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Abstract. Let κ < λ be regular cardinals. We say that an embedding j : V → M
with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V .

Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ++-
supercompact. Later, Woodin improved this result, starting from the optimal hypothesis
of a κ++-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular
and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s methods show
that this can be done starting with κ being λ++-supercompact (note that Silver’s result
above is the special case when κ = λ).

One can ask if there is an analogue of Woodin’s result for λ-supercompactness. We
answer this question in the following strong sense: starting with the GCH and κ being
λ-supercompact and λ++-tall, we preserve λ-supercompactness of κ and kill the GCH at
λ by directly manipulating the size of 2λ (i.e. we do not force the failure of GCH at λ as
a consequence of having 2κ large enough). The direct manipulation of 2λ, where λ can be
a successor cardinal, is the first step toward understanding which Easton functions can
be realized as the continuum function on regular cardinals while preserving instances of
λ-supercompactness.

1. Preliminaries

1.1. Tall supercompact cardinals. Let κ ≤ λ < λ̄ be regular cardi-
nals and j : V →M an elementary embedding with critical point κ. We say
that j is a λ̄-tall embedding with closure λ if:

(i) λM ⊆M ,
(ii) λ̄ < j(κ).

It is easy to see that if κ is λ-supercompact and λ̄-tall, then we can witness
this by a single embedding j : V → M which is λ̄-tall with closure λ: just
compose the supercompactness embedding k : V → N with the embedding
h : N →M which witnesses the j(λ̄)-tallness of j(κ) in N ; then j = h ◦ k is
as required.

2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E55.
Key words and phrases: lifting of embeddings, supercompact cardinals, Sacks forcing.

DOI: 10.4064/fm219-1-2 [15] c© Instytut Matematyczny PAN, 2012



16 S.-D. Friedman and R. Honzik

We say that a cardinal κ is λ̄-tall λ-supercompact if κ is both λ̄-tall and λ-
supercompact. To keep our terminology consistent, we say that j : V →M is
a λ̄-tall λ-supercompact embedding if it is a λ̄-tall embedding with closure λ.

Assume the GCH. If κ is λ̄-tall λ-supercompact, then this fact can be
witnessed by a λ̄-tall λ-supercompact embedding of the extender type:

(1.1) j : V →M = {j(f)(j′′λ, α) | f : Pκ(λ)× κ→ V & α < λ̄}.

The Set Theory Handbook chapter [Cu] provides useful information re-
lating to extender-type embeddings in general. For more details on tall car-
dinals, see [Ha].

In this paper, we will study the specific case of a λ++-tall λ-supercompact
cardinal κ. This notion generalizes that of a κ++-tall measurable cardinal κ.
Woodin showed that the existence of a κ++-tall cardinal κ with the GCH
is equiconsistent with the failure of GCH at the measurable cardinal. By
results of Mitchell and Gitik [Mi, Gi], we also know that these two state-
ments are equiconsistent with the existence of κ of Mitchell order κ++. We
generalize these results to a supercompactness setting: In the forward direc-
tion, starting with the GCH and a λ++-tall λ-supercompact embedding we
obtain the failure of GCH at λ preserving λ-supercompactness of κ, without
changing the size of 2µ for regular cardinals µ ∈ [κ, λ) (more patterns of
the continuum function are possible by the methods in this paper; see the
paragraph after the end of the proof of Theorem 2.3 and Problem 3.1).

In the converse direction, if the GCH fails at λ and κ is λ-supercompact,
then any embedding witnessing this must be λ++-tall. So it is just the
forward direction that needs proving.

If we drop the requirement on the direct manipulation of the size of 2λ,
then the forward direction was already proved in [Co]. Cody constructs,
under the same initial assumptions, a model where 2κ = 2λ = λ++ and κ is
still λ-supercompact—failure of GCH at λ is thus obtained by adding new
subsets to κ. See Problem 3.1 for more discussion of this point.

The precise statement of the main result of this paper is as follows (see
also Theorem 2.3). Notice that achieving this result in full generality requires
dealing with the situation when λ is a successor cardinal; this raises a host
of interesting new challenges not present when λ equals the inaccessible κ.

Theorem 1.1. (GCH ) Let κ < λ be regular cardinals. Assume that κ
is λ++-tall λ-supercompact. Then there exists a forcing extension where κ
is still λ++-tall λ-supercompact and moreover the GCH fails at λ, while it
holds in the interval [κ, λ).

The proof of the result makes essential use of the generalized Sacks forc-
ing, which is reviewed in Section 1.3; a quick review of the facts related to
lifting of embeddings is given in Section 1.4. The generalized Sacks forc-



Supercompactness and failures of GCH 17

ing proved to be useful in the context of measurable cardinals in various
settings; see for instance [FrHo2, FrHo1, FrMa, FrZd, FrHa].

1.2. The typical case: λ̄ = λ++. In order to simplify notation and
make the main idea of the proof more transparent, we will first work with
the special case λ̄ = λ++. Indeed, all the important ideas are present already
in this case. Generalization to other λ̄’s is quite natural—it suffices to modify
the definition of fλ in (2.1) of Section 2.1 in the obvious way.

Let κ < λ be regular. Assume the GCH and let κ be a λ++-tall λ-
supercompact cardinal. Let j : V → M , with λ++ < j(κ) < λ+3, witness
this fact:

(1.2) M = {j(f)(j′′λ, α) | f : Pκ(λ)× κ→ V & α < λ++}.

We make the notational convention that λ++ always denotes the double
successor of λ as calculated in V , i.e. the real λ++. In contrast, (λ++)M

denotes the double successor of λ as calculated in M . In (1.2) we do not
assume (λ++)M = λ++.

If j : V →M is as in (1.2), then it has the following properties:

Lemma 1.2. Assume the GCH and let j : V →M be as in (1.2).

(i) The following inequalities hold:

κ < λ < λ++ < j(κ) < j(κ++)

< sup j′′λ < j(λ) < (j(λ)++)M < λ+3 = (j(λ)+3)M .

(ii) All M -regular cardinals in the interval (λ++, j(λ+)] have V -cofinal-
ity λ+.

Proof. (i) sup j′′λ has cofinality λ in M , and since λ < j(κ) < j(λ), and
j(λ) is regular in M , it must be the case that sup j′′λ < j(λ).

Let us denote µ0 = j(λ++) = (j(λ)++)M . If γ < µ0, then γ is of the
form j(f)(j′′λ, α) for some f : Pκ(λ)× κ → λ++ and some α < λ++. Since
there are only λ++-many such functions f , and ordinals α < λ++, the size
of µ0 in V is just λ++. It follows that µ0 < λ+3.

To see that λ+3 = (j(λ)+3)M is true, first notice that

(1.3) λ+3 = sup{j(α) | α < λ+3}.

The identity (1.3) holds because given α < λ+3, any ordinal β < j(α) can
be represented as j(f)(j′′λ, β̄) where f has its range included in α, and
β̄ < λ++; there are at most λ++ pairs (f, β̄) like this, and therefore j(α)
has size at most λ++ in V .

Further notice that

(1.4) sup{j(α) | α < λ+3} = j(λ+3).
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The identity (1.4) holds because every α < j(λ+3) can be represented as
j(f)(j′′λ, ᾱ) where f has its range included in λ+3 and ᾱ < λ++; since λ+3

is regular, the range of f (which has size at most λ<κκ = λ) is bounded by
some β < λ+3, and so α < j(β).

