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A simultaneous selection theorem

by

Alexander D. Arvanitakis (Athens)

Abstract. We prove a theorem that generalizes in a way both Michael’s Selection
Theorem and Dugundji’s Simultaneous Extension Theorem. We use it to prove that if K is
an uncountable compact metric space and X a Banach space, then C(K,X) is isomorphic
to C(C, X) where C denotes the Cantor set. For X = R, this gives the well known Milyutin
Theorem.

1. Introduction. We recall here two well-known and classical theorems.
The first one is due to E. Michael [10], and it is known as Michael’s Selection
Theorem:

Michael’s Selection Theorem. Let X be a paracompact space, Y a
Banach space and Φ : X → 2Y a set-valued lower semicontinuous map with
non-empty values and such that for every x ∈ X, Φ(x) is a closed convex
subset of Y . Then there exists a continuous selection F : X → Y for Φ, i.e.
F is continuous and F (x) ∈ Φ(x) for all x ∈ X.

Recall that lower semicontinuous means that for any open subset U of Y ,
the set {x ∈ X : Φ(x) ∩ U 6= ∅} is open in X.

The second theorem is due to J. Dugundji [5], and it is known as Simul-
taneous Extension Theorem:

Dugundji’s Simultaneous Extension Theorem. Let X be a metric
space, A ⊂ X a closed subset and E a locally convex linear topological space.
Then there exists a linear operator S : C(A,E)→ C(X,E) such that for any
f ∈ C(A,E), S(f) is an extension of f . Furthermore S is continuous with
respect to the topologies of uniform convergence and of uniform convergence
on compact subsets.

We will show that these two theorems are roughly speaking special cases
of a more general one. Let us first recall the following definition (see [6]):
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We say that a topological space X is a k-space if it is a Hausdorff con-
tinuous image of a locally compact space. It is known ([6]) that if X is a
k-space, then for every topological space Y and ϕ : X → Y , ϕ is continuous
if and only if it is continuous on every compact subspace of X.

For example, every metric space, every compact space, or more generally
every paracompact and locally compact space is a k-space.

Using this definition, we prove the following:

Theorem 1.1. Let X be a paracompact k-space, Y a complete metric
space, E a locally convex complete linear space and Φ : X → 2Y \ {∅} a
lower semicontinuous set-valued map. Then there exists a continuous linear
operator S : C(Y,E)→ C(X,E) such that

S(f)(x) ∈ conv f(Φ(x)).

Furthermore, S is continuous with respect to the topologies of uniform
convergence on compact subsets.

Here conv denotes the closed convex hull.
It is easy to see that any topological vector space E is a uniform

space ([6]), the neighborhoods of the diagonal of E × E being the sets
DV = {(e1, e2) ∈ E × E : e1 − e2 ∈ V }, where V ranges over the open
symmetric neighborhoods of 0 in E. We call E complete if it is complete as
a uniform space.

Let us now indicate how we can obtain Michael’s Selection Theorem and
Dugundji’s Simultaneous Extension Theorem as special cases of Theorem 1.1.

For the first one, assume that X is a paracompact k-space, Y is a Banach
space and Φ : X → 2Y \ {∅} is a lower semicontinuous set-valued map such
that Φ(x) is closed and convex for any x ∈ X. Set E = Y . Then Theorem
1.1 ensures the existence of an operator S : C(Y, Y ) → C(X,Y ) such that
S(f)(x) ∈ conv f(Φ(x)) for any f ∈ C(Y, Y ) and x ∈ X. Take now f to be
the identity, id, from Y to Y . Thus S(id)(x) ∈ convΦ(x) = Φ(x) since Φ(x)
is convex and closed. Therefore S(id) is a continuous selection for Φ.

For the second theorem, letX be a metric space (therefore a paracompact
k-space), A a closed subset of X, and E a locally convex complete linear
space. Define a set-valued map Φ : X → 2E by

Φ(x) =

{ {x} if x ∈ A,
A if x ∈ X \A.

