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C1 stability of endomorphisms on two-dimensional manifolds

by

J. Iglesias, A. Portela and A. Rovella (Montevideo)

Abstract. A set of necessary conditions for C1 stability of noninvertible maps is
presented. It is proved that the conditions are sufficient for C1 stability in compact oriented
manifolds of dimension two. An example given by F. Przytycki in 1977 is shown to satisfy
these conditions. It is the first example known of a C1 stable map (noninvertible and
nonexpanding) in a manifold of dimension two, while a wide class of examples are already
known in every other dimension.

1. Introduction. After the work of many authors, it was proved by
C. Robinson ([Rob]) and R. Mañé ([Ma]) that a diffeomorphism of a compact
manifold is C1 structurally stable if and only if it satisfies Axiom A and
the strong transversality condition. It has also been known since M. Shub
[Sh] that an expanding map is also C1 stable. On the other hand, Anosov
endomorphisms not falling in the above categories, fail to be stable ([Prz1]
and [MP]).

The following is the definition of (strong) Axiom A:

Definition 1. A C1 map f satisfies Axiom A if:

(A1) the nonwandering set Ωf has a hyperbolic structure,
(A2) the set of periodic points is dense in Ωf , and
(A3) each basic piece is either expanding or the restriction of f to it is

injective.

In a compact manifold M , the following properties are necessary for a
map f ∈ C1(M) to be C1 structurally stable:

(C1) The set of critical points of f is empty (a point x is critical or
singular for f if the differential of f at x is noninvertible).

(C2) The map f satisfies Axiom A without cycles.
(C3) If the unstable set of a basic piece Λ intersects another basic set

Λ′, W u(Λ) ∩ Λ′ 6= ∅, then Λ is an expanding basic piece.
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Condition (C1) is obviously necessary for C1 structural stability. Ex-
amples of Cr (r ≥ 2) stable maps with critical points can be easily found
for maps in manifolds of dimension one; some examples in dimension two
were recently discovered (see [IPR1]). A theorem by P. Berger [Ber] gives
sufficient conditions for C∞ stability of maps having critical points.

F. Przytycki showed ([Prz2]) that if f is a C1 Ω-stable map that sat-
isfies conditions (A1) and (A2), then it also satisfies (A3). It follows that
an Anosov endomorphism is not Ω-stable unless it is expanding or a diffeo-
morphism. Later, adapting the proof of the C1 stability conjecture given by
R. Mañé, it was proved by N. Aoki, K. Moriyasu and N. Sumi that if f is a
C1 Ω-stable map without critical points then Ω(f) has a hyperbolic struc-
ture ([AMS]). These two results imply that (C2) is a necessary condition for
C1 stability.

That (C3) is a necessary condition for C1 stability was also shown by
F. Przytycki in [Prz2, Theorem C].

F. Przytycki also gave there an example of a map on the two-torus satis-
fying the three conditions above, and asked if that map is structurally stable.
The first objective of our work was to prove the stability of that map; we
finally arrive at a characterization of C1 stability in dimension two. Un-
fortunately, the techniques applied do not allow a generalization to higher
dimensions. The same characterization of C1 stability in higher dimensions
stands as a conjecture.

Note that a self-map of a compact manifold must be a covering map
if it has no singular points. It follows that the unique two-dimensional ori-
entable manifold admitting a noninvertible C1 stable map is the two-torus.
There exist examples of C1 stable maps on compact manifolds of dimen-
sion at least three. However, that construction cannot be carried out on
manifolds of dimension two, because of the nature of the attractors
(see [IPR2]). Indeed, the problem in dimension two is that it is not pos-
sible to find examples of C1 stable maps without saddle type basic pieces,
and for such basic pieces, unstable manifolds could have self-intersec-
tions.

If two (or more) unstable manifolds intersect at a point z, the Strong
Transversality Condition requires that they intersect transversally and that
the intersection is transverse to the stable manifold through z: see Defini-
tion 3 in the next section. Here we prove:

Theorem 1. The following conditions are necessary for an endomor-
phism f of a compact manifold M to be C1 stable:

(1) f has no critical points.
(2) f satisfies Axiom A.
(3) f satisfies the Strong Transversality Condition.
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If M is a two-dimensional manifold, then the above conditions are also suf-
ficient for C1 stability of f .

2. Definitions. Since the hypothesis of stability implies that the map
satisfies Axiom A and has no critical points, these facts can be assumed
throughout the whole article.

Notation. Let Ω denote the nonwandering set of f , A = A(f) the
union of the attracting basic pieces, E = E(f) the union of the expanding
basic pieces and Γ = Γ (f) = Ω \ (A ∪ E).

Axiom A implies that the restriction of f to Γ ∪A is injective. The union
of the attracting periodic orbits will be denoted by Aper. Recall that a basic
piece Λ is called expanding if there exist constants c > 0 and λ > 1 such
that |Dfn(v)| ≥ cλn|v| for every n ≥ 0 and v ∈ TΛ(M). It follows that a
basic piece Λ is contained in Γ if and only if it has an unstable manifold of
dimension less than the dimension of M , and this unstable manifold is not
contained in Λ.

Definitions and basic properties of invariant manifolds associated to basic
pieces of Axiom A maps are presented in [Prz1]. We will recall here some of
these results.

Stable manifolds. The stable set of a point x ∈ Ω is denoted by W s(x)
and defined as the set of points y ∈ M such that d(fn(x), fn(y)) → 0 as
n → ∞, where d is the distance induced by the Riemannian metric on M .
For each x ∈ Γ ∪A and ε > 0 sufficiently small, the local stable manifold of
x is defined as the set W s

ε (x) of points y ∈M such that d(fn(x), fn(y)) < ε
for every n ≥ 0. It is known that W s

ε (x) is tangent to the stable space at x
and that {W s

ε (x) : x ∈ Γ ∪A} is a family of C1 embedded disks. The stable
set of a basic piece Λ is defined as the union of the stable sets of points in
Λ. The path connected component of W s(x) containing the point x will be
denoted by W s

0 (x).