(ii) Each ordinal in the interval (λ++, j(λ+)] can be written as j(f)(j′′λ, α)
for some f : Pκ(λ)× κ→ λ+ and α < λ++. If µ is an M -regular cardinal in
(λ++, j(λ+)], then its M -cofinality is greater than λ++; it follows that for
each such f , the intersection Xf = {j(f)(j′′λ, α) | α < λ++}∩µ is bounded
in µ. By the GCH, there are (λ+)λ = λ+-many such f ’s. It follows that
{sup Xf | f : Pκ(λ)× κ→ λ+} is a cofinal subset of µ of size λ+.

1.3. Sacks forcing at λ. This section presents the version of general-
ized Sacks forcing that will suit our purposes. For more details, consult [Ka].

Definition 1.3. (GCH) For a regular cardinal λ, we say that p ⊆ <λ2
is a cof ω1-splitting perfect tree at λ if p is a tree of height λ closed under
initial segments such that:

(i) For every s in p there is s′ ⊇ s in p such that s′ splits, where s′

splits if both s′a0 and s′a1 are in p.
(ii) If 〈sξ | ξ < δ〉 for some limit ordinal δ < λ is an ⊆-increasing chain

of nodes in p, then the union
⋃
ξ<δ sξ is also a node in p.

(iii) If s is a node in p and s is in δ2 for some limit δ of cofinality ω1,
and moreover the set of nodes s′ ( s which split is unbounded in s,
then s splits in p.

(iv) If s is a node in p and s is in δ2 for some limit δ of cofinality other
than ω1, then s does not split in p.

Remark 1.4. The use of ω1 in the above definition is not essential.
Any regular cardinal µ < λ other than ω, together with the related notion
of a cof µ-splitting perfect tree at λ, can be used in the arguments which
follow. The only point is that cf(µ) 6= ω so that the argument just before
Definition 2.12 goes through. See also Remark 2.16.

First note that we do not demand that p is a λ-tree—a level of the
tree may have size λ. Our definition differs from the one in [Ka] in that we
control the splitting according to cofinalities; this is relevant to the lifting
argument (see Lemma 2.15 and the following argument concluding the proof
of Theorem 2.3).

We say that s ∈ p is a splitting node if s splits or s is a limit of splitting
nodes in p; by (iii) and (iv), a splitting node may not actually split in p.
We will be careful about distinguishing the meaning of the phrase “s splits
in p” (which means that sa0 ∈ p and sa1 ∈ p) vs. “s is a splitting node”.
This convention is useful when dealing with the limit stages of constructions
based on fusion (see for instance Lemma 2.7).
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We write Splitα(p) to denote the collection of the splitting nodes in p of
rank α:

(1.5) s ∈ Splitα(p) ↔ ot({s′ ( s | s′ is a splitting node}) = α.

The cof ω1-splitting perfect trees at λ can be used to define a natural
forcing notion which we simply denote by Sacks(λ, 1): A condition p is in
this forcing if and only if p is a cof ω1-splitting perfect tree at λ; the ordering
is by inclusion. For α < λ we define

(1.6) p ≤α q ↔ p ≤ q & p ∩ α+12 = q ∩ α+12.

It is a standard fact that if 〈pα | α < λ〉 is a sequence of conditions in
Sacks(λ, 1) and pα+1 ≤α pα for each α < λ, then the intersection

⋂
{pα |

α < λ} is a condition and the greatest lower bound of {pα | α < λ}. We call
the sequence 〈pα | α < λ〉 a fusion sequence and

⋂
{pα | α < λ} the fusion

limit. It is easy to check that Sacks(λ, 1) is λ-closed. If the GCH holds,
then Sacks(λ, 1) has size λ+, and so preserves all cardinals ≥ λ++. The
preservation of λ+ follows by an easy fusion-type argument (the diamond-
type argument, as in Lemma 2.7, is required only after we consider a product
forcing with at least two components).

We write Sacks(λ, α) for α ≥ 1 to denote the product with supports
of size ≤ λ of α-many copies of Sacks(λ, α). We denote the support of a
condition p by supp(p).

For p and q in Sacks(λ, α), F ⊆ supp(p) and |F | < λ, we define

(1.7) q ≤F,α p ↔ q ≤ p & ∀ξ ∈ F, q(ξ) ≤α p(ξ).
We say that a pair (〈pα | α < λ〉, 〈Fα | α < λ〉) is a fusion sequence

in Sacks(λ, α) if for each α < λ, Fα ⊆ supp(pα), |Fα| < λ, Fα ⊆ Fα+1,
Fδ =

⋃
α<δ Fα if δ is a limit ordinal,

⋃
α<λ Fα =

⋃
α<λ supp(pα), and finally,

for each α < λ,

(1.8) pα+1 ≤Fα,α pα.
If (〈pα | α < λ〉, 〈Fα | α < λ〉) is a fusion sequence, then the condition q
given by supp(q) =

⋃
α<λ Fα and q(ξ) =

⋂
α<λ pα(ξ) for each ξ ∈ supp(q) is

a condition which we call the fusion limit.
Sacks(λ, α) is λ-closed and under the GCH it has the λ++-cc. The preser-

vation of λ+ if λ is a successor cardinal and α > 1 is not trivial; in [Ka],
A. Kanamori used a fusion-type construction based on 3λ (we review this
argument in Lemma 2.7, rephrased in a way which fits our purpose). Let us
note however that 3λ is implied by the GCH below λ and so the GCH is
enough to ensure that Sacks(λ, α) is cofinality-preserving (see [Sh] for more).

1.4. Lifting of embeddings. For a general introduction to lifting of
embeddings, see [Cu]. We state here several facts which we will use freely
(and often tacitly) in our arguments.
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Let j : V →M be an elementary embedding with critical point κ, P be
a forcing notion and G be a P -generic filter over V .

Fact 1.5.

(i) (Silver) If H is j(P )-generic over M and furthermore j′′G ⊆ H,
then j lifts to j∗ : V [G]→M [H] in the sense that j∗ is elementary
and j∗�V = j. Moreover, in this case j∗(G) = H.

(ii) If j∗ : V [G]→M [H] is a lifting of j, and j is as in (1.2), then

M [H] = {j∗(f)(j′′λ, α) | f ∈ V [G] & f : (Pκ(λ))V × κ→ V [G] & α<λ++}.
(1.9)

(iii) Assume the GCH. If j is as in (1.2) and P has the λ+-cc, then M [G]
is still closed under λ-sequences in V [G]. The same conclusion holds
when P is the forcing Sacks(λ, λ++).

Proof. All claims follow from [Cu], except perhaps the last claim in (iii).
By the fusion property of Sacks(λ, λ++), any λ-sequence of ordinals in V [G]
is covered by a λ-sequence back in V ; M contains this covering sequence, and
because V [G] and M [G] have the same subsets of λ, the original sequence
can be decoded in M [G].

2. The main theorem

2.1. Preparation of the universe. In the anticipation of the lifting
argument as given in Section 2.2, we will need to have two special functions
available in the universe—we will denote them as fλ and f∆. Since their
existence is not generally automatic, it may be necessary to force them.

First fix some canonical bijection π between κ and κ × κ (for instance,
π may be given by the maximo-lexicographic ordering on κ× κ).

Let j : V →M be as in (1.2). If there is some function

(2.1) fλ : κ→ κ such that j(fλ)(κ) = j(π−1)(〈λ, λ++〉),
then we fix one and proceed to inquire about the function f∆; see below
in (2.3). If there is no such fλ, we are going to force it.

Lemma 2.1. (GCH ) Assume j : V → M is as in (1.2) and the GCH
holds. There is a forcing P (fλ) such if Gfλ is P (fλ)-generic over V , then:

(i) GCH holds in V [Gfλ ].
(ii) j lifts in V [Gfλ ] to j∗ : V [Gfλ ]→M [j∗(Gfλ)] satisfying (1.2).
(iii) There exists in V [Gfλ ] a function fλ as in (2.1); in fact, this fλ is

determined in a simple way by
⋃
Gfλ.

