Z,, = (2}, 2§, 2}') = g2+N2+]1+N1(Z), then

o = (fPPN ()0 = BRI (0], 25, 0%) + 1)
= BN (0,25, 0%) + 3,
where
BN FN(08, 26,09 + 1) € I
Thus we have
MFNH0%, 26,09 + ¢ >0 = A0, 25,0%) € (—t,0].

Since févl (0%, 2¢,0%) € J = févl(l) we see immediately that there is my
independent of the point (0%, 2¢,0") in I such that

ji=mi+m, m>0, A" ~t
Similarly, there is n; independent of the point (0%, z¢,0") of I such that

jo=ng+n, n>0, ["~1/t

Observe that points close to Z have the same type of return as Z. This
return defines the following map from a subinterval Kflm (that we consider
maximal) of I into I:

(2.1) Gﬁhm : K;m — 1, G;m(z):ﬂ”ﬁ"()\m”mﬂ(zc) +t)
=(BMNM) BN (2°) + 3™ 57
where I : I — J is the restriction of fON1 to I.
We will select parameters ¢ > 0 (see Section 5) such that

BN ~1 and ("t~ 1.

TH

n,m+2

TH

n,m+1

TH

n,m

K~ K

K* n,m K*

Y TR, A
n+1,m n+3,m I'= K",’m - Kn-,m+2

17
n+1l,m

K" K#

n+2,m n,m

Fig. 4. The maps T,’f’m and the sets Kﬁ’m: different possibilities
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For these parameters the maps Gfl’m are close to maps of the form
T (2) = B (A" (2) + 1+ p)

for some small |p|. In the next section we study the dynamics of the maps
TV .

3. THE ONE-DIMENSIONAL MODEL FOR THE RETURNS

Consider 0 < A < 1 < 8 and the linear maps defined on R by x — Az
and z — Bz. Given a, b € (1,2) consider their fundamental domains J =
[—a,—MAa] and I = [ab,b], a = 371,

Consider also a strictly increasing differentiable map II from I to J with
II(I) = J and, for u in a small neighbourhood of 0, the family of maps

H":[=2,0] = [=2,2], H"(y)=y+1+p
We now define the parametrized family of endomorphisms 7# = (Th m)nm>0
by
Tr’l:”m:/BnOHMOAmOH’ n7m207

defined for each pair n,m, n,m > 0, from a subinterval of I into I. In
general, these maps are not defined in the whole I, so for each pair (n,m)
we consider the maximal subinterval K} ,, of I where T}, is defined. We
observe that there are choices of (n, m) such that K}, ,, = 0 (see Lemmas 3.3
and 3.4).

Oz[g

Oé[4
\a[

‘ Hk) QR HO) H(P) = H(0) = 1
H(J4) H(J2) H(\J2) HOL)
H(/\J4) Jl

Jo 7

J3

Jy
R
Iy I

Fig. 5. The one-dimensional model
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We say that II and H* are the transition and the unfolding maps of the
iterated function system 7 #.

In our construction we assume that the map II from I to J has the
properties listed below. There is a partition of I into four closed subinter-
vals, denoted by I1, Is, I3 and Iy, with pairwise disjoint interiors, such that
abely, be I, and 24 < 23 < 19 < 21 for any points x4, x3, 22 and 1
with z; € I;. We let J; = I1(1;). Thus J; is a partition of J. We require that
II and the subdivisions of I and J above satisfy the following conditions,
illustrated in Figure 5.

Inclusion properties:

(E1)  The interior of H%(J3) contains 3~ 1I3.

(E2)  H°(Jy) is contained in the interior of S~11;.

(E3)  The right endpoint of H%(J3) is less than the left endpoint of 37113
(in particular, 8711, is not contained in H°(.J3)).

(E4)  The interior of H%(\J3) contains I3 U Iy.

(E5)  The right endpoint of H°(\J3) is less than the right endpoint of I
(in particular, I5 is not contained in H(\J3)).

(E6)  The right endpoint of I3 is less than the left endpoint of H(A\.J;)
(in particular, H°(\J;) is contained in the interior of I7).

(E7)  Every point of the interval H°(Jy) is less than zero (in particular,
0 € H°(J3)).

Properties of derivatives. Distortion properties:

(E8)  The map II is a contraction of factor (at least) 0° < a=p1<1
in I; and an expansion of factor (at least) o% > A1 > 1 in L I,

(B9) 19 [51 has exactly two fixed points in the interior of Iy, say A and R,
A < R, which are hyperbolic and whose derivatives DTO 1(A) =4
and DT&I( R) = (g satisfy

0< g <1<ppR.
Moreover, there is € > 1 such that
n{ _1>\’24 ) A’%‘ — } > 2¢.

2(1 = B+ M) 201 = Aa)(1+ ")
rJ;hereNareJ\fg > 1 and points C and D with A < C < D < R and
C — A= R — D such that
o T3, is linear in [A,C] and [D, R).

* (T3)"(185' D, D)) = PaC', €,

1—Aa 0 \N3 1_>\A
15, = PTo)™)@) 29—
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Fized point properties:

(E10) TRO has no fixed points in I5.
(E11) Tﬂo(y) > TOO,I(y) for all y € Is.
(B12) R = BHO(II(A)) = TOo(A).
Finally, we also assume that

(E13) B> 13L.

Let us make some comments about these conditions.

REMARK 3.1. Conditions (E1)—(E11) and (E13) are open properties.
Thus there is pg > 0 such that these conditions hold for H*, Tl‘f o and
Toﬂ,l for all p € (—po, p1o). Observe that to get the second part of (E9) it is
enough to take the eigenvalues Br and A4 close enough to 1.

REMARK 3.2. e The maps T}, are increasing for all (n, m) for every |u|
small enough. Moreover, Ty, (for small |u|) has no fixed points in (A, Ry,).

e We can assume that for every pu € (—pup, o) there are defined the
continuations of the hyperbolic points A and R of T} & ; for all Téf 1, denoted
by ﬁu and Eu- Then Tl’fo(g“) > Eu for every p > 0.

Proof. The first item of the remark is obvious. For the second one we
refer the reader to Lemma 3.12, where we will prove a stronger version of this
remark: the map U(u) = Tl,O(A ) — R has positive derivative at = 0. m

Let us now explain how these conditions can be achieved by choosing
appropriate lengths for the subintervals I; and J; and by making some as-
sumptions on \, @ = 37! aand b. Write

[(1—¢1)a,al,

(1 —e2)a, (1 —e1)al,
[

[

[(=1+ 61)b, —Ab],
[(=1+ d2)b, (=1 +01)b],
[
[~

(1 —e3)a, (1 —e2)al,
aa, (1 —e3)al,

(=14 63)b, (—1 4 62)b],
b’ (_1+53)b]a

where
0<e;]<ea<ez<l—a and 0<d3<dr <o <1 —N\

It is not difficult to see that if a and b are close enough to 1 then conditions
(E1)-(E6) are satisfied if one chooses:
1

1
D1 A A>1
(D1) a<1+)\, <1+a,a+ > 1,

(D2) (1 —a)\ < & <

maximal value),
(D3) N<e<lt+al(Alex—1),

)\_1_ (in fact, o must be chosen near this



4LV VLT 0o bUT O L Y Lo 4XJ

A—1
(D4) & < %
(D5)  1—A"lteg < g <l —ey),
(D6) 1—-Alegg<d<1—A

In fact, after a straightforward calculation it is easy to check that (D1)—(D6)
imply (E1)-(E6) when @ = b = 1. Since (E1)-(E6) are open conditions the
same holds when a and b are close to 1.

Observe that (ET7) is automatically satisfied if b is close to 1 and d3 is
sufficiently small (93 <1 —1/b).

It is easy to verify that if we choose ¢; and d; as above, i = 1,...,4, and
b/a close to 1 then the following conditions are also satisfied:

|1l 1 | J3]
— <o< l<opo< — A\
| SN

for some g and p, where |K| denotes the length of the interval K. These
conditions imply that we can take a transition II from I to J satisfying
(E8) and (E9).

Let us now explain how one can obtain (E12). Observe that this condition
is equivalent to

aR=II(A) +1=\"1A-1)+1,

where the last equality follows from the fact that A is a fixed point of
T&l = HO o f o II. Therefore, if we write R = A + 7 for some 7 > 0, the
previous formula gives

r=A-1+a A Y —a N T+at, e,

(3.2) -~ o~
R=Aa""\'1—a I\ 14+al,

which determines 7 depending on A.

On the other hand, by construction, the points A and R belong to
I\ H°(\J3), thus A is to the right of the left extreme of I, a(l — &3).
Thus A = a(l — ey + &) for some € > 0. Now it is enough that A and R sat-
isfy the following inequalities obtained by replacing the value of R in (3.2)
(the first one meaning that A is to the right of H°(\J3) and the second one

meaning that R is to the left of 1)),
(3.3) Ab(—1+4d02) +1 < a(l —ey+£),
' a(l—es+&a N —a Nt rat <al —¢).

If we take
E=aM(-1+8)+a +er—1,

which turns the first inequality of (3.3) into equality, then the second in-
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equality in (3.3) is equivalent to
a o <ab'(1—e))+a (1 -1,

which is guaranteed by condition (D5) if a and b are close to 1. Thus, if we
take ¢ greater than a='Ab(—1+ 62) + a~! +£2 — 1 but near this value, then
(3.3) is satisfied.

Observe that (E13) is compatible with (D1). Also, (E5) and (E6) imply
that HO(AII(I3)) N Iz # 0 and (E1)—(E3) imply that 3HO(I1(I2)) N Iz # 0.

Condition (E11) means that

(3.4) BH(II(y)) > H(MI(y)) for every y € Iy,
in other words,
(B=MNI(y)+(B—1)>0 forallye .
Now II(y) € Jo for all y € I, therefore (by (D5))
I(y) > b(=1+432) > b(—1+1—A"teg) = —bA Les.

Thus to get (3.4) it is enough that

(B=NI(y)+(B-1) > (8= N (=bA"le2) + (B -1) > 0.

Thus (3.4) is satisfied if
6—1

11—«
X\l =
2S5 T a
a condition that is satisfied for b close to 1 (recall (D2)).
Finally, observe that (E10) is compatible with the previous conditions.

b*l

3.1. Transitions and iterated function systems. In this section we
study the iterations and compositions of the maps T},

Ty Kfy — I, x> HP (A (2)) = "X I (x) + 5" (1 + p).

We begin by stating some lemmas about the localization of the iterates
of points = € I under the maps T} .

Given z € I we define a(z) € {1,2,3,4} as follows. If x € I, j =1 or 3,
then we let a(z) = j. If x € int(l;), j = 2 or 4, we let a(x) = j. Finally,
ala) = 4.

LEMMA 3.3. Let pu € (—po,po) and consider a map Thm with m > 2

=1

such that Kpy # 0. Then n = 0. Moreover, Kf,, = I and a(Ty,,(2))
forall x € 1.

Proof. Since m > 2, N™II(x) is to the right of AJ; for every x in I. Thus
H*(N™II(z)) is also to the right of H#(AJy). By (E6) and Remark 3.1,
HH(AJy) C I, which implies all the assertions in the lemma. m
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LEMMA 3.4. Consider p € (—po, o) and x € I U I such that Thm(x)
is defined (i.e., x € K},,). Then:

(1) If m =1 then n =0 and a(Ty',(z)) = 1 if x € I, while it is 1 or 2
Zf x € I.

(2) If m =0 thenn =1 and a(T}'y(x)) = 1 if x € I, while it is 1 or 2
if © € ls.

(3) If m > 2 thenn =0 and a(Ty,(z)) = 1.

Proof. Suppose that z € I; U Iy and m = 1. Observe that H* (A (x)) is
to the right of H#(AJ3). Thus, by (E3), H*(AII(z)) € Io U I;. Thus n = 0.
This also implies that a(Tj'; (x)) = 1 or 2. To end the proof of (1) it remains
to see that this number is 1 if x € I;. But this follows immediately from (E6).

To prove (2) observe that if m = 0 then, by (E1) and since z € I; U Iy,
it follows that H*(II(z)) is to the right of 3713 and, by (E2), it is to the
left of Iy, thus we must iterate once to return to I, that is, n = 1. Also
(E2) implies that a(T{(z)) = 1 if z € I}, and (E1) and (E2) imply that
a(Tfo(x)) =Tor2if x € Ip.