Unstable manifolds. If x ∈ Γ ∪ A, then there exists a unique preorbit
{xn} of x contained in Γ ∪ A. Provided ε > 0 is sufficiently small, one
can define the local unstable manifold of x as the set W u

ε (x) of points y
in M having a preorbit {yn} such that d(xn, yn) < ε for every n ≥ 0. If
Λ ⊂ Γ is a basic piece then there is a well defined unstable space Eu(x) for
each x ∈ Λ that is invariant and expanded by the differential. It is known
that W u

ε (x) is tangent to the unstable space at x and that {W u
ε (x) : x ∈

Γ ∪ A} is a continuous family of C1 embedded disks. The unstable set of
x ∈ Γ ∪ A is defined as

⋃
n>0 f

n(W u
ε (xn)). An equivalent definition would

be the following: y ∈ W u(x) if and only if there exists a preorbit {yn} of
y such that d(xn, yn) → 0, where {xn} is the preorbit of x contained in Γ .
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Finally define W u(Λ) as the union of the unstable sets of points in Λ, and
W u(Γ ) as the union of the W u(Λ) for Λ ⊂ Γ . If Λ is an expanding basic
piece, then there exists a neighborhood U of Λ such that the closure of U
is contained in f(U) and the intersection of the backward iterates of U is
equal to Λ. The unstable set W u(Λ) of a basic piece Λ ⊂ E is defined as the
union of the future iterates of U .

Properties of stable and unstable sets

(1) The path component W s
0 (x) of W s(x) containing x is an injective

immersion of a Euclidean space Rn. Moreover, W s
0 (x) can be ob-

tained as the union, for n ≥ 0, of the connected component of
f−n(W s

ε (fn(x))) that contains x. For every x ∈ Γ ∪A we have

W s(x) =
⋃
n≥0

f−n(W s
0 (fn(x))).

Therefore, each component of the stable set of a point x is always an
injective immersed manifold. Moreover, different stable sets cannot
intersect.

(2) For each z ∈ M there exists x ∈ Ω such that z ∈ W s(x). As stable
sets are submanifolds, the stable space Es(z) = Tz(W

s(x)) is well
defined for every z ∈M .

(3) Unstable sets of different points can have nonempty intersection.
Moreover, the unstable set of a point x ∈ Ω is a (not necessarily
injective) immersed manifold.

(4) The stable set of a basic piece Λ, defined as W s(Λ) =
⋃
x∈ΛW

s(x),
is backward invariant (f−1(W s(Λ)) = W s(Λ)). The unstable set of
a basic piece Λ is forward invariant but not necessarily backward
invariant.

Definition 2. Let Λ1 and Λ2 be different basic pieces of an Axiom A
map f . Say that Λ1 > Λ2 if W u(Λ1) ∩W s(Λ2) 6= ∅.

If f is an Axiom A map that satisfies the transversality condition, then
the relation above defines a partial order. Moreover, there exists an adapted
filtration for this order (see [Prz2, Proposition 1.1]).

A closed set L is attracting if there exists an open neighborhood N of L
such that the closure of f(N) is contained in N , and the intersection of the
forward iterates of N is equal to L.

The existence of filtrations for Axiom A maps with no cycles implies the
following result:

Lemma 1. If f is an Axiom A map with no cycles, then W u(Γ ) ∪ A is
a closed attracting set.
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For each point z ∈ W u(Γ ) there exists a preorbit {zn} of z satisfying
d(xn, zn)→ 0, where {xn} denotes the unique preorbit of x contained in Γ .
It follows that there exists k0 such that zk ∈ W u

ε (xk) for every k ≥ k0, and
therefore one has a well defined space

Eu({zn}) = Dfkzk(Tzk(W u
ε (xk))) ⊂ Tz(M).

But there may exist other preorbits of z converging to Γ . Let αz be the
collection of subspaces Eu({zn}) ⊂ TzM indexed by the different preorbits
{zn} of z in W u(Γ ).

Given a finite-dimensional vector space X, say that a collection of sub-
spaces {Xi} of X is in general position if the sum of the codimensions of the
Xi is equal to the codimension of

⋂
iXi.

Definition 3. An Axiom A map satisfies the Strong Transversality
Condition if:

(1) The collection αz is in general position. If this is the case, the in-
tersection of the Eu({zn}) is denoted by Eu(z), and we have a well
defined Eu(z) for every z ∈M .

(2) If z ∈W u(Γ ), then Es(z) + Eu(z) = Tz(M).

This definition is intended to ensure not only the transversality of inter-
sections between stable and unstable manifolds, but also between different
unstable manifolds. This definition is more restrictive, even compared with
the definition of transversality given in [BR, Definition 2.3] that was in-
tended to characterize inverse stability.

If a point z has at least two different preorbits in the unstable set of Γ ,
then z is called an unstable intersection. This can also be defined as follows:

Definition 4. A point z ∈ M is an unstable intersection of f if there
exist some positive integer k such that f−k(z) contains at least two points
in W u(Γ ). The set of unstable intersections is denoted by I = I(f). Define
also the first unstable intersections of f as the set I1 = I1(f) of points z for
which the above property holds with k = 1.

Note that I is a forward but not backward invariant set.

Remark 1. The Strong Transversality condition implies Przytycki’s
necessary condition of stability (see (C3) in the introduction).

Proof. Assuming that the Strong Transversality Condition holds, that
Λ is a basic piece and that there exists a point x ∈ Ω \ (E ∪ Λ) such that
W u(x) ∩ Λ 6= ∅, we must find a contradiction. As x /∈ E, the codimension
of W u(x) is positive. If y ∈ W u(x) ∩ Λ, then y ∈ I(f), and the collection
αy contains, at least, two elements: one (denoted {ȳ}) is the preorbit of y
contained in Λ, and another (denoted {ȳ0}) converges to the basic piece
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that contains x. On one hand, note that Eu(ȳ) and Es(y) are complemen-
tary subspaces because Λ is a hyperbolic basic piece. On the other hand,
Eu(ȳ0) has positive codimension because the basic set that contains x is not
expanding. It follows that the sum of the codimensions of Eu(ȳ), Eu(ȳ0)
and Es(y) is greater than the dimension of M . This implies that f cannot
satisfy both items of Definition 3.

3. Necessary conditions. Begin with a C1 structurally stable map f .
It is clear that f cannot have critical points. It is already known that f is an
Axiom A map. It remains to prove that f satisfies the Strong Transversality
Condition. Much of our proof rests on the techniques employed by J. Franks
in [F] and on the Kupka–Smale Theorem.