Proof. We will force fλ using a fast function forcing due to Woodin.
There are many variants of the forcing; we will use the following. A condition
p in the forcing P (fλ) is a function from dom(p) ⊆ κ into κ such that dom(p)
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is an Easton set : for every inaccessible cardinal α < κ, |dom(p) ∩ α| < α.
We further require

(2.2) ∀γ < κ, γ ∈ dom(p)→ p′′γ ⊆ γ.
The ordering is by reverse inclusion. Let us denote by Gfλ the generic filter
for P (fλ);

⋃
Gfλ is a function from a subset of κ into κ (which in V [Gfλ ] can

in some trivial fashion be extended to a function with domain equal to all
of κ). Even with GCH, it may not in general be true that P (fλ) preserves all
cardinals below κ. However, P (fλ) does preserve inaccessibility of cardinals,
and moreover, the embedding j : V → M lifts to j∗ : V [Gfλ ]→ M∗, where
j∗ satisfies (1.2). In particular Lemma 1.2 still holds for j∗.

We will not go into details as regards the preservation inaccessibility.
The argument uses the usual factorization of P (fλ) below a given condition
p into P0 × P1, where P0 has small size (below an inaccessible) and P1 is
sufficiently closed.

We show in some detail that j lifts (we use tacitly all the facts stated
in Section 1.4). Fix a “master condition” p0 = {〈κ, j(π−1)(〈λ, λ++〉)〉}. We
will construct in V [Gfλ ] a j(P (fλ))-generic filter H over M such that

(i) p0 ∈ H,
(ii) j′′Gfλ ⊆ H.

By Section 1.4, this is enough to conclude that j lifts to V [Gfλ ], and
V [Gfλ ] contains the desired function fλ. Now we argue that we can en-
sure (i) and (ii). First notice that j(P (fλ)) factors below p0 as P (fλ)× P ∗,
and it easily follows that Gfλ is P (fλ)-generic over M . Since we work
below p0, P

∗ is λ+++-directed closed in M . Every maximal antichain in
P ∗ which lies in M can be represented as j(f)(j′′λ, α) for some α < λ++

and f : Pκ(λ)×κ→ H(κ+). By the GCH in V , there are only λ+-many such
f ’s. By the λ+++-closure of P ∗, it is possible to diagonalize over all relevant
maximal antichains in M in λ+-many steps and construct an H0, a P ∗-
generic filter over M which contains p0. Since P (fλ) has the κ-cc, and P ∗ is
κ-closed, the usual mutual genericity argument ensures that H = G(fλ)×H0

is as required.

Let us rename j∗ : V [Gfλ ] → M∗ back to j : V → M in order to keep
the notation as simple as possible. This j still satisfies (1.2) and has the
properties as stated in Lemma 1.2. Let us denote ∆ = sup j′′λ for the rest
of the paper. Let us also fix a bijection c : Pκ(λ)→ λ. We are now interested
in the existence of a function f∆ in V which satisfies

(2.3) f∆ : λ→ λ is such that j(f∆)(∆) > j(c)(j′′λ).

Such a function will be useful to us in Lemma 2.15. If λ is inaccessible or
a successor of a cardinal λ′ such that cf(λ′) ≥ κ, then the existence of such
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f∆ is automatic. Indeed, let us call ξ < λ a closure point of c if for every
bounded subset x ⊆ ξ in Pκ(λ), c(x) < ξ. Let us denote by Cc the set of
closure points of c; then Cc is closed and cf(λ′) ≥ κ implies that it is also
unbounded (as in this case λ′<κ = λ′). We can define f∆ as follows: for each
ξ < λ, let f∆(ξ) be the least element of Cc strictly above ξ. Then j(f∆)(∆)
is the least element of j(Cc) strictly above ∆; since j′′λ ⊆ ∆, j(f∆)(∆) must
be greater than j(c)(j′′λ).

If cf(λ′) < κ, then we are going to force f∆. We can proceed as above
where we forced fλ; however, since we already have fλ in our universe, we
can force f∆ in a more gentle way—namely, without collapsing cardinals.

Lemma 2.2. (GCH ) Assume j : V →M is as in (1.2), the GCH holds,
and V contains a function fλ as in (2.1). There is a cofinality-preserving
forcing P (f∆) such that if G ∗ g is P (f∆)-generic over V , then:

(i) GCH holds in V [G ∗ g].
(ii) j lifts in V [G ∗ g] to j∗ : V [G ∗ g]→M [j∗(G ∗ g)] satisfying (1.2).
(iii) There exists in V [G ∗ g] a function f∆ as in (2.3); in fact, this f∆

is equal to
⋃
g.

Proof. Given ξ < κ, we can view ξ as coding a unique pair of ordinals
〈ζ, ζ ′〉 modulo the bijection π fixed above: π(ξ) = 〈ζ, ζ ′〉. We write (ξ)0 for
ζ and (ξ)1 for ζ ′; by elementarity, j(fλ)(κ)0 = λ and j(fλ)(κ)1 = λ++. We
say that ξ < κ is a closure point of fλ if

(2.4) fλ(ζ)0 < ξ and fλ(ζ)1 < ξ for all ζ < ξ.

Let us denote by C(fλ) the closed unbounded set of closure points of fλ.

Next, P (f∆), the forcing notion to add f∆, is defined as a two-stage iter-
ation P (f∆)0 ∗ ˙Add(λ, 1), where P (f∆)0 is an iteration with Easton support:

(∗) P (f∆)0 = 〈(P (f∆)0α, Q̇α) | α < κ〉, where Q̇α is the name for the
trivial forcing unless α is in C(fλ), α < fλ(α)0, and fλ(α)0 is a
regular cardinal, in which case Q̇α is a name for Add(fλ(α)0, 1) (the
Cohen forcing which adds a subset of fλ(α)0).

By standard arguments, one can easily show that P (f∆) is cofinality-
preserving. We show now that j : V → M lifts to P (f∆). Let G ∗ g be
P (f∆)0 ∗ ˙Add(λ, 1)-generic over V . Again, we will be tacitly using all the
facts stated in Section 1.4. We are going to build a j(P (f∆))-generic filter
H ∗ h over M such that j′′(G ∗ g) ⊆ H ∗ h.

The forcing j(P (f∆)) is a two-stage iteration j(P (f∆)0) ∗ ˙Add(j(λ), 1).
The first part j(P (f∆)0) is an Easton-supported iteration of length j(κ)
which coincides with P (f∆)0 when the former is restricted to κ; it fol-
lows that G is j(P (f∆)0)κ-generic over M . Since κ is a closure point of
j(fλ), λ = j(fλ)(κ)0 > κ and λ is a regular cardinal, the next forcing in
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j(P (f∆)0) is by elementarity equal to Add(λ, 1) of M [G]; it follows that
G ∗ g is j(P (f∆)0)κ+1-generic over M . Since the next closure point of j(fλ)
strictly above κ must be strictly greater than j(fλ)(κ)1 = λ++, we can con-
clude that the iteration j(P (fλ)0) in the interval (κ, j(κ)) is λ+++-closed in
M [G ∗ g]. As in the argument for P (fλ) above, we can diagonalize over all
relevant maximal antichains in j(P (fλ)0) in the interval (κ, j(κ)) existing

in M [G ∗ g] in λ+-many steps, obtaining a generic filter H̃ over M [G ∗ g].
It follows we can partially lift in V [G ∗ g] to j : V [G] → M [H], where
H = G ∗ g ∗ H̃.

