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Extension properties of Stone—Cech coronas and
proper absolute extensors

by

A. Chigogidze (Staten Island, NY)

Abstract. We characterize, in terms of X, the extensional dimension of the Stone—
Cech corona X \ X of a locally compact and Lindelsf space X. The non-Lindeldf case is
also settled in terms of extending proper maps with values in I” \ L, where L is a finite
complex. Further, for a finite complex L, an uncountable cardinal 7 and a Z,-set X in
the Tikhonov cube I we find a necessary and sufficient condition, in terms of I” \ X, for
X to be in the class AE([L]). We also introduce a concept of a proper absolute extensor
and characterize the product [0,1) x I” as the only locally compact and Lindelof proper
absolute extensor of weight 7 > w which has the same pseudocharacter at each point.

1. Introduction. We study extension properties of Stone—Cech coronas
of locally compact spaces, focusing on the following two problems:

(A) When, in terms of X, are maps, defined on closed subsets of X\ X,
into a finite complex L extendible to the whole SX \ X7

(B) When, in terms of Y, are maps, defined on closed subsets of nice
spaces, into Y \ Y extendible to the whole domain?

When every map f: A — Y, defined on a closed subset A of X, has an
extension f: X — Y we say that Y is an absolute extensor of X and write
Y € AE(X). Assuming that both f and f in this definition are proper we
obtain the notion of a proper absolute extensor (for details see Definition
[L.1). We then write Y € AE,(X). It turns out (Corollaries that
for a locally compact and Lindelof (e.g. separable and metrizable) space
X and a finite complex L, L € AE(SX \ X) precisely when Cone(L) \ L €
AE,(X) (here L is identified with the base L x {0} of Cone(L)). For L = S,
we obtain the following observation: dim(SX \ X) = dim, X — 1, where
dim, X < n is just a notation for R" € AE,(X). We point out that the
problem of describing dimensions (covering, inductive) of the Stone-Cech (or
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Hewitt) coronas, using completely different approaches, has been considered
by several authors (see, for example, [1], [2], [3], [15], [16], [5]).

However, non-Lindelof spaces do not admit proper maps into R” or into
any space of the form Cone(L) \ L, where L is a finite complex, and above
observations need to be adjusted in order to remain valid in the general
case. We start by noting that since L (i.e. L x {0} C Cone(L)) is a Z-
set in Cone(L) it follows from Chapman’s Complement Theorem that no
matter how L is Z-embedded into the Hilbert cube, the complement I\ L
is homeomorphic to 1% x Cone(L) \ I¥ x L = I“ x (Cone(L) \ L). Since
Cone(L) \ L € AE,(X) if and only if I x (Cone(L) \ L) € AE,(X), the
observation made above can be reformulated as follows: L € AE(SX \ X) if
and only if ¥\ L € AE,(X). While the testing space I* \ L is still Lindel6f
and hence is not suitable for the general situation, it does allow us to find its
non-metrizable counterpart, which turns out to be the complement I7 \ L.
The choice of the embedding L < I7, when 7 > w, is irrelevant since any
metric compactum is a Z,-set in I as long as 7 > w [6, Corollary 8.5.7].
With this in mind we settle problem (A) by proving the following statement.

THEOREM 4.1. Let X be a locally compact space which can be covered
by at most T compact subsets and each regular closed subset of which is
C*-embedded. Let also L be a compact ANR-space embedded into the cube
1™ as a Z;-set. Then the following conditions are equivalent:

(a) L € AE(BX \ X);

(b) I"\ L € AE,(X).

Problem (B), in some cases, can also be settled in a similar manner.
Specifically, we consider spaces of the form Y = I™\ X, where X is a Z,-set
in I™. For 7 > w, I is indeed the Stone-Cech compactification of Y (Lemma
2.1). In this situation problem (B) becomes a part of a general problem of
recovering properties of X in terms of its complement I \ X. This leads us
to considerations very similar to the study carried out in [10] for 7 = w.

However, there is a major difference between the metrizable (7 = w) and
non-metrizable (7 > w) cases. Roots of this difference, one could argue, lie in
the fact that the topological type of the complement /“\ X of a Z-set in the
Hilbert cube, while determining X’s shape, does not uniquely determine the
topological type of X. But if 7 > w, the topological type of any Z,-set X in
17 is completely determined by its complement. This is apparently why we
need to exploit metric-uniform invariants in the metrizable case (see [10])
and why we could remain in the topological category if 7 > w.

Going back to problem (B), it turns out that—as in problem (A)—the
complements I7 \ L of finite complexes still play a critical role. In order
to formulate our second result let us recall that the extension class [L] of
a complex is the collection of all extensionally equivalent complexes (K is
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equivalent to L if K € AE(X) if and only if L € AE(X) for any X). We
say that X € AE([L]) if X € AE(Y) whenever L € AE(Y). Similarly,
we can define a proper extensional class AEL([/7 \ L]) by agreeing that
Y € AEL([I7 \ L]), where Y is a locally compact space of weight < 7, if
Y € AE, (M) for any locally compact space M of weight < 7 with 17\ L €
AE,(M). We prove the following statement.

THEOREM 4.4. Let 7 > w, L be a compact AN R-space embedded into
I as a Z;-set and X be a Z,-set in I™. Then the following conditions are
equivalent:

(i) X € AE([L]);

(ii) I"\ X € AEL([I7 \ L]).

These considerations lead to the concept of a proper absolute extensor
which we study in Section [6] (see [13], [I2] for related results). Note that R"
is not a proper absolute extensor for any n (while it is, of course, an absolute

extensor). To see this in case n = 1 note that the proper map f: N — R,

defined by - odd
n,  nisodd,

oy ={

does not have a proper extension f: R — R. On the other hand, RY =
{(x4)?~; € R™: z,, > 0} is a proper absolute extensor for each n. Explanation
of this fact (see Lemma is that R’} has a compactification (namely, I™)
which is an absolute extensor and that the corresponding corona (I"~1) is
also an absolute extensor, sitting in I as a Z-set. We show that the only
proper absolute extensor of countable weight satisfying DD"P for each n
is the product [0,1) x I* (Proposition [6.5). In the non-metrizable case we
have the following statement.