Finally, item (3) follows from Lemma 3.3. m

The next lemma follows from conditions (E2), (E4), (E6) and (E7) and
its proof is analogous to the one of the previous lemma.

LEMMA 3.5. Consider p € (—po, o) and x € Iy such that Thm(x) is
defined. Then m > 1. Moreover, if m =1 thenn =1, and if m > 1 then
n=0. In any case, a(Thm(x)) = 1.

Proof. By (E7) we have m > 1. If m = 1 then, by (E2) and (E4), we
have H*(XJy) C 711, thus n = 1 and a(T}';)) = 1. If m > 1 then, by (E6),
HM(N™Jy) C I, thus n =0 and o(T9;) = 1. =

By Lemmas 3.4 and 3.5, if we are interested in returns of points of
Iy UL, U Iy under (T}.,) we only need to consider three kinds of maps, T{f 0
T{fl and Téfm, where m > 1.

3.2. Orbits and itineraries. For a fixed u € (—po, po) consider the
pseudo-group generated by the family 7# = (T}.,,) of maps. Given a point
z € I we say that a sequence (nj,m;)%_;, nj,m; > 0, of pairs of integers is

j:l)
admissible for z if the sequence of points
Iz — TH 7
an,mj - Tnj,mj( nj_l,mj_l)

is well defined for every j = 1,...,k, where 2, m, = 2. In this case we say
that (zh,,m,); is the TH-orbit of z for the sequence (nj, m;);. To the orbit
(zh;.m;); We associate its itinerary defined by

i/’rjl:j,mj (Z) = a(zl’rfj,mj)‘
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LEMMA 3.6. Given z € I and an orbit (zh,;m;); of z, one of the follow-
ing situations hold:

o There is jo such that i, m,(2) =1 for all j > jo.

e There is jo such that iy, m;(2) = 2 for all j > jo.

° z’ﬁj7mj (z) =3 for all j > 0.

Proof. On the one hand, by Lemma 3.4,

o if il m;(2) = 1 then i‘ﬁHk,mHk(z) =1 for all k >0,

o if il m;(z) =2 then il m,,,(2) =1 or 2 for all k> 0.
On the other hand, by Lemma 3.5,

o if il m;(2) =4 then iy | m; ,(2) =1

These assertions imply the lemma. =

3.3. Localization of the nonwandering set of 7#. We say that a
point z belongs to the nonwandering set of T, denoted by Q2(7*), if for
every neighbourhood V' of z there is a point w € V and an admissible
sequence (nj,mj);?:l, k > 1, for w such that wh, m, € V. For each i €
{1,...,4} let 28 = Q(TH)N L.

The w-limit set of x for T, denoted by w#(x), is the set of points z such
that for every neighbourhood V' of z there is a 7H-orbit xﬁhmj of z such

that ah, m, € V for some k > 0.
PROPOSITION 3.7. Let pu € (—po, po)-
(a) If z € (Y then z € wH(z) for every x € I.
(b) If z € 25 then z € [A,, R,]. Moreover, if u >0 then z = A, or R,,.
(¢) If z € £25 then there is a TH-orbit zh; m, of z such that iy, m;(z) = 3
for all 5 > 0.
(d) 24 =0.

Write now Bo° =0 < 1 and A\o" = o > 1, where ¢° and " are the constants
in (E8).
(e) Let x € I and suppose that xh ., € I;. Then n =0 or 1 and
0<(TF,) (z) <o <1l
(f) Let x € I3 and suppose that xh m € Is. Then m =0 or 1 and
(Th,.) (z) > 0> 1.

Proof. Items (c) and (d) follow immediately from Lemma 3.6.

To prove (a), first observe that if z € 2/ then z € int(I;) (this follows
immediately from conditions (E2) and (E6)). We need the following fact
whose proof (which is omitted here) also follows easily from (E2) and (E6).
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Facr 3.8. Let (nj,m;); be an admissible sequence for x € I;. Then
(nj,mj); is an admissible sequence for any point of I.

Consider now small ¢ > 0 and a neighbourhood V; = (z — ¢,z +¢) of z
in the interior of Iy. Since z € 2(T*) there are w € V. and an admissible
sequence (nj, mj)é?:l for w such that

oF <e/2 and |wh .. —z|<e/2.
Take now any = € I1. By Fact 3.8, the orbit x, mm; is well defined. By (ES)

and since nj = 0 or 1 and m; > 0 (recall Lemma 3.4), we have

[Why sy — T | < (B0°)F =7 < /2.

ng,my
Thus |z — @h, m,| < €. Since this construction can be done for every ¢ > 0
and every point « € I, one has z € w#(x) for every x € I, ending the proof
of (a).

To prove the first part of (b), 25 C [;L“ fi#], recall that, by Lemma 3.4,
if w € Iy and wh ,, € I then n,m € {0,1} and n + m = 1. Thus there are
two kind of returns of points of I to I: returns under T1“, o and under Téf 1

Observe also that every nonwandering point of I belongs to its interior.
This follows from the fact that the right extreme of Is always returns to the
interior of I; and the left extreme of Iy always returns to the interior of I
or of I (see Figure 5).

We now need the following remark, which is an immediate consequence
of (E9) and (E11).

REMARK 3.9. Let z €I be such that x</TM or a:>]§u. Then T} y(z) >z
and Ty, (z) > .

Remark 3.9, (E9), (E11) and (E12) imply the following.

REMARK 3.10. Let z € Iy with = < A,. Then Ty (x) < A,,. Moreover,

if Tl’fo(:v) > Zu then @f;, m, > Au for every admissible sequence (nj,m;);
for x with n; =1 and mq; = 0.

Suppose that z < ZM or z > fiﬂ. By Remark 3.9 there is a small € > 0
such that

Tio(y) > z+e and Ty (y) >z+e forallye V.= (2—¢,2+4¢) C I,

Wherez+5<gu ifz<gu andz—s>§u ifz>]§u.

Take now x € V; and an admissible sequence (n;, mj)le for x such that
Ty my, € Ve. By Lemma 3.4, i, 1, (x) = 2 for all j, and, by the choice of V,
Tny,m, > 2 + €. Moreover, by Remark 3.10, if z < EM then zh, m, < ZM,

Inductively, we have x; m; >z +¢. Moreover, if 2 <Z# then x; m; <Eﬂ.
In both cases, @, m; & V- for all j = {1,...,k}, which is a contradiction.
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We now prove the second part of (b), ie., if p > 0 then £2(7#) N
(Au, R,) = 0. Consider any = € (A,, R,). Then, by (E9) and Remark 3.2,
Ty (z) < x for iﬂl T € (Au, Ry,), thus there is a neighbourhood V. =
(2 —¢e,z+¢) C (A, R,) such that

Ty (y) < z—e forally e V..

Consider an admissible sequence (nj,mj);?:l for z with a5, m, € V. By
Lemma 3.4, il m,(x) = 2 for all j. Moreover, observing that if z > A, then
T{y(z) and T{, (x) are both greater than A, we have T m, > A, for all 5.

If there is a first j € {1,...,k} with n; = 1 (and thus m; = 0) then,
since p > 0, by the second part of Remark 3.2, one has

ahom; = Tho(@h, ;) > Tho(Au) = Ry

Remark 3.9 yields ah, m, > fiu and thus zh, m, € V-, which is a contradiction.

Hence we can assume that n; = 0 for all j (thus m; =1 for all j). Then
mﬁﬁmj is a decreasing sequence and xﬁﬁmj ¢ V. for all j, which is also a
contradiction. The proof of (b) is now complete.

To prove (e) just observe that, by Lemma 3.4, if z € I; then the return
(n,m) is of the form (0,%) or (1,n). In the first case, since z € I; and by
(E8), (Tpy)'(x) < Ag® <5 < 1. In the second case, we have (T{)'(z) <
Bo0® =0 < 1, ending the proof of (e).

The proof of (f) follows analogously by observing that if x € I3 then
(n,m) is of the form (k,0) or (0,1) and using (E8). =

COROLLARY 3.11. For every p > 0 one has 2" = Q)" U QE U {EM, EM}
Proof. This follows immediately from Proposition 3.7(a)—(d). =

3.4. Unfolding of cycles associated to A and R. Consider the
family 7# = (T}.,) of maps. By condition (E12), Tlo’o(g) = R; this is
expressed by saying that the family 7+ has a cycle associated to A and R
at p = 0. Let B B

Ulp) = Tlu,o(Au) — Ry,
where U(0) = 0. We say that the family 7+ unfolds the cycle at p = 0 with
positive velocity if U'(0) > 0 (i.e., the points T{fo(ﬁu) and Eu move with
positive velocity which respect to each other).

LEMMA 3.12. The family T of maps unfolds the cycle associated to A
and R at p = 0 with positive velocity, that is, U'(0) > 0.

Proof. Observe that
T{o(x) = B (x) + 1+ p) = Tio(2) + B, Tp1(z) = MI(2) + 1+ p.
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Thus

U(p) = T{o(Ay) = By = Tio(Ay) + B — R
Then
U(0) = (2{) (A) d;; (0)+6 - %( )= BIT(A) )+ 5 - %( )
From (T&l)’(g) = MI'(A) = A4 (condition (E9)), it follows that II'(A) =
Aa/A. Since (TRO)’(E) — BII'(A), one has

BAa dA dR,
~ d—;(o) +06 - —M(O)-

Finally, if we observe that by (E9), Au ~ )\AA +b+p and R ﬁRE#—i—c—i—u
for some b and ¢, a straightforward calculation gives

U'(0) =

dA, 1 dR 1
—L0) = d =£(0) = )
TS W el GOl ey
Thus 5
Aa
/ _ _
U(O)_A(l—AA)+ﬂ 1—ﬁR>ﬂ>0"

4. ONE-DIMENSIONAL MODEL FOR THE UNFOLDING OF
PRIMARY CYCLES

_ In this section we give a model for the unfolding of cycles associated to
A and R and study the dynamics after the unfolding of such a cycle.

4.1. Primary cycles associated to Aand R. Consider0 < Ay <1<
Br as in condition (E9) and, as at the beginning of Section 3, the linear maps
z — Az and z — fgz, and their fundamental domains J = [—1, —A4] and
I= [ﬁ Rl, 1]. Consider also a strictly increasing differentiable map V from I
to J with v(I ) J having the following distortion property:

1-A - A
A < < A
2(1 - /BR ) 1-— 53
In our applications we will have (T& 1)N3 = V (recall the distortion estimate
n (E9)).

Consider differentiable monotone functions S,U : [-1, 1] — R with
S0)=U() =0, S0)=x>0, U'(0)=7>0.
For small positive v define g(v) by

S(=9() +U W) =

(4.5) for all z € 1.
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Observe that, for small v > 0, g(v) is uniquely defined. Consider the families
of maps

87 [=9@),0] = [0,U(W)], §()=S()+UW).

Finally, for small v > 0 consider the parametrized family £* = (L;, ,,,) of
endomorphisms

(46) LY, :T—T, Li.()=FRoS o NfoV(), nm =0,

defined for each pair (n,m), n,m > 0, from a (maximal) subinterval I?;;m
of I into I. As in the case of the sets K} of the family 7/, in general,
IN{q’;,m £ T and there are pairs (n,m) such that IN(Zm = () (see for instance
Remark 4.1).

We say that LF = (L, ,,) is an iterated function system with a cycle
at v = 0 having transition map V and unfolding map S”. For notational
simplicity assume that U(v) = v, but the general case follows identically.

n+1,
L Ly

n+2, n,m

—9(v) -

~ Kv 1
” ~
Kn+2,'m n+lm KY

n,m

Fig. 6. The maps Ly, p,
For each v > 0 define n(v) and m(v) by the relations
(4.7) Aag(v) < /\Z(V) <g(v) and Brp'v< ﬁ;in(y) <.

REMARK 4.1. Let v > 0 be small and m < m(v) —1 or n < n(v) — 1.
Then K, ,, = 0.

Proof. Observe that if m < m(v) — 1 then
NIV (z) € [N, =ATHY) € =00, ~ AT € J—00, —g(v)[ forall z € I.