It remains to lift Add(λ, 1) of V [G] to Add(j(λ), 1) of M [H]. We will
construct in V [G ∗ g] an Add(j(λ), 1)-generic over M [H] and denote it h;
we will moreover ensure that

(i) j′′g is contained in h,
(ii) (

⋃
h)(∆) > j(c)(j′′λ).

By the λ-closure of M [H] in V [G ∗ g],
⋃
j′′g is a condition in Add(j(λ), 1)

of M [H] whose domain is included (and cofinal) in ∆. Set p0 =
⋃
j′′g

∪ 〈∆, δ〉, where δ is any ordinal greater than j(c)(j′′λ). We will build h
above this “master condition” p0. Every maximal antichain in Add(j(λ), 1)
of M [H] which exists in M [H] can be represented as j(f)(j′′λ, α) for some
f : Pκ(λ)V → H(λ+)V [G], and there are just λ+-many of such f ’s. It follows
that we can diagonalize over all relevant maximal antichains and construct
h as required.

It follows that we can lift to j : V [G ∗ g] → M [H ∗ h], where V [G ∗ g]
contains the desired function f∆.

After renaming j∗ back to j, we will from now on assume without loss
of generality that if j : V →M is as in (1.2) and the GCH holds, then j has
the properties in Lemma 1.2, and moreover contains the functions fλ and
f∆ satisfying (2.1) and (2.3), respectively.

2.2. The lifting argument. The main result of this paper is the formu-
lation and verification of the lifting argument for a λ++-tall λ-supercompact
cardinal κ. We present the argument in the proof of the following theorem.

Theorem 2.3. (GCH ) Let κ < λ be regular and let κ be λ++-tall
λ-supercompact. Assume that we have in the ground model V the functions
fλ and f∆ fixed in Section 2.1. Then there exists a cofinality-preserving
forcing notion P such that whenever G is P-generic, κ is still λ++-tall λ-
supercompact in V [G], GCH holds in the interval [κ, λ) and moreover 2λ =
λ++ in V [G].

Proof. The proof is through a sequence of lemmas and remarks. First
we make the following assumption which streamlines the presentation of the
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proof. We will prove the theorem under the assumption that λ is a successor
cardinal, say λ = λ′+, where cf(λ′) > ω. If cf(λ′) = ω, then some details in
the proof—in particular in the definition of rich reduction—must be changed
but the proof is otherwise the same; see Remark 2.16 for more about this.
If λ is inaccessible, then a much easier argument can be used (avoiding the
use of 3λ); see Remark 2.18.

Let us fix a function fλ as in (2.1) and let C(fλ) be the closed unbounded
set of its closure points as in (2.4).

Let P0 be the reverse-Easton iteration defined as follows:

(∗∗) P0 = 〈(P0
α, Q̇α) | α < κ〉, where Q̇α is the trivial forcing unless α

is in C(fλ), α < fλ(α)0, and fλ(α)0 is a regular cardinal, in which
case Q̇α is the name for the forcing Sacks(fλ(α)0, fλ(α)1).

Let us define P = P0 ∗ ˙Sacks(λ, λ++).

Lemma 2.4. (GCH ) P is cofinality-preserving.

Proof. This can be shown by standard arguments, invoking [Ka] for the
Sacks forcing.

Let G ∗ g be P-generic, where g is Sacks(λ, λ++)-generic over V [G]. In
order to prove Theorem 2.3, we will lift j : V → M to j∗ : V [G ∗ g] →
M [j∗(G ∗ g)]. See Section 1.4 for more information about lifting.

Lemma 2.5. In V [G ∗ g], j lifts to j∗ : V [G] → M [G ∗ g ∗H], where H
is a generic filter for the iteration j(P0) in the interval (κ, j(κ)).

Proof. The argument is quite standard, and is in fact quite similar to
the analogous argument for P (f∆) in Section 2.1. First, G is j(P0)κ-generic
over M . Next, from the definition of the forcing, j(P0) at κ is equal to
Sacks(j(fλ)(κ)0, j(fλ)(κ)1) = Sacks(λ, λ++) of M [G], which is the same
forcing as Sacks(λ, λ++) of V [G]. Finally, the forcing j(P0) in the interval
(κ, j(κ)) is λ+++-closed in M [G ∗ g]. It follows that the generic H can be
constructed in V [G ∗ g].

By Section 1.4, j∗ has the extender representation:

(2.5) M [G ∗ g ∗H]

= {j∗(f)(j′′λ, α) | f ∈ V [G] & f : (Pκ(λ))V × κ→ V [G] & α<λ++}.
Remark 2.6. Since it can cause no confusion, we will use the letter j

for the lifted embedding j : V [G]→M [G ∗ g ∗H].

Let us denote the forcing Sacks(λ, λ++) of V [G] as Q. In order to com-
plete the lifting, we show that the λ-closure h of j[g] is j(Q)-generic over

M [G ∗ g ∗H], where j(Q) = Sacks(j(λ), j(λ++))M [G∗g∗H] and where the λ-
closure of j[g] is generated by limits of ≤-decreasing sequences of elements
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in j[g] of length λ:

(2.6) h =
{
q ∈ j(Q)

∣∣∣ there is a ≤-decreasing sequence 〈qα | α < λ〉

of conditions in g and q ≥
∧
α<λ

j(qα)
}
,

where
∧
α<λ j(qα) is the greatest lower bound of {j(qα) | α < λ} in j(Q).

Note that by the closure of M [G∗g∗H] under λ-sequences in V [G∗g] and
the λ+-closure of j(Q) in M [G∗g∗H], the limits

∧
α<λ j(qα) are well-defined.

It is easy to show that h is a filter. So it remains to show that it meets every
dense open set of j(Q) which lies in M [G ∗ g ∗H].

Since 2λ
′

= λ in V [G], we can by [Sh] fix a diamond sequence 3λ = 〈Sα |
α < λ〉 such that for every X ⊆ λ × λ, {α < λ | X ∩ (α × α) = Sα} is
stationary.

The following Lemma 2.7 provides an argument for a “simple reduction”
(see the statement of the lemma for a precise definition) of a dense open
set E in Q. Lemma 2.7 is a version of Theorem 2.2 in [Ka], generalized for
our needs. An easy argument based on Lemmas 2.7 and 2.9 can be used
to show that Q preserves λ+ (which we stated above without proof, having
referred directly to [Ka]). While simple reduction is enough to show that λ+

is preserved, it does not seem good enough to show that h is a generic filter.
We will therefore introduce a stronger form of reduction, “rich reduction”,
in Definition 2.12.

In preparation for the statement of Lemma 2.7, we make the following
notational conventions. If p is a condition in Sacks(λ, 1) and s is in p, we
write p|s to denote the restriction of p to s: p|s = {s′ ∈ p | s′ ⊆ s or s ⊆ s′}.
If r ≤ p|s, then by the amalgamation of r and p we mean the tree r′ which
is obtained by thinning p|s to r while keeping the rest of p intact, i.e. r′ =
r ∪ (p \ p|s).

If p is a condition in Sacks(λ, 1) and s is in Splitα(p), we write p|ls
(l stands for left) for the restriction of p to the leftmost continuation of s
in p (1):

p|ls =

{
p|sa0, α a successor, or cf(α) = ω1,

p|sai, α a limit, cf(α) 6= ω1; i ∈ {0, 1} unique such that sai ∈ p.

The necessity to distinguish different cofinalities in defining p|ls follows from
the fact that the limits of splitting nodes may not actually split themselves
(see Definition 1.3 for more about this).