It is easy to check that Φ is lower semicontinuous. Therefore there exists
a continuous linear map S : C(A,E) → C(X,E) such that for any f ∈
C(A,E) and x ∈ X, S(f)(x) ∈ conv f(Φ(x)). For x ∈ A, we get

S(f)(x) ∈ conv f({x}) = {f(x)}.
Thus S(f) is an extension of f .
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The proof of Theorem 1.1 is different from the proofs of the two above
mentioned theorems and it relies on ideas from the study of regular averaging
and regular extension operators and their applications to the classification of
spaces of continuous functions, as initiated by Bade’s students, S. Ditor and
A. Etcheberry in [2, 7], and further developed by S. Ditor and R. Haydon
[3, 4, 8, 9] and more recently in [1]. Our proof is elementary and uses no
results from that theory. For a further study of regular extension and regular
averaging operators we refer to [13, 14, 15].

In Section 3, we give an application of Theorem 1.1 by proving the fol-
lowing generalization of Milyutin’s Theorem [11, 12]:

Theorem 1.2. Let K be an uncountable compact metric space and X a
Banach space. Then C(K,X) is isomorphic to C(C, X) where C denotes the
Cantor set with its product topology.

Recently, V. Valov [16] obtained an interesting generalization of Theo-
rem 1.1 using a different proof, and T. Yamauchi [17], basing on this proof,
dropped the assumption of X being a k-space and also gave some applica-
tions of the theorem.

2. The proof of Theorem 1.1. If (T,≺) is a tree, we denote by [T ] the
infinite branches of T . Then [T ] is naturally topologized by the clopen sets
Vt = {b ∈ [T ] : t ∈ b}, where t ∈ T . Also we denote by S(t) the immediate
successors of t. We say that T is finitely branching if S(t) is finite for all
t ∈ T .

We begin with the following lemma:

Lemma 2.1. Assume that T is a finitely branching rooted tree and that
to every t ∈ T a number λt ≥ 0 has been assigned such that λr(T ) = 1, where
r(T ) is the root of T , and λt =

∑
{λs : s ∈ S(t)} for every t ∈ T . Assume

moreover that E is a locally convex complete linear topological space. Then
there is a unique linear function u : C([T ], E)→ E such that for every t ∈ T
and e ∈ E, if χ(Vt, e) : [T ]→ E is the function

χ(Vt, e)(b) =

{
e if b ∈ Vt,
0 otherwise,

then u(χ(Vt, e)) = λte. Moreover u is continuous with respect to the uniform
topology of C([T ], E).

Proof. A function f : [T ]→ E is called simple if for every b ∈ [T ], there
is a basic neighborhood Vt of b such that f restricted to Vt is constant. Let
Cs([T ], E) denote the set of simple functions from [T ] to E. Then Cs([T ], E)
is clearly a linear subspace of C([T ], E) and every f ∈ Cs([T ], E) can be
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(non-uniquely) written in the form

f =

n∑
i=1

µiχ(Vti , ei)

where µi ∈ R, ti ∈ T , ei ∈ E and Vti , i = 1, . . . , n, is a partition of [T ]. We
call such a form a normal form for f .

We define u′ : Cs([T ], E)→ E by

u′(f) = u′
( n∑
i=1

µiχ(Vti , ei)
)

=
n∑
i=1

µiλtiei.

We have to show that u′ is independent of the normal form used. So let
f =

∑n
i=1 µiχ(Vti , ei) =

∑m
j=1 νjχ(Vsj , rj) be two normal forms for f . Set

Vtij = Vti∩Vsj . Then whenever Vtij 6= ∅ we have µiei = νjrj . Moreover using
our assumption that λt =

∑
{λs : s ∈ S(t)} and a simple induction, one can

easily prove that
∑m

j=1 λtij = λti whenever Vti =
⋃m
j=1 Vtij is a partition

of Vti . Thus

u′
( n∑
i=1

µiχ(Vti , ei)
)

=
n∑
i=1

µiλtiei =
n∑
i=1

m∑
j=1

λtijµiei

=
n∑
i=1

m∑
j=1

λtijνjrj = u′
( m∑
j=1

νjχ(Vsjrj)
)
.

