
FUNDAMENTA

MATHEMATICAE

222 (2013)

Extension properties of Stone–Čech coronas and
proper absolute extensors

by

A. Chigogidze (Staten Island, NY)

Abstract. We characterize, in terms of X, the extensional dimension of the Stone–
Čech corona βX \X of a locally compact and Lindelöf space X. The non-Lindelöf case is
also settled in terms of extending proper maps with values in Iτ \ L, where L is a finite
complex. Further, for a finite complex L, an uncountable cardinal τ and a Zτ -set X in
the Tikhonov cube Iτ we find a necessary and sufficient condition, in terms of Iτ \X, for
X to be in the class AE([L]). We also introduce a concept of a proper absolute extensor
and characterize the product [0, 1) × Iτ as the only locally compact and Lindelöf proper
absolute extensor of weight τ > ω which has the same pseudocharacter at each point.

1. Introduction. We study extension properties of Stone–Čech coronas
of locally compact spaces, focusing on the following two problems:

(A) When, in terms of X, are maps, defined on closed subsets of βX \X,
into a finite complex L extendible to the whole βX \X?

(B) When, in terms of Y , are maps, defined on closed subsets of nice
spaces, into βY \ Y extendible to the whole domain?

When every map f : A → Y , defined on a closed subset A of X, has an
extension f̄ : X → Y we say that Y is an absolute extensor of X and write
Y ∈ AE(X). Assuming that both f and f̄ in this definition are proper we
obtain the notion of a proper absolute extensor (for details see Definition
4.1). We then write Y ∈ AEp(X). It turns out (Corollaries 4.2, 4.3) that
for a locally compact and Lindelöf (e.g. separable and metrizable) space
X and a finite complex L, L ∈ AE(βX \X) precisely when Cone(L) \ L ∈
AEp(X) (here L is identified with the base L×{0} of Cone(L)). For L = Sn,
we obtain the following observation: dim(βX \ X) = dimpX − 1, where
dimpX ≤ n is just a notation for Rn ∈ AEp(X). We point out that the
problem of describing dimensions (covering, inductive) of the Stone–Čech (or
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Hewitt) coronas, using completely different approaches, has been considered
by several authors (see, for example, [1], [2], [3], [15], [16], [5]).

However, non-Lindelöf spaces do not admit proper maps into Rn or into
any space of the form Cone(L) \ L, where L is a finite complex, and above
observations need to be adjusted in order to remain valid in the general
case. We start by noting that since L (i.e. L × {0} ⊂ Cone(L)) is a Z-
set in Cone(L) it follows from Chapman’s Complement Theorem that no
matter how L is Z-embedded into the Hilbert cube, the complement Iω \L
is homeomorphic to Iω × Cone(L) \ Iω × L = Iω × (Cone(L) \ L). Since
Cone(L) \ L ∈ AEp(X) if and only if Iω × (Cone(L) \ L) ∈ AEp(X), the
observation made above can be reformulated as follows: L ∈ AE(βX \X) if
and only if Iω \L ∈ AEp(X). While the testing space Iω \L is still Lindelöf
and hence is not suitable for the general situation, it does allow us to find its
non-metrizable counterpart, which turns out to be the complement Iτ \ L.
The choice of the embedding L ↪→ Iτ , when τ > ω, is irrelevant since any
metric compactum is a Zτ -set in Iτ as long as τ > ω [6, Corollary 8.5.7].
With this in mind we settle problem (A) by proving the following statement.

Theorem 4.1. Let X be a locally compact space which can be covered
by at most τ compact subsets and each regular closed subset of which is
C∗-embedded. Let also L be a compact ANR-space embedded into the cube
Iτ as a Zτ -set. Then the following conditions are equivalent:

(a) L ∈ AE(βX \X);
(b) Iτ \ L ∈ AEp(X).

Problem (B), in some cases, can also be settled in a similar manner.
Specifically, we consider spaces of the form Y = Iτ \X, where X is a Zτ -set
in Iτ . For τ > ω, Iτ is indeed the Stone–Čech compactification of Y (Lemma
2.1). In this situation problem (B) becomes a part of a general problem of
recovering properties of X in terms of its complement Iτ \X. This leads us
to considerations very similar to the study carried out in [10] for τ = ω.

However, there is a major difference between the metrizable (τ = ω) and
non-metrizable (τ > ω) cases. Roots of this difference, one could argue, lie in
the fact that the topological type of the complement Iω \X of a Z-set in the
Hilbert cube, while determining X’s shape, does not uniquely determine the
topological type of X. But if τ > ω, the topological type of any Zτ -set X in
Iτ is completely determined by its complement. This is apparently why we
need to exploit metric-uniform invariants in the metrizable case (see [10])
and why we could remain in the topological category if τ > ω.

Going back to problem (B), it turns out that—as in problem (A)—the
complements Iτ \ L of finite complexes still play a critical role. In order
to formulate our second result let us recall that the extension class [L] of
a complex is the collection of all extensionally equivalent complexes (K is
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equivalent to L if K ∈ AE(X) if and only if L ∈ AE(X) for any X). We
say that X ∈ AE([L]) if X ∈ AE(Y ) whenever L ∈ AE(Y ). Similarly,
we can define a proper extensional class AEτp([Iτ \ L]) by agreeing that
Y ∈ AEτp([Iτ \ L]), where Y is a locally compact space of weight ≤ τ , if
Y ∈ AEp(M) for any locally compact space M of weight ≤ τ with Iτ \ L ∈
AEp(M). We prove the following statement.

Theorem 4.4. Let τ > ω, L be a compact ANR-space embedded into
Iτ as a Zτ -set and X be a Zτ -set in Iτ . Then the following conditions are
equivalent:

(i) X ∈ AE([L]);
(ii) Iτ \X ∈ AEτp([Iτ \ L]).

These considerations lead to the concept of a proper absolute extensor
which we study in Section 6 (see [13], [12] for related results). Note that Rn
is not a proper absolute extensor for any n (while it is, of course, an absolute
extensor). To see this in case n = 1 note that the proper map f : N → R,
defined by

f(n) =

{
n, n is odd,

−n, n is even,

does not have a proper extension f̄ : R → R. On the other hand, Rn+ =
{(xi)ni=1 ∈ Rn : xn ≥ 0} is a proper absolute extensor for each n. Explanation
of this fact (see Lemma 6.2) is that Rn+ has a compactification (namely, In)
which is an absolute extensor and that the corresponding corona (In−1) is
also an absolute extensor, sitting in In as a Z-set. We show that the only
proper absolute extensor of countable weight satisfying DDnP for each n
is the product [0, 1) × Iω (Proposition 6.5). In the non-metrizable case we
have the following statement.