—n, n is even,

THEOREM 6.7. A proper absolute extensor of weight T > w is homeo-
morphic to the product [0,1) x I™ if and only if it has the same pseudochar-
acter at each point.

The paper is organized as follows. In Section |3 based on modified ver-
sions of Shchepin’s Spectral Theorem, we obtain a characterization of Z-sets
in the Tikhonov cube I™ and prove the mapping replacement results (Propo-
sitions and . These are then used in Section {4| to prove Theorems
and In Section [5| we extend some results, obtained in [10] for the
Hilbert cube, to the Tikhonov cube. Namely, we describe the topological and
homotopy categories of Z -sets in I” in terms of certain naturally defined
categories of their complements. The considerations here involve certain con-
cepts of coarse geometry which are still relevant in the topological setting.
In the final Section [6] we investigate the concept of proper absolute extensor
and prove Theorem
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2. Preliminaries. Unless noted otherwise, below we consider only locally
compact Tikhonov spaces and continuous maps. A map f: X — Y is proper
if f~1(C) is compact for any compact C' C Y. Note that the class of proper
maps between locally compact spaces coincides with the class of perfect maps
(a map is perfect if it is closed and has compact point inverses). A set ' C X
is z-embedded in X if for every functionally closed (in F') set Z C F' there
exists a functionally closed set Zin X such that Z=FNZ. Aset FC X
is C*-embedded if every bounded real-valued continuous function, defined on
F', has a bounded and continuous extension, defined on X.

LEMMA 2.1. Let 7 > w and X be an open and Ggs-dense subset of the
Tikhonov cube I™. Then

(i) X is pseudocompact and X =17;
(ii) if F' is a functionally closed subset of I”, then FNX is C*-embedded
m X;

(iii) if G is an open subset of X, then clx G is C*-embedded in X .

Proof. (i) Since X is dense in I it follows (see [6, Corollary 6.4.7]) that
X is z-embedded in I7. Since, by assumption, I” \ X does not contain func-
tionally closed subsets of I™, we conclude ([6, Proposition 1.1.22]) that I” is
the Hewitt realcompactification of X. Compactness of I” implies that I7 is
actually the Stone-Cech compactification of X and X is pseudocompact.

(ii) Since X is Gg-dense, it follows that FF N X # . By (i) and [IT
8D.1], F = clj=(F N X). Since I” is an AE(0)-space, it follows from [0,
Propositions 6.1.8, 6.4.9] that F' itself is an AE(0)-space. Consequently, by
[6l, Proposition 1.1.21(ii)], F'NX is z-embedded in F. Since FNX is Gs and
dense in F, it follows from [6, Proposition 1.1.22] that F is the Stone-Cech
compactification of F N X. Then FF'N X is C*-embedded in X.

(iii) Clearly, clx G = X Ncly= G. Since the latter set is functionally closed
in I”, the conclusion follows from (ii). =

Extension theory—a generalization of the classical dimension theory—
as developed by A. Dranishnikov, as well as certain facts from infinite-
dimensional topology (see [§] for a unified treatment of both) are used with-
out specific references.

3. Z;-sets in the Tikhonov cube. In this section we study certain
properties of Z -sets in I” introduced in [6].

3.1. Spectral Theorem—revisited. We begin by establishing some
versions of Shchepin’s Spectral Theorem [6, Theorem 1.3.4].

PROPOSITION 3.1. Let7>w, [T| > 7,To C T, |To| < |T| and g: [[;er Xt
— [Lier Xt be a map of the product of compact metrizable spaces such that
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1, © g = m7,. Then the set

Mg = {R Cexp,(T'\ Tp): there exists
9ToUR*: H X — H X with TToUR © § = gT,UR © WTouR}
teToUR teToUR

is cofinal and T-closed in exp_ (T \ Tp).
Proof. By [6, Theorem 1.3.4], the set

My = {R € exp, T': there exists

JR: HXt — HXt with WROg:gROﬂ'R}
teR teR

is cofinal and 7-closed in exp, T ) )
Let S € exp, (T \ Tp) and choose R € M, such that S C R. The cor-

responding gz does not change the X-coordinate for ¢ € RN Ty (since
7, © g = 77,). Consequently, the diagonal product

A | | 11 11
9,0k =TT A T IR R X — X; X X
teToUR teTn teR\To

is well defined. Set R = R\ Ty. Obviously, S € R and R € M, ), which
proves that My 7y is cofinal in exp, (T'\ Tp). The 7-completeness of M g 7
in exp_ (T \ Tp) is obvious. =

COROLLARY 3.2. LetT > w, |T|>7,To CT, |To| < |T| and f: X =Y
be a map between closed subspaces of the Tikhonov cube IT. If mp, o f =
71, | X, then the set

M(f,To) ={R Cexp,(T\Ty): there exists fr,ur: mr,ur(X) = Trur(Y)
with Tryur © f = frour © TruR| X}
is cofinal and T-closed in exp_ (T \ Tp).

Proof. Let g: IT — I" be a map such that g|X = f and TT, 0 g = TT,-
By Proposition the set M, 7)) is cofinal and 7-closed in exp, (T"\ Tp).
For each R € M(g,To) let ngUR = gTouR\gTouR(X). [

PROPOSITION 3.3. If, in Proposition the map g is a homeomor-
phism, then the set

Hgm) = 1R € M(y1): 910UR 18 @ homeomorphism}
is cofinal and T-closed in exp (T \ Tp).