Next we prove that u′ is linear. So let f =
∑n

i=1 µiχ(Vti , ei) and g =∑m
j=1 νjχ(Vsj , rj) be two functions in normal form in Cs([T ], E), and let

µ, ν ∈ R. Setting Vtij = Vti ∩ Vsj we see that

µf + νg =
n∑
i=1

m∑
j=1

χ(Vtij , µµiei + ννjrj)

is a normal form for µf + νg. Therefore

u′(µf + νg) =
n∑
i=1

m∑
j=1

λtij (µµiei + ννjrj)

=

n∑
i=1

( m∑
j=1

λtij

)
µµiei +

m∑
j=1

( n∑
i=1

λtij

)
ννjrj

= µ

n∑
i=1

λtiµiei + ν

m∑
j=1

λtjνjrj = µu′(f) + νu′(g),

since Vtij , j = 1, . . . ,m, is a partition of Vti , and Vtij , i = 1, . . . , n, is a
partition of Vsj .
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Clearly u′(χ(Vt, e)) = λte by definition. So we have to prove that we can
extend u′ to a continuous u : C([T ], E)→ E. Here continuity is meant with
respect to the uniform topology of C([T ], E). In this topology, a neighbor-
hood of 0 in C([T ], E) is of the form

U([T ], E) = {f ∈ C([T ], E) : f(b) ∈ U for all b ∈ [T ]}
where U is a neighborhood of 0 in E. Notice first that Cs([T ], E) is dense
in C([T ], E) in this topology. Indeed, let f ∈ C([T ], E) and U a neigh-
borhood of 0 in E. Since f is continuous, for every b ∈ [T ] there exists
a clopen neighborhood Vt of b such that f(Vt) ⊂ f(b) + U . Since T is
finitely branching, [T ] is compact, so let Vt1 , . . . , Vtn be a covering of [T ]
such that f(Vti) ⊂ f(bi) + U , 1 ≤ i ≤ n. By dropping the requirement that
bi ∈ Vti , we may also assume that Vt1 , . . . , Vtn are pairwise disjoint. So set-
ting g =

∑n
i=1 χ(Vti , f(bi)) ∈ Cs([T ], E), we easily see that f(b) − g(b) ∈ U

for all b ∈ [T ], and therefore f ∈ g + U([T ], E).
Next notice that u′ is continuous, since if U is a convex neighborhood of 0

in E and f =
∑n

i=1 µiχ(Vti , ei) ∈ Cs([T ], E) ∩ U([T ], E) is in normal form,
then µiei ∈ U by the definition of U([T ], E). Therefore also

∑n
i=1 λtiµiei =

u′(f) ∈ U since this is a convex combination of µiei, 1 ≤ i ≤ n.
We may now define u : C([T ], E)→ E as follows: For f ∈ C([T ], E) there

is a net (fγ)γ∈Γ in Cs([T ], E) converging to f . Then it is easy to check that
(u′(fγ))γ∈Γ is a Cauchy net in E, so we can define u(f) to be limγ∈Γ u

′(fγ).
It is also easy to check that this definition is independent of the choice of
the net (fγ)γ∈Γ and that u is indeed linear and continuous.

The next proposition is Theorem 1.1 for the case Y = [T ], where T is
a tree of height ω (not necessarily finitely branching). Here height ω means
that the set of all predecessors of each t ∈ T is finite. As in Lemma 2.1, we
denote by Vt the basic clopen neighborhoods of [T ], i.e. Vt = {b ∈ [T ] : t ∈ b}.

Proposition 2.2. Let X be a paracompact k-space, T a tree of height
ω, E a complete locally convex linear space and Φ : X → 2[T ] \ {∅} a lower
semicontinuous set-valued function. Then there is a continuous linear oper-
ator S : C([T ], E)→ C(X,E) such that for any f ∈ C([T ], E) and x ∈ X,

S(f)(x) ∈ conv f(Φ(x)).

Furthermore, S is continuous with respect to the topologies of uniform
convergence on compact subsets.

The proof is in several steps. The main argument is that using Lemma 2.1
we associate to every x ∈ X a continuous linear function νx : C([T ], E)→ E.
Having done this in an appropriate manner, we may define S(f)(x) = νx(f)
and then prove that due to some properties of the function x 7→ νx, we have
the required properties for S.
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Proof of Proposition 2.2. We first define Ut = {x ∈ X : Φ(x) ∩ Vt 6= ∅}
for t ∈ T . Since Φ is lower semicontinuous, Ut is open for any t ∈ T . Roughly
speaking, Ut is the set of all x ∈ X such that νx may take account of all
functions of the form χ(Vt, r) in C([T ], E), i.e. νx(χ(Vt, r)) may be not zero.
Since Φ has non-empty values and Vt =

⋃
{Vs : s ∈ S(t)} for every t ∈ T , we

have the following properties for the family Ut, t ∈ T :

• Ur(T ) = X. (Recall that r(T ) denotes the root of T .)
• Ut =

⋃
{Us : s ∈ S(t)} for every t ∈ T .