The notation p|l~s is straightforwardly generalized to p ∈ Sacks(λ, λ++)
and a sequence ~s : supp(p) → <λ2, where for each β ∈ supp(p), ~s(β) is a

(1) We identify 0 with “left”, and 1 with “right”.
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splitting node in p(β). Similarly we generalize the notion of amalgamation
to sequences of trees.

Let us further, for each α < λ and ξ < α, denote by Sα(ξ) the charac-
teristic function of the projection of Sα to ξ: Sα(ξ)(ζ) = 1⇔ 〈ξ, ζ〉 ∈ Sα.

Before reading Lemma 2.7, recall the notational conventions as spelled
out in Section 1.3, in particular in (1.8).

Lemma 2.7. Let E be a dense open set in Q. For every p ∈ Q there are

(i) a decreasing fusion sequence (〈pα | α < λ〉, 〈Fα | α < λ〉) with
p0 = p,

(ii) a condition q ≤ p, the fusion limit of the sequence 〈pα | α < λ〉,
(iii) a sequence of bijections 〈πα | α < λ〉, πα : Fα → ηα for some

ηα < λ, such that if α < β, then πα ⊆ πβ, and πγ =
⋃
α<γ πα for γ

a limit,
(iv) a bijection π : supp(q)→ λ, the union of πα’s: π =

⋃
α<λ πα,

such that whenever t ≤ q, then there is an α < λ such that

α = ηα,(2.7)

for each β ∈ Fα, Sα(πα(β)) ∈ Splitα(q(β)),(2.8)

and the restriction t|l〈Sα(πα(β)) | β ∈ Fα〉 is defined and is in E.

We say that q is a simple reduction of the dense open set E with param-
eters 〈pα | α < λ〉, 〈Fα | α < λ〉 and 〈πα | α < λ〉.

Proof. Use some standard fixed strategy to keep the sequences 〈Fα |α<λ〉
and 〈πα | α < λ〉 continuous and extending under inclusion. It suffices to
show how to construct pα+1 if we have pα, Fα and πα.

Consider the following property of Fα and πα:

(∗) πα is a function from Fα onto α, i.e. ηα = α.

If (∗) does not hold, set pα+1 = pα, Fα+1 = Fα and πα+1 = πα. If (∗)
holds, consider the following property of pα, Fα, and πα:

(∗∗) For each β ∈ Fα, Sα(πα(β)) is a splitting node in pα(β).

If (∗∗) does not hold, set pα+1 = pα, Fα+1 = Fα and πα+1 = πα.

If both (∗) and (∗∗) hold, consider the restriction pα|l〈Sα(πα(β)) |
β ∈ Fα〉, which we will denote as p∗α. Extend p∗α to some rα ≤ p∗α with rα
in E, and define pα+1 to be the amalgamation of rα and pα.

Define q =
∧
α<λ pα, π =

⋃
α<λ πα. We can assume without loss of

generality that π is a bijection from supp(q) onto λ. Let t ≤ q be arbitrary.
For each β ∈ supp(q), let lbranch(t(β)) ∈ λ2 denote the leftmost branch
of t(β). Denote by L(t) the sequence of the leftmost branches in t on supp(t)∩
supp(q) mod π: L(t) = 〈b(β) | β < λ〉, where b(β) ∈ λ2 and b(β)(δ) =
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lbranch(t(π−1(β)))(δ) for every δ < λ. Then L(t) can be viewed as a subset
of λ× λ.

For each α < λ, consider the sequence 〈sα(β) | β ∈ Fα〉 such that
sα(β) : ρα(β)→ 2 for some ρα(β) ≥ α defined as follows:

(2.9) For each β ∈ Fα, sα(β) ⊆ lbranch(t(β)) and

sα(β) is an αth splitting node in t(β).

Sublemma 2.8. The sets C1 = {α < λ | α = ηα} and C2 = {α < λ |
ρα(β) = α for every β ∈ Fα} are both closed unbounded in λ.

Proof. A standard Löwenheim–Skolem type argument using the fact that
Fα’s and πα’s are continuous and also the splitting nodes in the trees are
continuous.

By 3λ, there exists some α ∈ C1 ∩ C2 such that Sα = L(t) ∩ (α × α).
It follows that the construction step pα+1 was non-trivial, t|l〈Sα(π(β)) |
β ∈ Fα〉 ≤ rα and hence t|l〈Sα(π(β)) | β ∈ Fα〉 is in E as required.

We now generalize Lemma 2.7 to take care of λ-many dense open sets
in Q.

Lemma 2.9. Let 〈Eα | α < λ〉 be a sequence of dense open sets in Q and
let p ∈ Q. Then there is a fusion sequence (〈qα | α < λ〉, 〈F̃α | α < λ〉) with
p = q0 and fusion limit q such that for each α < λ the condition qα+1 is a
simple reduction of Eα below qα as in Lemma 2.7.

We say that q is a simple reduction of the sequence 〈Eα | α < λ〉 with
parameters 〈qα | α < λ〉 and 〈F̃α | α < λ〉.

Proof. Notice that in Lemma 2.7, we could have started with another
two parameters γ < λ and F ⊆ supp(p), |F | < λ. With these, modify the
proof of Lemma 2.7 to set F0 = F and demand pα+1 ≤Fα,γ+α pα, which can
be ensured by starting the construction at some indecomposable ordinal
α > γ and setting pβ = p0 for β < α. Thus, in order to construct qα+1,

start the construction in Lemma 2.7 with F̃α ⊆ supp(qα) and α as the two
additional parameters. This ensures that qα+1 is a simple reduction of Eα
below qα (with respect to 〈Fα | α < λ〉, where F0 = F̃α, and 〈πα | α < λ〉 as
detailed in the construction in the proof of Lemma 2.7).

In order to be able to show that h is a generic filter, we need to introduce
a stronger form of reduction—the rich reduction.

Consider now the following modification of the construction of the simple
reduction q below p in Lemma 2.7. Again, q will be the fusion limit of
a sequence (〈pα | α < λ〉, 〈Fα | α < λ〉), with respect to the sequence
of mappings 〈πα | α < λ〉. If α is a successor ordinal, or a limit ordinal of
cofinality other than ω, we construct pα+1 ≤Fα,α pα exactly as in Lemma 2.7.
However, if α is a limit ordinal of cofinality ω and (∗) in Lemma 2.7 holds
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we will do more. In order to explain what we do, we first introduce some
notation.

Definition 2.10. Assume α has cofinality ω and α = ηα. We say that
a sequence ~α = 〈αn | n < ω〉 is suitable for α if it is strictly increasing
and cofinal in α, and moreover for each n, the construction of pαn+1 was
non-trivial; i.e. αn (with parameters pαn , Fαn , and παn) satisfies both (∗)
and (∗∗) in Lemma 2.7.

Let ~α be suitable for α. For each δ in Fα, let n(δ) ∈ ω be the least
natural number n such that δ ∈ Fαn ; then we can meaningfully consider
Sαm(δ)�αm−1, the restriction of Sαm(δ) to the initial segment of length αm−1,
for every m > n(δ). For every δ ∈ Fα, we define a family of initial segments
I~α(δ) as follows:

(2.10) I~α(δ) = {Sαm(δ)�αm−1 | m > n(δ)}.
Definition 2.11. We say that I~α(δ) is coherent if the union

⋃
I~α(δ)

determines a function in α2.

Notice that the fact that I~α(δ) is coherent is equivalently expressed by
demanding Sαm(δ)�αm−1 ⊆ Sαk(δ)�αk−1 whenever n(δ) < m ≤ k.