Let U be a neighborhood of f where every map is conjugate to f . For
each g ∈ U , x ∈ Γ (g) and a positive integer R, define

W u
R(x, g) =

R⋃
k=0

gk(W u
ε (xk, g)),

where {xk} is the unique g-preorbit of x contained in Γ (g). Define also
W s
R(x, g) as the set of points at distance less than or equal to R in W s(x, g),

where the distance is induced by the Riemannian metric of M in W s: the
distance between two points is the infimum of the length of curves joining
the points within W s.

Note that Ω∩ I = ∅, (I = I(f) of Definition 4): if x ∈ I then f−k(x) has
at least two points in W u(Γ ), one of which cannot be contained in Ω, but
this contradicts Theorem C of [Prz2] if x ∈ Ω.

Proof of the first part of the Strong Transversality Condition

Definition 5. Fix positive integers n and R. Given g ∈ U and z ∈
W u(Γ (g))∩ I(g) denote by Pz(n,R, g) the set of points w ∈W u(Γ (g)) such
that the following conditions hold:

(1) w ∈W u
R(qw, g) for some periodic point qw ∈ Γ (g) of period at most n.

(2) w ∈ g−1(I1(g)) \ I(g), and gk(w) = z for some positive k = kw.

DefineK1(n,R) as the set of maps g ∈ U such that the collection of subspaces

{Dgkww (Tw(W u(w))) : w ∈ Pz(n,R, g)}
is in general position.

Note that Tw(W u(w)) is well defined since w /∈ I(g).

Using the same techniques applied to prove the Kupka–Smale Theorem
in the case of diffeomorphisms, one can conclude that for every n and R
positive, K1(n,R) is open and dense in U .
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It follows that the set K1, the intersection of the sets K1(n,R) for n and
R positive integers, is a residual set in U .

Let f be a C1 structurally stable map, and assume that the first con-
dition of Definition 3 does not hold. Then there exists z ∈ I such that
the collection αz is not in general position. This means that a finite subset
Eu({z1n}), . . . , Eu({zrn}) is not in general position. As the preimages of z
are wandering and the periodic points are dense in Ω, there exists a per-
turbation g of f such that for each 1 ≤ i ≤ r, the sequence {zin} belongs
to the unstable set of a periodic point pi of g. As g is conjugate to a map
in K1, the sum of the codimensions of the subspaces Eu({zin}) is less than
or equal to the dimension of M . In addition, as the subspaces Eu({zin}) are
not in general position, the arguments of Franks [F, Lemma 2.1] imply that
there exists a perturbation g1 of g such that the unstable manifolds of the
periodic points pi of g1 intersect in a submanifold of codimension less than
the sum of their codimensions; but this contradicts the fact that g1 must be
conjugate to a map in K1.

Proof of the second part of the Strong Transversality Condition

Definition 6. Given positive integers n and R, let K2(n,R) be the
set of maps g ∈ K1(n,R) ∩ U such that the intersection of the subspaces
Dgkww (Tw(W u(w))) for w ∈ Pz(n,R, g) is transverse to Es(z) whenever z
belongs to W s

R(p, g) and p is a periodic point of g whose period is at most n.

Lemma 2. For every n and R, K2(n,R) is open and dense in U .

Proof. It is clear that the property is open and that the collection of sub-
spaces Dgkww (Tw(W u(w))) for w ∈ Pz(n,R, g) is transverse if g ∈ K1(n,R).
A perturbation supported in a neighborhood of z will produce no changes in
unstable manifolds but will make the stable manifold through z transverse
to the collection of subspaces.

It follows that the intersection K2 of the K2(n,N) is a residual subset
of U .

To prove the second assertion of the Strong Transversality Condition,
assume on the contrary that there are x ∈ Ω(f) and y ∈ W s(x) ∩W u(Γ )
such that Es(y) and Eu(y) are not transverse. We can assume, as above,
that x is a periodic point of f , and also that every w ∈ Py belongs to the
unstable manifold of a periodic point. If the sum of the dimensions of Es(x)
and Eu(y) is greater than or equal to the dimension of the ambient manifold,
one can produce a perturbation g such that, if W u(x) is defined as

W u(x) =
⋂
w∈Py

Dgnw
w (Eu(w)),

then W u(x)∩W s(x) contains a disc of codimension less than the sum of the
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codimensions of W s(x) and W u(x), which constitutes an obstruction to the
equivalence with a map of K2. If the sum of the dimensions is less than the
dimension of M , then a perturbation in K2 will not be equivalent to f .

4. Example. The product of two C1 stable maps cannot be C1 Ω-
stable, unless both maps are diffeomorphisms or both are expanding. Indeed,
if a stable map is not a diffeomorphism, then it has a noninjective expanding
basic piece, and if a stable map is not expanding, then it has a nontrivial
attractor. The product of an expanding basic piece times an attractor is
a basic piece that is neither expanding nor injective. The example given
by Przytycki (see the final section of [Prz2]) is a C0 perturbation of the
product map (s, t) = (f1(s), f2(t)), where f1 and f2 are maps of the circle
whose graphs are shown in Fig. 1. We will consider the two-torus as the
product {(s, t) : s ∈ [−π, π], t ∈ [−π, π]}, where −π and π are identified.

The map f1 is a diffeomorphism having an attractor at s = 0 and a
repeller at s = π. The map f2 is a C0 perturbation of z 7→ z2 (derived from
expanding map). The nonwandering set of f2 is the union of an attracting
fixed point at t = 0 and an expanding Cantor set K1. The set K defined as
{0}×K1 is a hyperbolic isolated transitive saddle type set, but the restriction
of the map to this set is not injective.

Przytycki proposed to perturb the product map as follows:

f(s, t) = (f1(s) + sin(t)ϕ(s), f2(t)),

where ϕ is a smooth function satisfying two more assumptions. For every
s we have 0 ≤ ϕ(s) ≤ ε. There exists a constant s0 such that ϕ(s) = ε for
|s| < s0, and ϕ(s) = 0 if |s − π| < s0. The absolute value of the derivative
of ϕ is also smaller than ε. At each s, |ϕ′(s)| < |f ′1(s)|.