We use these properties of Ut to define, recursively on t, closed subsets
Ft of X with the following properties:

(1) Fr(T ) = X.
(2) Ft =

⋃
{Fs : s ∈ S(t)} =

⋃
{intFt(Fs) : s ∈ S(t)} for every t ∈ T .

(Here intFt(Fs) is the relative interior of Fs in Ft.)
(3) The family {Fs : s ∈ S(t)} is a neighborhood finite covering of Ft.

(Recall (see for example [5]) that a neighborhood finite covering is
a covering such that every x has a neighborhood that meets only
finitely many members of the covering.)

(4) Ft ⊂ Ut for all t ∈ T .
For t = r(T ), we set Fr(T ) = X. Since Ur(T ) = X, condition (4) is

satisfied.
Assuming we have defined Ft for some t ∈ T , we define simultaneously Fs,

s ∈ S(t): First, since Ft ⊂ Ut =
⋃
{Us : s ∈ S(t)}, we deduce that Ft =⋃

{Ft ∩ Us : s ∈ S(t)}. Since Ft is itself a paracompact space as a closed
subspace of X, we may easily find Fs ⊂ Ft ∩ Us, s ∈ S(t), satisfying (2)
and (3), and the induction step has been done.

Next, using (2) and the fact that Ft, t ∈ T , is paracompact, we define a
partition of unity in Ft, {fs : s ∈ S(t)}, subordinate to {intFt(Fs) : s ∈ S(t)}.
Every fs is extended by 0 on X \ Fs and the resulting map, which is not
necessarily continuous, will also be called fs. For t ∈ T we now define a map
λt : X → [0, 1] by

λt =
∏
{fs : s � t}.

We have the following:

Claim. For every t ∈ T , λt is a continuous map.

It suffices to prove inductively on t that

(1) {x ∈ X : λ(x) 6= 0} = supp(λt) ⊂ intX(Ft),

since in this case X = (X \ supp(λt)) ∪ intX(Ft) and λt is continuous by
definition on both open sets: on X \ supp(λt) being constantly 0, and on
intX(Ft) being the product of continuous functions.
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Relation (1) is obviously valid in the case where t = r(T ), since λr(T ) =
fr(T ) = 1 and Fr(T ) = X. Assuming that it is valid for t, we observe that for
s ∈ S(t),

{x ∈ X : λs(x) 6= 0} = {x ∈ X : λt(x) 6= 0} ∩ {x ∈ X : fs(x) 6= 0},

and consequently

supp(λs) ⊂ suppλt ∩ supp fs ⊂ intX(Ft) ∩ intFt(Fs) ⊂ intX(Fs).

For any A ⊂ X we define the tree TA = {t ∈ T : A ∩ Ft 6= ∅}. Notice that
if it is non-empty, TA is rooted. (We also denote T{x} by Tx for simplicity.)
To avoid confusion we continue to denote by S(t) the immediate successors
of t in T . Next we argue that if A 6= ∅ is a compact subspace of X, then TA
is finitely branching and rooted.

So, let t ∈ TA. By definition A ∩ Ft is non-empty. Since {Fs : s ∈ S(t)}
is a neighborhood finite covering of Ft, for every x ∈ A ∩ Ft we can find
an open Gx 3 x such that Gx ∩ Fs is non-empty for finitely many s ∈ S(t)
only. Using now the compactness of A ∩ Ft, let Gx1 , . . . , Gxn be a covering
of A ∩ Ft. Then if s ∈ S(t),

s is an immediate successor of t in TA
⇔ Fs ∩A is non-empty
⇔ for some i = 1, . . . , n, Gxi ∩ Fs is non-empty,

and for any particular i = 1, . . . , n, there are only finitely many s ∈ S(t)
satisfying this last condition. Therefore indeed TA is finitely branching, and
obviously rooted since A 6= ∅.

Observe that since supp(λt) ⊂ Ft by (1), we see that λt(x) = 0 whenever
x 6∈ Ft. Therefore if x ∈ A,∑

{λs(x) : s ∈ S(t)}

=
∑
{λs(x) : s is an immediate successor of t in TA}.