Thus S¥(\N7V(z)) < 0 and B5S”(NFV(x)) < 0 for all k£ > 0. In particular,
BESY(NV (x)) & I for all k > 0. This ends the proof under the condition
on m. The proof for n is analogous and it is omitted. m
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LEMMA 4.2. For every v > 0 sufficiently small,
IcC U Kj"/,m(u)Jrl'
j>n(v)
Proof. By the definition of m(v) in (4.7),
AT (F) = NPT [=Aag(v), 0],
Therefore,
SY AT € [S(=Aag(v)) + v, ).
Since S'(0) = k, for a fixed small € there is v such that, for every v € (0,1p),
—(k+e)Aag(v) < S(=Aag(v)) < —(k —&)Aag(v),
v

K+e
Write
dte) =215 and d ()= =5, limdt(e) = 1.
K—g K+e€ e—0
Hence
(4.8) —d(e)hav < S(=Aag(v)) < —d~ (e)Aav.

Therefore, for small ¢, that is, if v € (0,19) and vy is small enough,
SYOATLTY € [(1 = d* () Aa)v, v] € 10,1

Thus, by the definition of n() in (4.7), for each € I there is j(x) > 0 such
that

/B]R(Z‘)“I’TL(V)SV()\Z(V)JFlv(x)) c ’IV

Hence z € KV

H@)n()m(p)+1° Since j(x) > 0 this proves the lemma. =

The definition of the sets K ;’ m()+1 gives immediately the following:

REMARK 4.3. For every j and k the set Uf;r]k K

Cm()41 is either empty,
a point, or a closed interval.

LEMMA 4.4. Consideri > n(v) such that the sets I~(Z?’_1 ()41 IN(;’m(V)H
and K}, )11 are all nonempty. Then Lzm(y)+1(KZm(y)+1) =1.

Proof. For each j = {i—1,4,i+1} let [; and 7, [; < rj, be the extremes

of Kjl.’m(y)ﬂ. Observe that I; = r;41. The definition of the extremes of
I?Zm(u)ﬂ and the fact that IN(l’.LLm(V)H and I?;’H’m(y)ﬂ are both nonempty
imply that L, 1) (li) = Bg' and LY, ) .,y(rs) = 1. This implies imme-

diately the lemma. =
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LEMMA 4.5. Consider j such that I?]”

;m(v

V1 7 (0. Then
(L;m(U)Jrl)’(m) >2¢6>2 for everyx € I?;m(y)ﬂ, with & > 1 as in (E9).

If x is at the boundary of Kv we consider the right or left derivative
Jm(v)+1
at x, according to the case.)
Proof. We first claim that
1

(49 T

For that just observe that, by definition of m(v) in (4.7), /\Z(V)Hf C
]—g(v), —=A%g(v)]. Thus, arguing as in the proof of Lemma 4.2 (recall (4.8)),
one has

(4.10) SY AT (T)) €10, (1 — d ™ (2)AY)].

Since f(]l'j,m(u)ﬂ # ) there is = € S”(AZ(V)HV(T)) with ﬁé(m) € [Br'1).

By (4.10),
y 1 1

N e BT R Ry A7)
if ¢ is small enough (i.e., v is small). This ends the proof of (4.9).

The hypothesis on the derivative of V in (4.5), the estimates of )\ZL(V),
ﬂz(y), and B} in (4.7) and in (4.9), the expression of L ,, in (4.6), S'(0) = &,
g(v) >v/(k+e¢) if vis small, d”(¢) — 1 as € — 0, and condition (E9) give
immediately the following (for small ¢):

(Efoys) 0) 2 Bl =3 =2
| Mg)(s— )1 - An)
T 2(1 - BRH (1 = A)vsE
Mk —e)(1—2a)
T2k +e)(1- BN = A%)B
d=(e)\%
T 2(1 = B+ Aa)Br

PROPOSITION 4.6. For every small v > 0 and every open subinterval U
of I there are a point x € U, integers k > 0 and m > 0, and a sequence
(ni,m(v) + D)¥_,, n; > n(v), of pairs such that

SYNAV Ly, m)+1 © Lot m@)+1 © Ly my+1(2))) = 0.

Before proving the proposition let us state the following corollary:

>26>2. m

COROLLARY 4.7. For every v € (0,1) we have (L") = 1.
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Proof. Just observe that, by Proposition 4.6, given any « € I there are
an interval V arbitrarily close to x and arbitrarily small, integers k£ > 0 and
m > 0, a sequence (n;,m(v) + 1)*_;, n; > n(v), of pairs and large j such

that
SY(NYV (LY oL”

mem()41 © Lot m()41 © Ly my41(V)) = BRI

This means that

Ljm © Ly mw)+1 © Ligtm@)+1 © Ly moy-1 (V) = 1,

which automatically implies the corollary. =

Proof of Proposition 4.6. By (4.7), g(v) € [/\ZL(V), )\ZL(V)_I]. Thus, —g(v)
€N} ) Jy )\m(y) 7 and there are y € T and m € {m(v) — 1,m(v)} such
that

SY(NAV(y)) =0

Thus to prove the proposition it is enough to see the following:

CramM 4.8. There are a subinterval Uy of U and finite sequences
(ni,m(v) + 1)¥_1, ni > n(v), of pairs and (U;)¥_, of subintervals of I such
that

° U C K”'H»ly ( )“1’1’

i+1 C Ln i1, m(u)+1(Ui)’
o Uk = I.

Proof. Given a subinterval V' of I there are three possibilities:

(A) there is n > n(v) such that V C KZ (V)10

(B) there is n > n(v) such that V' C K;m(y)ﬂ U KZH ()1

(C) thereis n > n(v) with K ) €V and Ly )41 (KY 0 00)

To prove this assertion suppose, by contradiction, that (A) and (B) do not
hold. By Lemma 4.2, there is n > n(v) such that KZ @)+ NV # (. We
take the minimum n with this property. By hypothesis, V' is not contained in

K mv)+ e Kn-l—l ()1 Thus the choice of n, Lemma 4.2 and Remark 4.3

1mply that KY 4 2,m ()41 # 0 and Kn+1 m(v)+1
shows that

=TI

C V. Finally, Lemma 4.4

ZT/L+1 m(v)—&—l(KZ—l-l m(u)+1) =1

The assertion now follows on recalling that K nLm()+1 C V.
We are now ready to prove the claim. If the initial interval U satisfies (C)

we are done. Otherwise, in cases (A) and (B), to the interval U we associate
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n = n(U) as in the proof of the assertion above and write
— - + + _ v
U=U"uU", U =UNnKY nitmwy+rs U =UNKY 000,
where U~ = () in case (A). We define

[7_ - Ln+1,m(u)+1(U_)7 ﬁ+ - Ln,m(v)+l(U+)'
By Lemma 4.5,
U] = 2¢|U*).
Since U = UT U U, either |UT| or |U~| is greater than or equal to |U|/2,
thus o
max{|UT|,|U~|} > €|U|, where £ > 1.
If the maximum is [U*| we let Uy = U* and n; = n. Otherwise, we take
Uy=U"and ny =n+1.
Take now

Uy = Ly, smwy+1(Uo),  where [Ug| > £JU.

ni,m
If U} satisfies (C) we are done. Otherwise, arguing as in the previous step,

we get ng and a subinterval U; of U/ such that U; C Kn2 ()41 and

|U{| > £’U6| > £2|U’7 Where U{ = L227m(1/)-|—]_(U1)‘

We are now ready to end the proof of the claim, which follows inductively.
Suppose we have defined U;, U/ and n; such that every U; satisfies (A) or (B)
and U] > ¢'|U|, where U; C Ky )41 and Uj=1Ly m(v)+1(Ui)- Since the
size of the sets IN(T”L m()41 is bounded there is a first k£ such that U,’C satisfies
(C), and we are done. =

As mentioned, the proposition is a direct consequence of the claim. =

Let us make a remark about the results on the iterated function system
(L7,m)-

REMARK 4.9. The constructions in Section 4 also work if the eigenvalues
Aa(v) and Br(v) depend continuously on v, thus the reference fundamental
domains I, = [Br(r)~1, 1] and J, = [-1, —A4 ()] also depend on v. In this
case one considers transitions V¥ depending continuously in the C L_topology
on the parameter v with V,(I(v)) = J(v) and satisfying the distortion
property in (4.5) for every small v.

4.2. The dynamics after the unfolding of the cycle associated to
A and R. Bearing in mind Remark 4.9 we now construct an appropriate
iterated function system F* = (F} m) which describes the dynamics in the

unfolding of the cycle associated to A and R for TH.
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Given p close to 0 let Eu and Zu be the continuations for T(’)f , of the
fixed points R and A of T(S),r Denote by Sr(u) and Ag(p) the corresponding

eigenvalues. Consider continuations 6# and ﬁu of the points C and D in
(E9) such that

(T5:) ™ ([Br(1) ™ Dy, Dy]) = A a(p) G, G-
For each p € (—po, po) with || small, consider the affine bijective maps
Uk [DuvR | = [0,1] and ¢ [A,,Cu] — [<1,0
with ¢4 (4,,) = 0, ¥4 (Cy) = =1, ¥(D,) = 1, and ¢ (R,) = 0.

By Remark 3.2, for small o < 0 there is a unique E € ]A C’M[ with
T o(By) = RM, WhereE —>A as pp— 07,

The iterated function system F* = (F}n), u < 0, is defined as follows.
For each small 1 < 0 consider the fundamental domains I, = [Br(p)~1, 1]
and J, = [—1, = Aa(p)].

e The transition map of F* is the map V* defined by

VI Dy = Ty VE() = o (T5)™) 0 (W) 710
Observe that by construction V#(1, 0 = ju and that V# has the distortion
property (4.5), i.e
1— XAy 1—2Xxg
1-— ﬂR 1- ﬂR
For the last assertion just observe that, by condition (E9), (7§’ 1)V8 has this

property for points in [5R(M)_1,5u] and that for every = € [—1,0] and
y €[0,1],

<D(VH)(x) <2

. . C,—A C—-A
lim (4)' () (W) 1) (y) = lim =F—ZF = =—= = 1;
n—0 pn—0 R# — D“ R—-D
for the last equality recall (E9).
e For p1 < 0 close to 0 let —g(u) = wi(ﬁu). The unfolding map (defined
for negative ) of F* is
VE[=g(n), 0] = [0,1],  VH*(z) = (¢) " o Tfs 0 ¥4 (2).
Finally, for small negative pu, the system F* is defined by
Fll Iy = Tys Fli() = Br(w)" o V¥ 0 Xa()™ o VH(),  n,m > 0.
REMARK 4.10. Observe that, up to a change of coordinates, the system
F* only involves iterations under Tf'; and T}, and points in I.

It is now immediate to check that we can repeat the arguments and
the constructions of Section 4 using the map V* instead of S¥. Thus by
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Remark 4.10, Proposition 4.6 and Corollary 4.7 we immediately have the
following results for the system JF*:

PRroOPOSITION 4.11. For every small i > 0 and every open subinterval
U of I there are a point x € U, integers k > 0 and m > 0, and a sequence
(ni,m(p) + )X, ni > n(), of pairs such that

V(A ()™ (F" B

ng,m(u)+1 © ng,m(u)+1 © Fritl,m(“)+1(m))> =0.

COROLLARY 4.12. For every p € (—po,0) we have 25 = I.

We end this section with a remark that we will use in Section 9. We
define the inverse iterated function system F* of F* as follows. For each
small p consider the map

TH = (V)T = (1) T -
Then T is the transition map of the inverse system and, by (E9), it has the
distortion property (4.5).

The unfolding map of F* is obtained as follows. For each p € (—po, to)
with || small, consider the affine bijective maps

Ok, [Dy, R, — [-1,0] and 9% : [A,,C,.] — [0,1]
with 9% (4,) = 0, 94(Cy) = 1, 9R(Dy) = —1, and Ip(R,,) = 0.
For small 1 < 0 let T{fo(Au) = E,,. Write —g(u) = 9/ (E},). The unfolding
map (defined for negative p) is
VE s [=g(u), 0] = [0,1], V(@) = (93) " o (T{) ™" o W(a).
Finally, the inverse system F* is defined for negative u by
Flty s Ty = Jur - Ffon() = Aa(n) "0 V¥ 0 Br(p) ™ 0 T#(), nym > 0.

n,

REMARK 4.13. Proposition 4.11 holds for the system Fr,

5. CHOICE OF PARAMETERS

In this section we construct sequences of intervals Ly = [ag,br] and
reparameterizations yi : Ly — [—fi0/2, pto/2] such that the maps G, ,, de-
fined in (2.1) of Section 2.2 are arbitrarily C°-close to the model maps
T#f;,gt) for all t € Ly. In fact, for fixed ng and mg, we get C'-proximity if
n €40,...,n0} and m € {0,...,mg}. Observe that in our one-dimensional
model the eigenvalues A\ and 3 of P and () do not depend on t. Having in
mind that we want to prove the results for families close to our model, in
this section we assume that these eigenvalues (denoted by A(¢) and 5(t)) are
C!-functions.
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LEMMA 5.1. There is Ng € N such that for every n > Ny there exists
t, > 0 satisfying
AEn)" = tn.
Moreover, lim,,_ .o t, = 0.
Proof. As A(t) is a continuous function and A = A(0) € ]0, 1], there is
to > 0 such that A(t) € ]0,1] for all ¢ € [0,%p]. Thus there exists Ny € N
such that (o)™ < A(to)N° < to for every n > Ny. Now the lemma follows

from the mean value theorem by just observing that 0 < A(0)". The second
assertion is trivial. m

To get the positive density at zero of the intervals L,, we need to estimate
the frequency of the ¢,. This is done in the next lemma.