Other conditions are assumed for the maps f1 and f2. Both f1 and f2 are
odd functions on [−π, π]. In a neighborhood of 0, the function f1 is equal
to the map s 7→ λs, where 0 < λ < 1 is very small. The map f2 has fixed
points at 0, δ and −δ. Moreover f2 is taken such that the preimage of δ is
−π + δ/3 (so the preimage of −δ is π − δ/3). The derivative of f2 in |t| > δ
is greater than two. The constant ε is taken sufficiently small; and once ε is
chosen, the constant λ is taken still smaller.

Proposition 1. The map f satisfies the necessary conditions for C1

stability stated in Theorem 1.

Proof. (1) f is a covering. If ε is small enough, then the derivative of
the first coordinate with respect to s never vanishes. This implies that f is a
local homeomorphism. As every point has exactly two preimages, the claim
follows.
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Fig. 2. The picture shows U = [−s0, s0]× [−π, π] and f(U). The shadowed region is f(R).

(2) f satisfies Axiom A. The proof below will show that the nonwan-
dering set of f is the union of the following basic pieces:

• An attracting fixed point p = (0, 0).
• A saddle type fixed point C = (π, 0).
• An expanding set K = {π} ×K1.
• A saddle type basic piece Γ0 close to {0} ×K1.

That the first three are basic pieces is clear. Towards the proof of the exis-
tence, hyperbolicity and injectivity of Γ0, it will be necessary to construct
invariant cone fields in the region R = {(s, t) : |s| < s0, |t| ∈ (δ, π−δ)}. Note
first that f1(σ) + ϕ(σ) sin δ = σ has the solution σ = ε sin δ/(1− λ) < s0. It
follows that the points A = (σ, δ) and −A = (−σ,−δ) are fixed for f .

Assume that v = (v1, v2) is a vector satisfying |v1/v2| < ρ. If (w1, w2) =
DfX(v), where X belongs to the region R, then |w1/w2| < λρ/2 + ε/2,
where we have used that the derivative of f2 is greater than 2 and that
ϕ = ε in that region. If ρ is taken greater than ε/(2 − λ) then the region
R admits an expanded almost vertical invariant cone field (because s0 is
greater than σ+ ρπ if ε is sufficiently small). The same holds for the region
R′ = {(s, t) : s − t ∈ R}. The horizontal lines form a contracting invariant
foliation in R ∪ R′. Therefore the set Γ0 of points having the whole orbit
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contained in R ∪ R′ has a hyperbolic structure; it follows also that Ω is
hyperbolic and that Γ0 is a basic piece. To obtain Axiom A it remains to
prove the injectivity in Γ0. Note that the intersection of the future images
of R is a region bounded by segments of the unstable manifolds of the fixed
points in Γ0, A and −A. These are curves of the form (γ(t), t) for t ∈ [δ, π−δ],
where γ(t) is at a distance less than ρπ from the first coordinate of A or
−A. In any case it is easily seen that the image of a curve like that must
be contained in {(s, t) : s > 0}, if λ is taken sufficiently small. Analogously,
the image of the region R′ is contained in {s < 0} by symmetry. It follows
that the restriction of f to R ∪R′ is injective.

(3) Strong Transversality Condition. Obviously, stable and unstable
manifolds intersect transversally. Moreover, the intersections of unstable
manifolds occur in B0, the immediate basin of (0, 0). It remains to show that
these intersections are transverse. It is sufficient to prove that the intersec-
tions in I1 (see Section 2, Definition 4) are transverse. A point z belongs
to I1 if and only if one of the preimages of z belongs to B0 and the other
belongs to B1, where B1 denotes the component of f−1(B0) that is not B0.
The unstable manifolds of points in Γ0 are almost vertical in R ∪ R′ ∪ B1.
Note that if γ(t) = (α(t), t) is almost vertical, where |t ± π| < δ, then the
image under f of γ is a curve contained in the immediate basin of (0, 0) and
its tangent vector is W1 = (λα′(t) + ε cos t, f ′2(t)). It can be parametrized
as γ̃(t′) = (β(t′), t′), with t′ now varying in [−δ, δ]. The image under f of a
curve of the form of γ̃ has tangent vector W2 = (λβ′(t′) + ε cos t′, f ′2(t

′)). As
t is close to π and t′ close to 0, the signs of the first coordinates of W1 and
W2 are different if λ is sufficiently small. But as the second coordinates are
positive, we conclude that these curves intersect transversally.

5. Sufficient conditions. From now on, it is assumed that f has prop-
erties (1) to (3) of Theorem 1.

We will first construct the conjugacy h in fundamental domains of the
periodic attractors.

5.1. Controlling unstable intersections. To begin this section we
simplify the wording of the Strong Transversality Condition in dimension
two. Unstable manifolds of basic pieces in Γ have dimension one. This im-
plies that for every positive k, and z ∈ M , the intersection of f−k(z) with
W u(Γ ) contains at most two points. Then Eu(z) (see Definition 3) has di-
mension zero whenever z ∈ I. Moreover, as unstable intersections must be
transverse to stable manifolds, it follows that I is contained in the basin of
periodic attractors. The next result implies that I1 (the set of first intersec-
tions, see Definition 4) is compactly contained in the basin of Aper, the set
of attracting periodic orbits.



C1 stability of endomorphisms 47

Lemma 3. If f satisfies the Strong Transversality Condition, then I1 is
a closed set.

Proof. Let {zn} be a sequence of points in I1 that converges to z, and
for each n let z1n 6= z2n be points in W u(Γ ) such that f(z1n) = f(z2n) = zn.
Assume that for i = 1, 2 the sequences {zin} converge to points z1 and z2,
which must be different since f is locally invertible. Then z1 and z2 belong to
W u(Γ )∪A, as this is a closed set. But the Strong Transversality Condition
implies that neither z1 nor z2 can belong to A. Thus z = f(z1) = f(z2)
belongs to I, and again by the Strong Transversality Condition, z ∈ I1.

Lemma 4. Given a neighborhood U of I1(f) and δ > 0, there exists a
neighborhood U of f , and a positive integer k, such that, for every g ∈ U ,
the following properties hold:

(1) The set of intersections I1(g) is contained in U and g−k(I1(g)) ∩
W u(Γ (g)) ⊂W u

δ (Γ (g)).
(2) There exists ρ > 0 such that, if x and y are different points in

Γ (g), then the distance between two different points in gk(W u
δ (x, g))∩

gk(W u
δ (y, g)) is greater than ρ.

