Model-theoretic consequences of a theorem of Campana and Fujiki

by

Anand Pillay (Urbana, IL, and Berlin)

Abstract. We give a model-theoretic interpretation of a result by Campana and Fujiki on the algebraicity of certain spaces of cycles on compact complex spaces. The model-theoretic interpretation is in the language of canonical bases, and says that if b, c are tuples in an elementary extension \mathcal{A} of the structure \mathcal{A} of compact complex manifolds, and b is the canonical base of $\text{tp}(c/b)$, then $\text{tp}(b/c)$ is internal to the sort $(\mathbb{P}^1)^*$. The Zilber dichotomy in \mathcal{A} follows immediately (a type of U-rank 1 is locally modular or nonorthogonal to the field \mathbb{C}^*), as well as the “algebraicity” of any subvariety X of a group G definable in \mathcal{A} such that $\text{Stab}(X)$ is trivial.

1. Introduction. This paper concerns the interaction between complex-geometric notions and model-theoretic notions in the structure theory of compact complex spaces. It has been known for some time that model-theoretic ideas yield a rather striking dichotomy for simple compact complex manifolds M: either M is algebraic, or else there is no “2-parameter” family of finite-to-finite analytic correspondences between M and itself. But, up to now, the only proof of this of which I was aware went through the results on Zariski geometries and their validity for compact complex manifolds, together with some other ingredients (see [6], [7] and [11]). It turns out that the dichotomy above and more are almost immediate consequences of a theorem proved independently by Campana [1] and Fujiki [3]. They prove, roughly speaking, that if S is a compact space of cycles $(Z_s : s \in S)$ on a compact complex space X then the natural morphism from the graph $\{(x, s) : x \in Z_s, s \in S\}$ of S to X is a Moishezon map. Via a translation established by Moosa ([9], [10]), this yields the following striking statement in the language of canonical bases (to be read in a saturated elementary extension \mathcal{A} of the many-sorted structure \mathcal{A} of compact complex spaces): (\ast) for any b, c, $\text{tp}(C_b(\text{tp}(c/b))/c)$ is “algebraic”, that is, internal to \mathbb{C}^*.

2000 Mathematics Subject Classification: 03C45, 32J27.
Partially supported by an NSF grant and a Humboldt Foundation Research Award.
The statement (⋆) (or the original Campana–Fujiki statement) yields the dichotomy for U-rank 1 types in A^*: they are modular or “algebraic”. Also the algebraicity of suitable subvarieties of meromorphic groups and homogeneous spaces follows directly, subsuming results of Ueno [15] as well as results from [8]. I guess that the benefit of the model-theoretic translation (⋆) lies in being able to work directly with bimeromorphic objects without worrying about specific compactifications. As the reader might surmise, the statement (⋆), when suitably re-interpreted, is also directly provable (using suitable jet spaces) in other algebraic/model-theoretic structures of interest, such as differential and difference fields. (See [14].)

The details of the observations above are given in the next section.

2. Results. For the theory of compact complex spaces see [4]. For the model-theoretic treatment of this subject see [11].

Let us work towards stating the Campana–Fujiki theorem. Let X be a reduced, irreducible, compact complex space. There are two notions of cycle spaces on X. The Douady space $D(X)$ parametrizes pure-dimensional analytic subsets of X. The Barlet space $C(X)$ parametrizes integral linear combinations of irreducible analytic subsets (of the same dimension) of X. Campana works with Barlet spaces and Fujiki with Douady spaces. A morphism $f : Y \to X$ of compact complex spaces is said to be projective if there is a coherent analytic sheaf \mathcal{F} over X and an embedding (over X) h of Y into the projective linear space $\mathbb{P}(\mathcal{F})$ over X associated with \mathcal{F} such that $\pi \circ h = f$, where $\pi : \mathbb{P}(\mathcal{F}) \to X$ is the map realizing $\mathbb{P}(\mathcal{F})$ as a fibre space over X. A morphism $f : Y \to X$ is said to be Moishezon if it is bimeromorphic (over X) to a projective morphism $f' : Y' \to X$. Campana proves:

Fact 2.1. Let S be an irreducible, compact, analytic subset of $C(X)$. Let Z_s denote the cycle parameterized by $s \in S$. Assume that for general $s \in S$, Z_s is irreducible. Let $Y = \{(x,s) \in X \times S : x \in Z_s, \ s \in S\}$, and let $f : Y \to X$ be the projection to the first coordinate. Then f is a Moishezon map.

In fact the above statement comes from [2] (Theorem 3.6). The original theorem in [1] states that f factors through an embedding in a suitable Grassmannian of \mathcal{F} over X, where \mathcal{F} is the coherent analytic sheaf of germs of differential operators of suitably bounded order. Such an f is Moishezon. In Fujiki’s statement, $C(X)$ is replaced by $D(X)$.