LEMMA 5.2. The sequence (t,)n of parameters in Lemma 5.1 satisfies
nh_)rgo tnt1/tn = A0).
Proof. First observe that
tn — Tt = M) = M)
= (n+ DA N ()t = Tnt1) + Tn(1 = Atn))
for some ¢ € |ty41, tn[. Therefore,
tn(A(tn) = (n+ DAQ)"N(C)) = tnr1(1 = (n+ A" N(C))-

Hence,

_ .
tn 1= (n+ 1A N(C)

Now we define v = log(3(0))/log(A(0)~!). First assume that v is irra-
tional. Then for any fixed € > 0 there are sequences n;y € N and my € Z

such that ngy — +o00 and m, — —oo and for every k one has
(5.1) npv +my € [0, ].

LEMMA 5.3. Given ¢ > 0 there is N. € N such that the sequences ny,
and my, in (5.1) can be chosen to satisfy

0 <ngr1—ng <N and |myy; —my| < No  for every k € N.

Proof. Observe that ngy; — ng is uniformly bounded if and only if
|mg+1 —myg| is. Thus it is enough to prove the result for the sequence (ny)g.
For that choose 1 and 75 in N such that

mv € [0,6/2[mod Z and Tav € |—£/2,0] mod Z

and let N = max{m,7m2}. We argue inductively: put n; = 7n; and suppose
that nq,...,ng are defined satisfying

0<nit1 —n; <N and n;v € [0,e] mod Z.



e e v i Al J. LUl

We now define
SRR B if ngr € [0,e/2[ mod Z,
ML=\ ng +m2  if ngr € [/2, ] mod Z.
In both cases, we have ng1v € [0,e] mod Z and ngiq — ng < N, ending
the proof of the lemma. =

By Lemma 5.1, for each my, there is t;, = t_,, such that \(¢x)” ™" = t.
From Lemmas 5.2 and 5.3 for every large k£ we get

(5.2) et Lo Lomen=t | Tm
tk t—mk+1—1 t—mk+1—2 t—mk
~A(0) ™ML > 7 (0)E,
where N, depends only on ¢ (see Lemma 5.3).

When v is rational we can also get sequences ng and my as above:

REMARK 5.4. If v = p/q, where p,q € N and (p,q) = 1, then we let
n, = kq and m;, = —kp, and define ¢;, by the condition )\(tk)kp = . In this
case Lemma 5.3 and the estimate in (5.2) hold with N, = q.

From now on we assume that v ¢ Q, but the rational case can be handled
in exactly the same way.

The parameters t; were chosen to satisfy A\(tx)”""* = t;. In the next re-
sult we get estimates for the values of the 3(tx)”"*. These estimates will play
a key role in getting an accurate control of the derivative of returns in the
central direction (as mentioned in Section 3.1, we need A(t;)” "*B(ty)"™* ~ 1,
see (5.12)).

Actually, we need to get estimates of A(¢)”"* and 3(t)""* for every ¢
in a scaled interval L} containing ty, i.e., \LZ]t;l does not depend on k.
These estimates are in (5.7) below. Finally, in (5.10) we describe exactly the
intervals Lj.

LEMMA 5.5. For every large k one has
B(te)"™ € [(A(0)°(1 = Dy) + Ck)tr, (1 — Dy + Ci)t],

where the constants Cy, and Dy, satisfy limg_,o Cp = limg_,oo Di = 0.

Proof. Since by definition ngv + my € [0,¢[ and 3(0) = A(0) ™", we have
(5.3)  AO)™T € A0)%,1], B(0)™ € JA(0)TE A(0) ).
Now there is ¢ € ]0, ;[ such that
(54)  Bltr) ™ = BO)™ = Crti, O = —meBQ) ™1 F(©).
Obviously, limy_.. Cx = 0. From (5.3) and (5.4) we get
(5.5) Bte) "™ € IA0)™ + Cltr, A(0)™™ 4 City].
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Similarly, there is & € ]0, tx[ such that

A(tr) ™™ — X(0)™ = Dyty, Dy = —mzpA(&)™ N (€),
and limg_ o, Dr = 0. Recalling that by definition A(tx)™ """ = t;, we get
A(0)™™* = t1(1 — Dy). The result now follows from (5.5). =

Now we get estimates for 3(¢)”"* and A\(t)”™* for ¢ in a scaled interval
Ly around t. Writing ¢t = t;(1 + o), as in the proof of Lemma 5.5, we have

A(te(1+0)"™ = (1+ Dro)ty,
B(te(1+ 0)) "™ = Croty + B(tr) "™,

where Dy, and C}, are not exactly the same as before (the derivatives of A()
and ((t) are calculated at different points of the parameter space), but for
simplicity let us use the same notation.

(5.6)

We now determine an appropriate size for p; for that we take small
s = s(e) > 0 (to be determined exactly later, see also conditions (5.11) and
(5.13)) and impose the following conditions:

Ate(140))™™ € (L= s)te(1 4 o), (1 + s)te(1 + o),
Bltr(L+0) ™ €]l = s)tp(1+0), (1 + s)tp(1+ o[-

Using (5.6) we see that this condition is satisfied by A(tx(1+ o)) """ if
1+S—Dk © 1—8—Dk'

To assure that 3(tx(1 + o)) ™ also satisfies (5.7) we use the second part of
(5.6) and Lemma 5.5 to get

Bltr(1+0) ™
tx,

(5.7)

(5.8) € [M0)*(1 = Dy) + Cr(1 + 0), 1 = Dy 4 Ci(1 + 0)].

Thus it is enough to have
A0)* (1= Dg) + C+ Cro > (1= s)(1 + 0)
and
1 =Dy +Ck+Cro < (1+3)(1+0).
Now these inequalities are satisfied if

1-D A0)¢(1—-D
—1+7k<9§_1+M'

1+s—Cp — 1—s5—-Cy
As C), and Dy, tend to zero as k — oo, it follows that if
1 A(0)¢
(5.9) o€ |—-1+ ,—14—L

1+s 1—s
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then B(tx(1+ o)) "* satisfies (5.7) for every k large enough. Hence (5.7)
holds for every ¢ in the interval Lj (large k) defined by

(5.10) L=t = st 2
We take
(5.11) s=s5(e) =2A\0)"*—=1) > X0)"°—=1>1-X(0),

which, in particular, assures that ¢; belongs to the interior of L7.
Observe that with this choice of s (thus of ) we have

Ly  (A(0) — 1)+ s(A(0)F+1) s
tr 1—s2 —1-—s2 <)7
i.e., the L} are scaled intervals.
We now obtain some estimates on the products Ag(t) = B(t)"* A(t) ™"
for t € Lj,, which will be used for bounding the derivative of the returns in
the central direction. First, from (5.7) we deduce that, for all t € L},

1—s 1+s

5.12 Ag(t) = B(&)" ()™ .
(512 < ) = B <
We take s small enough (that is, € close to zero) satisfying
1—s 1+s
1 —>1 d o 1
(5.13) Q1+S> an g1_8< ,

where p = A\o" > 1 and ¢ = [¢® < 1 (see (E8) for the definitions of "
and 0°).
Now, from (5.8), writing ¢ € L} in the form t;(1+ o) for some appropriate
0, we get 51?;: — 1 as k — oo such that
B € MOt ).
Thus

t Nky __ N, —
(5.14) e < B(H)™t =1+ pug(t) < NOE

For the extreme ;7 = A(0);/(1 — s) of the interval L} the previous equa-
tion gives

MO (s= D +0)

Bt > S = > 1+
T -y (1-s)&f
where p; is given by
s— 1+ A0)°
5.15 = 77
( ) H1 2(1 — 5)

Observe that condition (5.11) assures that up > 0.
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Similarly, for ¢,” = t;/(1 + s) we get

U e e p—

ORI g

where
1— (14 s)A(0)°
2X(0)5(1 + s)
Observe that e < 0 is equivalent to s > A(0)~¢ — 1, which again is guaran-
teed by (5.11).
It is clear that p; and p2 go to zero as € (and thus s = s(¢)) tends to
zero. Moreover, a straightforward calculation gives

(5.17) lim 22 = 1.
e—0 — U2

We now take
po = min{jiy, —pi2},
and observe that if € is small then
(5.18) [1 — o, 1+ po] C I

LEMMA 5.6. There are constants k1 and ko, 0 < k1 < Ko, such that for
every k large enough one has

ypp(w) € [k1, k2] for every y,w € L.
In particular,
0 < w1/t < pp(w) < kafty,  for allw € L.
Proof. Observe that

(5.19) yrp(w) = y(ngBw)™ B (w)w + Gw)"™).
We first claim that
(5.20) ynpB(w)™* 18 (w)w — 0 as k — oo.

In fact, (5.7) implies that this product is of order ¢xn;. Now our assertion
follows using the fact that A(ty) ™" =t} and n; ~ —my (see (5.1)).

Finally, using again (5.7) and (5.10) one gets strictly positive constants
k} and k4 (independent of large k) such that

(5.21) w < )™ < b,
Now the lemma is a direct consequence of (5.19)—(5.21). =
The next lemma follows immediately from the previous one.

LEMMA 5.7. There is v > 0 such that for every k large enough there is
a subinterval Ly, = [ay, b] of L} such that

o ur(ag) = —po/2 and py(bk) = po/2,
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o B(t)"™t = 14 pp(t) and px(t) € [—po/2, 1o/2] for every t € Ly; in
particular, by (5.18), B(t)"™*t belongs to the interior of I,

o |Lel/ty > v.

The intervals L will be the intervals in the parameter space referred
to in the statement of the theorem. The third item in the lemma and (5.2)
give immediately the positive relative density at the bifurcation value of the
intervals L.

By Lemmas 5.6 and 5.7, for every k£ > 0 large enough the inverse ¢; of
py is defined from [—po/2, po/2] to Ly.

6. PROPERTIES OF THE MAPS G!, ,, FOR t IN L

Observe that with the notation introduced in the previous section we
have n; = ng and m; = my, for all ¢ € L. Thus, for ¢t € L, the maps G%,m
in (2.1) can be written as follows:

Gon(2) = BR(ALONTI(z) + 1+ ult), L€ Ly

Recall that Ag(t) can be taken arbitrarily close to 1 (it is sufficient to take s
in (5.12) small enough). As a consequence of the results in Section 3 we have
the following:

PROPOSITION 6.1. Given € > 0 there is kg such that for every k > kg
and t € Ly the maps T{fg(t) and Gf and Téf'{(t) and Gf | are e-close in
the C'-topology. In particular, for G6,1 the continuations ﬁt and }Nit of the
hyperbolic fized points A, ;) and ]S”uk(t) of T(’)f'{(t) are well defined.

Moreover, G?fo(gak) < Ra, and Gl{fo(gbk) > Ry,. Thus there is ¢, such

that G?fo(g%) = Ry,, that is, the family (GY, . )tcL, of maps has a cycle at

n,m

¢ associated to ch and ﬁck.

Finally, T#ﬁ,(lt) and Gt . are e-close in the CO-topology for all n and m.

n,m

Proposition 6.1 gives the following:

REMARK 6.2. The family G' = (G, ,,)tcr, of maps satisfies conditions
(E1)-(E11) and (E13).

In Lemma 6.4 we will obtain a cycle condition analogous to (E12) (now
the cycle occurs at ¢;,) for the family G¢. In fact, in Lemma 6.4 we will prove
that such a cycle is unfolded with scaled positive velocity (recall Lemma 3.12
where this result is stated for the cycles of T} y,). In particular, this implies
that ¢ is unique if pg is small.