Proof. Note that the inclusion in (1) is satisfied by the map f for some
positive k, because each point in I1(f) has exactly two preorbits converging
to Γ and I1(f) is compact. By the local stability of basic pieces it follows
that local unstable manifolds of size δ for the map g are C1 close to those
of f ; moreover, as k is fixed, the assertion also holds for g.

(2) As the Strong Transversality Condition is open, I1(g) is also compact.
Assume towards a contradiction that there exist sequences {xn} and {yn}
contained in Γ (g) such that for each n > 0 there exist points z1n 6= z2n with
d(z1n, z

2
n) < 1/n and zin ∈ gk(W u

δ (xn, g)) ∩ gk(W u
δ (yn, g)). Assuming that

the sequences {zin} converge to a point z, a contradiction arises because
z ∈ I(g) turns out to be a point of nontransverse intersection between
unstable manifolds.

Let B0(A) denote the immediate basin of the attractor A. To deal with
the unstable intersections in B0 = B0(A), let

L = L(f, p) =
⋃
`≥0

f `(I1(f) ∩B`(f, p)),

where B` = B`(f, p) is defined inductively as follows: B1 = f−1(B0) \ B0

and B` = f−1(B`−1) for every ` > 1.

Lemma 5. L is compact and f(L) ∩ L = ∅.
Proof. Note first that as I is contained in B, we have I1 ∩ ∂B` = ∅ for

each ` ≥ 0. So I1 ∩B` is compact for every `. Moreover, by Lemma 3 there
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exist at most finitely many values of ` for which the intersection of I1 with
B` is nonempty. This implies the first assertion.

Notice that x ∈ M implies ](o−(x) ∩ I1) ≤ 1, where o−(x) denotes the
union of all the preimages of x. If x ∈ L, then there exists y ∈ I1 ∩B` such
that f `(y) = x. It follows that y is the unique point in o−(f(x)) ∩ I1, hence
f(x) /∈ L by definition of L.

5.2. Fundamental domains. Let A be a periodic attractor such that
the set I of unstable intersections intersects the basin of A. We can assume
that A is a fixed point and take K equal to the closure of a fundamental
domain such that K is an annulus and L is contained in the interior of K. A
fundamental domain with these properties can be constructed as in the proof
of Theorem C in [IPR1]: there it was shown how to construct a fundamental
domain containing in its interior a compact set L, provided f(L)∩L = ∅. Let
∂−K be the connected component of ∂K that is closer to p, and ∂+K be the
other component of the boundary of K (∂−K separates p from ∂+K in B0).
Let Q be the component of B0 \K that contains p. It can also be assumed
that for every x ∈ Q ∩W u(Γ ) there exist j > 0 and y ∈ K ∩W u(Γ ) such
that f j(y) = x. This follows from the fact that the transversality condition
implies that the preimage of p cannot belong to W u(Γ ), so it is possible
to take a neighborhood V0 of p where just the points coming through K
can enter V0; then one can take K contained in V0, and replace L by a
homeomorphic image of it. Given δ > 0, let k > 0 be such that

(1) f−k(K) ∩W u(Γ ) ⊂W u
δ (Γ ).

Observe that k can be taken so as to also satisfy the conditions imposed
on k in Lemma 4. For each basic piece Λ in Γ let εs be a small positive
number and define a fundamental domain for Λ:

D(Λ) = Dεs(Λ) = W s
εs(Λ) \ f(W s

εs(Λ)).

5.3. Local perturbations. It is classical that a perturbation can be
performed as a finite sequence of perturbations with small supports. Indeed,
if g is a perturbation of f then there exists a diffeomorphism t, C1 close to
the identity, such that g = ft (take t(x) as the point in f−1(g(x)) that
is closest to x). Given a finite covering {W1, . . . ,Ws} of M , and a small
perturbation t of the identity, there exist {t1, . . . , ts} such that t = t1 . . . ts
and the support of ti is contained in Wi (the support of ti is the closure of
the set of points where ti(x) 6= x). For the proof of this, see [PS].

We begin by taking an appropriate covering of M . If x ∈ W u(Λ) for a
basic piece Λ ⊂ Γ , then let W be a neighborhood of x compactly contained
in the interior of ⋃

n≥0
fn(V (Λ)) ∪W u(Λ),
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where V (Λ) is a small neighborhood of D(Λ). Moreover we require that the
closure of W does not intersect Ω \ Λ. If x ∈ A then take W compactly
contained in the immediate basin of A if A is a nonperiodic attractor, and
compactly contained in the open set Q defined in 5.2 if A is a periodic
attractor. If x /∈W u(Γ )∪A, then W will be a neighborhood of x such that
the closure of W does not intersect W u(Γ ) ∪ A (recall that the latter is
closed by Lemma 1).

From now on it is assumed that g is a perturbation of f and that the
set of points where f and g are not equal is contained in an open set W as
constructed above. On the other hand, it is clear that ti converges to the
identity when g converges to f . We note that in any case, each attractor
of f has a fundamental domain K and each basic piece has a fundamental
domain D(Λ) whose closure does not intersect that of W .

5.4. Construction of unstable foliations. Let Λ be a basic piece
of Γ . We will follow the proof of de Melo [dM]. A foliation Ff will be defined
in a small neighborhood V (Λ) of D(Λ). Note that D(Λ) has no intersections
with the unstable set of Λ, but will certainly intersect unstable leaves of
basic pieces that are greater than Λ in the order of Definition 2. Then
an induction argument is applied: the foliation constructed in V (Λ) must
contain the leaves that are iterates of those unstable foliations constructed
in previous steps and intersecting D(Λ).

Once this foliation is defined in V (Λ), the union of its forward iterates
with W u

δ (Λ) will contain a neighborhood Sf of Λ. We will fix some positive
number δ such that Sf ⊃ W u

δ . This procedure can be repeated with all the
basic pieces in Γ , giving a foliation Ff defined in Sf .

By Lemma 3, this neighborhood Sf can be required to have the following
properties:

(1) The restriction of f to Sf is injective.
(2) The intersection of Sf with a basic piece of f not contained in Γ is

empty.
(3) The intersection of Sf with I is empty.

And as these properties are open, there exists a neighborhood U of f
such that for every g ∈ U there exists a neighborhood Sg of Γ (g) with the
above properties.