We now work towards the model-theoretic interpretation. \mathcal{A} is the many-sorted structure of compact complex spaces X_i with predicates for analytic subvarieties of Cartesian products $X_{i_1} \times \ldots \times X_{i_n}$. Note that with this “language”, all elements of all sorts in \mathcal{A} are named by constants. $\text{Th}(\mathcal{A})$ has
quantifier elimination, elimination of imaginaries and is stable with finite Morley rank (sort-by-sort). \mathcal{A}^* will be a very saturated elementary extension of \mathcal{A}. Among the sorts in \mathcal{A} is the projective line \mathbb{P}_1 over \mathbb{C}. There is no harm (via Chow’s theorem) in identifying this sort with the complex field \mathbb{C} equipped with addition, multiplication, and constants for all elements (they are bi-interpretable). \mathbb{C}^* denotes the “extension” of this sort in \mathcal{A}^*. Let b, c be tuples from \mathcal{A}^*. Following [9], [10], we will say that $\text{tp}(c/b)$ is Moishezon if $\text{tp}(c/\text{acl}(b))$ is internal to \mathbb{C}^*, or equivalently if there is some finite tuple b_0 including b and independent of c over b such that $c \in \text{dcl}(d,b_0)$ for some tuple d from \mathbb{C}^*. (Note that $\text{tp}(c/b)$ is Moishezon just if every stationarization of it is Moishezon.) Moosa [10] observes the following:

Fact 2.2. Suppose that X, Y are irreducible compact complex spaces and that $f : Y \to X$ is a Moishezon map. Let $c \in Y^*$ be a generic point of Y (over \mathcal{A}). Then $\text{tp}(c/f(c))$ is Moishezon.

We can now obtain:

Theorem 2.3. Let b, c be finite tuples from \mathcal{A}^*. Assume that $\text{tp}(c/b)$ is stationary and that $b = \text{Cb}(\text{tp}(c/b))$. Then $\text{tp}(b/c)$ is Moishezon.

Proof. Let X, S, Z be irreducible compact complex spaces of which c, b and (c, b) respectively are generic points (over \mathcal{A}). Then Z_b is irreducible with generic point c, and moreover b is a canonical parameter for Z_b (by quantifier elimination). Replacing S by a suitable modification, we may assume that the projection $\pi : Z \to S$ is flat. The universal properties of the Douady space $D(X)$ of X yield a morphism $p : S \to D(X)$ such that $p(s)$ corresponds to Z_s. Then $p(S)$ is a compact irreducible analytic subset of $D(X)$. Also, by compactness, there is a Zariski open subset U of S such that for $s_1, s_2 \in U$, $Z_{s_1} = Z_{s_2}$ iff $s_1 = s_2$. Thus $p : S \to p(S)$ is a modification. The end result is that, after replacing b by something interdefinable with it (which we can do), we may assume that S is a compact analytic subspace of $D(X)$ and that Z is the associated subspace of $X \times S$. By Fact 2.1 (working with Douady spaces), the canonical morphism $f : Z \to X$ is Moishezon. By 2.2, $\text{tp}(b, c/c)$ is Moishezon, and thus $\text{tp}(b/c)$ is Moishezon.

Remark 2.4. Let b, c be as in the above theorem. Then for any tuple a from \mathcal{A}^*, $\text{tp}(b/ca)$ is Moishezon.

Proof. The conclusion of Theorem 2.3 tells us that there is some set C of parameters containing c and such that b is independent of C over c and $b \in \text{dcl}(C, d)$ for some tuple d from \mathbb{C}^*. Without loss of generality (that is, by automorphism) C is independent of a over bc, so independent of bca over c, and so independent of b over ca.

Let us now give some applications.
Corollary 2.5. Let \(p(x) \) be a stationary type of \(U \)-rank 1 over some set in \(\mathcal{A}^* \). Then \(p \) is either modular or nonorthogonal to (the generic type of) \(C^* \).

Proof. As \(\mathcal{A}^* \) has finite Morley rank (sort-by-sort) we may assume that \(p(x) \) is over a finite tuple \(a \) of parameters. If \(p \) were not modular then by 2.2.6 of [12] there would be a tuple \(c \) of realizations of \(p \) and some tuple \(b \) such that \(b = \text{Cb}(tp(c/ba)) \) and \(b \notin \text{acl}(ca) \). By Remark 2.4, \(\text{tp}(b/ca) \) is Moishezon. In particular \(\text{tp}(b/ca) \) is nonorthogonal to the generic type of \(C^* \). But \(b \) lives in \(p^{eq} \), and thus \(p \) is nonorthogonal to \(C^* \).

The next application concerns definable subsets of groups and homogeneous spaces. Definable groups in \(\mathcal{A} \) have naturally the structure of “meromorphic groups” (see [13] and [8]). A definable group in \(\mathcal{A}^* \) can be considered as the generic fibre of a meromorphic family of meromorphic groups.

Let us start with a general lemma about stable groups.