Proof. By Proposition applied to both g and g~!, the sets M g1
and M1 1) are cofinal and 7-closed in exp. (7" \ Tp). By [6, Proposition
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L.1.27], M(g15) N M(g-1 1) is still cofinal and 7-closed. It remains to note
that for each R from this intersection the map gr,ur is @ homeomorphism. =

COROLLARY 3.4. If, in Corollary [3.2 the map f is a homeomorphism,
then the set
Hirmy) = 1R € Ms1,): frour is a homeomorphism}
is cofinal and T-closed in exp (T \ Tp).

3.2. Properties of Z.-sets in I7. We denote by cov(X) the collection
of all countable functionally open covers of the space X. We set

B(f,{y:t € T}) ={g € C(X,Y): gis Us-close to f for each t € T},

Let 7 be an infinite cardinal. If X and Y are Tikhonov spaces then
C-(X,Y) denotes the space of all continuous maps X — Y with the topology
defined as follows ([7], [6, p. 273]): a set G C C;(X,Y") is open if for each
h € G there is a collection {U;: t € T} C cov(Y'), with |T'| < 7, such that

he B(f,{U:teT}) CG.

Obviously if 7 = w, then the above topology coincides with the limitation
topology (see [18]). For 7 > w, this topology is conveniently described in the
following statement [9, Lemma 3.1].

LEMMA 3.5. Let 7 > w and X be a z-embedded subspace of a product
[L,er X¢ of separable metrizable spaces. If |T| = 7, then basic neighbor-
hoods of a map f:Y — X in C-(Y,X) are of the form B(f,S) = {g €
C-(Y,X): mgog=mgof}, SCT,|S| <7, where ms: [icr Xt — [licg Xt
denotes the projection.

Now we are ready to define Z;-sets [6, Definition 8.5.1].

DEFINITION 3.1. Let 7 > w. A closed subset A C X is a Z,-set in X if
the set {f € C-(X, X): f(X)NA=0}is dense in the space C-(X, X).

Clearly Z,-sets are the same as standard Z-sets. We also need the fol-
lowing concept.

DEFINITION 3.2. Let w: X — Y be a map. A closed subset A C X is a
fibered Z-set in X if the set {f € CT(X, X): f(X)N A =0} is dense in the
space CT(X, X)) ={f e C-(X,X): mo f =7}

LEMMA 3.6. Let 7 > w and |T| = 7. For a closed set M C IT the
following conditions are equivalent:

(1) M is a Z,-set in IT,

(2) for each Ty C T with |Ty| < T, the set

Ziumy) =18 Cexp,(T'\ To): mrus(M) is a fibered Z-set in JTous

. ToUS
with respect to 7TT8

is cofinal and w-closed in exp,, (T \ Tp).
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Proof. (1)=(2). Let Sy = R € exp, (T \ Tp). Since M is a Z,-set in I
and |TyU Sp| < 7, there exists, by Lemma amap fi: IT — IT such that
TTUS, © f1 = Tryus, and fi (I"yN M = . By Proposition there exist a
countable subset S; C T'\ Ty, with Sy C Sy, and a map gy : I709951 — [ToUS

such that g (IT0Y51) N wq,us, (M) = 0 and 77,08, © f1 = g1 © Tryus, - Note
that W%SUSI ogy = W%SUSI.
Continuing this process we construct an increasing sequence {S,,: n€w}

of countable subsets of T\ Ty and maps g,: I70Y9 — JT0YS:» 5o that
W;SS?ZJFI Y — WTOUE"“ and g, (17095 N p,us, (M) = 0 for each n > 1.
Let S = U, c., Sn- We leave to the reader the verification of the fact that
mrus(M) is a fibered Z-set in I™YS with respect to the projection W%:OUS
(cf. [9 proof of Proposition 2.3]). This proves the cofinality of Z(y; 7). The
w-completeness of this set is obvious.

(2)=(1). According to Lemma[3.5)it suffices to find, for any Ty C T with
|To| < 7, amap f: IT — IT such that np, o f = 7p, and f(IT) N M = 0.
By (2), there exist a countable subset S C T\Tp and amap g: [70Y5 — [T0US
such that TrTOUS og = W%OUS and g(ITY9) N wpus(M). Let j: 17095 — [T
be a section of the projection mrus: IT — ITT0YS Tt only remains to note
that the map f = j o g o mus has the required properties. =

PROPOSITION 3.7. Let 7 > w and |T| = 7. For a closed set M C IT the
following conditions are equivalent:

(1) M is a Z,-set in IT;
(2) If F C M is a closed subset, then (F,I7) = 7;
(3) T can be represented as the increasing union T =
subsets so that
(a) |To] = w;
(b) |Ta+1\T | = w;
(
(

T, of its

a<Tt

¢) To = Ugo Ip for each limit ordinal o < 7.

d) 7r1,.,(Z) is a fibered Z-set in ITe+1 with respect to the projection
maetl: [Tat1 5 [Ta

Proof. (1)<(2) is proved in [6, Proposition 8.5.5], and (2)=(3) follows
from Lemma [3.6]

To prove (3)=(1), let A C T with |A| < 7. Then, by (b), there exists
a < 7 such that A C T,,. By (d), there exists a map f: I7e+1 — JTa+1 such
that 77;1‘1‘+1 of = 77%“ and Im(f) N 7r,,,(Z) = 0. Define g: IT — I by
g =17, ° fonr,,, where it, , is a section of the projection 7z, . It is
clear that Ty og=m4 and Im(g)NZ = 0. =

COROLLARY 3.8. Let 7 > w and X be a compact space of weight < 7.
Then there exists a Zr-embedding of X into the cube I7.
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Proof. For 7 = w the statement is known. Let |T'| = 7 > w and represent
I as [[,cp Yi, where each Y} is a copy of I“. Embed X into a product
[I;er Xt of compact metrizable spaces. Since each X; admits a Z-embedding
into Y;, it follows from Proposition that [],.; X¢, and hence X, admits
a Zr-embedding into [[,., Y;. =

3.3. Mapping replacement. For a Z-set Z C I¥ and a closed subset
Y of a metrizable compactum X, the standard mapping replacement allows
us to approximate a map f: X — I¥ by a map g: X — I“ in such a way
that g|Y = f|Y and g(X \ Y) N Z = 0. The key here is that the space
C(X,I¥) is completely metrizable and hence possesses the Baire property.
Below we prove versions of mapping replacement for Z, -sets in Tikhonov
cubes by using the spectral technique.