Lemma 6. If g is a perturbation of f that coincides with f in a neighbor-
hood of a fundamental domain of Γ , then there exists a foliation Fg defined
in Sg and map Hg : Ff → Fg with the following properties:

(1) Each leaf of Fg is an injectively immersed one-dimensional manifold,
which is contained in W u(x, g) whenever x ∈ Γ (g) and is transverse
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to W s(Γ (g)). Moreover, the tangent spaces to the leaves vary con-
tinuously.

(2) For x ∈ Sg, denote by Fx(g) the leaf through x. If y ∈ Sg and
gn(x) = y, then the connected component of gn(Fx(g)) ∩ Sg that
contains y is contained in Fy(g).

(3) If F1 is a leaf of Ff , then Hg(F1) is a leaf of Fg that is close to F1

in the C0 topology.
(4) g(Hg(Fx(f))) ⊃ Hg(Ff(x)(f)), whenever x and f(x) belong to Sf .

Proof. Until now we have shown the existence of a foliation Ff of Sf
that satisfies (1) and (2) for the map f . Let Λ1(g) be a maximal basic piece
and V (Λ1(g)) a neighborhood of D(Λ1(g)), where f and g coincide. Define
Fg = Ff in V (Λ1(g)). Then a neighborhood of Λ1(g) will be covered by the
union of the future iterates of the leaves of Fg and W u

δ (Λ1(g)). After this,
proceed by induction. Assume that Fg is defined in Λi(g) for 1 ≤ i ≤ j − 1
and satisfies (1) and (2). Then define Fg in a neighborhood V (Λj(g)) of
D(Λj(g)) in such a way that it coincides with leaves that are forward iterates
of leaves of Fg defined at previous stages and coincides with Ff elsewhere.
Again we cover a neighborhood of Λj(g) by taking the union of the future
iterates of these foliations with W u

δ (Λj(g)). The continuity of the foliation
follows as in [dM].

The map Hg is defined to be the identity for leaves of Ff contained
in V (Λ1). Then, preserving conjugacy and continuity, extend Hg to all the
leaves of Ff that are contained in a neighborhood of Λ1. Proceed in the
same way to cover neighborhoods of the remaining basic pieces.

It is standard that Fg and Hg defined in this way have the asserted
properties.

Let U , ρ and k be as in Lemma 4.

Remark 2. (a) If g ∈ U , Fx(g) and Fy(g) are distinct leaves of Fg
and gk(Fx(g)) ∩ gk(Fy(g)) 6= ∅, then the intersection is transverse and the
distance between two points in this intersection is at least ρ/2.

(b) For every x ∈ Sg, the cardinality of g−k(gk(x)) ∩ Sg is at most two.

Remark 3. Let W be an open set as constructed at Subsection 5.3.
The perturbation g of f coincides with f outside W . Once W is known, one
can choose fundamental domains K of the attractors and D(Λ) of the basic
pieces in Γ so that:

(1) W does not intersect
⋃k
j=0 ∂f

−j(K).
(2) W ∩ V (Λ) = ∅ for a neighborhood V (Λ) of the fundamental domain

of the basic piece Λ (this validates the hypothesis of Lemma 6).

(3) The set W intersects neither O := ∂(
⋃k
i=0 f

i(Sf )), nor
⋃k
j=0 f

−j(O).
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From f(W ) = g(W ) and item (3) above, it follows that

k⋃
i=0

f i(Sf ) =
k⋃
i=0

gi(Sg).

5.5. Construction of the conjugacy on the basins of the at-
tractors. The reader may keep in mind that the intersections of unstable
manifolds occur in the basins of attracting periodic orbits, and never in the
basin of a nontrivial attractor (those having unstable manifold of dimension
one).

Let K be a fundamental domain of an attracting fixed point and assume
that L intersects this basin. The map f is perturbed to a map g in an
open set W that satisfies the requirements of the above subsection. The
construction of the conjugacy begins in this fundamental domain. We can
now state the fundamental step.

Lemma 7. There exists a homeomorphism h defined in K such that:

(1) If x ∈ ∂+K, then g(h(x)) = h(f(x)).
(2) If x ∈ Sf and f j(x) ∈ K for some j > 0, then gj(H(Fx(f))) contains

h(f j(x)).

Before beginning the proof of the lemma, we will construct a field of
directions in a preimage of K where the intersections of unstable leaves
have not occurred yet.

Let k > 0 be as defined in Lemma 4 and in equation (1) of Subsection 5.2:

(2) f−k(K) ∩W u(Γ ) ⊂W u
δ (Γ ) ⊂ Sf .

Note that f−k(K) does not contain future iterates of I(f) and each
component of f−k(K) is diffeomorphic to K. Denote by K ′ the unique com-
ponent of f−k(K) that is contained in B0, and by ∂±K

′ the component of
the boundary of K ′ whose image under fk is equal to ∂±K.

By Remark 3, it is clear that g−k(K) = f−k(K) and that the set

S′ = {x ∈ g−k(K) ∩ Sg : there exists y ∈ Sg such that

y 6= x and gk(x) = gk(y)}
does not depend on the perturbation made (although fk and gk do not
necessarily coincide in S′).

Given g as above, we will now construct a continuous field of directions
χg defined in a neighborhood V1 of g−k(K)∩Sg. We will first construct χf :

If x ∈ S′, then χf (x) is the unique direction such that Dfkx (χf (x)) =
Dfky (vy), where vy is the direction tangent to Fy(f) at y, and y is as in
the definition of S′. Note first that the transversality condition and the
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construction of Sf imply that there exists at most one point y 6= x, y ∈ Sf ,
such that fk(x) = fk(y), so χf is well defined.

Note that χf is continuous in S′ and that the transversality condition
implies that χf is transverse to the leaves of the foliation Ff .

Now take points x and f(x), both contained in f−k(K)∩Sf , and define
χf (x) transverse to the leaf of Ff at x. Next define χf (f(x)) = Dfx(χf (x)).
Note that as K is a fundamental domain, then x and f(x) belong to the
immediate basin of the attractor, so x belongs to ∂+K

′. We have thus defined
χf on three closed disjoint sets: S′ ∩ Sf , ∂+K

′ ∩ Sf and f(∂+K
′)∩ Sf . It is

continuous and transverse to the foliations. To extend this field of directions
to a neighborhood V1 of f−k(K) ∩ Sf , one can use diverse techniques, for
example the averaging method employed in [dM, Lemma 1.1].