As in Section 3 we define the maximal interval of definition K7, ,, of

Gf%m, the admissible sequences (n;, m;) for a point z, the orbit xfljvmj, the
position a(z) of x € I and its itinerary i, , ().

ng,my
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Remark 6.2 allows us to translate Lemma 3.4 to the families Gf%m for
t € Ly.

LEMMA 6.3. Consider t € Ly for large k, and x € Iy U Iy such that
Gt () is defined (i.e., x € K}, ,,). Then:

(1) If m =1 thenn =0 and a(Gh,(z)) =1 if = € I, while it is 1 or 2
if © € ls.

(2) If m =0 thenn =1 and a(G{y(2)) =1 if = € I, while it is 1 or 2
if © € ls.

(3) If m > 2 then n =0 and a(Gj,,(z)) = 1.

By Lemma 6.3 the orbits of points azflj such that iflj m; (x) = 2 for all

R
j only involve iterations under Gi,o and Gal.

6.1. Cycles associated to ﬁt and fit. In the next lemma we prove
that there is ¢ € Ly with a cycle associated to A, and R, . In order to
prove the existence of such a cycle we need to use condition (E13). In fact,
in the proof of Lemma 6.4 we will see that 3 is the scaled velocity of the
relative motion of R; and thyo(At). Observe that the coexistence of the
hyperbolic points A, and R, occurs only in a very small (scaled) interval of
the parameter space. Thus to detect the unfolding of the cycle we need a
large 8. Our estimates can be improved in order to get a smaller value of 3,
but this is not relevant in view of the statement of the theorem.

As in Lemma 3.12 we consider the maps

Up: Ly =R, Up(t) = Gl o(A) — Ry

Clearly, Ug(c) = 0 or Gf ((A:) = R, gives a cycle at c. The scaled velocity
of the unfolding of the cycle is cdUy(c)/dt.

LEMMA 6.4. For every k sufficiently large there exists ¢y € Ly such that
Gi’fO(Ack) = R, and G' unfolds such a cycle with positive scaled velocity of
order of (3.

Proof. To get the cycle it is enough to see that there is t € Ly such that
(6.1) B(t) 7 (Be) = G o(Ay).
The map Uy, defined in Ly is of the form
Ur(t) = B(1)Gho(Ar) — R = Gio(Ar) — Re.
To prove (6.1), i.e., Ug(t) = 0 for some ¢ € Ly, it is enough to see that
(6.2) Uk(ar) < —po/4  and  Ug(bg) > po/4.
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By the definition of G}, ,, for t € Ly, (see (2.1) and Lemma 5.7), one has

Ur(ar) = B(ar)(Ar(ar) 11 (Aa,) + 1= p10/2) — Ra,
(6.3) = Awlar)(Bar) T (Aq,) + Blar) — Ray)
+ Ra, (Aglag) — 1) — Blag)po/2-
Observe that

1+ < Ag(t) <

e the map F(k) = B(ar)II( Nak) + Blag) — éak tends to zero as k goes
to infinity (this follows from the cycle condition (E12)),

oRak 1scloset0Rand0<ﬂ <R<2

* B(ak) > B/2.
Therefore,

00 Ru(dua) 1) - fan P<a( 150 1) - 5

2 1
_Hofyg 22 = ).
4 1—s o

Using the definition of s = s(¢) in (5.11) and of p; in (5.15) it is immediate
to verify that

1
R for all t € Ly, (see (5.12)),
-5

im :

e—0 1—s H1
Thus, by (5.17), lim.—o p1/(—p2) = 1 and since po = min{p1, —p2}, we
have

(6.5) im—— . Ly
e—01—s Mo
Therefore, for sufficiently small €, one has
S 1 65
1—s o =16

Now, from (6.3) and (6.4), we get
Unlar) < An(a) F(k) + 52 (130 - ) < =52

if k& is sufficiently large and 8 > 131 (condition (E13)).
Exactly in the same way we get

= -2 1
Uk (br) > Ag(br) F(k) + % (ﬂ_l : +SS o i ﬂ>

where N N N
F(k) = B(br) I (Ap,) + B(bk) — Ry,
As above, by (E12), F}, tends to zero as k goes to infinity.
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We claim that if k is large enough then
Uk(bk) > Ak(bk)ﬁUﬂ) + M0/4.

To prove the claim it is enough to see that

—-2s 1
-1
—+6>1
b 1+ s 1o &
From (6.5) taking ¢ small we have

s 1 9
< 2
1—s po = 2

Thus, since (1 +s)/(1 —s) > 1, to prove the claim it is enough to see that

B-987" >1,
which holds when 3 > 4. N
Finally, since Ag(bg) is bounded and F(k) — 0 as k — oo, we have
Uk (b) > po/4 for sufficiently large k.
Now, by the mean value theorem, there is ¢; such that Ug(cg) = 0. This
ends the proof of the first part of the lemma (existence of a cycle).

We now see that the arc unfolds such a cycle with scaled positive velocity
of order of 3. Recall that if ¢ € Lj then

Go1() = B A () + B(1)(L + px(8)).
Recalling that
Ur(t) = B(1)Gho(Ar) — By = Gio(Ar) — Ry

one has
0 = OO + 50 GO
B0 MO DITA) 2 (0) + )1+ (1)
+ 50 %) - R,

To estimate this sum observe that

o dAy(t)/dt is of order of ny — my and, by (5.1), this sum is of order
of —my,,

e the maps A, 0 and II are uniformly bounded,

e the derivative duy(t)/dt is of order of 1/t (see Lemma 5.6),

e the derivatives DII, d3/dt, dA/dt and dR/dt are uniformly bounded
(recall the proof of Lemma 3.12).

In view of these considerations we have

dUy B
—— ~ constg — constymyg + consto —.
dt tr
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Since t is in the scaled interval L, and hence it is of order of ¢, = A(t)) ~™*,
we have

(6.6) t —— >~ A(tg)” ™k (const — my) + B(tr) =~ B(tr),
where the last relation follows by observing that \(tx) "™ my — 0 as k — oo
and t ~tpift€ L. m

Let us make a comment about the proof of Lemma 6.4 which follows
immediately from (6.6).

REMARK 6.5. There is a unique ¢ € Ly, such that Ug(cx) = 0. Moreover,
Glo(A) > Ry for all t € Jeg, by,
Gti,o(gt) <R, forallte [ag,ckl.
Recalling that Ug(ar) < —po/4 and Ug(by) > po/4 (see (6.2)), and
Ui(cx) = 0, we get
po/4 < |U(bk) — Ug(ex)| = [Up(¥)] - |br — cxl,
p0/4 < |Uk(ar) — U(cr)| = [UR(E)] - lar — cxl-
Now (6.6) and the definition of Ly imply that
by — ckl o lag — ckl o
—>C = d —>C=—
o 4p " ty T Ap
for some C' > 0 independent of k.
The next lemma is a direct consequence of (6.7) and (5.2).

(6.7)

LEMMA 6.6. The sequences ag, by, and cj, satisfy

o AUt 00 (Udaeed) 0 [0.8)
t—0t t t—0t t

> 0.

Observe that the intervals |c, bg] and [ag, cx[ will be the parameter in-
tervals in (5) in the statement of the theorem.

As in Section 3.1 denote by 2! the set 2(G") N 1I;, i = {1,...,4}. Using
Lemmas 6.3 and 6.4 and formula (6.5) one gets the following reformulation
of Proposition 3.7 and Corollaries 3.11 and 4.12.

PROPOSITION 6.7. Let t € Ly with k sufficiently large. Then:

(a) If z € (% then z € W'(z) for all x € I1.

(b) If z € (2 then z € [gt,}ét]. Moreover, if t> ¢y then z = A, or Ry.

(c) If z € (2% then there is a G'-orbit sz of z such that i;j,mj (2)=3
for all 7 > 0.

(d) 24 = 0.

(e) Let x € I and x}, ,, € I;. Then n =0 or 1 and

0< () (@) < B =B < 1.

15
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(f) Let x € I3 and xl, ,,, € I3. Then m =0 or 1 and
(Ghm)'(2) > A" = 0> 1.

() If t € Jew, bi] then Q(G1) = 2L U QLU {A,, R,).
(h) For every t € |ax, cx], 2% = [Ay, Ry] and 2(G') = 021 U Q2L U[A;, Ry].

6.2. How things work in higher dimensions. Recall that the maps
G, give the central coordinate of returns of points to the reference neigh-
bourhood V. Bearing this in mind we will obtain the following:

1. For t € L;, the points th and ét are the central coordinates of two
hyperbolic periodic points A; and R; of indices r + 1 and r and period
m¢ + No 4+ ng + 1+ Np (see Lemma 8.1).

2. For each k the parameter c; corresponds to a heterodimensional cycle
associated to A; and Ry (see Lemma 8.2).

3. For every t € |cg,bg] the homoclinic classes of P, and Qy, (Pt)
and H(Qy), are hyperbolic and the resulting nonwandering set after the
bifurcation is £2(f;) = H(P;)UH(Q)UO(A:)UO(Ry) (see Propositions 7.11
and 7.14 and Lemma 8.3).

4. Observe that, for t € [cg, by], the point 5(t)™¢ corresponds to the cen-
tral coordinate of the homoclinic point of P; which is the continuation of the
heteroclinic point Xo. Thus every G, ,,(6(t)™) (if well defined) corresponds
to the central coordinate of some homoclinic point of FP;.

5. If X € H(Q:) and its central coordinate X° belongs to I then X°¢ is
accumulated by the left extremes of the intervals Kflm

6. For every t € [ay, cx[ one has G'io(gt) € (A, Ry) and this point is the
central coordinate of the homoclinic point of A, associated to the unfolding

of the cycle at cy.
7. For every t € [ag,ck[ the resulting nonwandering set is 2(f;)" =

H(P,) UH(Q;) U H(A;) (disjoint union; see Section 9).

7. THE HOMOCLINIC CLASSES ASSOCIATED TO P; AND Q:

We first prove the theorem for the special family constructed in Sec-
tion 1.3 and then we explain why it remains valid for a neighbourhood of
this family (see Section 7.3).

7.1. Returns and associated sequences. In what follows we fix a
large k and a parameter t € L. Given Z = (25, 2% 2%) € Vi, its central
coordinate, denoted by Z¢, is the point of coordinates (0%, z¢,0"). Define

7, = {ZeVv,:Z°e I} ifi =1,3,
{ZeVy:Z°cint(Ly)} ifi=24.
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For simplicity assume that V; is the union of the four sets above. Observe
that every Z in Ay = A¢(V) = ez fI(V) (see (1.3)) different from P; and
Q: has a return in Z; U ... UZy. Given Z € V; we define the position ag(Z)
of Z by

CLQ(Z) =3 fZe€l;, 1€ {1,2,3,4}.

Suppose now that Z € ViNA;. If Z returns to V; under positive iterations
then we define the forward return time of Z to V1, denoted by r = r1(Z),
as the first positive integer such that f;*(Z) € V. Set

Z;=fl(Z) and Z,=Z.
We define a1(Z) € {1, 2, 3,4} according to the position of Z,, as before, i.e.,
a1(Z) = ao(Zy,).
If the forward orbit of Z,, returns to V; we let
ro =19(2) =r1(Zy,) and aa(Z) = a1(Zy,) = ao(Zy,).

In this way, if the orbit of Z returns ¢ 4+ 1 times to Vy, for j < i we define
inductively the forward returns r; = r;(Z) and positions a;(Z) of Z as
follows:
rit1(Z) = ri(Zr;) = ri(Zr,),
aj-l-l(Z) = aO(ZTj+1) - al(ZTj) - aj(ZTl)'
It is clear that we can do the same for the backward orbit of Z, defining,
if possible, r; = 7;(Z) and a;(Z) for negative i. For completeness we let
To(Z) = 0.
Given Z € V; N A let 1(Z) be the maximal set of integers such that
if 41 and 9, i1 < ig, belong to I(Z) then r;(Z) is defined for all integers 4
with i1 <17 <i9. Now to each point Z of Vi N A; we associate the sequences
(Tj(Z))jEI(Z) of return times, (aj(Z))jEI(Z) of positions and (Z’"j)jeI(Z) of
iterates.
Due to the geometry of the cycle it is easy to get the following lemma
whose proof we omit.