Furthermore, since fs, s ∈ S(t), has been chosen to be a partition of unity
in Ft, we get

∑
{λs(x) : s ∈ S(t)} = λt(x). Combining these two equalities

we find that if x ∈ A, then

(2)
∑
{λs(x) : s is an immediate successor of t in TA} = λt(x).

Since moreover r(T ) = r(TA) whenever A 6= ∅, we may use Lemma 2.1. So for
every x∈X and every A⊂X containing x, there exists νAx : C([TA], E)→ E
linear and continuous such that νAx (χ(V A

t , r)) = λt(x)r. Here V A
t denotes

the basic clopen neighborhood of [TA], {b ∈ [TA] : t ∈ b}.
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Observe that if B ⊃ A 3 x, both maps C([TB], E) 3 f 7→ νBx (f) and
C([TB], E) 3 f 7→ νAx (f |[TA]) agree on simple functions, since νBx (χ(V B

t , r))
= λt(x)r and also νAx (χ(V B

t , r)|[TA]) = νAx (χ(V A
t , r)) = λt(x)r. Therefore,

νBx (f) = νAx (f |[TA]) for every f ∈ C([TB], E). For any x ∈ X, we define

µx : C([T ], E) 3 f 7→ ν{x}x (f |[Tx]) ∈ E.
It is easy to check that also µx(χ(Vt, r)) = λt(x)r for any t ∈ T and r ∈ E.
Using µx, we define S : C([T ], E) → C(X,E) by S(f)(x) = µx(f) and it
suffices to check that S satisfies all conditions in the proposition.

Step 1. For each f ∈ C([T ], E), S(f) : X → E is continuous.

SinceX is a k-space, it suffices to check the continuity on a given compact
A ⊂ X. So let (xδ)δ∈∆ be a net in A converging to some point x ∈ A. We
have to show that in E, S(f)(xδ)

δ∈∆−−−→ S(f)(x) or equivalently that µxδ(f)
converges to µx(f). Now, for every x ∈ A we have

µx(f) = ν{x}x (f |[Tx]) = νAx (f |[TA]).

Therefore it suffices to show that the net (νAxδ(f |[TA]))δ∈∆ converges to
νAx (f |[TA]). So, let U be an open neighborhood of 0 in E, and find an open
convex neighborhood G of 0 such that Ḡ + Ḡ + Ḡ ⊂ U . Notice first that
for any h ∈ G([TA], E) and z ∈ A we have νAz (h) ∈ Ḡ. This is so since if
h =

∑n
i=1 aiχ(V A

ti , ri) is a simple function in a normal form in G([TA], E),
then airi ∈ G for every i = 1, . . . , n, because these are values taken by h.
Therefore νAz (h) =

∑n
i=1 λti(z)airi ∈ G as a convex combination of airi.

In the general case, h is the limit point of some net (hγ)γ∈Γ of simple

functions in G([TA], E). Since νAz is continuous, we have νAz (hγ)
γ∈Γ−−−→ νAz (h),

and therefore νAz (h) ∈ Ḡ.
Next, since νAx is continuous and simple maps are dense in C([TA], E),

there is a simple map g such that both

f |[TA]− g ∈ G([TA], E) and νAx (f |[TA]− g) ∈ G.
Let g =

∑n
i=1 aiχ(V A

ti , ri) be a normal form for g. Observe that

νAxδ(g) =
n∑
i=1

λti(xδ)µiri
δ∈∆−−−→

n∑
i=1

λti(x)µiri = νAx (g),

as the maps z 7→ λti(z) are all continuous. So, there is a δ0 ∈ ∆ such that
for all δ ≥ δ0, we have νAxδ(g)− νAx (g) ∈ G. Then for all δ ≥ δ0,

νAxδ(f |[TA]) = νAxδ(f |[TA]− g) + νAxδ(g) ∈ Ḡ+ νAx (g) +G

⊂ Ḡ+G+ νAx (f |[TA]) +G ⊂ νAx (f |[TA]) + U

and the proof of Step 1 is complete.
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Clearly S is a linear map. Next we prove

Step 2. For every f ∈ C([T ], E) and x ∈ X,

S(f)(x) ∈ conv f(Φ(x)).

Let y ∈ [Tx]. If Vt is a basic clopen neighborhood of y in [T ], then clearly
t ∈ Tx. Therefore x ∈ Ft ⊂ Ut = {z ∈ X : Φ(z)∩Vt 6= ∅}. Thus Φ(x)∩Vt 6= ∅,
and since Vt was an arbitrary neighborhood of y, we deduce that y ∈ Φ(x).
It follows that [Tx] ⊂ Φ(x), and consequently

f([Tx]) ⊂ f(Φ(x)) ⊂ f(Φ(x)) ⊂ conv f(Φ(x)).