PROPOSITION 3.9. Let 7 > w and Z be a Z.-set in I". Suppose also that
Y C X is a closed subset of a compactum X. Then for any map f: X —
I™ and any collection {K,: 1 < a < 7} of compact subsets of X with
Uicacr KaNY =0 there exists a map g: X — I7 such that g|Y = f|Y and
fUicacr Ka) CIT\ Z.

Proof. Let |T'| = 7 and {T,: a < 7} be a collection of subsets supplied
by Proposition corresponding to the Z,-set Z.

We construct maps gq: X — I as follows. Let go = mp 0 f: X — I70.

Suppose that for each f < a we have already constructed gg satisfying the
following conditions:

N\ Ts

(i) Tr, © 93 = gs, Whenever d<B<q
(i) gg =lim{gs: 6 < B}, whenever 3 < « is a limit ordinal;
(iil) gs(Kp) N1, (Z) = 0, whenever 1 < 8 < a;
(iv) gslY = 71, o fIY, whenever 3 < a.

First consider the case a = 3 + 1. Since 77, (Z) is a fibered Z-set in [1=
with respect to the projection W%; : ITe — I8 there exists amap hqo: ITe —
I such that ha(Ka) N7, (Z) = 0 and w7 o h = w7t Let s: I3 — [7o
be a section of ﬂ%:;‘ Consider the map ro: Y U K, — I which coincides

with 77, o f on Y and with hy 0 s 0 g, on K, . Straightforward verification
shows that the following diagram of unbroken arrows commutes:

,
Y UK, * ITe
Ja T
incl ”Tg
9s
X 178
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Consequently, by softness of Tr%, there is a map go: X — I (the dotted
arrow in the diagram) such that g,|(Y U K,) = r, and W%Z 0 go = gp. It is
also clear that go(Kq) N7, (Z) = 0 and go|Y = 7, o f.

If a =lim{B: B < a}, then let g, = lim{gs: 8 < a}: X — I[To.

This completes the inductive construction. Let ¢ = lim{g,: o < 7} :
X — I be the limit map. It is clear that g|Y = f|Y and g(K,)NZ = () for
each a. m

COROLLARY 3.10. Let 7 > w. For any map f: X — Y between Z,-sets
in I™ there exists a proper map g: I"\ X — I"\Y such that f = g|X, where
Gg: I™ — I7 is the extension of g.

Proof. Let f: I” — I” be an extension of f. By Proposition there
exists a map g: I” — I” such that g|X = f|X = fand g(I" \ X) C I"\ Y.
Clearly, g = g|(I" \ X): I" \ X — I" \ 'Y is a proper map with the required
properties. m

LEMMA 3.11. Let B C A and |A\ B| = w. Suppose that Z is a fibered Z -
set in I with respect to the projection Wé! I* — IB. Suppose also that X is
closed in I and we are given an embedding f: X — Z and a map g: 1% — IB
such that 7r§ of = go Fé’X. Then there exists a fibered Z-embedding
h: I4 — I such that maoh = gong, h|X = f|X and h(I*\ X) C I*\ Z.

Proof. Using [6l, Theorem 1.3.4] for w-spectra, one can find a countable
subset C' C B, an embedding fy: WéU(A\B) (X) — WéU(A\B)(Z) and a map
go: I¢ — I¢, satisfying the following conditions:

(i) Fé,u(A\B)(Z) is a fibered Z-set in I¢Y\B) with respect to the pro-

jection WgU(A\B): JOUA\B) _, 1C.

(ll) fo o T‘-é'U(A\B)‘X = ﬂ-é'u(A\B) o f7

A .
(i) g0 © & a\B) = Tu(a\B) © 95

(iv) 7Tgu(A\B) o fo=goo ng(A\B)IWéu Az (X)-

A\B) CU(A\B)

Let 1_1: JOUA\B) . JCUA\B) _, T4 he guch that wgu( oh=gpo o
and h|7réu( A\B) (X) = fo. Next consider the space (with the compact-open

topology) C™ of all maps h: JCUA\B) _y JCU(A\B) gych that hong(A\B) =

ho Wgu(A\B) and h‘ﬂéU(A\B) (X) = fo. It follows from [19] that the set S

of fibered Z-embeddings is dense and Gs in ch. Moreover, the set R of
maps h with h(I€YA\B) \ﬁéU(A\B)(X)) N TI'é,U(A\B)(Z) = () is also dense

and G5 in C". Consequently, since C" is completely metrizable, S N R # (.
Take any hg € S N R. There is precisely one map h: I4 — I* such that
WéU(A\B)oh = hOOWéU(A\B) and wéoh = ﬂé. It follows from the construction
that h has the required properties. =
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PROPOSITION 3.12. Let |T| =7 > w and Z be a Z-set in IT. Suppose
that Y is closed in a compactum X of weight <1 and f: X — IT is a map
such that f(Y) C Z and f|Y:Y — Z is an embedding. Then there exists a
Z,-embedding h: X — IT such that h|Y = f|Y and h(X \Y) C IT\ Z.