LEMMA 7.1. Consider small t >0 and Z € Ay N Vy. Then:

o [(Z)=A{0} if and only if Z € .

e [(Z) is upper bounded if and only if Z € W3(P,) UWS(Qy).
e [(Z) is lower bounded if and only if Z € W"(P;) UW™(Qy).

Let us also state the following remark, which is a consequence of the
existence of the filtration (condition (C7)) and the geometry of the cycle.

REMARK 7.2. For every t > 0 small enough we have:

o If Z = (2°,2° 2") belongs to Uy N 2(f:)" then z¢ > 0. Similarly, if
Z € (Up N N2(ft)) then z¢ < 0.
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e Suppose that Z € V and that f{(Z) is a forward (resp. backward)
iterate of Z which does not belong to V. Then there is jo = jo(Z) such that
f1(Z) ¢V for all j > jo (resp. j < jo).

7.1.1. Central dynamics. In this section we analyze the dynamics of the
returns to V. The central coordinate of such returns is given by the maps
Gt defined in (2.1) (see also (7.1) above).

Consider a point Z € V; such that 1 € I(Z). Let r1 = m(Z) > 0 and
recall that we split the segment {0,1,...,71} of the orbit of Z as follows:

ry = Tl(Z) = ql(Z) + Ny —l—pl(Z) + Ny,

where N1 and N3 are the transition times from Ug to Up and from Up to Ug,
respectively, and p; = p1(Z) and ¢; = q1(Z) are the numbers of consecutive
iterates of this orbit segment in Up and Ug, respectively. We claim that if
t € Lj, then

p1 > —my and q > ny

(see (5.1) for the definitions of n; and my).

To see (for instance) that p; > —my observe that, by definition of pi,
Z; € Up for all i € {Ny,...,p1 + N1} and Z, 4y, € fi*?*(V2). By the
construction of the arc and (F2),

Z?V2+p1+N1 = chn—i-Nl +t= )‘(t>plz]CV1 +t.
Remark 7.2 and the fact that Zn,4p,+n, &€ Wi .(Q¢) (otherwise the orbit

of Z does not return to Vi) imply that Zp4ny T 0> 0. Thus 2 > —t.
Also recall that 2§, belongs to J = [~b, —Ab]. Thus

-1
AP (=0b) 2 AP 25, > —t = <
— S

where the last inequality follows from (5.7). As b and s are close to 1 and 0,
respectively, we conclude that p1+1 > —my, that is, p; > —my. Analogously
one proves that ¢ > ny.

From the previous arguments it follows that there are n(Z), m(Z) € Ny
such that

r =q+No+p1+Ni, where ¢ =ni+n(Z) and p; = (—my)+m(Z),
where

e Z, cUp forall i e {Nl,Nl +1,...,NV; +p1},
o Zpin € f; (V).
o Z; € Ug for all i € {N1+p1+Na,....,N1+p1+ No+q1 }.

In this case we say that 71 is a return of type (n(Z), m(Z2)).
By definition, if Z; = (27, 2§, 2}') belongs to UpUlUg then Z7 = (0%, z{,0").

Observe that by the fi-invariance of the foliations (condition (F1)), the
definitions of N7 and II, and our construction, we have

A(E)™,
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o Iy, = I (z°),
° Z;H—Nl = A(t)pIZ]CVI,
® Zfiyapman, = HU(Z5 on) = MOPLZS,, +t = MO)PII(Z°) + 1.

Therefore, using the definitions of p; and q1, one has

Zg, = By D ()™M T(ZC) + ).

T1

Using (5.12) and (5.14) and since t € Ly we get
(1) Grzymn(Z9) = 25, = 60" DO ™D At (Z) + 1+ (1),

where p(t) € [—po/2, po/2] (recall Lemma 5.7).

Thus the family of the functions G, ,,, defines the central dynamics for
points having a forward return of type (n,m).

Define Vﬁ,m as the set of points in V; having a return of type (n,m).
Observe that this set is an n-dimensional box such that {Z° € V) .} =

K, ,,, where K}, is defined as in Section 3.

7.1.2. Itineraries. The next lemma characterizes the sequences of pos-
sible positions for points Z € A;NV; for t € Lj and is a consequence of the
comments above and of Lemmas 3.4 and 3.6 for the Gfl’m maps.

LEMMA 7.3. Givent € Ly, consider Z € Ay N\ Vy and j € I(Z). Then:

(1) If aj(Z) =1 and j+1 € I(Z), then aj11(Z) =1 and Z,,,, € int(Z1).
(2) If aj(Z) =2 and j+1 € I(Z), then aj11(Z) =1 or 2.

(3) If aj(Z) =2 and j—1€ I(Z), then aj—1(Z) =2 or 3.

(4) If aj(Z) =3 and j—1 € I(Z), then aj_1(Z) = 3 and Z,,_, € int(Z3).
(5) If aj(Z)=4 and j+1€1(Z), then aj11(Z)=1 and Z,, , €int(I;).
(6) If aj(Z)=4 and j—1€1(Z), then a;_1(Z)=3 and Z,,_, €int(Z3).

Observe that if a;(Z) = 1 and j — 1 € I(Z), then a;_1(Z) (a priori)
can take any value in {1,2,3,4}. The same holds when a;(Z) = 3 and
j+1lel(Z),ie., aj1(Z)=1,2,3 or 4.

REMARK 7.4. The previous lemma also holds for any Z € V; having a
forward (resp. backward) return 71 to V; such that Z, Zi,...,Z,, (resp.
Z,Z_1,...Zy) belong to V.

COROLLARY 7.5. Consider t € Ly with k large enough, and let Z €
Q(fy) NV be such that I(Z) = 7. Then there are three possibilities:

(1) aj(Z) =1 for every j € I(Z).
(2) aj(Z) =2 for every j € I(Z).
(3) a;j(Z) =3 for every j € I(Z).
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Proof. First observe that if Z € Z; and f/"(Z) € int(Z;) then there is a
neighbourhood V' of Z with the same property, i.e., f{"(V) C int(Z;). The
corollary now follows from Lemma 7.3 and Remark 7.4. =

The next three lemmas are similar to Steps B, C and D of [DRg, Section
4.2], therefore we just sketch their proofs. Observe that if Z € A; \ {P;, Q+}
then there exists k = k(Z) € Z such that ff(Z) € V;. This means that by
replacing Z by some iterate we can (and do) assume that Z € V.

LEMMA 7.6. Let t € Ly with k sufficiently large.

(1) If Z e WY P)N(2(f)NV1) and Z # Py, then aj(Z) =1 for every
jel(2).

(2) If Z e W3(Qu) N (L2(fr) N V1) and Z # Qy, then a;(Z) = 3 for every
jel(2).

Proof. Let us prove (1); the proof of (2) runs analogously by considering
the backward orbit of Z, so we omit it.

Take any Z as in the first item of the lemma. Then there is [ € Z such
that f}(Z) € W.(P,) N Va. Thus f21(Z) € f*(W.(P)) NUg. Recall
now that X; = (z{,¢,0") is the homoclinic point of P; defined as the the
continuation of Xy (see Section 1.3). Thus by (F1),

(S 2)° = (0°,8,0") = X7

Write W = ft"”NZH(Z). Then, by the definition of n;, and Lemma 5.7, we
have

We = f{"™(X7) = (0%, B(t)""t,0"),
where
(7.2) B)"™ t € [1 — po/2,1+ po/2] C int(Iy).
Therefore ag(W) =1 and W € Z;. By the arguments in the proof of Corol-
lary 7.5, a;(W) =1 for all j € I(W) and j > 0.

By construction, f, ‘(W) € Up for all i > ny + Ny + [, thus I(W)
consists only of nonnegative numbers. This completes the proof of the result
for the point W. The lemma follows by observing that there is A such that
a;j(Z) =ajn(W) forall jeI(Z). m

The previous lemma shows that every homoclinic point of P; (resp. of
Q:) in V; is in the interior of Z; (resp. of Z3). By continuity we have the
following:

COROLLARY 7.7. Suppose that the point Z belongs to the closure of
H(P,;) (resp. H(Q¢)). Then a;(Z) =1 (resp. a;(Z) = 3) for all j € I(Z).

LEMMA 7.8. Let t € Ly with k sufficiently large. Then:

(1) W) NW3(Q4) N (2(f) NV) =0 (no-cycles condition).

(2) W3(B) N WH(Qe) N (L2(f:) NY) = 0.
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(3) The intersections between W3(P;) and W (P;) and between W*(Q¢)
and W"(Q:) are transverse.

Proof. Ttem (3) follows easily from the geometry of the cycle and the ex-
istence of the filtration (conditions (C1)—(CT7)); for details see [DRa, Section
4.9].

To prove (1) we see that any Z € W*(P,) N W*(Q;) is wandering. We
can assume that Z € Vj;. On the one hand, if Z is nonwandering, by
Lemma 7.6(1), we have a;(Z) = 1 for all j € I(Z). On the other hand,
by Lemma 7.6(2), a;j(Z) = 3 for all j € I(Z), which is a contradiction.

To prove (2) we first claim that if Z € W _(P;) NV (resp. Z € W (Q¢)
NV) then there exists a neighbourhood W of Z such that ag(Wy) = 1 (resp.
ag(Wy) = 3) for every Y € W whose forward orbit intersects V;; here Wy
denotes the first forward (resp. backward) iterate of Y in V.

This claim can be seen as follows. Observe that (7.2) implies that f,"*(X})
belongs to the interior of Z;. Taking a small neighbourhood W of Z, by the
A-lemma, we see that W is close to (f;"(Xy))¢, thus Wy is in the inte-
rior of Zy. If Z € W (Q¢) NV the argument is similar by taking backward
iterates.

If Z € W8(P,)NW"(Q¢), then replacing it by some iterate, we can assume
that Z € V.

First, if Z ¢ Iy, since Z; € W} _(F;) for all i large enough, from the
previous observation and Remark 7.4, there exists a neighbourhood W such
that for every Y € W one has Y ¢ 7; and a;(Y) =1 for all j € I(Y) with
j > 0. As in the proof of Corollary 7.5, this implies that f;*(WW)NW = 0 for
every n € N. Thus Z is wandering.

Second, if Z € 77 then there exists a neighbourhood W such that
Y & I3 for every Y € W. Since Z_; € W _(Q;) for all i large enough,
by the arguments before we have a;(Y) = 3 for all j < 0 in I(Y). As
above, it follows that f; "(W)NW = 0 for all n € N, hence Z is wander-
ing. m

From the proof of the previous lemma we get the following fact:

REMARK 7.9. Consider t € L with k large. Then:

o If Z € WY (P,) N (£2(f:) N V1) then aj(Z) =1 for all j € I(Z).

o If Z € W (Qy) N (2(ft) N V1) then a;(Z) = 3 for all j € I(Z).

LEMMA 7.10. Let t € Ly with k sufficiently large. If Z € Q(f:) NV, then
there are three possibilities:

(1) aj(Z2) =1 for every j € I(Z).

(2) aj(Z2) =2 for every j € I(Z).

(3) a;(Z) =3 for every j € I(Z).
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Proof. There are four possibilities for the set I(Z): (i) I(Z) = Z, (ii)
1(Z) is infinite and lower bounded, (iii) I(Z) is infinite and upper bounded,
and (iv) I(Z) is finite.

In the first case the result follows from Corollary 7.5.

If 1(Z) is finite (case (iv)) then, by Lemma 7.1,

Z € (W3(P) UW3(Qr)) N (WH(F) UW™(Qy)).
As Z is nonwandering, from Lemma 7.8, one gets
ZeW3(P)MWWP,)=H(P,) or ZeW3(Qy) MhW™Q) = H(Q).

By Corollary 7.7, if Z € H(P,;) then aj(Z) = 1 for all j € I(Z), and if
Z € H(Qy) then a;(Z) = 3 for all j € I(2).

Now consider case (ii) (case (iii) follows similarly). Observe first that, as
in the proof of Corollary 7.5, one has a;(Z) # 4 for all j. We now argue
by contradiction: assume that the sequence of positions a;(Z) of Z does
not satisfy the conclusion of the lemma. Then (in particular) there exists
J € I(Z) such that aj(Z) # aj+1(Z). By replacing Z by some iterate (if
necessary) we can assume that j = 0. By Lemma 7.3(1), (4), it follows that
ap(Z) # 1 and a1(Z) # 3. Therefore there are two possibilities:

e ap(Z) =2 and a1(Z) = 1 (since ag(Z) # a1(Z), from Lemma 7.3(2)
we get a1(Z) = 1).

e ap(Z) = 3 and a1(Z) = 1 or 2 (observe that ao(Z) # a1(Z) and
ai(Z) 75 4).