Theorem 6.7. A proper absolute extensor of weight τ > ω is homeo-
morphic to the product [0, 1)× Iτ if and only if it has the same pseudochar-
acter at each point.

The paper is organized as follows. In Section 3, based on modified ver-
sions of Shchepin’s Spectral Theorem, we obtain a characterization of Zτ -sets
in the Tikhonov cube Iτ and prove the mapping replacement results (Propo-
sitions 3.9 and 3.12). These are then used in Section 4 to prove Theorems
4.1 and 4.4. In Section 5 we extend some results, obtained in [10] for the
Hilbert cube, to the Tikhonov cube. Namely, we describe the topological and
homotopy categories of Zτ -sets in Iτ in terms of certain naturally defined
categories of their complements. The considerations here involve certain con-
cepts of coarse geometry which are still relevant in the topological setting.
In the final Section 6 we investigate the concept of proper absolute extensor
and prove Theorem 6.7.
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2. Preliminaries. Unless noted otherwise, below we consider only locally
compact Tikhonov spaces and continuous maps. A map f : X → Y is proper
if f−1(C) is compact for any compact C ⊂ Y . Note that the class of proper
maps between locally compact spaces coincides with the class of perfect maps
(a map is perfect if it is closed and has compact point inverses). A set F ⊂ X
is z-embedded in X if for every functionally closed (in F ) set Z ⊂ F there

exists a functionally closed set Z̃ in X such that Z = F ∩ Z̃. A set F ⊂ X
is C∗-embedded if every bounded real-valued continuous function, defined on
F , has a bounded and continuous extension, defined on X.

Lemma 2.1. Let τ > ω and X be an open and Gδ-dense subset of the
Tikhonov cube Iτ . Then

(i) X is pseudocompact and βX = Iτ ;
(ii) if F is a functionally closed subset of Iτ , then F ∩X is C∗-embedded

in X;
(iii) if G is an open subset of X, then clX G is C∗-embedded in X.

Proof. (i) Since X is dense in Iτ it follows (see [6, Corollary 6.4.7]) that
X is z-embedded in Iτ . Since, by assumption, Iτ \X does not contain func-
tionally closed subsets of Iτ , we conclude ([6, Proposition 1.1.22]) that Iτ is
the Hewitt realcompactification of X. Compactness of Iτ implies that Iτ is
actually the Stone–Čech compactification of X and X is pseudocompact.

(ii) Since X is Gδ-dense, it follows that F ∩ X 6= ∅. By (i) and [11,
8D.1], F = clIτ (F ∩ X). Since Iτ is an AE(0)-space, it follows from [6,
Propositions 6.1.8, 6.4.9] that F itself is an AE(0)-space. Consequently, by
[6, Proposition 1.1.21(ii)], F ∩X is z-embedded in F . Since F ∩X is Gδ and
dense in F , it follows from [6, Proposition 1.1.22] that F is the Stone–Čech
compactification of F ∩X. Then F ∩X is C∗-embedded in X.

(iii) Clearly, clX G = X∩clIτ G. Since the latter set is functionally closed
in Iτ , the conclusion follows from (ii).

Extension theory—a generalization of the classical dimension theory—
as developed by A. Dranishnikov, as well as certain facts from infinite-
dimensional topology (see [8] for a unified treatment of both) are used with-
out specific references.

3. Zτ -sets in the Tikhonov cube. In this section we study certain
properties of Zτ -sets in Iτ introduced in [6].

3.1. Spectral Theorem—revisited. We begin by establishing some
versions of Shchepin’s Spectral Theorem [6, Theorem 1.3.4].

Proposition 3.1. Let τ≥ω, |T | > τ , T0 ⊆ T , |T0| < |T | and g :
∏
t∈T Xt

→
∏
t∈T Xt be a map of the product of compact metrizable spaces such that
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πT0 ◦ g = πT0. Then the set

M(g,T0) =
{
R ⊆ expτ (T \ T0) : there exists

gT0∪R :
∏

t∈T0∪R
Xt →

∏
t∈T0∪R

Xt with πT0∪R ◦ g = gT0∪R ◦ πT0∪R
}

is cofinal and τ -closed in expτ (T \ T0).

Proof. By [6, Theorem 1.3.4], the set

Mg =
{
R ∈ expτ T : there exists

gR :
∏
t∈R

Xt →
∏
t∈R

Xt with πR ◦ g = gR ◦ πR
}

is cofinal and τ -closed in expτ T .

Let S ∈ expτ (T \ T0) and choose R̃ ∈ Mg such that S ⊆ R̃. The cor-

responding gR̃ does not change the Xt-coordinate for t ∈ R̃ ∩ T0 (since
πT0 ◦ g = πT0). Consequently, the diagonal product

gT0∪R̃ = πT0∪R̃T0
4 πR̃

R̃\T0
gR̃π

T0∪R̃
R̃

:
∏

t∈T0∪R̃

Xt →
∏
t∈T0

Xt ×
∏

t∈R̃\T0

Xt

is well defined. Set R = R̃ \ T0. Obviously, S ⊆ R and R ∈ M(g,T0), which
proves thatM(g,T0) is cofinal in expτ (T \T0). The τ -completeness ofM(g,T0)

in expτ (T \ T0) is obvious.

Corollary 3.2. Let τ ≥ ω, |T | > τ , T0 ⊆ T , |T0| < |T | and f : X → Y
be a map between closed subspaces of the Tikhonov cube IT . If πT0 ◦ f =
πT0 |X, then the set

M(f,T0) = {R ⊆ expτ (T \ T0) : there exists fT0∪R : πT0∪R(X)→ πT0∪R(Y )

with πT0∪R ◦ f = fT0∪R ◦ πT0∪R|X}
is cofinal and τ -closed in expτ (T \ T0).

Proof. Let g : IT → IT be a map such that g|X = f and πT0 ◦ g = πT0 .
By Proposition 3.1, the set M(g,T0) is cofinal and τ -closed in expτ (T \ T0).

For each R ∈M(g,T0) let fT0∪R = gT0∪R|gT0∪R(X).

Proposition 3.3. If, in Proposition 3.1, the map g is a homeomor-
phism, then the set

H(g,T0) = {R ∈M(g,T0) : gT0∪R is a homeomorphism}
is cofinal and τ -closed in expτ (T \ T0).