Lemma 2.6. Let \(G \) be a connected group (type)-definable in a saturated stable structure \(\bar{M} \). Let \(c \in G \) be such that \(p(x) = \text{tp}(c) \) is stationary. Let \(H \) be the left stabilizer of \(p \). Let \(a \in G \) be generic over \(c \). Let \(c/H \) denote \(Hc \) as an element of the right coset space \(H \setminus G \). Then \(c/H \) is interdefinable over \(a \) with \(\text{Cb}(\text{tp}(a/ca)) \). (Similarly with left and right interchanged.)

Proof. So \(H \setminus G \) denotes the space \(\{Hg : g \in G\} \) of right cosets of \(H \) in \(G \), and as above we write \(Hg \) as \(g/H \) when we want to treat it as an element rather than a definable set. Some more notation: given a stationary type \(q \) over \(\emptyset \) of some element of \(G \), and given \(a \in G \), by \(qa \) we mean the restriction to \(a \) of the translate \(q'a \) of \(q' \) by \(a \) where \(q' \) is the global nonforking extension of \(q \). Note that \(qa \) is stationary and \(q'a \) is its global nonforking extension. Moreover \(qa = \text{tp}(da/a) \) for \(d \) realizing \(q|a \).

Now let us make some observations.

(i) \(a \) realizes \(p^{-1}ca \).

This is because \(c^{-1} \) realizes \(p^{-1} \), and (as \(a \) is generic in \(G \) over \(c \)), \(ca \) is generic over \(c^{-1} \) so independent of \(c^{-1} \).

(ii) \(ca/H \) is interdefinable with \(\text{Cb}(p^{-1}ca) \).

Indeed, \(H \) is the left stabilizer of \(p \) so the right stabilizer of \(p^{-1} \), which clearly yields (ii): an automorphism \(f \) fixes \(ca/H \) iff \(p^{-1}ca \) is parallel to \(f(p^{-1}ca) = p^{-1}f(ca) \).

Note that \(c/H \) and \(ca/H \) are interdefinable over \(a \). So by (i) and (ii) we deduce that \(c/H \) and \(\text{Cb}(\text{tp}(a/ca)) \) are interdefinable over \(a \).

Remark 2.7. Note that Lemma 2.6 includes the old result [5] that in modular (or 1-based) groups any stationary type is a translate of the generic
type of a subgroup: if $\text{Cb}(\text{tp}(a/\text{ca})) \subseteq \text{acl}(a)$ then $c/H \in \text{acl}(\emptyset)$ and so $\text{tp}(c)$ is a translate of the generic type of H.

Lemma 2.6 applies to groups definable in \mathcal{A}^*. So together with Theorem 2.3 we obtain:

Corollary 2.8. Let G be a group definable in \mathcal{A}^*. Work over some algebraically closed set of parameters \mathcal{A} over which G is definable. Let $c \in G$ and let H be the left stabilizer of $\text{tp}(c/\mathcal{A})$. Then $\text{tp}((c/H)/\mathcal{A})$ is Moishezon.

For groups definable in \mathcal{A}, that is, *meromorphic groups*, Corollary 2.9 below gives a more geometric looking statement. As a matter of notation, if X and Y are complex (not necessarily compact) spaces definable in \mathcal{A}, we will say that X and Y are *meromorphically isomorphic* if there is a bihomolorphic map between X and Y which is also definable in \mathcal{A}.

Corollary 2.9. Let G be an arbitrary meromorphic group (not necessarily commutative). Let X be an irreducible meromorphic subvariety of G, and let $H = \{g \in G : g \cdot X = X\}$ be the set-theoretic left stabilizer of X in G. Let $H \backslash X$ denote the Zariski closure of $H \backslash X$ in the meromorphic homogeneous space $H \backslash G$ of right cosets Hg ($g \in G$). Then $H \backslash X$ is meromorphically isomorphic to an algebraic variety. (Likewise with left and right interchanged.)

Proof. Let $p = \text{tp}(c/\mathcal{A})$ be the generic type of X. (So $c \in X^* \subseteq G^*$.) Then H (or rather its extension H^*) as defined in the statement to be proved identifies with the left stabilizer of p. By Corollary 2.8, $\text{tp}((c/H^*)/\mathcal{A})$ is Moishezon. As \mathcal{A} is a model, this is witnessed over \mathcal{A}, namely $c/H^* \in \text{dcl}(d)$ for some tuple from \mathbb{C}^*. It follows that c/H^* is interdefinable with some tuple in \mathbb{C}^*. But c/H^* is a generic point over \mathcal{A} of $(\overline{H \backslash X})^* \subseteq (H \backslash G)^*$. As $H \backslash G$ is a homogeneous space it follows that $\overline{H \backslash X}$ is meromorphically isomorphic to an algebraic variety.

References

Department of Mathematics
University of Illinois at Urbana-Champaign
Altgeld Hall
1409 W. Green St.
Urbana, IL 61801, U.S.A.
E-mail: pillay@math.uiuc.edu

Institut für Mathematik
Humboldt Universität
D-10099 Berlin, Germany

Received 15 November 2001;
in revised form 19 March 2002