So assume pα, Fα, πα are given, α has cofinality ω, and α = ηα (i.e.
(∗) holds). In order to construct pα+1, first check if (∗∗) holds. If it does,
construct rα as in Lemma 2.7 and denote by p+α the amalgamation of rα
and pα. If (∗∗) does not hold, set p+α = pα.

Next, for each suitable ~α such that I~α(δ) is coherent for each δ ∈ Fα,
check the following property:

(∗∗∗)~α For each δ ∈ Fα,
⋃
I~α(δ) is a splitting node in pα(δ).

Enumerate all suitable and coherent sequences ~α satisfying (∗∗∗)~α as
〈aξ | ξ < ζ〉. Note that since λ′ has cofinality > ω, we have ζ ≤ λ′. Now build
a decreasing sequence p+α ≥Fα,α p0α ≥Fα,α p1α ≥ · · · such that the greatest

lower bounds are taken at limits, and for each pξα, the condition pξ+1
α is

obtained as an amalgamation of pξα and a condition rξ which satisfies rξ ≤
pξα|〈

⋃
Iaξ(δ) | δ ∈ Fα〉 and rξ ∈ E. Notice that pξα|〈

⋃
Iaξ(δ) | δ ∈ Fα〉 is the

same condition as pξα|l〈
⋃
Iaξ(δ) | δ ∈ Fα〉 since cf(α) = ω and therefore by

our Definition 1.3, there is no actual splitting at nodes of length α. Set pα+1

to be the greatest lower bound of the sequence p+α ≥Fα,α p0α ≥Fα,α p1α ≥ · · ·
(note that if there are no ~α’s satisfying (∗∗∗)~α, then pα+1 = p+α ). It follows
that pα+1 ≤Fα,α pα as desired.

Definition 2.12. Let E be a dense open set in Q and p a condition
in Q. We say that q is a rich reduction of E with parameters 〈pα | α < λ〉,
〈Fα | α < λ〉, and 〈πα | α < λ〉 if q is constructed exactly as described in the
previous paragraphs, starting with the paragraph just before Definition 2.10.
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First notice that if q is a rich reduction, it is in particular a simple
reduction, and hence the conclusion of Lemma 2.7 applies to q. Intuitively,
with rich reductions we give ourselves up to λ′-many options to thin out
to E at stages of cofinality ω; in contrast, in the simple reduction, we give
ourselves at most one option to thin out to E (this one option is determined
by the relevant set Sα). The key property of the rich reduction is that the
options to which we can thin out are rich enough to argue that h is indeed
generic.

For completeness, we state Lemma 2.9 formulated for the rich reduction.

Lemma 2.13. Let 〈Eα | α < λ〉 be a sequence of dense open sets in Q
and let p ∈ Q. Then there is a fusion sequence (〈qα | α < λ〉, 〈F̃α | α < λ〉)
with p = q0 and fusion limit q such that for each α < λ the condition qα+1

is a rich reduction of Eα below qα.
We say that q is a rich reduction of the sequence 〈Eα | α < λ〉 with

parameters 〈qα | α < λ〉 and 〈F̃α | α < λ〉.
Proof. This is just like the proof of Lemma 2.9, except that qα+1 as in

that proof is constructed using the notion of rich reduction.

Let us now return to the lifting argument.
Recall that we denote sup j′′λ as ∆. We now show that for each γ <

j(λ)++, j[g] determines a unique element of ∆2, which we denote gγ .

Lemma 2.14. For each γ < j(λ)++,⋂
{j(p)(γ) | p ∈ g & γ ∈ supp(j(p))} ∩ ∆2 = {gγ} for some gγ .

Proof. Let γ be given. There is some function e : (Pκ(λ) × κ)V → λ++

such that j(e)(j′′λ, α) = γ for some α < λ++. Since (Pκ(λ)×κ)V has size λ,
we can view e as a function from λ to λ++, and so rng(e) can play the role of
a support of a condition in Q. For each α < λ, there is by density a condition
pα in g such that supp(pα) contains rng(e) and for every ξ ∈ supp(pα), pα(ξ)
has stem of length at least α; by elementarity the stem of j(pα) has at every
element of its domain, in particular at γ, length at least j(α). It follows that
the intersection

⋂
α<λ j(pα)(γ) determines a unique subset gγ of ∆.

A similar argument implies that if q is a condition in g, then j(q)|〈gγ |
γ ∈ supp(j(q))〉 is well-defined and a condition in j(Q). Indeed, for each
α < λ there is a condition qα ≤ q such that qα is in g, supp(qα) = supp(q),
and at each ξ ∈ supp(qα), qα(ξ) has stem of length at least α. Then the
greatest lower bound of the sequence 〈j(qα) | α < λ〉 is some condition
r ∈ j(Q) with supp(r) = supp(j(q)), and for each ξ ∈ supp(r), the stem of
r(ξ) has length at least ∆. It follows that the sequence 〈gγ | γ ∈ supp(j(q))〉
is in M [G ∗ g ∗ H], and so j(q)|〈gγ | γ ∈ supp(j(q))〉 is well-defined and a
condition in j(Q).
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If p ∈ Sacks(λ, 1) and ξ < ζ < λ, we say that p does not split between ξ
and ζ if there is no node s ∈ p such that both sa0 and sa1 are in p, and the
height of s is an ordinal in the interval [ξ, ζ].

Lemma 2.15. Let p be a condition in Q and 〈Fα | α < λ〉 a continuous
and increasing sequence of subsets of λ++, each with size < λ, such that⋃
{Fα | α < λ} = supp(p). Let 〈F ∗α | α < j(λ)〉 = j(〈Fα | α < λ〉). Then for

each ∆ ≤ γ < j(λ) and q ≤ p there exists some r ≤ q such that j(r) does
not split between ∆ and γ on coordinates in F ∗γ .

Proof. We have formulated the lemma with some care to anticipate a
possible extension of the present technique to the iteration of the generalized
Sacks forcing at λ; moreover, the lemma as it stands is sufficient for our
purposes to prove Theorem 2.3. However, since Sacks(λ, λ++) is a product,
we can prove a substantially stronger statement:

(†) Let p be a condition in Q and ∆ < γ < j(λ). Then for each q ≤ p
there is some r ≤ q such that supp(r) = supp(q) and for each δ ∈
supp(j(r)), j(r)(δ) does not split between ∆ and γ.

Let d : Pκ(λ)V × κ → λ be such that j(d)(j′′λ, γ̄) = γ for some γ̄ < λ++.
Recall that we assume that there exists in V a function f∆ (and a function c)
as in (2.3) in Section 2.1. Let us define a certain closed unbounded set Cd
as follows: we say that ξ < λ is a closure point for the pair (f∆, d) if

(i) f∆(ζ) < ξ whenever ζ < ξ,
(ii) d(x, ζ) < ξ whenever ζ < ξ and c(x) < ξ.

Let Cd be the closed unbounded set of the closure points for the pair (f∆, d).
In order to prove (†), we thin out q(δ) for each δ ∈ supp(q) according

to Cd as follows (note that we will consider each coordinate δ in supp(q)
separately; this is possible as we work with a product). Fix δ ∈ supp(q).
We will build a fusion sequence q(δ) = q0(δ) ≥0 q

1(δ) ≥1 · · · for this δ. If
α is a limit ordinal, set qα(δ) =

∧
β<α q

β(δ). In order to construct qα+1(δ)

from qα(δ), consider each node s ∈ α+12∩qα(δ) and thin out qα(δ)|s to some
r(s) such that r(s) has stem of length at least that of the next element of
Cd strictly above α. Set qα+1(δ) to be the amalgamation of the trees r(s)’s;
then qα+1(δ) ≤α qα(δ). Let q̃(δ) be the fusion limit of the sequence 〈qα(δ) |
α < λ〉. Finally, set r(δ) = q̃(δ) for each δ ∈ supp(q), and r(δ′) = 1Sacks(λ,1)
on δ′ 6∈ supp(q).