Proof. By Proposition 3.1 applied to both g and g−1, the sets M(g,T0)

and M(g−1,T0) are cofinal and τ -closed in expτ (T \ T0). By [6, Proposition
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1.1.27], M(g,T0) ∩M(g−1,T0) is still cofinal and τ -closed. It remains to note
that for each R from this intersection the map gT0∪R is a homeomorphism.

Corollary 3.4. If, in Corollary 3.2, the map f is a homeomorphism,
then the set

H(f,T0) = {R ∈M(f,T0) : fT0∪R is a homeomorphism}
is cofinal and τ -closed in expτ (T \ T0).

3.2. Properties of Zτ -sets in Iτ . We denote by cov(X) the collection
of all countable functionally open covers of the space X. We set

B(f, {Ut : t ∈ T}) = {g ∈ C(X,Y ) : g is Ut-close to f for each t ∈ T},
Let τ be an infinite cardinal. If X and Y are Tikhonov spaces then

Cτ (X,Y ) denotes the space of all continuous maps X → Y with the topology
defined as follows ([7], [6, p. 273]): a set G ⊆ Cτ (X,Y ) is open if for each
h ∈ G there is a collection {Ut : t ∈ T} ⊆ cov(Y ), with |T | < τ , such that

h ∈ B(f, {Ut : t ∈ T}) ⊆ G.
Obviously if τ = ω, then the above topology coincides with the limitation

topology (see [18]). For τ > ω, this topology is conveniently described in the
following statement [9, Lemma 3.1].

Lemma 3.5. Let τ > ω and X be a z-embedded subspace of a product∏
t∈T Xt of separable metrizable spaces. If |T | = τ , then basic neighbor-

hoods of a map f : Y → X in Cτ (Y,X) are of the form B(f, S) = {g ∈
Cτ (Y,X) : πS ◦ g = πS ◦f}, S ⊂ T , |S| < τ , where πS :

∏
t∈T Xt →

∏
t∈S Xt

denotes the projection.

Now we are ready to define Zτ -sets [6, Definition 8.5.1].

Definition 3.1. Let τ ≥ ω. A closed subset A ⊂ X is a Zτ -set in X if
the set {f ∈ Cτ (X,X) : f(X) ∩A = ∅} is dense in the space Cτ (X,X).

Clearly Zω-sets are the same as standard Z-sets. We also need the fol-
lowing concept.

Definition 3.2. Let π : X → Y be a map. A closed subset A ⊂ X is a
fibered Z-set in X if the set {f ∈ Cπτ (X,X) : f(X) ∩A = ∅} is dense in the
space Cπτ (X,X) = {f ∈ Cτ (X,X) : π ◦ f = π}.

Lemma 3.6. Let τ > ω and |T | = τ . For a closed set M ⊂ IT the
following conditions are equivalent:

(1) M is a Zτ -set in IT ,
(2) for each T0 ⊂ T with |T0| < τ , the set

Z(M,T0) = {S ⊂ expω(T \ T0) : πT0∪S(M) is a fibered Z-set in IT0∪S

with respect to πT0∪ST0
}

is cofinal and ω-closed in expω(T \ T0).
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Proof. (1)⇒(2). Let S0 = R ∈ expω(T \ T0). Since M is a Zτ -set in IT

and |T0∪S0| < τ , there exists, by Lemma 3.5, a map f1 : IT → IT such that
πT0∪S0 ◦ f1 = πT0∪S0 and f1(IT ) ∩M = ∅. By Proposition 3.1, there exist a
countable subset S1 ⊆ T \T0, with S0 ⊆ S1, and a map g1 : IT0∪S1 → IT0∪S1

such that g1(IT0∪S1) ∩ πT0∪S1(M) = ∅ and πT0∪S1 ◦ f1 = g1 ◦ πT0∪S1 . Note

that πT0∪S1
T0

◦ g1 = πT0∪S1
T0

.
Continuing this process we construct an increasing sequence {Sn : n∈ω}

of countable subsets of T \ T0 and maps gn : IT0∪Sn → IT0∪Sn so that

π
T0∪Sn+1

T0∪Sn ◦ gn+1 = π
T0∪Sn+1

T0∪Sn and gn(IT0∪Sn)∩πT0∪Sn(M) = ∅ for each n ≥ 1.

Let S =
⋃
n∈ω Sn. We leave to the reader the verification of the fact that

πT0∪S(M) is a fibered Z-set in IT0∪S with respect to the projection πT0∪ST0
(cf. [9, proof of Proposition 2.3]). This proves the cofinality of Z(M,T0). The
ω-completeness of this set is obvious.

(2)⇒(1). According to Lemma 3.5 it suffices to find, for any T0 ⊂ T with
|T0| < τ , a map f : IT → IT such that πT0 ◦ f = πT0 and f(IT ) ∩M = ∅.
By (2), there exist a countable subset S ⊂ T\T0 and a map g : IT0∪S → IT0∪S

such that πT0∪ST0
◦ g = πT0∪ST0

and g(IT0∪S) ∩ πT0∪S(M). Let j : IT0∪S → IT

be a section of the projection πT0∪S : IT → IT0∪S . It only remains to note
that the map f = j ◦ g ◦ πT0∪S has the required properties.

Proposition 3.7. Let τ > ω and |T | = τ . For a closed set M ⊂ IT the
following conditions are equivalent:

(1) M is a Zτ -set in IT ;
(2) If F ⊂M is a closed subset, then ψ(F, IT ) = τ ;
(3) T can be represented as the increasing union T =

⋃
α<τ Tα of its

subsets so that

(a) |T0| = ω;
(b) |Tα+1 \ Tα| = ω;
(c) Tα =

⋃
β<α Tβ for each limit ordinal α < τ .

(d) πTα+1(Z) is a fibered Z-set in ITα+1 with respect to the projection

π
Tα+1

Tα
: ITα+1 → ITα.

Proof. (1)⇔(2) is proved in [6, Proposition 8.5.5], and (2)⇒(3) follows
from Lemma 3.6.

To prove (3)⇒(1), let A ⊂ T with |A| < τ . Then, by (b), there exists
α < τ such that A ⊂ Tα. By (d), there exists a map f : ITα+1 → ITα+1 such

that π
Tα+1

Tα
◦ f = π

Tα+1

Tα
and Im(f) ∩ πTα+1(Z) = ∅. Define g : IT → IT by

g = iTα+1 ◦ f ◦ πTα+1 , where iTα+1 is a section of the projection πTα+1 . It is
clear that πA ◦ g = πA and Im(g) ∩ Z = ∅.