Therefore
conv f([Tx]) ⊂ conv f(Φ(x)),

so it suffices to prove that S(f)(x) ∈ conv f([Tx]).
We fix an arbitrary neighborhood U of 0 in E and prove that

S(f)(x) ∈ U + conv f([Tx]) 6= ∅.

First, let G be an open convex and symmetric neighborhood of 0 in E

such that Ḡ+ Ḡ ⊂ U . Let moreover g =
∑n

i=1 aiχ(V
{x}
ti

, ri) ∈ C([Tx], E) be
a simple function in normal form such that

(3) g − f |[Tx] ∈ G([Tx], E).

Since g is in normal form, we know that {V {x}ti
: 1 ≤ i ≤ n} is a partition

of [Tx], and in this case,

(4)
n∑
i=1

λti(x) = λr(T )(x) = 1.

Thus,

S(f)(x) = µx(f) = νx(f |[Tx])(5)
= νx(f |[Tx]− g) + νx(g)

∈ Ḡ+
n∑
i=1

λti(x)airi,

where the membership relation follows from the fact that f |[Tx] − g ∈
G([Tx], E) as we have argued in Step 1. Since ti ∈ Tx, we have x ∈ Fti ,
1 ≤ i ≤ n. Furthermore by the definition of Tx and the property Ft =

⋃
{Fs :

s ∈ S(t)}, it is easy to see that for any t ∈ Tx, V {x}t is non-empty. Therefore
we may choose bi ∈ V {x}ti

so that g(bi) = airi and by (3), f(bi) − airi ∈ G.
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Using (5) and (4) now gives

S(f)(x) ∈ Ḡ+

n∑
i=1

λti(x)airi

= G+

n∑
i=1

λti(x)(airi − f(bi)) +

n∑
i=1

λti(x)f(bi)

⊂ G+G+ conv f([Tx]) ⊂ U + conv f([Tx]),

which is exactly what we needed to prove.

In the next two steps we study the continuity properties of S.

Step 3. S is continuous with respect to the uniform topology.

It suffices to prove that for any convex neighborhood U of 0 in E,
S(U([T ], E)) ⊂ Ū(X,E). This is true since for any f ∈ U([T ], E) and x ∈ X,
S(f)(x) ∈ conv f(Φ(x)), f(Φ(x)) ⊂ U and U is convex.

Step 4. S is continuous with respect to the topologies of uniform con-
vergence on compact subsets.

Here, it suffices to find, for any convex neighborhood U of 0 in E and
any compact A ⊂ X, a compact B ⊂ [T ] such that S(U(B,E)) ⊂ Ū(A,E).

Set B = [TA] ⊂ Y . Then B is compact since we have proved that if A is
compact, then TA is finitely branching and rooted. Observe that if x ∈ A,
then Tx ⊂ TA and therefore [Tx] ⊂ [TA]. Consequently, if f ∈ U([TA], E),
then as proved in Step 2,

S(f)(x) ∈ conv f([Tx]) ⊂ conv f([TA]) ⊂ Ū ,

since U is convex. Therefore S(f) ∈ Ū(A,E).

The next lemma will be used to generalize Proposition 2.2 in the case
where instead of [T ] we have an arbitrary complete metric space Y .

Lemma 2.3. Assume that X is a normal topological space and Y a com-
plete metric space. Let moreover {Ui : i ∈ I} be a neighborhood basis for Y
containing Y , and {Gi : i ∈ I} open subsets of X, such that:

(1) If Ui0 = Y , then Gi0 = X.
(2) If for some J ⊂ I and some i ∈ I, Ui =

⋃
j∈J Uj, then also Gi =⋃

j∈J Gj.

Then the set-valued map Φ : X → 2Y defined by

Φ(x) = {y ∈ Y : ∀i y ∈ Ui ⇒ x ∈ Gi}

is lower semicontinuous and takes non-empty values.
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Furthermore if T is a rooted tree of height ω, Y = [T ] and {Ui : i ∈ I} =
{Vt : t ∈ T}, where as usual Vt = {b ∈ [T ] : t ∈ b}, we may replace (1) and
(2) by:

(1′) Gr(T ) = X,
(2′) Gt =

⋃
{Gs : s ∈ S(t)},

where r(T ) is the root of T and S(t) is the set of immediate successors of t
in T . In this case

Φ(x) =
{
b ∈ [T ] : x ∈

⋂
t∈b
Gt

}
.