The objective now is to define a similar field of directions for g close
to f ; we proceed as above, defining first χg at a point x in S′ as the preim-
age under Dgkx of the image under Dgky of the direction of the leaf Fg(y),

where y is the (unique) point in Sf such that gk(y) = gk(x). Recall that
as was explained above, the set S′ does not depend on the perturbation. It
is also known that Sf does not depend on the perturbation either. More-
over, as L is interior to K, it follows that S′ is a neighborhood of g−k(L)
contained in the interior of g−k(K). It follows by the requirements made in
Remark 3 that χf and χg coincide close to the boundary of S′. Thus χg
can be extended to V1 (where χf is defined), by imposing that χg = χf
outside S′.

For future reference, we state as a claim what we have established about
the fields of directions.

Claim. There exists an open set V1, a neighborhood of Sf ∩ f−k(K),
such that, for each perturbation g of f that coincides with f outside a set W
satisfying the conditions stated in Remark 3, there exists a continuous field
of directions χg with the following properties:

(1) If x belongs to S′ then χg(x) = Dg−kx (Dgky (vy)), where vy is tangent
to the leaf of Fg through y, and y is as in the definition of S′.

(2) For every x ∈ V1, χg(x) is transverse to Fx(g).
(3) If x and g(x) belong to V1, then Dgx(χg(x)) = χg(g(x)).
(4) χf = χg outside S′.

The integral line of χg through the point x will be denoted by χ̃g(x).
Note that the leaves of χ̃ and the leaves of the foliation Fg give a local
product structure at g−k(K) ∩ Sg, precisely:

There exists a neighborhood V1 of g−k(K)∩Sg and a positive number δ0
such that, for every pair of points x and y in g−k(K)∩ Sg at a distance less
than δ0, the intersection of the leaf of χ̃g through x with the leaf of F(g)
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through y consists of exactly one point contained in V1. This intersection
varies continuously with x and y.

Proof of Lemma 7. Recall that if x ∈ K, then, according to item (b) in
Remark 2, the cardinality of f−k(x) ∩ Sf is equal to 0, 1 or 2; define h as
follows:

1) If the cardinality is equal to zero, then h(x) = x.
2) If it is equal to one, let y be the unique point in f−k(x)∩Sf . Let y′ be

the unique point of intersection of the integral line of χg
(χf (y) = χg(y) because y /∈ S′) through y with Hg(Fy(f)). Then

let h(x) = gk(y′).
3) If it is equal to two, and f−k(x) ∩ Sf = {y1, y2}, then h(x) is defined

as the intersection of the leaves gk(H(Fy1)) and gk(H(Fy2)) with the
ball of radius ρ/4 and centered at x.

To prove that h is well defined, one must consider the third case. The inter-
section defining h contains exactly one point. If the perturbation g of f is
sufficiently small, then property (1) in Lemma 6 implies that Fy and H(Fy)
are close as C1 embeddings, so their gk-iterates are close as well. Moreover,
by (a) in Remark 2, the intersection defining h is transverse and is unique
at a distance less than ρ/4 from x.

Now we will prove the continuity of h. It depends on the location of the
support of the perturbation. Assume first that W is contained in the exterior
of
⋃
i≥0 f

i(Sf ) (see Remark 3). In this case Ff = Fg, Hg is the identity, and
consequently h is equal to the identity. The same happens whenever W
intersects an attractor.

It remains to consider the case where the closure of W is contained in
the interior of

⋃
i≥0 f

i(Sf ).

Note that h is continuous in the interior of
⋃
i≥0 f

i(Sf ) by the continuity
of the foliations. On the other hand, h is the identity in the complement of⋃k
i=0 f

i(Sf ), so it remains to prove the continuity in the boundary. Note
that as f(W ) = g(W ), then fk and gk coincide in(⋃

n≥0
fn(Sf ) \

⋃
n≥0

fn(W )
)
∩K.

Let x be a point in the boundary of (
⋃
i≥0 f

i(Sf ))∩K, and y a point in

f−k(x) ∩ Sf . Then y belongs to the boundary of Sf , so Fy(f) = Fy(g) and
χf (y) = χg(y). Moreover, as f j(y) /∈ W for every 0 ≤ j ≤ k, there exists a
neighborhood Uy of y such that f j(z) = gj(z) for every z ∈ Uy. This implies
that h(x) = x.

Note that h is injective because if x ∈ K, then the cardinalities of
f−k(x) ∩ Sf and g−k(h(x)) ∩ Sf coincide, since f = g outside the future
iterates of Sf .
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To prove assertion (1) of the lemma, take x ∈ ∂+K. If x does not belong
to the union of the future iterates of Sf then h(x) = x and h(f(x)) = f(x),
and (1) holds because g and f coincide at both points. In the remaining
case, there exists a unique y ∈ Sf such that fk(y) = x and we fall into
case (2) of the definition of h. Moreover, f(y) is the unique fk-preimage
of f(x) contained in Sf . If y′ is the point of intersection of χ̃g(y) = χ̃f (y)
with Hg(Fy(f)), then by definition, h(x) = gk(y′). By the third property of
the fields of directions χ, we have g(χ̃g(y)) = χ̃g(g(y)). In addition, g(y′)
belongs to g(Hg(Fy(f))) and therefore gk(g(y′)) = h(f(x)).

The second assertion of the lemma follows by construction.

This homeomorphism h can be extended to the whole immediate basin
of pf as follows: if x ∈ B0(pf ), then there exists a unique j ∈ Z such that

f j|B0(pf )
(x) ∈ K; then define h(x) = g−j|B0(pg)

(h(f j(x))). This new extension

of h conjugates the restrictions of f and g to the corresponding immediate
basins of the attractors. It is injective and open, because h is. Moreover, h
carries pf to pg and so its image contains a neighborhood of p; it follows
that it is onto B0(pg).

When A is a nonperiodic attractor, the restriction of f to a neighborhood
of A is injective. Moreover, as there cannot be unstable intersections in its
basin, the argument applied for diffeomorphisms allows one to construct
a local conjugacy C0 close to the identity defined in the whole immediate
basin of the attractor A and satisfying the properties in the statement of
Lemma 7. Summing up, there exists a conjugacy h from B0(f) (the union
of the immediate basins of the attractors of f) onto B0(g).