Corollary 3.8. Let τ ≥ ω and X be a compact space of weight ≤ τ .
Then there exists a Zτ -embedding of X into the cube Iτ .
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Proof. For τ = ω the statement is known. Let |T | = τ > ω and represent
Iτ as

∏
t∈T Yt, where each Yt is a copy of Iω. Embed X into a product∏

t∈T Xt of compact metrizable spaces. Since each Xt admits a Z-embedding
into Yt, it follows from Proposition 3.7 that

∏
t∈T Xt, and hence X, admits

a Zτ -embedding into
∏
t∈T Yt.

3.3. Mapping replacement. For a Z-set Z ⊂ Iω and a closed subset
Y of a metrizable compactum X, the standard mapping replacement allows
us to approximate a map f : X → Iω by a map g : X → Iω in such a way
that g|Y = f |Y and g(X \ Y ) ∩ Z = ∅. The key here is that the space
C(X, Iω) is completely metrizable and hence possesses the Baire property.
Below we prove versions of mapping replacement for Zτ -sets in Tikhonov
cubes by using the spectral technique.

Proposition 3.9. Let τ ≥ ω and Z be a Zτ -set in Iτ . Suppose also that
Y ⊂ X is a closed subset of a compactum X. Then for any map f : X →
Iτ and any collection {Kα : 1 ≤ α < τ} of compact subsets of X with⋃

1≤α<τ Kα∩Y = ∅ there exists a map g : X → Iτ such that g|Y = f |Y and

f(
⋃

1≤α<τ Kα) ⊂ Iτ \ Z.

Proof. Let |T | = τ and {Tα : α < τ} be a collection of subsets supplied
by Proposition 3.7 corresponding to the Zτ -set Z.

We construct maps gα : X → ITα as follows. Let g0 = πT0 ◦ f : X → IT0 .
Suppose that for each β < α we have already constructed gβ satisfying the
following conditions:

(i) π
Tβ
Tδ
◦ gβ = gδ, whenever δ < β < α;

(ii) gβ = lim{gδ : δ < β}, whenever β < α is a limit ordinal;
(iii) gβ(Kβ) ∩ πTβ (Z) = ∅, whenever 1 ≤ β < α;
(iv) gβ|Y = πTβ ◦ f |Y , whenever β < α.

First consider the case α = β + 1. Since πTα(Z) is a fibered Z-set in ITα

with respect to the projection πTαTβ : ITα → ITβ there exists a map hα : ITα →
ITα such that hα(Kα) ∩ πTα(Z) = ∅ and πTαTβ ◦ hα = πTαTβ . Let s : ITβ → ITα

be a section of πTαTβ . Consider the map rα : Y ∪Kα → ITα which coincides

with πTα ◦ f on Y and with hα ◦ s ◦ gα on Kα. Straightforward verification
shows that the following diagram of unbroken arrows commutes:

Y ∪Kα
rα //

_�

incl

��

ITα

πTαTβ

��
X

gβ //

gα

<<

ITβ
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Consequently, by softness of πTαTβ , there is a map gα : X → IA (the dotted

arrow in the diagram) such that gα|(Y ∪Kα) = rα and πTαTβ ◦ gα = gβ. It is

also clear that gα(Kα) ∩ πTα(Z) = ∅ and gα|Y = πTα ◦ f .
If α = lim{β : β < α}, then let gα = lim{gβ : β < α} : X → ITα .
This completes the inductive construction. Let g = lim{gα : α < τ} :

X → IT be the limit map. It is clear that g|Y = f |Y and g(Kα)∩Z = ∅ for
each α.

Corollary 3.10. Let τ > ω. For any map f : X → Y between Zτ -sets
in Iτ there exists a proper map g : Iτ \X → Iτ \Y such that f = ḡ|X, where
ḡ : Iτ → Iτ is the extension of g.

Proof. Let f̄ : Iτ → Iτ be an extension of f . By Proposition 3.9, there
exists a map ḡ : Iτ → Iτ such that ḡ|X = f̄ |X = f and ḡ(Iτ \X) ⊂ Iτ \ Y .
Clearly, g = ḡ|(Iτ \X) : Iτ \X → Iτ \ Y is a proper map with the required
properties.

Lemma 3.11. Let B ⊂ A and |A\B| = ω. Suppose that Z is a fibered Z-
set in IA with respect to the projection πAB : IA → IB. Suppose also that X is
closed in IA and we are given an embedding f :X→Z and a map g : IB→ IB

such that πAB ◦ f = g ◦ πAB|X. Then there exists a fibered Z-embedding
h : IA → IA such that πAB ◦ h = g ◦ πAB, h|X = f |X and h(IA \X) ⊂ IA \Z.

Proof. Using [6, Theorem 1.3.4] for ω-spectra, one can find a countable
subset C ⊂ B, an embedding f0 : πAC∪(A\B)(X) → πAC∪(A\B)(Z) and a map

g0 : IC → IC , satisfying the following conditions:

(i) πAC∪(A\B)(Z) is a fibered Z-set in IC∪(A\B) with respect to the pro-

jection π
C∪(A\B)
C : IC∪(A\B) → IC ;

(ii) f0 ◦ πAC∪(A\B)|X = πAC∪(A\B) ◦ f ;

(iii) g0 ◦ πAC∪(A\B) = πAC∪(A\B) ◦ g;

(iv) π
C∪(A\B)
C ◦ f0 = g0 ◦ πC∪(A\B)

C |πAC∪(A\B)(X).

Let h̄ : IC∪(A\B) : IC∪(A\B) → IA be such that π
C∪(A\B)
C ◦ h̄ = g0 ◦ πC∪(A\B)

C
and h̄|πAC∪(A\B)(X) = f0. Next consider the space (with the compact-open

topology) C h̄ of all maps h : IC∪(A\B) → IC∪(A\B) such that h ◦πC∪(A\B)
C =

h̄ ◦ πC∪(A\B)
C and h|πAC∪(A\B)(X) = f0. It follows from [19] that the set S

of fibered Z-embeddings is dense and Gδ in C h̄. Moreover, the set R of
maps h with h(IC∪A\B) \ πAC∪(A\B)(X)) ∩ πAC∪(A\B)(Z) = ∅ is also dense

and Gδ in C h̄. Consequently, since C h̄ is completely metrizable, S ∩R 6= ∅.
Take any h0 ∈ S ∩ R. There is precisely one map h : IA → IA such that
πAC∪(A\B)◦h = h0◦πAC∪(A\B) and πAB◦h = πAB. It follows from the construction

that h has the required properties.
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Proposition 3.12. Let |T | = τ ≥ ω and Z be a Zτ -set in IT . Suppose
that Y is closed in a compactum X of weight ≤ τ and f : X → IT is a map
such that f(Y ) ⊂ Z and f |Y : Y → Z is an embedding. Then there exists a
Zτ -embedding h : X → IT such that h|Y = f |Y and h(X \ Y ) ⊂ IT \ Z.