We show that r satisfies (†). By elementarity, for every δ ∈ supp(j(r)),
the tree j(r)(δ) is the fusion limit according to the j-version of the con-
struction in the previous paragraph starting with j(q)(δ). In particular, at
stage ∆, the appropriate stage of the fusion construction ensures that j(r)(δ)
does not split between ∆ (as cf(∆) 6= ω1, and therefore by Definition 1.3,
there is no actual splitting at ∆) and the next element of j(Cd), the closed
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unbounded set of closure point for the pair (j(f∆), j(d)). However, since
γ = j(d)(j′′λ, γ̄), and crucially j(f∆)(∆) > j(c)(j′′λ), the next closure point
in j(Cd) must be strictly greater than γ.

Note that Lemmas 2.14 and 2.15 together imply that for each γ < j(λ)++,
the intersection

⋂
p∈h p(γ) determines a unique element of j(λ)2 ∩ V [G ∗ g].

This is not yet enough to conclude that h is a generic filter overM [G ∗ g ∗H];
however, it is a necessary condition for h being generic. We now use the
notion of rich reduction to argue that h meets all dense open sets in
M [G ∗ g ∗H], and is therefore a generic filter for j(Q) over M [G ∗ g ∗H].

For the rest of the argument, fix a dense open set D in j(Q), where

(2.11) D = j(f)(j′′λ, ν) for some ν < λ++ and f : (Pκ(λ)×κ)V → V [G],

where we can assume that the range of f consists only of dense open sets
in Q. Since (Pκ(λ) × κ)V has size λ in V [G], we can enumerate the range
of f as some sequence 〈Eα | α < λ〉.

By Lemma 2.13, we can choose a q ∈ g which is a rich reduction of the
sequence 〈Eα | α < λ〉 with some parameters 〈qα | α < λ〉, 〈F̃α | α < λ〉,
and 〈pαβ | β < λ〉, 〈Fαβ | β < λ〉, and 〈παβ | β < λ〉 (where the last three
sequences witness the construction of qα+1 which richly reduces Eα). Let
us for α < j(λ) denote by the star “∗” the j-version of the parameters:
for instance 〈π∗αβ | β < j(λ)〉, and so on. By elementarity, j(q) is a rich
reduction of the sequence 〈E∗α | α < j(λ)〉 (with the ∗-version of the relevant
parameters), so in particular it is a rich reduction of our dense open set D.
Let us fix µ such that

(2.12) E∗µ = D.

Furthermore, let 〈S∗α | α < j(λ)〉 denote the j-version of the diamond
sequence 3λ in V [G] which we have fixed above.

Consider the condition j(q)|〈gδ | δ ∈ supp(j(q))〉 ≤ q.
By Lemma 2.7 and elementarity of j, there is some α0 > ∆ such that

π∗µα0 : F ∗µα0 → α0, and the restriction of j(q)|〈gδ | δ ∈ supp(j(q))〉 to the
sequence 〈S∗α0

(π∗µα0(δ)) | δ ∈ F ∗µα0 〉 is defined. In particular, for each such δ,

gδ ⊆ S∗α0
(π∗µα0(δ)).

Choose some β0 ≥ α0 such that F̃ ∗β0 ⊇ F ∗µα0 (there is always some such

β0 because the supports in 〈F̃ ∗α | α < j(λ)〉 must eventually cover F ∗µα0 ). By
Lemma 2.15 and elementarity of j, there is some q0 ≤ q, q0 ∈ g, such that
j(q0) does not split between ∆ and β0 on F̃ ∗β0 . In particular, j(q0) does not

split between ∆ and α0 on F ∗µα0 . Let us denote by ~g 0 = 〈g0δ | δ ∈ F
∗µ
α0 〉 the

unique nodes in j(q0)(δ)∩α02, δ ∈ F ∗µα0 , such that g0δ �∆ = gδ for each δ in F ∗µα0 .

Consider now the condition j(q)|~g 0 ≤ j(q). By invoking Lemma 2.7 and
elementarity again, there is some α1 > α0 such that π∗µα1 : F ∗µα1 → α1, and
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the restriction j(q)|~g 0 to 〈S∗α1
(π∗µα1(δ)) | δ ∈ F ∗µα1 〉 is defined. In particular,

for each δ ∈ F ∗µα0 , g0δ ⊆ S∗α1
(π∗µα1(δ)).

We can repeat this argument ω-many times, obtaining an increasing
sequence 〈αn | n < ω〉 of ordinals, a decreasing sequence of conditions
〈qn | n < ω〉 in g and a sequence 〈~g n | n < ω〉. Let α = sup{αn | n < ω},
~α = 〈αn | n < ω〉 and q̃ =

∧
n<ω qn (note that q̃ ∈ g). By the construction,

~α is a suitable and coherent sequence in the sense of (***)~α, and so the
j-version of the construction of the rich reduction j(q) was non-trivial at
stage α, and hence

(2.13) j(q̃)|〈gδ | δ ∈ F ∗µα 〉 is in D ∩ h as required.

Note that (2.13) crucially uses the fact that j(q)|〈
⋃
I~α(δ) | δ ∈ F ∗µα 〉 is the

same condition as j(q)|l〈
⋃
I~α(δ) | δ ∈ F ∗µα 〉 since cf(α) 6= ω1, and so by

Definition 1.3, there is no actual splitting for nodes of length α.

This ends the proof of Theorem 2.3 when λ is a successor of a cardinal
λ′ and cf(λ′) > ω. See the following remarks for the remaining cases.

Remark 2.16 (The case of cf(λ′) = ω). We need to modify the descrip-
tion of rich reduction in Definition 2.12 because when discussing (∗∗∗)~α in
the paragraph preceding Definition 2.12, we have used the assumption that
cf(λ′) > ω to argue that all suitable and coherent sequences (see Defini-
tions 2.10 and 2.11, respectively) can be enumerated in at most λ′-many
steps (in V [G], cf(λ′) > ω implies λ′ω = λ′). To overcome this technical
problem, consider the following modifications to the proof:

(i) In Definition 1.3, change the conditions (iii) and (iv) to refer to cofi-
nality ω instead of cofinality ω1, obtaining a cof ω-splitting perfect tree at λ.
Define the Sacks forcing at λ with these trees. Since ordinals with cofinality
ω are stationary in λ, the forcing behaves essentially in the same way as the
one composed of the cof ω1-splitting perfect trees.

(ii) Lemma 2.7 remains exactly the same, and so does the notion of
simple reduction.

(iii) The notion of rich reduction will now concern ordinals α = ηα,
where cf(α) = ω1 (note that by using cof ω-splitting perfect trees now, the
nodes of length α do not actually split). In particular, in the definition of a
suitable sequence in Definition 2.10, assume now that ~α = 〈αi | i < ω1〉 is a
closed unbounded sequence in α. The notion of coherence in Definition 2.11
remains exactly the same, with the exception that the indices now range
over ω1. However, there are still possibly λ-many such suitable and coherent
sequences. To repair this, we will argue that without loss of generality only
λ′-many suitable sequences can be considered. Let fα be a fixed injection
from α to λ′.
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Claim 2.17. Every suitable sequence ~α = 〈αi | i < ω1〉 contains a sub-
sequence 〈α∗i | i < ω1〉 cofinal in α such that f ′′α{α∗i | i < ω1} is bounded
in λ′.

Proof. This follows from the fact that λ′ has cofinality ω, and ~α is a
sequence of length ω1.