In the first case, by Lemma 7.3(1), a;j(Z) =1 for all j > 1. In the second
cases, by Lemma 7.3(1), (2), a;(Z) = 1 or 2 for every j > 1. In both cases
we get a;(Z) # ao(Z) for all j > 1. As in the proof of Corollary 7.5 this
implies that the point Z is wandering, which is a contradiction. =

7.2. Hyperbolicity of the homoclinic classes of P, and @), for
t in Ly. In the last section we proved that for any ¢t € Lj every point
of W5(P,) N W*(Qy) is wandering and the diffeomorphism f; has no cycles
associated to Py and @Q; (Lemma 7.8). Moreover, the sequence of positions
of any nonwandering point Z of V, different from P, and @, is constant
and equal to 1, 2 or 3 (Lemma 7.10). The next step is to characterize the
points having a sequence of positions equal to 1 or 3: every Z € £(f;)
with a constant sequence of positions equal to 1 or 3 belongs either to the
homoclinic class of P, (if the sequence consists of 1’s) or to the homoclinic
class of Q; (otherwise) (see Proposition 7.11). The converse of this assertion
was stated in Corollary 7.7. Thereafter we prove that the homoclinic classes
of P; and @ are hyperbolic basic sets. In Section 8 we will consider the case
where the sequence of positions is constant and equal to 2.
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The next two results are similar to steps (E), (F) and (G) of [DR2, Section
4.2]. Therefore we just sketch the main ideas involved in their proofs.
For each i € {1,2,3} let
Hi(t) ={Z € 2(f1) NV :aj(Z) =i for every j € I(Z)}.
PROPOSITION 7.11. One has

{Ri}UHL(t) = H(FR)  and {Q:} U Hs(t) = H(Qy).
Proof. By Corollary 7.7 it remains to prove the inclusions H;(t) C H(P;)

and Hs(t) C H(Q:). Let us prove this fact for H3(t); the other assertion fol-
lows similarly by considering backward orbits. We need the following lemma.

LEMMA 7.12. Consider Z € H3(t) and any (n — r)-dimensional disk D
containing Z in its interior and transverse to the foliation F*. There exists
a sequence of disks in W*(Qy), say (Hp)nen, such that:

e cvery H,, intersects D transversely in a point Z,,

e the angles of intersection between D and H, at Z, are uniformly
bounded from below, and

e the sequence (Zy)nen converges to Z.

Proof. For simplicity assume that D is foliated by (n — r — 1)-disks
contained in leaves of F". First observe that if I(Z) is bounded from above
then, by Lemma 7.1, Z € W5(Q¢) U W*(P;). Moreover, by Remark 7.9, if
Z € WS(P)N £2(f) then aj(Z) =1 for all j € I(Z). Thus, since a;(Z) = 3
for all j, we have Z € W*(Q;). Now the result is immediate: we can take
Z, = Z for all n with the sequence H,, being disks in W*(Qy) containing Z,.

If I(Z) is not bounded from above then, due to geometry of the cycle and
the fact that one has expansion in the u-direction (parallel to F"), there is a
first j € I(Z) such that the connected component of f,”(D)NV; containing
Zy; intersects W5(P;) along a curve o which is transverse to the stable
foliation. Since a;(Z) = 3, by shrinking the size of D in the central direction
(if necessary), we can assume that aq is contained in Z3.

Given a curve o in W& (Q¢) N\Uq (see (1.2) for the definition of W (Qy))
denote by af the set of the points X¢ where X € « (i.e., a® is the projection
of v in 7y along the leaves of F®). With this notation, the previous arguments
imply that
(7.3) ag C Is.

Denote by Dy the component of ftr 7(D) NV containing oy and write
W =Wy = Z,,. Observe that a;(W) = 3 for all j > 0. We now let

hj = hj(W) = Tj+1(W)—Tj(W) = n(er)+nk+N2+m(er)+(_mk)+N1'

Recall that n(W;;)+ny and m(W,., )+ (—my) are the numbers of consecutive
iterates of the orbit of W, in Ug and in Up, respectively. Since a;j(W) = 3,
by Proposition 6.7(f), m(W;,) =0 or 1.
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Let Dy be the connected component of f; fn (Do) N V1 containing W, and
a1 =D1 N loc(Qt) cDiN Wb(Pt)
Write W = (w;,,wy,,0") and observe that (by construction and (F1)) this

T T
point belongs to «j. Also observe that the curve «q is transverse to the
stable foliation. Then

C

af = G, ) (i, ) (@)
From (7.3) and Proposition 6.7(f) we get
5] > olagl, o> 1.

We now argue inductively by considering disks D;y1 defined as the
connected components of f"+1(D;) NV containing W,, 41y curves ;1 de-
fined as the intersection between D;,; and loc(Qt) and points Wﬁis =
(wy,, wy,,0%) € .

To estimate the lengths of the curves a;11 we need to pay special atten-
tion to the previous construction (it is not true, in general, that |af, | >
olaf| as in the case ¢ = 0). For that, for each i > 0, we consider the curves
o; and a; defined as the closures of the connected components of ; \ Wee
to the right and to the left of W, respectively. Observe that

(a1 = Grgw,ymw,, (@7)°).

Therefore, the calculation above for ¢ = 0 also shows that if (ozfc)C is con-
tained in I3 then

[(a51)°1 = ol(a)°:

First consider the curves o . As above, if (a
7=0,1,...,%, then

(o) > el (@) > o™ H(ag)], o> 1.

As the maps G, ,,, preserve orientation, there is a (first) kT such that (o, )¢
intersects the right extreme of I3. Then, using conditions (E1) and (E4), we
find that ()¢ intersects the right extreme of I3 for all i > k™.

Arguing analogously with the curves o we get k= such that (0 )¢
intersects the left extreme of I3 for all ¢ > k~. Taking k¥ = max{k*, k™ } we
see that af contains I3.

We now need the following fact.

CLAIM 7.13. Given t € Ly with k large, consider the (n — r)-disk H
defined by

o )¢ is contained in I3 for all

H= | cc(r(x)nw,X),
Xea
where « is a curve in W.(Q) transverse to F*° such that the interior of a°
contains Is. Then W*(Qy) intersects H transversely.
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Proof. Observe that the condition ¢t € Lj implies that the homoclinic
point associated to (¢ given by Z; = ;Nﬁm" (Yz) (Yz as in Section 1.3) is
such that Z; belongs to the interior of J3. Observe now that

G = CCW™(Q) NUg, f; ™ (Z0) = {(=°, (f7 ™ (=), 1)},

where (z%,0°,0") € Ug and 2} € R™. Since 2§ € J3 we infer that (f; ™ (2))°
belongs to the interior of I3. Thus G intersects H (transversely), ending the
proof of the claim. =

Using the claim we deduce that f;*(Dy) intersects W5(Q;) transversely.
Moreover, due to the geometry of the cycle, the angle of this intersection is
bounded from below.

Finally, to get the sequence Z,, it is enough to consider a nested sequence
of disks D,, contained in D and containing Z in their interiors and argue as
before. m

End of the proof of Proposition 7.11 (H3(t) C H(Q:)). If I(Z) is lower
bounded then, by Lemma 7.1, Z belongs to W"(Q:) U W"(F;), and, as
Z € Hs(t), by Remark 7.9, one has Z € W"(Q). Thus we can take the
disk D in Lemma 7.12 contained in W"(Q;) and containing Z in its interior.
Now applying Lemma 7.12 to the disk D we get a sequence of points Z,
such that

Zn e D WS(Qt) C Wu(Qt) 0 WS(Qt) C H(Qt), Zn — Z.

Thus Z € H(Qy).

If I(Z) is not lower bounded then we consider a nested sequence of
disks, say C),, contained in F*(Z) and containing Z in their interiors with
NCn = {Z}. For each C,, there exists —j, € I(Z) such that f, 7*(Cy)
intersects W"(Q;) transversely at some point Y;,. Taking small (n — r)-disks
in W"(Q;) around the points Y, and considering their images under ft'" one
gets a sequence of disks in W"(Q:), say D,,, converging to a disk D which
is transverse to the stable foliation.

By Lemma 7.12, W*(Q) intersects D transversely in a sequence of points
Zy, converging to Z. Due to the control on the angle of intersection, to each
Z, € W5(Q;) D there corresponds a Z,, € D, th W3(Qy), and (Z,)n
converges to Z. Since, by construction, each Z, € H(Q;), this ends the
proof of the proposition. =

PROPOSITION 7.14. Let t € Ly with k sufficiently large. The homoclinic
classes associated to P, and Q; are hyperbolic basic sets with indices v + 1
and r, respectively. Moreover, there are no cycles related to these sets.

Proof. By definition, H(P;) and H(Q;) are transitive sets. To see, for
example, that the homoclinic class of P; is locally maximal consider the set

Wy = V\ (IQ UZ3U1y le,t)’
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where
Vig={Z €Uy :0<2°<pB(t) "™ 1 —e1)al,
the sets Z; are defined in Section 2.1 and I} = [(1 — &1)a, a]. We claim that

H(P) = ) ffW).
neL

This can be seen as follows. Suppose that Z € H(P;), Z # P;. Then con-
sidering some iterate of Z we can assume that Z € V;. By Corollary 7.7,
a;(Z) =1for all i € I(Z), thus Z,, € Z; for all i € I(Z). So what is left is
to see that if Z; € Uy then Z; € V1. Since such a Z; is a backward iterate
of some Z,, with 7}, Z;,1,...,Z,; € Ug, the claim is equivalent to proving
that n(Z,,_,) = 0 or 1, where

ri—Tj—1="ng+ n(ZTj_l) + Ny —my, + m(Z,«j_l) + N;.

But this is a consequence of Proposition 6.7(e). So H(P;) C ;e ff(W1).
To prove the converse observe that, by definition,

() fiwr) C Hi(t) U{P:}.
1E€EZ
Thus, by Proposition 7.11, it follows that (),c, ff(W1) C H(P;).

To prove that H(P;) is hyperbolic of index r + 1 first observe that the
derivative of f; contracts (resp. expands) uniformly the vectors parallel to
the stable direction (tangent to F*®) (resp. the unstable direction). Thus,
being hyperbolic, this set must have index either r or r + 1. To see that the
index is r+1 we analyze the action of the derivative in the central direction.

As above, if Z € H(P,) NV and it has a first return to Vi, then by
Proposition 6.7(e), this is a uniformly contracting return in the central di-
rection. If the first return of Z is not defined then Z; belongs to W (P;) for
all 7 > N7 and it is clear that we have a contraction in the central direction.

Now the fact that H(P;) is hyperbolic of index r + 1 follows from the
standard cone field construction.

In a similar way we find that H(Q;) is a hyperbolic basic set of index r.

Finally, to prove that there are no cycles associated to H(P;) and H(Q;)
just observe that if Z € WS(H (Q:))NW"(H (F;)) then Z € 2(f;)NV and by
Proposition 7.11 there are j,k € I(Z) such that a;(Z) =1 and a3(Z) = 3,
which contradicts Lemma 7.10. =

7.3. Proof of the results for arcs close to the model family. We
end this section by pointing out that the previous results (i.e., that the ho-
moclinic classes of P; and ()¢ are hyperbolic basic sets for a set of parameters
with positive relative density at ¢t = 0) remain true for a neighbourhood of
the model arc (ft)te[—to,to}'
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In fact, observe that to obtain the result above we have only used con-
ditions (C1)—(C7), (E1)-(E8) and (F1) and (F2). Clearly, conditions (C1)—
(C7) and (E1)—(E8) are open conditions (just replace (C2) by a finite number
of nonresonance conditions and (C6) by the transversality condition between
~ and the strong stable and unstable foliations of W*(P) and W"(Q), as
explained in the comments after these conditions) and {Mj, Ms} is also a
filtration for diffeomorphisms close to f = fo.

Of course, (F1) and (F2) are not open conditions: in general the foliations
are not invariant along the cycle. However, they are almost-invariant in the
sense that the returns of the leaves of the strong stable and of the strong
unstable foliations are curves C'-t!*7-close to the initial leaves, for some
n > 0. This is sufficient for our purpose; for details see [DR3, Section 6.1].