Proof. Without loss of generality we may assume that X = IT . Using
Corollaries 3.2, 3.4 and Lemma 3.6 it is easy to construct subsets Tα ⊂ T
and maps fα : ITα → ITα , α < τ , with the following properties:

(a) |T0| = ω;
(b) Tα ⊂ Tα+1 and |Tα+1 \ Tα| = ω;
(c) T =

⋃
α<τ Tα and Tα =

⋃
β<α Tβ for each limit ordinal α < τ ;

(d) πTα+1(Z) is a fibered Z-set in ITα+1 with respect to the projection

π
Tα+1

Tα
: ITα+1 → ITα ;

(e) π
Tα+1

Tα
◦ fα+1 = fα ◦ πTα+1

Tα
;

(f) f = lim{fα : α < τ} and fα = lim{fβ : β < α} for each limit ordinal
α < τ ;

(g) fα|πTα(Y ) : πTα(Y )→ πTα(Z) is an embedding.

In order to construct the required Zτ -embedding h : IT → IT we proceed
by induction. Let h0 = f0. Supposing that fβ’s have been constructed for
all β < α, the construction of fα for non-limit α is straightforward by using
Lemma 3.11. For a limit α, we set hα = lim{hβ : β < α}. Finally, the
required embedding is defined by letting h = lim{hα : α < τ}. Proposition
3.7 guarantees that h is a Zτ -embedding. By construction, h|X = f |X and
h(IT \X) ⊂ IT \ Z.

4. Extension properties of the Stone–Čech corona. We begin by
introducing the following concept (cf. [13], [12]).

Definition 4.1. A locally compact space Y is a proper absolute extensor
for a locally compact space X (notation: Y ∈ AEp(X)) if any proper map
f : A→ Y , defined on a closed C∗-embedded subset A of X, admits a proper
extension f̄ : X → Y .

Recall that regular closed subsets are closures of open subsets.

Theorem 4.1. Let X be a locally compact space which can be covered
by at most τ compact subsets and each regular closed subset of which is
C∗-embedded. Let also L be a compact ANR-space embedded into Iτ as a
Zτ -set. Then the following conditions are equivalent:

(a) L ∈ AE(βX \X);
(b) Iτ \ L ∈ AEp(X).
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Proof. (a)⇒(b). Let f : A→ Iτ \L be a proper map defined on a closed
C∗-embedded subspace A ⊂ X. Then βA = clβX A and there is an extension
f̄ : clβX A→ Iτ of f . Since f is proper, we have f̄(clβX A \A) ⊂ L. By (a),
f̄ |(clβX A\A) : (clβX A\A)→ L can be extended to a map g : βX \X → L.
Since A ∪ (βX \X) is closed in βX there exists a map G : βX → Iτ such
that G|(βX \X) = g and G|A = f .

Using the spectral theorem for τ -spectra [6, Theorem 1.3.4], we can find
a compact space Y of weight ≤ τ , and maps p : βX → Y , q : Y → Iτ such
that G = q ◦ p and βX \ X = p−1(p(βX \ X)). By Proposition 3.9, there
exists a map H : Y → Iτ such that H|p(A∪ (βX \X)) = q|p(A∪ (βX \X))
and H(Y \ p(A ∪ (βX \X))) ⊂ Iτ \ L.

It remains to note that the map F = H ◦ p : βX → Iτ has the following
properties: F |(A ∪ (βX \X)) = G|(A ∪ (βX \X)) and F (X \ A) ⊂ Iτ \ L.

Consequently, f̃ = F |X : X → Iτ \ L is a proper map extending f .
(b)⇒(a). Let f : A → L be defined on a closed subspace A ⊂ βX \

X. Since L is an ANR-space, we may assume that f is already defined
on the closure clβX U of an open neighborhood U of A in βX. Note that
clβX U = clβX(U ∩ X) = clβX(clX(U ∩ X)) and that according to our
assumption clX(X ∩U) is C∗-embedded in X. Since κ(clX(U ∩X)) ≤ τ , we
conclude, by Proposition 3.9, that there exists a map g : clβX U → Iτ such
that g|(clβX U \clX(U ∩X)) = f |(clβX U \clX(U ∩X)) and g(clX(U ∩X)) ⊂
Iτ \ L. By (b), the proper map g|clX(U ∩X) : clX(U ∩X) → Iτ \ L has a
proper extension G : X → Iτ \L. Since G is proper, its Stone–Čech extension

G̃ : βX → Iτ sends βX \X into L. Straightforward verification shows that

F̃ |A = f .

Corollary 4.2. Let L be metrizable ANR-compact space embedded into
Iω as a Z-set. Then the following conditions are equivalent for any locally
compact and Lindelöf space X:

(a) L ∈ AE(βX \X);
(b) Iω \ L ∈ AEp(X);
(c) Cone(L) \ L ∈ AEp(X).

Proof. The equivalence of (a) and (b) follows from Theorem 4.4 since
κ(X) ≤ ω for any locally compact and Lindelöf space X.

To prove the remaining equivalence, first note that by Edwards’ theorem
[6, Corollary 2.3.23], Iω × Cone(L) is homeomorphic to Iω. Further, by
Chapman’s Complement Theorem [4], the complements Iω \ L and Iω ×
Cone(L)\Iω×L = Iω×(Cone(L)\L) are homeomorphic. Finally, note that
Iω × (Cone(L) \ L) ∈ AEp(X) precisely when Cone(L) \ L ∈ AEp(X).

Corollary 4.3. The following conditions are equivalent for any locally
compact and Lindelöf space X:
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(a) dim(βX \X) ≤ n;
(b) dimpX≤n+1, i.e. any proper map f : A→Rn+1, defined on a closed

subspace A⊂X, can be extended to a proper map f̄ : X→Rn+1.

Theorem 4.4. Let τ > ω, L be a compact ANR embedded into Iτ as a
Zτ -set and X be a Zτ -set in Iτ . Then the following conditions are equivalent:

(i) X ∈ AE([L]);
(ii) Iτ \X ∈ AEτp([Iτ \ L]).