By the GCH, there are only λ′-many bounded subsets of λ′, and so there
are only λ′-many such subsequences. Therefore, in Definition 2.12 of rich
reduction consider only suitable and coherent sequences ~α such that ~α is
the closure of a sequence 〈α∗i | i < ω1〉 cofinal in α such that f ′′α{α∗i | i < ω1}
is bounded in λ′. Claim 2.17 shows that this is still sufficient.

(i) The final argument, which starts at (2.11) and which shows that D∩h
is non-empty for every relevant dense open set D, is a simple modification to
the proof above: instead of constructing sequences 〈αn | n < ω〉, 〈qn | n < ω〉
and 〈~g n | n < ω〉, construct analogous sequences 〈αi | i < ω1〉, 〈qi | i < ω1〉,
and 〈~g i | i < ω1〉. By Claim 2.17, the sequence 〈αi | i < ω1〉 can be thinned
into a closed cofinal subsequence which is considered in the j-version of the
rich reduction step at α.

Remark 2.18 (The case of an inaccessible λ). If λ is inaccessible, then
the use of a 3λ-style argument can be completely avoided. In the case of
an inaccessible λ, redefine p ≤α q for p and q in Sacks(λ, 1) (as in Defini-
tion 1.3) and α < λ as p ≤ q and Splitα(p) = Splitα(q). Let p be a condition
and F ⊆ supp(p), |F | < λ; we say that ~s = 〈s(δ) | δ ∈ F 〉 is a selection
sequence for (p, F ) at α if for every δ ∈ F , s(δ) is in Succα(p(δ)), where
Succα(p(δ)) is the collection of all nodes tai in p(δ) with t ∈ Splitα(p(δ))
and i ∈ {0, 1}.

The appropriate version of Lemma 2.13 is now as follows. If 〈Eα | α < λ〉
is a sequence of dense open sets in Q, then one can construct below each
p ∈ Q a decreasing sequence of conditions p = p0 ≥F0,0 p1 ≥F1,1 · · · such
that at each α < λ, pα+1 reduces Eα in the following strong sense. For each
selection sequence ~s for (pα, Fα) at α, the restriction pα+1|~s is in Eα. Such
pα+1 can be constructed because by the inaccessibility of λ, there are strictly
less than λ-many selection sequences for each (pα, Fα).

The lifting argument is analogous to the one given above but simpler
because now we can assume that given D = E∗µ as in (2.12), there exists
some γ with ∆ < γ < j(λ) and q ∈ g such that any thinning of j(q) to
stems of length γ hits D. Such a thinning is easily obtained by application
of Lemma 2.15.

The impossibility of considering all relevant selection sequences when
reducing a sequence 〈Eα | α < λ〉 for a successor λ is the main (and only)
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reason why the more complicated construction using 3λ was used in the
proof of Theorem 2.3.

This ends the proof of Theorem 2.3.

The technique in this paper allows one to control the continuum function
on regular cardinals in many ways while preserving the desired strength of
the given embedding j. In Theorem 2.3, we have limited ourselves to enlarg-
ing 2λ to λ++ while keeping GCH in the interval [κ, λ). More patterns are
possible, using the ideas in [FrHo2]; in fact any “reasonable” pattern of the
continuum function can be realized, with the exception of the configuration
in Problem 3.1 which is currently open.

We close this paper with a final remark on the notions of suitable and
coherent sequences presented in Definitions 2.10 and 2.11. We can consider a
version of diamond which by definition already contains all these sequences
(which are needed for the lifting argument). Indeed, assume λ = (λ′+); let
us denote by 3′λ the following combinatorial principle:

3′λ: There is a sequence 〈~Sα | α < λ〉 such that for every α < λ,

(i) |~Sα| ≤ λ′,
(ii) each S ∈ ~Sα is a subset of α× α.

It is seen that for each X ⊆ λ×λ, the set {α < λ | X∩(α×α) ∈ ~Sα}
is stationary in λ.

The principle 3′λ is a consequence of 3λ because every 3λ-sequence is by
definition also a 3′λ-sequence. However, the utility of 3′λ comes from the

fact if 〈~Sα | α < λ〉 is a 3′λ-sequence, then any sequence 〈~S0
α | α < λ〉 such

that ~Sα ⊆ ~S0
α and |~S0

α| ≤ λ′ is a also a 3′λ-sequence. It is easy to enlarge a
given sequence so that it contains all suitable and coherent sequences used
in this proof for each α such that cf(α) = ω (when cf(λ′) > ω) or cf(α) = ω1

(when cf(λ′) = ω). The presentation of the proof of Theorem 2.3 would be
notationally (though not conceptually) simpler if we attempted to thin at
each α not just to the single element Sα in the 3λ-sequence, but to all
elements in ~Sα in the 3′λ-sequence. This would enable us to work with a
single type of reduction and not with two reductions (simple and rich) as
we have done.

3. Open problems

Problem 3.1. With the assumptions as in Theorem 2.3, can one obtain
a model where 2κ < λ++, 2µ = 2λ = λ++, where µ is a regular cardinal in
the open interval (κ, λ), and κ is still λ-supercompact?

We do not know at the moment if the statement in Problem 3.1 can be
proved using the methods introduced in this paper. Notice that the formu-
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lation in Problem 3.1 explicitly excludes the border cases µ = κ and µ = λ.
The reason is that the case of µ = κ is included in [Co], and µ = λ is solved
by the present paper.

The main problem in generalizing the methods in this paper to solve
Problem 3.1 concerns the length of fusion sequences. If µ is a regular cardinal
in the interval [κ, λ), the forcing Sacks(µ, λ++) has fusion for sequences of
length only µ, while fusion of length λ is necessary to carry out the reduction
argument (2). It seems that one needs a forcing notion which adds new
subsets of µ, but supports a genuine fusion construction of length up to λ.

Instead of the Sacks forcing, one can attempt to use the Cohen forcing
with the “surgery argument” introduced by Woodin (see [Cu]) to prove
results similar to those in the present paper. This is the approach originally
adopted by Cody in [Co] who generalized the surgery argument of Woodin to
supercompacts and proved in particular the following: starting with GCH
and a λ++-tall λ-supercompact κ, there is a forcing extension with 2κ =
2λ = λ++ and with κ still λ-supercompact. However, as is stated in [Co],
this method does not seem sufficient to handle the direct manipulation of
the size of 2µ for a regular cardinal µ ∈ (κ, λ] because it relies on κ being
the critical point of the given embedding.

Although it is hard to ascertain the exact limits of the surgery argu-
ment, once we move to iterations rather than products, as in [FrHo1], the
surgery argument seems insufficient. It seems therefore worthwhile to at-
tempt to find a generalization of the Sacks forcing which could be used to
solve Problem 3.1.

We now turn to another problem. It is known that κ being measurable
is strictly weaker in terms of consistency strength than κ being κ++-tall
(which is equiconsistent with κ being H(κ++)-strong) (3).

Problem 3.2. Consider the following concepts, where κ < λ are regular:
κ is λ-supercompact, κ is λ++-tall λ-supercompact, and κ is λ-supercompact
and H(λ++)-strong. Obviously, in terms of consistency, the first concept is
less than or equal to the second, which is in turn less than or equal to the
third. Is any of these inequalities strict?
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(2) A dense open set of Sacks(j(µ), j(λ++)) in the target model is represented as
j(f)(j′′λ, α), where f has domain Pκλ× κ which has size λ under our assumptions.

(3) κ is H(κ++)-strong if there is an embedding j : V → M with H(κ++) included
in M ; this concept also goes under the names of κ+ 2-strong or P2κ-hypermeasurable.
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