Also in general the projections associated to the foliations are not isome-
tries (see (F2)) but the general case is handled as in [DRg, Section 6.2].

8. SECONDARY CYCLES

In view of the results in the previous section, to prove the theorem (for
the model family) it remains to consider points in 2(f;) NV, t € Ly for
sufficiently large k (that we consider fixed in what follows), whose sequences
of positions are constant and equal to 2, i.e., Z € Hy(t).

Let Z € £, NV, and assume that a;(Z) = 2 for every j € I(Z). We
claim that in this case I(Z) = Z. To see this, observe that, for instance, if
I(Z) is upper bounded then, by Lemma 7.1, Z € W*3(P;) U W5(Q¢). Thus,
by Remark 7.9, aj(Z) = 1if Z € W5(FP;) and a;(Z) = 3 if Z € W*(Q) for
all j € I(Z), which is a contradiction.

8.1. Central dynamics of points in Hs(¢). Recall that there are two
kinds of returns for points Z € Hs(t) to Vi: (1,0) and (0, 1)-returns. That
is, in both cases the number r; = r1(Z) is the same,

r1 =ng + No+ (—myg) + N1 + 1.

However, for these two types of returns the restrictions of f;* to the central
direction are different (given by Gf ; and Gf ;).

LEMMA 8.1. Let t € L. Then the diffeomorphism f; has two hyperbolic
periodic points in V1, denoted by A; and Ry, of period

Tk = ng + No 4+ (—my) + Ny + 1
and of indices r + 1 and r, respectively. Moreover, Af = A, and Ry = R,.

Proof. By Proposition 6.1, the map Gt 1 has two fixed points At and
Rt Observe also that GO 1 corresponds to the central coordinates of returns
under f/™*. The result now follows by observing that the mj-return of the
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diffeomorphism f; to Vi contracts uniformly the vectors tangent to F*° and
expands uniformly the vectors tangent to F". m

8.2. Heterodimensional cycles associated to A; and R;. In the
next lemma we prove that there is a cycle associated to A., and R.,, where
¢ € Ly is as in Lemma 6.4.

LEMMA 8.2. For every k sufficiently large the diffeomorphism f., has a
cycle associated to the periodic points Ac, and R, , ¢y € Li. Moreover, the
arc (ft)ielay,b,) unfolds generically such a cycle.

Proof. We begin by observing that, for ¢ in L; and for the one-dimen-
sional model Gf ;, we have

(A, RY) = (Ar, Re) € WS(AG, G q) N W™ (R, G ).

By (F1), A = R; and A} = R}'. Thus W5(Ay, fi) and W"(Ry, f;) are trans-
verse along the orbit of the f{™*-invariant (mg-periodic) curve

(8.1) Ty = {(A}, 25 A)) - 2° € (A}, Rp) )
WU (Ay)

m FrN O (A)

2 1 Py

-

quasitransverse heteroclinic point
Fig. 7. The heterodimensional cycle at cj

Observe that the numbers of iterates of the orbit of this periodic curve in Up
and Ug are —my, + 1 and ny, respectively, and that n; — oo and —my, — oo
as k — oo. Now, using the expansion (resp. contraction) of the mg-returns in
the unstable (resp. stable) direction, it is not hard to check that 7% is close
to the segment {05} x (4, R) x {0"}.
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By (F1) the local manifolds of A; and R; are given by
Wite(Ar) = {(45, 45, 2%) : (0°,0°,2) € Ug},
Wioe(Br) = {(2%, Ry, RYY) = (2%, 0°,0%) € Uq}-
Observe that there is a disk DY contained in wy c(At) of pOlIltb having a

return of type (0,0). By construction, the image of Du under f/* ! contains
a disk of the form

Dy = {(w§, G (A7), ") : (0°,0° ") € Ug} C ST (D})
for some w§. On the other hand, f,'(W¢ _(R;)) contains the set
D} = {(«®, B(t) 'R, w) = (2°,0°,0%) € Ug}

for some wg. Thus to get an intersection between D}' and D} (which will
be necessarily quasi-transverse and will provide the cycle) it is enough to
observe that

(8.2) B TR, = Goo(4f), t=cype Ly

(see Lemma 6.4).

It remains to see that the arc unfolds this cycle with positive velocity.
But, as this velocity is equal to the derivative of Uy (t) at ¢, this also follows
from Lemma 6.4. u

The next lemma together with Proposition 7.14 proves items (2) and (3)
of the theorem and shows that ¢y, is a first bifurcation value for (fi)ie[—o.t0]-

LEMMA 8.3. Consider t € |cg, bi]. Then
Qf) = H(P,) UH(Q:) U{O(Ar), O(Ry)}.

Proof. Fix any t € Jcg,bx] with k large. In view of Corollary 7.5 and
Propositions 7.11 and 7.14, it is enough to see that Ha(t) = {O(A:), O(Ry)}.
Clearly, {O(A:), O(R:)} C Ha(t). The other inclusion is a direct consequence
of Proposition 6.7(b). =

Observe that our construction also gives the following:

(8.3) WS(A)NW™R Uft (1),  Ti={{A]} x (Af,Rf) x {A'}}.

9. NONHYPERBOLIC ROBUSTLY TRANSITIVE DYNAMICS

9.1. The set Hs(t) for ¢ € [ay,ck[. In this section we prove item (4)
of the theorem for the model family. This result follows immediately from:

PROPOSITION 9.1. Let t € [ag, ck[. Then Ha(t) = H(A:) = H(Ry).
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Observe that the cycles associated to A., and R, we consider here are
exactly the ones considered in [D1, Theorem 1], where it is proved that the
resulting nonwandering set is equal to the homoclinic classes of P; and Q.
To prove these results one only needs to have a diffeomorphism f., having
a restriction to the curve [A;, R;] with fine distortion properties (as in our
case). So we just sketch the proof of this proposition.

Proof of Proposition 9.1. Observe first that by the choice of the param-
eters, H(R;) C Hs(t) and H(A;) C Ha(t). Thus we need to prove

PROPOSITION 9.2. Let t € [ag, ck|. Then
HQ(t) C H(Rt) and HQ(t) C H(At)
Proof. To prove the first inclusion, we need the following two preparatory
lemmas:

LEMMA 9.3. Let t € [ag, ci], * € Ha(t) and A an (n — r)-dimensional
rectangle containing x foliated by segments of the strong unstable folia-

tion F*. Then A W3(Ry) # 0.

Proof. Using expansion in the unstable direction and the fact that, by
definition, a;(z) = 2 for all j, we get n > 0 such that f;'(A) contains a
rectangle A’ that (in local coordinates) is of the form {z{} x U x [—1,1],
where U is contained in Io.

Recall now that each map Fflvm(y) 41 of the iterated function system F t
defined in Section 4.2 corresponds to some power of f;. By an argument as
in Section 7, Proposition 4.11 implies now that there is £ > 0 such that
fEAY h WS(Ry) # 0, ending the proof of the lemma. =

REMARK 9.4. As in Remark 7.4, Lemma 9.3 also holds if z is a point
whose forward orbit is contained in ¥ and whose itinerary consists of 2’s.

LEMMA 9.5. Let t € [ag,ck| and © € Ha(t). Consider any small stable
segment 1" containing x in its interior. Then T h W"™(R;) # 0.

Proof. Just observe that there is expansion in the stable direction for
negative iterates, and that the backward iterates of x are always to the left
of Rt. ]

We are now ready to prove that Ha(t) C H(R;). Given x € H(t) and
g > 0 consider a stable segment 1, of size 2¢ centred at z. By Lemma 9.5,
there is z € Y. th W"(R;). So there is a rectangle A, of diameter less than
e containing z and contained in W"(R;). Since z is in a stable segment of
x the forward orbit of z is contained in V and its forward itinerary consists
of 2’s. By Remark 9.4 and Lemma 9.3, A. N H(R;) # (. This implies that
there is a homoclinic point of R; at distance less than 2¢ from x. Since this
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construction holds for all £ this implies that z € H(R;), ending the proof of
Hg(t> C H(Rt)

Observe that the inclusion Hs(t) C H(A;) follows analogously by using
the iterated function system F* and Remark 4.13. The proof of Proposi-
tion 9.2 is now complete. u

As we mentioned above, Proposition 9.1 follows immediately from Propo-
sition 9.2. u

9.2. Proof of item (4) of the theorem: the general case. Recall
that a strongly partially hyperbolic set of a diffeomorphism f is a compact
f-invariant set A such that there are a splitting of the tangent bundle over
A into three nontrivial D f-invariant subbundles, Ty = % @& E° @ E", and
constants K > 0, 0 < 9 <1 and 5 > 0 such that:

e £ and E" are uniformly hyperbolic bundles (contracting and ex-
panding, respectively).
o Write £ = E¥@E° and E" = E""@® E°. Then the splittings 5@ "
and E% @ E" are dominated, i.e., for every z € A one has
| D f7| s | - \|ij(x)f_j|E;‘;(z)|| <K,
| Do f | ]| - ||Df*j(m)fj’E;S | < K¢

I (a)

Observe that in our model the sets H(P;), H(Q:), H(R:), and H(A;)
are strongly partially hyperbolic.

Consider an arc (hy),e[—rr, T > 0, of diffeomorphisms in R" unfolding
generically a heterodimensional cycle at p = 0 associated to the hyperbolic
fixed points Ag = (0", 4,0 ""1) and Ry = (0", R,0""~1) of indices r + 1
and r (A and R are the points introduced in (E9)) satisfying conditions (C1)—
(CT7) of Section 1 and the conditions on the unfolding of a heterodimensional
cycle described at the beginning of Section 1.3. Moreover, the arc (h,,) pel—r7]
is constructed to satisfy the following conditions:

(M1)  Geometry of the intersections: W5(Ag) N W*(Rg) = W?3(Ag)
W™(Ro) = {07} x (A, R) x {0" "'} = Yy; in particular, the
cycle is connected.

(M2)  Central dynamics: For some small 7 > 0 the restriction of h, to the
curve {07} x [A —n, R+ 7] x {071} is given by (Téfl)NS (recall
(E9)). In particular, {0"} x [A,,, R,] x {0""""1} is contained in the
transverse intersection between W*(A,) and W*(R,,).

(M3)  Transverse dynamics: The positive eigenvalues Ay and Br of the
derivative of T" at A and R are such that A4 is the greatest con-
tracting eigenvalue of Dhg(A) (in modulus) and (g is the smallest
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expanding eigenvalue of Dho(R) (in modulus). Moreover, any eigen-
value o of Dho(A) (resp. Dho(R)) different from A4 (resp. Or) is
such that |o| # |Aa| (resp. |o| # |Or]).

(M4)  The cycle is noncritical: By (M3) one can define the strong stable
foliation of W*(Ap) and the strong unstable foliation of W"(Ry). We
assume that the curve 1 is transverse to these foliations. Moreover,
the cycle satisfies conditions (F1) and (F2) of Section 1.2.

(M5)  Velocity of the unfolding of the cycle: The cycle is unfolded with
positive velocity (recall Lemma 8.2).

Finally, the neighbourhood of the cycle and the constants C, C’ and r
above depend only on the geometry of the cycle (conditions (M1) and (M4)),
the dynamics of the restriction of hg to 7j (condition (M2)), and the velocity
of the unfolding (M5). In other words, these constants do not depend on the
transverse dynamics of the cycle once condition (M3) is satisfied.

For each k large enough consider the interval Ly and the reparametriza-
tion ug : Lx — [—po, po] defined in Lemma 5.7 and its inverse t;(u). Now
define the arc (g,.)ue(—po/2,u0/2) Of diffeomorphisms by

i = Tty
where 7 = ngp + No — my + 1 + Ny (Lemma 8.1). By Lemma 8.2, this arc

unfolds generically at 0, = i (ck) a cycle associated to the hyperbolic fixed
points A, and R, .

LEMMA 9.6. For every large k and small jio the arc (gr ) ue|—puo/2,10/2) 8
e-C-close to some arc (hy)ue(—po /2,02 Satisfying conditions (M1)—(Mb5).

Having in mind the comments we made in Section 7.3 and the construc-
tion in Section 9.1, it is now clear that we can argue exactly in the same
way for arcs close to (fi)ic[—t,,4,] getting the same conclusion. Moreover, us-

ing the standard cone-field construction one concludes that the sets H(P;),
H(Q:), H(A:), and H(R;:) are strongly partially hyperbolic.
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