Proof. (ii)⇒(i). We need to show that a map f : A → X defined on a
closed subset A ⊂ Y , where Y is a compact space of weight ≤ τ such that
L ∈ AE(Y ), has a continuous extension g : Y → X. By Corollary 3.8, we
may assume that A is embedded into K = Iτ as a Zτ -set. Note that K
is then the Stone–Čech compactification of K \ A (Lemma 2.1). Similarly,
we may assume that Y is also embedded into (a different copy of) Iτ as
a Zτ -set. By Proposition 3.12, it is possible to embed K into Iτ in such
a way that K ∩ Y = A. Let f̄ : A → Iτ denote an extension of f . Using
Proposition 3.9 we can find a map h : K → Iτ such that h|A = f and
h(K \ A) ⊂ Iτ \X. Note that h|(K \ A) : K \ A → Iτ \X is proper. Since
K is the Stone–Čech compactification of K \A, it follows that K \A is C∗-
embedded in Iτ \ Y . Next note that, by Lemma 2.1(iii), Iτ \ Y satisfies the
assumptions of Theorem 4.1. Consequently, since L ∈ AE(Y ), we conclude
by Theorem 4.1 that Iτ \ L ∈ AE(Iτ \ Y ). Then, by (ii), the proper map
h|(K \A) : K \A→ Iτ \X admits a proper extension h̄ : Iτ \Y → Iτ \X. Let
ḡ : Iτ → Iτ be the extension of h̄. Properness of h̄ implies that ḡ(Y ) ⊂ X.
Then g = ḡ|Y : Y → X is the required extension of f .

(i)⇒(ii). Let now f : B → Iτ \X be a proper map defined on a closed and
C∗-embedded subset B of a locally compact space Y of weight ≤ τ such that
Iτ \ L ∈ AEp(Y ). We need to construct a proper extension f̄ : Y → Iτ \X
of f . Since B is C∗-embedded in Y it follows that clβY B is the Stone–Čech
compactification of B. Consequently, there is an extension g : clβY B → Iτ

of f . Properness of f implies that g(clβY B \B) ⊂ X. Since Iτ \L ∈ AEp(Y )
we conclude, by Theorem 4.1, that L ∈ AE(βY \Y ). Thus, by (i), there exists
an extension h : βY \Y → X of g|(clβY B\B) : clβY B\B → X. Now consider
the closed subset A = (βY \Y )∪B of βY and the map h′ : A→ Iτ defined be

h′(y) =

{
h(y) if y ∈ βY \ Y ,

f(y) if y ∈ B.

Next consider any extension h̄ : βY → Iτ of h′. By Proposition 3.9, we
can find a map ḡ : βY → Iτ such that ḡ|A = h′ and ḡ(βY \ A) ⊂ Iτ \ X.
Straightforward verification shows that ḡ(Y ) ⊂ Iτ \ X and consequently
f̄ = ḡ|Y : Y → Iτ \X is proper. It only remains to note that f̄ |B = f .
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5. Categorical isomorphisms. Recall (Corollary 3.10) that for any
map f : X → Y between Zτ -sets in Iτ we can find a proper map g : Iτ \X →
Iτ \Y such that f = g̃|X, where g̃ : Iτ → Iτ is the unique extension of g. If f
is a homeomorphism, we may assume that so is g (this a Zτ -set unknotting
theorem, [6, Theorem 8.5.4]). In other words, any map between Zτ -sets of
the Tikhonov cube can be obtained as the restriction of the Stone–Čech ex-
tension of a proper map between their complements, i.e. the correspondence
λ : Cp(I

τ \X, Iτ \Y )→ C(X,Y ) defined by λ(g) = g̃|X is surjective. Below
we show that (up to a certain equivalence relation) λ is in fact a bijection.
Here we extend the considerations of [10], carried out for the Hilbert cube,
to the Tikhonov cube.

Let Zτ denote the category of Zτ -sets in Iτ and their continuous maps.
Let also Cp(Zτ ) denote the category whose objects are complements of Zτ -
sets in Iτ and whose morphisms are the equivalence classes of proper maps
with respect to the following relation: two proper maps are equivalent if they
are close in the continuously controlled (by the compactification Iτ ) coarse
structure ([14, Remark 2.29]). Recall that two proper maps g1, g2 : Iτ \X →
Iτ \ Y are close if g̃1(x) = g̃2(x) for any x ∈ X. The equivalence class with
representative g will be denoted by {g}. With this in mind we have

Proposition 5.1. Let τ > ω. Then the correspondence λ : Cp(Zτ )→ Zτ
defined by letting:

(i) for Iτ \X ∈ OB(Cp(Zτ )), λ(Iτ \X) = X,
(ii) for {g} : Iτ \X → Iτ \ Y ∈MOR(Cp(Zτ )), λ({g}) = g̃|X,

is an isomorphism of categories.

Proof. Structurally the proof follows that of [10, Theorem 2], but is much
simpler and is left to the reader. The fact that λ is well defined on morphisms
is a direct consequence of the definition of the closeness relation. The fact that
λ is surjective on morphisms, as noted above, follows from Corollary 3.10.

Next we consider homotopy categories. Let H(Zτ ) denote the category
whose objects are the same as in Zτ and morphisms are the homotopy
classes of maps. Similarly Hp(Zτ ) denotes the category whose objects are
the same as in Cp(Zτ ) and morphisms are the proper homotopy classes of
proper maps. First, we need the following observation.

Lemma 5.2. Let τ > ω and f0, f1 : X → Y be two maps between Zτ -sets
in Iτ . Suppose also that g0, g1 : Iτ \X → Iτ \ Y are proper maps such that
fk = g̃k|X, k = 0, 1. Then f0 ' f0 iff g0 'p g1.

Proof. Let F : X×[0, 1]→ Y be a homotopy between f0 and f1. Consider
the map H : X × [0, 1] ∪ Iτ × {0, 1} → Iτ defined by letting

H(z, t) =

{
F (z, t) if (z, t) ∈ X × [0, 1],

g̃k(z) if z ∈ Iτ × {0, 1}, k = 0, 1.
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By Proposition 3.9, there exists a map G̃ : Iτ × [0, 1] → Iτ such that

G̃|(X× [0, 1]∪Iτ ×{0, 1}) = H and G̃(Iτ × [0, 1]\(X× [0, 1]∪Iτ ×{0, 1})) ⊂
Iτ \ Y . Clearly, G = G̃|((Iτ \ X) × [0, 1]) : (Iτ \ X) × [0, 1] → Iτ \ Y is a
proper homotopy between g0 and g1.