Proof. Without loss of generality we may assume that X = IT. Using
Corollaries and Lemma [3.0] it is easy to construct subsets T, C T
and maps f,: I7e — ITe o < 7, with the following properties:

(a) [To| = w;

( ) T CTCH—I and ’TOH-I\T ]—w

(¢) T'=Uy<r Ta and Ty, = g, Tp for each limit ordinal o < 7

(d) 77,.,(2Z) is a fibered Z-set in I7e+1 with respect to the projection

ﬂg:erl _[Tcx+1 SN IT

(e) W;Z o far1 = fao W;Z-HS

(f) f=lim{fo: o <7} and fo, =lim{f3: § < a} for each limit ordinal
a<T;

() falmr,(Y): mp (V) — 71, (Z) is an embedding.

In order to construct the required Z,-embedding h: I” — IT we proceed
by induction. Let hg = fo. Supposing that fz’s have been constructed for
all B < a, the construction of f, for non-limit « is straightforward by using
Lemma For a limit o, we set ho, = lim{hg: f < «a}. Finally, the
required embedding is defined by letting h = lim{h,: a < 7}. Proposition
guarantees that h is a Z.-embedding. By construction, h|X = f|X and
RIT\X)C I\ Z. w

4. Extension properties of the Stone—Cech corona. We begin by
introducing the following concept (cf. [13], [12]).

DEFINITION 4.1. A locally compact space Y is a proper absolute extensor
for a locally compact space X (notation: Y € AE,(X)) if any proper map
f: A—Y, defined on a closed C*-embedded subset A of X, admits a proper
extension f: X =Y.

Recall that regular closed subsets are closures of open subsets.

THEOREM 4.1. Let X be a locally compact space which can be covered
by at most T compact subsets and each regular closed subset of which is
C*-embedded. Let also L be a compact ANR-space embedded into I™ as a
Z.-set. Then the following conditions are equivalent:

(a) L € AE(BX \ X);
(b) I7\ L € AE,(X).
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Proof. (a)=(b). Let f: A— I"\ L be a proper map defined on a closed
C*-embedded subspace A C X. Then SA = clgx A and there is an extension
f:clgx A — I7 of f. Since f is proper, we have f(clzgx A\ A) C L. By (a),
fl(clgx A\ A): (clgx A\ A) — L can be extended to a map g: X\ X — L.
Since AU (BX \ X) is closed in fX there exists a map G: X — I” such
that G|(6X \ X) =g and G|A = f.

Using the spectral theorem for 7-spectra [6, Theorem 1.3.4], we can find
a compact space Y of weight < 7, and maps p: X — Y, ¢: Y — I” such
that G = gop and BX \ X = p~ 1 (p(BX \ X)). By Proposition there
exists amap H: Y — I7 such that H|p(AU(BX \ X)) = ¢|p(AU (BX \ X))
and H(Y \p(AU (X \ X))) CcI"\ L.

It remains to note that the map F'= H op: X — I7 has the following
properties: F|(AU (BX\ X)) =G|[(AU(BX \ X)) and F(X \ A) C I"\ L.
Consequently, fv: F|X: X — I"\ L is a proper map extending f.

(b)=(a). Let f: A — L be defined on a closed subspace A C X \
X. Since L is an ANR-space, we may assume that f is already defined
on the closure clgx U of an open neighborhood U of A in fX. Note that
clgx U = clgx(U N X) = clgx(clx(U N X)) and that according to our
assumption cly (X NU) is C*-embedded in X. Since £(clx (UNX)) < 7, we
conclude, by Proposition , that there exists a map g: clgx U — I” such
that g|(clgx U\ clx (UNX)) = fl(clgx U\ clx(UNX)) and g(clx (UNX)) C
I™\ L. By (b), the proper map g|clx(UNX): clx(UNX) — I"\ L has a
proper extension G: X — I7\ L. Since G is proper, its Stone—Cech extension
G: BX — I™ sends fX \ X into L. Straightforward verification shows that
FIA=f.n

COROLLARY 4.2. Let L be metrizable ANR-compact space embedded into
1¥ as a Z-set. Then the following conditions are equivalent for any locally
compact and Lindelof space X :

(a) L€ AE(BX \ X);

(b) I¥\ L € AE,(X);

(c) Cone(L)\ L € AE,(X).

Proof. The equivalence of (a) and (b) follows from Theorem since
k(X) < w for any locally compact and Lindel6f space X.

To prove the remaining equivalence, first note that by Edwards’ theorem
[6, Corollary 2.3.23|, I* x Cone(L) is homeomorphic to I*. Further, by
Chapman’s Complement Theorem [4], the complements I¥ \ L and I¥ X
Cone(L)\ I¥ x L = I x (Cone(L) \ L) are homeomorphic. Finally, note that
I¥ x (Cone(L) \ L) € AE,(X) precisely when Cone(L) \ L € AE,(X). n

COROLLARY 4.3. The following conditions are equivalent for any locally
compact and Lindelof space X :
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(a) dim(BX \ X) < n;
(b) dim, X <n+1, i.e. any proper map f: AR defined on a closed
subspace AC X, can be extended to a proper map f: X —R" L,

THEOREM 4.4. Let 7 > w, L be a compact ANR embedded into I as a
Z,-set and X be a Z.-setin I”. Then the following conditions are equivalent:

(i) X € AE([L]);
(i) I7\ X € AEJ([I7\ L)).