Proof. We first prove that

(6) x ∈ Gi ⇔ Φ(x) ∩ Ui 6= ∅.
For the easy implication, let Φ(x) ∩ Ui 6= ∅ and y ∈ Φ(x) ∩ Ui. Then by

definition, x ∈ Gi. For the converse direction, let x ∈ Gi. We recursively
define a sequence Ui = Ui1 ⊃ Ui2 ⊃ · · · of open subsets of Y such that

• diam(U in) < 1/2n,
• U in+1 ⊂ Uin ,
• x ∈ Gin for all n.

We set Ui1 = Ui and assume that Ui1 , . . . , Uin have been defined. Let

J = {j ∈ I : diam(U j) < 1/2n+1 and U j ⊂ Uin}
and observe that Uin =

⋃
j∈J Uj . Therefore, by our assumption also Gin =⋃

j∈J Gj , and since by the inductive hypothesis we have x ∈ Gin , there must
exist an in+1 ∈ J such that x ∈ Gin+1 . So the induction step is finished.

Let now y be the unique element of
⋂∞
n=1 U in =

⋂∞
n=1 Uin . Obviously

y ∈ Ui = Ui1 . It suffices to prove moreover that y ∈ Φ(x). To this end, we
have to prove that if for some j, y ∈ Uj , then x ∈ Gj . So let y ∈ Uj . Since
{Uin : n ∈ N} is a neighborhood basis at y, for some n ∈ N we must have
y ∈ Uin ⊂ Uj . Therefore if K = {k ∈ I : Uk ⊂ Uj} then both in ∈ K and
Uj =

⋃
k∈K Uk. Consequently, Gj =

⋃
k∈K Gk, and since x ∈ Gin , it follows

that x ∈ Gj , which is what we needed to prove.
For the particular i0 for which Ui0 = Y , we have x ∈ Gi0 = X and

therefore by (6), Φ(x) is non-empty. The same relation shows that for any i,

Gi = {x ∈ X : Φ(x) ∩ Ui 6= ∅}.
Therefore if J is an arbitrary subset of I, we have{

x ∈ X : Φ(x) ∩
⋃
j∈J

Uj 6= ∅
}

=
⋃
j∈J
{x ∈ X : Φ(x) ∩ Uj 6= ∅} =

⋃
j∈J

Gj ,

and this last equality shows that Φ is indeed lower semicontinuous.
The second part of the lemma follows even more easily using exactly the

same method as the first one.
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Lemma 2.4. Let (as in Theorem 1.1) X be a paracompact k-space, Y a
complete metric space, and Φ : X → 2Y \ {∅} a lower semicontinuous set-
valued map with non-empty values. Then there exists a tree T of height ω,
a continuous surjection ϕ : [T ] → Y and a lower semicontinuous set-valued
map Ψ : X → 2[T ] \ {∅} such that Ψ(x) ⊆ ϕ−1(Φ(x)).

Proof. Let {Ui : i ∈ I} be a basis for the topology of Y consisting of
open non-empty sets. For every i ∈ I, we define

I(i) = {j ∈ I : U j ⊂ Ui and diam(U j) ≤ min{1,diam(U i)/2}}.

We also define a tree T of finite sequences of I as follows:

(i1, . . . , in) ∈ T ⇔ ik+1 ∈ I(ik) for every k = 1, . . . , n− 1.

Due to the completeness of Y , for every b ∈ [T ], the set
⋂
i∈b Ui =

⋂
i∈b U i is

a singleton. Identifying it with its unique element we may thus define a map

ϕ : [T ] 3 b 7→
⋂
i∈b
Ui ∈ Y.

We first prove that if t = (i1, . . . , in) ∈ T , then ϕ(Vt) = Uin , and conse-
quently ϕ is continuous and onto.

For the easy direction, if b ∈ Vt, then ϕ(b) =
⋂
i∈b Ui ∈ Uin since in ∈ b.

For the other direction, it is easy to see that for any i ∈ I, Ui =
⋃
j∈I(i) Uj .