Conversely, suppose that G : (Iτ \X)× [0, 1]→ Iτ \Y is a proper homo-
topy between g0, g1 : Iτ \ Y → Iτ \X. Note that by Lemma 2.1, Iτ × [0, 1]
is the Stone–Čech compactification of (Iτ \X)× [0, 1]. Consequently, G ad-

mits an extension G̃ : Iτ × [0, 1] such that G̃(X × [0, 1]) ⊂ Y . It is clear that

H = G̃|X × [0, 1] : X × [0, 1]→ Y is a homotopy between f0 and f1.

Corollary 5.3. Let τ > ω and X and Y be Zτ -sets in Iτ . If proper
maps g0, g1 : T τ \X→ Iτ \Y are close with respect to the continuously con-
trolled coarse structure induced by Iτ , then g0 and g1 are properly homotopic.

Proof. [14, Theorem 2.27] implies that coarsely close proper maps co-
incide on the Stone–Čech corona. Consequently, by Lemma 5.2, they are
properly homotopic.

Now let us define a functor µ : Hp(Zτ )→ H(Zτ ) between these homotopy
categories. The following statement is parallel to [10, Proposition 10].

Proposition 5.4. Let τ > ω. Then the correspondence µ : Hp(Zτ ) →
H(Zτ ), defined by letting:

(i) for Iτ \X ∈ OB(Hp(Zτ )), µ(Iτ \X) = X,
(ii) for [g] : Iτ \X → Iτ \ Y ∈MOR(Hp(Zτ )), µ([g]) = [g̃|X],

is an isomorphism of categories.

Proof. One part of Lemma 5.2 shows that µ is well defined. The other
part guarantees that µ is surjective on morphisms. The rest is straightfor-
ward and left to the reader.

In light of the above considerations and the role of the closeness relation
associated to the continuously controlled coarse structure (induced by the
Stone–Čech compactification), we would like to investigate this concept a
little further. For locally compact and paracompact spaces [14, Theorem
2.27] characterizes close proper maps between such spaces as those whose
extensions to the Stone–Čech compactifications coincide on the Stone–Čech
corona. For Lindelöf spaces we have the following statement.

Proposition 5.5. Let f, g : X → Y be proper maps between locally com-
pact and Lindelöf spaces. Then the following conditions are equivalent:

(i) f and g are close in the continuously controlled (by the Stone–Čech
compactification) coarse structure;

(ii) f̃(x) = g̃(x) for any x ∈ βX \X;
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(iii) there is a compact subset C ⊂ X such that f(x) = g(x) for any
x ∈ X \ C.

Proof. As mentioned above, [14, Theorem 2.27] implies (i)⇔(ii).

Let us prove (ii)⇒(iii). Take x ∈ βX \X. Since X is Lindelöf (actually
realcompactness of X suffices here), we can find a sequence {Un : n ∈ ω} of
open neighborhoods of x in βX with the following properties:

(1) clβX Un+1 ⊂ Un;
(2)

⋂
n∈ω Un ⊂ βX \X.

We need the following

Claim. There exists i ∈ ω such that f̃ |Ui = g̃|Ui.

To prove the claim, assume the contrary. By (ii), our assumption implies
that f |Ui∩X 6= g|Ui∩X for each i ∈ ω. Assume that for each k < n we have
found zk ∈ Uk ∩X such that

(∗) {f(zi) : i ≤ k} ∩ {g(zi) : i ≤ k} = ∅.
Next, let us construct a desired zn. First, for each i ≥ n, fix ai ∈ Ui ∩ X
such that

(a) f(ai) 6= g(ai).

Such ai’s exist because we assumed that f |Ui∩X 6= g|Ui∩X for each i ∈ ω.
Due to (1) and (2), no infinite subset of {ai : i ≥ n} is compact. Since f is
proper, there exists n1 such that

(b) f(ai) /∈ {g(zk) : k ≤ n} for each i > n1.

Similarly, there exists n2 such that

(c) g(ai) /∈ {f(zk) : k ≤ n} for each i > n2.

Pick any i > max{n1, n2} and let zn = ai. Since i ≥ n, zn ∈ Un. By (a)–(c),
the formula (∗) holds for k = n. Our construction is complete.

Let Z = {zn : n ∈ ω}. Clearly Z is closed in X. Since f and g are closed
maps, f(Z) and g(Z) are closed in Y . By (∗), they are disjoint. Since Y

is normal, clβY f(Z) and clβY g(Z) are also disjoint. Therefore f̃(x) 6= g̃(x)
contradicting the hypothesis of the lemma. The claim is proved.

By the Claim, for each x ∈ βX \X, we can select an open neighborhood

Ux of x in βX such that f̃ |Ux = g̃|Ux . Let U =
⋃
x∈βX\X Ux. Then f̃ |U = g̃|U .

The set C = βX \ U is a compact subset of X and f |X\C = g|X\C .

The implication (iii)⇒(ii) is trivial and valid for any spaces. Indeed,
let C be a compact subset of X such that f |(X \ C) = g|(X \ C). Fix
x ∈ βX \ X. Since C is closed in βX and x /∈ C, we can find an open

neighborhood U of x in βX such that clβX U∩C = ∅. The functions f̃ |clβX U
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and g̃|clβX U coincide on U ∩X. Since U ∩X is dense in clβX U , we conclude

that f̃ |clβX U = g̃|clβX U . Consequently, f̃(x) = g̃(x).

6. Proper absolute extensors. We begin by a local version of Defi-
nition 4.1.

Definition 6.1. A locally compact space X is a proper absolute neigh-
borhood extensor for a locally compact space Y (notation: X ∈ ANEp(Y ))
if any proper map f : A → X defined on a closed subset A of Y , admits a
proper extension f̄ : G→ X, where G is a closed neighborhood of A in Y .

Below let LCL denote the class of locally compact and Lindelöf spaces.

Definition 6.2. A space X ∈ LCL is a proper absolute (neighborhood)
extensor (notation: X ∈ A(N)Ep) if X ∈ A(N)Ep(Y ) for any Y ∈ LCL.

Proposition 6.1. Every proper absolute (neighborhood) extensor is an
absolute (neighborhood) extensor.

Proof. Let X be a proper absolute neighborhood extensor. Since X is
locally compact and Lindelöf, there exists a proper map p : X → Y , where
Y is a locally compact space with countable base. We may assume that Y is
a closed subspace of [0, 1)× Iω. Let also i : X → Iτ denote an embedding of
X into Iτ , where τ = w(X) ≥ ω. Then the diagonal product q = p4i : X →
[0, 1)× Iω × Iτ ≈ [0, 1)× Iτ is an embedding with q(X) closed in [0, 1)× Iτ .
We will identify X with q(X) ⊂ [0, 1) × Iτ . Since X is a proper absolute
neighborhood extensor, there exist a functionally open neighborhood G of
X in [0, 1) × Iτ and a proper retraction r : cl[0,1)×Iτ G → X. Since, by [6,
Proposition 6.1.4, Lemma 7.1.3], G is an absolute neighborhood extensor, it
follows that so is X.