Proof. (ii)=-(i). We need to show that a map f: A — X defined on a
closed subset A C Y, where Y is a compact space of weight < 7 such that
L € AE(Y), has a continuous extension g: ¥ — X. By Corollary we
may assume that A is embedded into K = I™ as a Z.-set. Note that K
is then the Stone-Cech compactification of K \ A (Lemma [2.1)). Similarly,
we may assume that Y is also embedded into (a different copy of) I7 as
a Z:-set. By Proposition [3.12] it is possible to embed K into I in such
a way that KNY = A. Let f: A — I” denote an extension of f. Using
Proposition we can find a map h: K — I” such that h|A = f and
h(K\ A) C I" \ X. Note that h|(K \ A): K\ A — I"\ X is proper. Since
K is the Stone-Cech compactification of K \ A, it follows that K \ A is C*-
embedded in I7 \ Y. Next note that, by Lemma [2.1](iii), I” \ Y satisfies the
assumptions of Theorem Consequently, since L € AE(Y'), we conclude
by Theorem that I\ L € AE(I" \'Y). Then, by (ii), the proper map
h|(K\A): K\ A — I"\ X admits a proper extension h: I"\Y — I"\ X. Let
g: I" — I be the extension of h. Properness of h implies that g(Y) C X.
Then g = g|Y: Y — X is the required extension of f.

(i)=(ii). Let now f: B — I"\ X be a proper map defined on a closed and
C*-embedded subset B of a locally compact space Y of weight < 7 such that
I"\ L € AE,(Y). We need to construct a proper extension f: Y — I™\ X
of f. Since B is C*-embedded in Y it follows that clgy B is the Stone-Cech
compactification of B. Consequently, there is an extension g: clgy B — I”
of f. Properness of f implies that g(clgy B\ B) C X. Since I"\ L € AE,(Y)
we conclude, by Theorem[d.1] that L € AE(8Y\Y'). Thus, by (i), there exists
an extension h: fY\Y — X of g|(clgy B\B): clgy B\B — X. Now consider
the closed subset A = (8Y'\Y)UB of 3Y and the map h': A — I” defined be

W(y) = :
fly) ifyeB.

Next consider any extension h: Y — I7 of h'. By Proposition we
can find a map g: BY — I” such that g|A = A’ and g(BY \ A) C I" \ X.
Straightforward verification shows that g(Y) C I™ \ X and consequently
f=g|Y:Y — I"\ X is proper. It only remains to note that f|B = f. =
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5. Categorical isomorphisms. Recall (Corollary that for any
map f: X — Y between Z,-sets in I” we can find a proper map g: I"\ X —
I"™\Y such that f = g|X, where g: I” — I7 is the unique extension of g. If f
is a homeomorphism, we may assume that so is g (this a Z,-set unknotting
theorem, [6l Theorem 8.5.4]). In other words, any map between Z.-sets of
the Tikhonov cube can be obtained as the restriction of the Stone-Cech ex-
tension of a proper map between their complements, i.e. the correspondence
X Cp(I"\ X, I"\Y) = C(X,Y) defined by A(g) = g|X is surjective. Below
we show that (up to a certain equivalence relation) A is in fact a bijection.
Here we extend the considerations of [10], carried out for the Hilbert cube,
to the Tikhonov cube.

Let Z, denote the category of Z,-sets in I™ and their continuous maps.
Let also Cp(Z2-) denote the category whose objects are complements of Z-
sets in /7 and whose morphisms are the equivalence classes of proper maps
with respect to the following relation: two proper maps are equivalent if they
are close in the continuously controlled (by the compactification I”) coarse
structure ([14, Remark 2.29]). Recall that two proper maps g1, ¢g2: I”\ X —
I™\'Y are close if gi(x) = ga(z) for any x € X. The equivalence class with
representative g will be denoted by {g}. With this in mind we have

PROPOSITION 5.1. Let T > w. Then the correspondence \: C,(2,) — Z;
defined by letting:

(i) for I\ X € OB(C,(2,)), \I™\ X) = X,

(ii) for {g}: I"\ X = I"\Y € MOR(C,(Z7)), A({g}) = g|X,
s an isomorphism of categories.

Proof. Structurally the proof follows that of [0, Theorem 2], but is much
simpler and is left to the reader. The fact that X is well defined on morphisms

is a direct consequence of the definition of the closeness relation. The fact that
A is surjective on morphisms, as noted above, follows from Corollary .

Next we consider homotopy categories. Let H(Z;) denote the category
whose objects are the same as in Z; and morphisms are the homotopy
classes of maps. Similarly #,(Z.) denotes the category whose objects are
the same as in C,(Z;) and morphisms are the proper homotopy classes of
proper maps. First, we need the following observation.

LEMMA 5.2. Let ™ > w and fy, f1: X — Y be two maps between Z.-sets
in I™. Suppose also that go,g1: I" \ X — I" \'Y are proper maps such that

f =gk X, k=0,1. Then fo = fo iff go ~=p g1.
Proof. Let F': X x[0,1] — Y be a homotopy between fy and f;. Consider
the map H: X x [0,1]UI" x {0,1} — I” defined by letting
[ F(zt) if (2,t) € X x[0,1],
H(zt) = {zjk(z) if z € I™ x {0,1}, k =0, 1.
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By Proposition there exists a map G: I x [0,1] — I such that
G|(X x[0,1]UI™ x{0,1}) = H and G(I" x [0,1]\ (X x [0, 1]UI" x {0,1})) C
I"\'Y. Clearly, G = G|((I" \ X) x [0,1]): I"\ X) x [0,1] = "\ Y is a
proper homotopy between gy and g;.

Conversely, suppose that G: (I"\ X) x [0,1] — I" \ 'Y is a proper homo-
topy between go,g1: I \' Y — I” \ X. Note that by Lemma I™ x [0,1]
is the Stone—Cech compactification of (I7\ X) x [0, 1]. Consequently, G ad-
mits an extension G: I™ x [0,1] such that G(X x [0,1]) C Y. It is clear that
H=G|X x[0,1]: X x [0,1] = Y is a homotopy between fo and fi. =

COROLLARY 5.3. Let 7 > w and X and Y be Z,-sets in I™. If proper
maps go,g1: T"\X — I"\Y are close with respect to the continuously con-
trolled coarse structure induced by I, then gy and g1 are properly homotopic.