Therefore if y ∈ Uin we may inductively define a sequence Uin ⊃ Uin+1 ⊃ · · ·
such that in+k+1 ∈ I(in+k) and y ∈ Uin+k for all k = 0, 1, . . . . Setting
b = (i1, . . . , in, in+1, . . .) ∈ [T ] we conclude that b ∈ Vt and ϕ(b) = y.

Now, for t = (i1, . . . , in) ∈ T , we set Ut = Uin and U∅ = Y . Observe
that as mentioned before, Ut =

⋃
{Us : s ∈ S(t)}. For t ∈ T we also set

Gt = {x ∈ X : Φ(x) ∩ Ut} 6= ∅. Since for every x we have Φ(x) 6= ∅, we infer
that G∅ = X. Since moreover Ut =

⋃
{Us : s ∈ S(t)}, it follows that also

Gt =
⋃
{Gs : s ∈ S(t)}. Thus the map

Ψ : X 3 x 7→
{
b ∈ [T ] : x ∈

⋂
t∈b
Gt

}
∈ 2[T ]

is lower semicontinuous and its values are non-empty according to Lemma
2.3. Observe that if b ∈ Ψ(x), then for every t ∈ b, x ∈ Gt and therefore
Φ(x) ∩ Ut 6= ∅. Since {Ut : t ∈ b} is a neighborhood basis at ϕ(b), we find
that ϕ(b) ∈ Φ(x). It follows that for any x ∈ X,

(7) Ψ(x) ⊂ ϕ−1(Φ(x)),

which is what we needed to prove.

We now use Proposition 2.2 and Lemmata 2.3 and 2.4 to prove Theo-
rem 1.1.
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Proof of Theorem 1.1. Keeping the notation from the proof of the previ-
ous lemma, define

S1 : C(Y,E) 3 f 7→ f ◦ ϕ ∈ C([T ], E).

It is easy to check that S1 is linear and continuous with respect to both
topologies of uniform convergence and of uniform convergence on compact
subspaces.

Also, Proposition 2.2 ensures the existence of a linear continuous (in
both topologies) operator S2 : C([T ], E) → C(X,E) such that S2(h)(x) ∈
conv h(Ψ(x)). Set now S = S2 ◦ S1 and observe that

S(f)(x) = S2(S1(f))(x) ∈ convS1(f)(Ψ(x)) = conv f(ϕ(Ψ(x)))

⊂ conv f(Φ(x)) by (7)
= conv f(Φ(x)).

3. Proof of Theorem 1.2. By Lemma 2.4 for X = Y = K and Φ being
the (single-valued) identity map, we construct T , Ψ and ϕ. Then ϕ(Ψ(x))
= {x} for any x ∈ K. Since K is compact and metric, T is countable, so [T ]
is homeomorphic to a compact subset of the Cantor set C. By identifying [T ]
with its image, we see that [T ] is a retract of C and thus ϕ and Ψ can be
extended so that ϕ : C → K is continuous onto, Ψ : K → 2C \ {∅} is lower
semicontinuous and moreover Ψ(x) ⊆ ϕ−1(x) for all x ∈ K.

Let S be the map given by Theorem 1.1. Then for any f ∈ C(C, X),
S(f)(k) ∈ conv f(ϕ−1(k)). Setting

L : C(K,X) 3 g 7→ g ◦ ϕ ∈ C(C, X),

we see that for any g ∈ C(K,X) and k ∈ K,

S ◦ L(g)(k) = S(g ◦ ϕ)(k) ∈ conv g ◦ ϕ(ϕ−1(k)) = conv{g(k)}.

It follows that S ◦ L(g) = g, and therefore C(K,X) is a complemented
subspace of C(C, X).

Let e : C → K be any embedding. Define Φ : K → 2C by

Φ(k) =

{
{e−1(k)} if k ∈ e(C),
C otherwise,

and check directly that Φ is lower semicontinuous. Let S : C(C, X) →
C(K,X) be the operator given by Theorem 1.1. Thus S(f)(k)∈ conv f(Φ(k))
for any f ∈ C(C, X) and k ∈ K. Let also L : C(K,X) → C(C, X) be given
by L(g) = g ◦ e. As above we check that L◦S is the identity on C(C, X) and
hence C(C, X) embeds as a complemented subspace of C(K,X).

The proof can now be completed using the decomposition method as
done by Pełczyński in the classical case [12].
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