As noted in the Introduction, Rn+ is a proper absolute extensor. The next
statement makes this observation formal.

Lemma 6.2. Let M be a compact metrizable A(N)E-space and N be a
Z-set in M . If N is also an A(N)E-compactum, then M \N ∈ A(N)Ep.

Proof. We only prove the parenthetical part since the absolute case is
simpler. Let f : A→M \N be a proper map, defined on a closed subset of a
locally compact space X. Without loss of generality we may assume that A is
functionally closed in X. Consider the Stone–Čech extension f̃ : clβX A→M

of f . Since f is proper, it follows that f̃(clβX A\A) ⊂ N . Since N is an ANE-

compactum, the map f̃ |(clβX A \A) : clβX A \A→ N can be extended to a
map g : G→ N , defined on an open neighborhood G of clβX A\A in βX \X.
Since (βX \X)\G and clβX A are disjoint closed subsets of βX, we can find
an open neighborhood U of clβX A in βX such that clβX U ∩ (βX \X) ⊂ G.



Stone–Čech coronas 171

Next consider the map h : (clβX U \X) ∪ clβX A→M defined by

h(x) =

{
g(x) if x ∈ clβX U \X,

f(x) if x ∈ A.

Note that h is well defined since f̃ and g coincide on clβX A\A. Since M is an

ANE-compactum, we can extend h to a map h̃ : clβX V →M , where V is an
open subset of βX such that (clβX U\X)∪clβX A ⊂ V and clβX V ⊂ U . Next
choose α : clβX V → [0, 1] such that α−1(0) = (clβX V \V )∪A. This is possi-
ble since the Stone–Čech corona βX \X (and consequently clβX V \ clX V )
is functionally closed in βX (respectively, in clβX V ). Also, since by our
assumption, N is a Z-set in M , there is a homotopy H : M × [0, 1] → M
such that H(m, 0) = m for any m ∈ M and H(m, t) ∈ M \ N for any
(m, t) ∈ M × (0, 1]. Finally consider the map f ′ : clβX V → M defined by

f ′(x) = H(h̃(x), α(x)) for x ∈ clβX V . Note that f ′(clX V ) ⊂ M \ N and
f ′(clβX V \ clX V ) ⊂ N . Consequently, f ′|clX V : clX V →M \N is proper.
It remains to observe that, by construction, f ′|A = f .

Lemma 6.3. Let X be an AEp-space with countable base. Then its one-
point compactification αX = X ∪ {∞} is an AE-compactum and {∞} is a
Z-set in αX.

Proof. Embed αX into the Hilbert cube Iω. Since X is a proper absolute
neighborhood extensor, there exists a proper retraction r : Iω \ {∞} → X.
Properness of r guarantees that r has an extension r̃ : Iω → αX such that
r̃|(Iω \ {∞}) = r and r̃({∞}) = {∞}. Since r̃ is also a retraction, it follows
that αX is an absolute extensor. Since r̃−1({∞}) = {∞} and {∞} is a Z-set
in Iω, we conclude that {∞} is a Z-set in αX as well.

Corollary 6.4. Let X be a locally compact space with countable base.
Then the following conditions are equivalent:

(i) X is a proper absolute extensor;
(ii) X is a proper retract of [0, 1)× Iω;

(iii) the one-point compactification αX = X ∪ {∞} of X is an absolute
extensor in which {∞} is a Z-set;

(iv) there exists a metrizable compactification X̃ of X such that X̃ and

X̃ \X are absolute extensors and the corona X̃ \X is a Z-set in X̃.

Proof. (i)⇒(ii). Any locally compact space with countable base, in par-
ticular, X, admits a closed embedding into [0, 1) × Iω. By (i), the identity
map idX has a proper extension r : [0, 1) × Iω → X, which obviously is a
retraction.

(ii)⇒(iii) follows from Lemma 6.3, since [0, 1)× Iω (and hence X as its
proper retract) is a proper absolute extensor.

(iii)⇒(iv) is trivial and (iv)⇒(i) follows from Lemma 6.2.
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Proposition 6.5. Let X be a proper absolute extensor of countable
weight. Then the following conditions are equivalent:

(i) X satisfies DDnP for each n;
(ii) X is homeomorphic to [0, 1)× Iω.

Proof. (i)⇒(ii). By Corollary 6.4(iii), the one-point compactification αX
= X ∪ {∞} of X is an absolute extensor in which {∞} is a Z-set. Then,
by (i), αX has the DDnP for each n and by Toruńczyk’s theorem [17],
αX ≈ Iω. Therefore X ≈ Iω \ {∞}. Finally, by Chapman’s Complement
Theorem, Iω \ {∞} ≈ [0, 1)× Iω.

(ii)⇒(i). Trivial.

Corollary 6.6. If X is a proper absolute extensor of countable weight,
then X × Iω ≈ [0, 1)× Iω.

Proof. Note that X × Iω is a proper absolute extensor satisfying DDnP
for each n and apply Proposition 6.5

Theorem 6.7. A proper absolute extensor of weight τ > ω is homeo-
morphic to [0, 1)× Iτ if and only if it has the same pseudocharacter at each
point.

Proof. Obviously the pseudocharacter of each point of [0, 1)×Iτ equals τ .
Let now X be a proper absolute retract of weight τ . As in the proof of Propo-
sition 6.1 we may assume that X is closed in [0, 1) × IA, where |A| = τ .
Since X is a proper absolute extensor, there exists a proper retraction
r : [0, 1) × IA → X. Proceeding as in the proof of [6, Theorem 7.2.8], we
can construct a continuous well ordered inverse spectrum S = {Xα, p

α+1
α , τ}

of length τ , satisfying the following conditions:

(i) X = limS;
(ii) all Xα are locally compact and Lindelöf proper absolute extensors;

(iii) all short projections pα+1
α : Xα+1 → Xα are trivial bundles with

fiber Iω;
(iv) X0 is a locally compact space of countable weight.

Then X is homeomorphic to X0×Iτ . By (ii), (iv) and Corollary 6.6, X0×Iω
≈ [0, 1)× Iω, and consequently X ≈ [0, 1)× Iτ .
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