Proof. [14, Theorem 2.27] implies that coarsely close proper maps co-
incide on the Stone-Cech corona. Consequently, by Lemma they are
properly homotopic. =

Now let us define a functor p: H,(Z;) — H(Z:) between these homotopy
categories. The following statement is parallel to [10, Proposition 10].

PROPOSITION 5.4. Let 7 > w. Then the correspondence p: Hy(Z;) —
H(Z;), defined by letting:

(i) for I\ X € OB(H,(Z,)), u(I"\ X) = X,
(i) for [g): 1"\ X — I"\ Y € MOR(H,(2.)), u(lg)) = [31X],

s an isomorphism of categories.

Proof. One part of Lemma [5.2] shows that u is well defined. The other
part guarantees that u is surjective on morphisms. The rest is straightfor-
ward and left to the reader. =

In light of the above considerations and the role of the closeness relation
associated to the continuously controlled coarse structure (induced by the
Stone—Cech compactification), we would like to investigate this concept a
little further. For locally compact and paracompact spaces [14, Theorem
2.27] characterizes close proper maps between such spaces as those whose
extensions to the Stone-Cech compactifications coincide on the Stone-Cech
corona. For Lindel6f spaces we have the following statement.

PRroOPOSITION 5.5. Let f,g: X — Y be proper maps between locally com-
pact and Lindelof spaces. Then the following conditions are equivalent:

(i) f and g are close in the continuously controlled (by the Stone—Cech
compactification) coarse structure;

(ii)) f(x) =g(x) for any x € BX \ X;
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(iii) there is a compact subset C C X such that f(x) = g(z) for any
reX\C.

Proof. As mentioned above, [14, Theorem 2.27] implies (i)<(ii).

Let us prove (ii)=-(iii). Take z € X \ X. Since X is Lindeldf (actually
realcompactness of X suffices here), we can find a sequence {U,: n € w} of
open neighborhoods of x in X with the following properties:

(1) ClﬁX Uny1 CUp;
(2) Npew Un C BX\ X.

We need the following
CrLAIM. There exists i € w such that ﬂUi =9lu,-

To prove the claim, assume the contrary. By (ii), our assumption implies
that f|y,nx # glu,nx for each i € w. Assume that for each k < n we have
found z; € U, N X such that

(%) {f(zi): i <k}ni{g(z):i<k}=0.
Next, let us construct a desired z,. First, for each ¢ > n, fix a; € U; N X
such that

(a) f(ai) # g(ai).

Such a;’s exist because we assumed that f|y,nx # ¢|u,nx for each i € w.
Due to (1) and (2), no infinite subset of {a;: i > n} is compact. Since f is
proper, there exists ni such that

(b) f(a;) ¢ {g(zk): k < n} for each i > ny.
Similarly, there exists ny such that
(c) gla;) ¢ {f(zk): k < n} for each i > no.

Pick any ¢ > max{ni,ns} and let z, = a,. Since i > n, z, € U,. By (a)-(c),
the formula (*) holds for k£ = n. Our construction is complete.

Let Z = {z,: n € w}. Clearly Z is closed in X. Since f and g are closed
maps, f(Z) and g(Z) are closed in Y. By (%), they are disjoint. Since Y
is normal, clgy f(Z) and clgy g(Z) are also disjoint. Therefore f(z) # §(z)
contradicting the hypothesis of the lemma. The claim is proved.

By the Claim, for each x € X \ X, we can select an open nelghborhood
U, of x in X such that f|Ux = glv,- Let U = U,epx\ x Us- Then flv =3lu.
The set C = X \ U is a compact subset of X and f|x\c = g|x\c-

The implication (iii)=-(ii) is trivial and valid for any spaces. Indeed,
let C' be a compact subset of X such that f|(X \ C) = g|(X \ C). Fix
x € X \ X. Since C is closed in X and x ¢ C, we can find an open
neighborhood U of x in fX such that clgx UNC = 0. The functions ﬂclgx U
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and g|clgx U coincide on UNX. Since UNX is dense in clgx U, we conclude
that f|clgx U = g|clgx U. Consequently, f(z) = g(z). =

6. Proper absolute extensors. We begin by a local version of Defi-

nition .11

DEFINITION 6.1. A locally compact space X is a proper absolute neigh-
borhood extensor for a locally compact space Y (notation: X € ANE,(Y))
if any proper map f: A — X defined on a closed subset A of Y, admits a
proper extension f: G — X, where G is a closed neighborhood of A in Y.

Below let LCL denote the class of locally compact and Lindel6f spaces.

DEFINITION 6.2. A space X € LCL is a proper absolute (neighborhood)
extensor (notation: X € A(N)E)) if X € A(N)E (Y) for any Y € LCL.

PROPOSITION 6.1. Every proper absolute (neighborhood) extensor is an
absolute (neighborhood) extensor.

Proof. Let X be a proper absolute neighborhood extensor. Since X is
locally compact and Lindelof, there exists a proper map p: X — Y, where
Y is a locally compact space with countable base. We may assume that Y is
a closed subspace of [0,1) x I¥. Let also i: X — I” denote an embedding of
X into I7, where 7 = w(X) > w. Then the diagonal product ¢ = pAi: X —
[0,1) x I¥ x I" =~ [0,1) x I" is an embedding with ¢(X) closed in [0,1) x I".
We will identify X with ¢(X) C [0,1) x I". Since X is a proper absolute
neighborhood extensor, there exist a functionally open neighborhood G of
X in [0,1) x I™ and a proper retraction 7: clj 1)~ G — X. Since, by [6],
Proposition 6.1.4, Lemma 7.1.3], G is an absolute neighborhood extensor, it
follows that so is X. =

As noted in the Introduction, R"} is a proper absolute extensor. The next
statement makes this observation formal.

LEMMA 6.2. Let M be a compact metrizable A(N)E-space and N be a
Z-set in M. If N is also an A(N)E-compactum, then M \ N € A(N)E,.

Proof. We only prove the parenthetical part since the absolute case is
simpler. Let f: A — M\ N be a proper map, defined on a closed subset of a
locally compact space X. Without loss of generality we may assume that A is
functionally closed in X . Consider the Stone-Cech extension f: clgx A— M

of f. Since f is proper, it follows that f(clgx A\ A) C N. Since N is an ANE-
compactum, the map ﬂ(clgx A\ A): clgx A\ A — N can be extended to a
map g: G — N, defined on an open neighborhood G of clgx A\ A in X\ X.
Since (8X \ X)\ G and clgx A are disjoint closed subsets of 5X, we can find
an open neighborhood U of clgx A in X such that clgx UN(BX\ X) C G.
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Next consider the map h: (clgx U \ X) U clgx A — M defined by

fglx) ifzechxU\X,
h(x)_{f(ac) if x € A.

Note that h is well defined since fand g coincide on clgx A\ A. Since M is an

ANE-compactum, we can extend h to a map h: clgx V. — M, where V' is an
open subset of X such that (clgx U\X)Uclgx A C V and clgx V C U. Next
choose a: clgx V — [0, 1] such that a1 (0) = (clgx V' \V)UA. This is possi-
ble since the Stone-Cech corona 8X \ X (and consequently clgx V' \ clx V)
is functionally closed in SX (respectively, in clgx V). Also, since by our
assumption, N is a Z-set in M, there is a homotopy H: M x [0,1] — M
such that H(m,0) = m for any m € M and H(m,t) € M \ N for any
(m,t) € M x (0,1]. Finally consider the map f’: clgx V' — M defined by
f'(z) = H(h(z),a(z)) for = € clgx V. Note that f'(clxy V) C M \ N and
f'(clgx V'\ clx V) C N. Consequently, f'|clx V: clx V. — M \ N is proper.
It remains to observe that, by construction, f'|A = f. =

LEMMA 6.3. Let X be an AE,-space with countable base. Then its one-
point compactification aX = X U {oo} is an AE-compactum and {oo} is a
Z-set in aX.

Proof. Embed aX into the Hilbert cube I¥. Since X is a proper absolute
neighborhood extensor, there exists a proper retraction r: I¥ \ {oo} — X.
Properness of r guarantees that r has an extension 7: I — aX such that
7)(I%\ {o0}) = r and 7({o0}) = {o0}. Since 7 is also a retraction, it follows
that X is an absolute extensor. Since 7~ *({oc0}) = {0} and {oo} is a Z-set
in I¥, we conclude that {oo} is a Z-set in aX as well. =

COROLLARY 6.4. Let X be a locally compact space with countable base.
Then the following conditions are equivalent:

(i) X is a proper absolute extensor;
(ii) X is a proper retract of [0,1) x I¥;
(iii) the one-point compactification aX = X U {oo} of X is an absolute
extensor in which {0} is a Z-set;
(iv) there exists a metrizable compactification X of X such that X and
)?\X are absolute extensors and the corona )?\X is a Z-set in X.

Proof. (i)=-(ii). Any locally compact space with countable base, in par-
ticular, X, admits a closed embedding into [0,1) x I*. By (i), the identity
map idx has a proper extension r: [0,1) x I¥ — X, which obviously is a
retraction.

(ii)=-(iii) follows from Lemma since [0,1) x I* (and hence X as its
proper retract) is a proper absolute extensor.

(iii)=-(iv) is trivial and (iv)=(i) follows from Lemma n
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PROPOSITION 6.5. Let X be a proper absolute extensor of countable
weight. Then the following conditions are equivalent:

(i) X satisfies DD™P for each n;
(ii) X is homeomorphic to [0,1) x I¢.

Proof. (i)=(ii). By Corollary [6.4{(iii), the one-point compactification a.X
= X U {oo} of X is an absolute extensor in which {oo} is a Z-set. Then,
by (i), aX has the DD"P for each n and by Toruriczyk’s theorem [17],
aX =~ [¥. Therefore X ~ I¥\ {oc}. Finally, by Chapman’s Complement
Theorem, ¥\ {oco} ~ [0,1) x I*.

(il)=(i). Trivial. =

COROLLARY 6.6. If X is a proper absolute extensor of countable weight,
then X x I¥ ~[0,1) x I%.

Proof. Note that X x I¥ is a proper absolute extensor satisfying DD"™ P
for each n and apply Proposition .

THEOREM 6.7. A proper absolute extensor of weight T > w is homeo-
morphic to [0,1) x I if and only if it has the same pseudocharacter at each
point.

Proof. Obviously the pseudocharacter of each point of [0,1)xI” equals 7.
Let now X be a proper absolute retract of weight 7. As in the proof of Propo-
sition we may assume that X is closed in [0,1) x I, where |A| = 7.
Since X is a proper absolute extensor, there exists a proper retraction
r:[0,1) x I* — X. Proceeding as in the proof of [6, Theorem 7.2.8], we
can construct a continuous well ordered inverse spectrum S = {X,, p2*t, 7}

of length 7, satisfying the following conditions:

(i) X =1limS;
(ii) all X, are locally compact and Lindel6f proper absolute extensors;
(iii) all short projections p2™!: X,41 — X, are trivial bundles with
fiber I¥;
(iv) Xp is a locally compact space of countable weight.

Then X is homeomorphic to X x I”. By (ii), (iv) and Corollary|[6.6] X x I
~ [0,1) x I¥, and consequently X ~ [0,1) X I". u
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