Finally, we claim that for every point x ∈ Sf and every nonnegative
integer j such that f j(x) ∈ B0(f), we have h(f j(x)) ∈ gj(H(Fx(f))). Indeed,
let J(x) be minimum such that fJ(x) ∈ B0(f). Let i ∈ Z be such that
fJ+i(x) ∈ K. Note that i is greater than or equal to zero, by the construction
of K (see Subsection 5.2). Then the claim follows by the second assertion in
the previous lemma.

5.6. Extension of h to the whole manifold. For each x ∈ f−`(B0),
one has precisely d` points in g−`hf `(x) to choose h(x). Our arguments will
show that there exists one of these points closest to x.

Let Λj ⊂ Γ , 1 ≤ j ≤ n, Uj be a collection of disjoint neighborhoods and
denote by U ′ the union of the Uj . Let U be a neighborhood of the attractors.
The proof of the following lemma is straightforward.

Lemma 8. There exists N > 0 such that for each x ∈M , the set {j ≥ 0 :
f j(x) /∈ U ∪ U ′} contains at most N elements.
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Let α be the expansivity constant of the restriction of f to U ∪U ′ (recall
that f is a diffeomorphism from Uj to f(Uj) for Uj ⊂ Γ ). Let ε0 > 0 be such
that f(x) = f(y) implies x = y or d(x, y) > ε0. Let ε < min{α/2, ε0/2}.

If U ′ is sufficiently small and F is the foliation obtained in Lemma 6,
then the following additional property holds: There exist constants δ > 0,
C > 0 and λ > 1 such that d(fn(x)), fn(y)) ≥ Cλnd(x, y) whenever f j(x)
and f j(y) belong to the same leaf of F and d(f j(x), f j(y)) ≤ δ for every
0 ≤ j ≤ n− 1. By changing the metric one can obtain C = 1.

In what follows, U will be a neighborhood of f such that the same prop-
erties hold for g in U .

Lemma 9. Let x and y be points in U ′ such that f(y) = x. If h is
defined in x and d(h(x), x) < ε, then h can be defined in y in such a way
that d(h(y), y) < ε.

Proof. By the choice of ε0 and U , it follows that g−1(h(x)) ∩B(y; ε0/2)
contains just one point, denoted y′. If h(y) is defined as equal to y′, then we
must prove that d(y, y′) < ε.

The proof that follows is inspired by [IPR2, Lemma 2]. Assume first
that Λj ⊂ Γ . Given a positive constant ρ there exists a neighborhood U of
f such that the leaves Fy(f) and H(Fy(f) are ρ-close in the C1 topology.
Then there exists a point z ∈ H(Fy(f)) such that d(z, h(y)) < ρ. It follows
that

d(g(h(y)), g(y)) ≥ d(g(h(y)), g(z))− d(g(z), g(y))

≥ λd(h(y), z)−Kρ ≥ λd(h(y), y)− λρ−Kρ,
where K is taken so that d(g(z1), g(z2)) ≤ Kd(z1, z2) for every g ∈ U and
z1, z2 in M .

On the other hand,

d(g(h(y)), g(y)) = d(h(f(y)), g(y))

≤ d(h(x), x) + d(f(y), g(y)) < ε+ δ,

where δ is the C0 distance between f and g. These inequalities imply that
d(h(y), y) ≤ (ε+δ+ρ(λ+K))λ−1. This is less than ε if δ and ρ are sufficiently
small, which is obtained by diminishing U .

It remains to consider the case where Λj ⊂ E, but here the same argu-
ment (simplified because the basic piece is expanding) applies.

Once a small ε > 0 and an integer N are fixed, there exists ε′ > 0 such
that d(h(f j(x)), f j(x)) < ε′ for some j ≤ N implies d(h(x), x) < ε.

On the other hand, one can make the restriction of h to a neighborhood
U of the attractors as close to the identity as wished, say d(h(y), y) < ε′

whenever y ∈ U . If x ∈ U ′∩B, it is known by Lemma 8 that fk(x) /∈ U ′∩U
for at most N iterates. Using Lemma 9 we conclude:
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Lemma 10. Given ε > 0 there exist a neighborhood U of f and a number
ε′ > 0 such that d(h(y), y) < ε′ for every y ∈ U implies that d(h(x), x) < ε
for every x ∈ U ′ ∩B.

Consequently, d(h(x), x) < ε for every x ∈ B: indeed, this follows by the
previous lemma since x ∈ B stays at most N iterates in B \ (U ∪ U ′). It
remains to prove that h can be extended to the closure of B, which equals M .
If x /∈ B, then there exists q such that fn(x) ∈ U ′ for every n ≥ q. If
y = f q(x) then there exists j such that either y ∈ Λj or y ∈W s(Λj) \Λj for
some j.

Assume y ∈ Λj , and let {zn} be a sequence in B convergent to y. Assume
for contradiction that there exist two subsequences of {h(zn)} converging
to different points. Say h(z′n) → z and h(z′′n) → w. Note that as z and w
belong to Λj(g), one can use the expansivity of g in Λj to ensure that there
exists an integer m such that

(3) d(gm(z), gm(w)) > 2ε.

Once m is fixed, we can choose n large and points fm(z′n) and fm(z′′n) that
are arbitrarily close (if m was negative, then fm(z′n) is the preimage of y
that is closest to fm(y)∩Λj). As h is ε-close to the identity in B, it follows
that

d(h(fm(z′n)), h(fm(z′′n))) < 2ε.

But h(fm(zn)) = gm(h(zn)), so for n large the above contradicts (3).

Consider now the case where y ∈ W s(Λj) \ Λj . Assume for contradic-
tion that there exist two sequences z′n and z′′n in B both converging to y
but such that h(z′n) and h(z′′n) converge to different points z and w. Clearly
z and w belong to H(Fy(f)). It follows now that there exists a positive m
such that d(gm(z), gm(w)) > 2ε. Reasoning as above provides a contradic-
tion.

6. More examples and questions. The construction of the example
in Section 4 allows some generalizations. For instance, one can replace the
fixed attractor by a nonperiodic attractor. The result is a map that is C1

Ω-stable but all its perturbations are not C1 stable, because the unstable
intersections occur in the basin of an attractor that is not periodic, thus
contradicting the Strong Transversality Condition.

Every covering map f of the two-torus induces a linear map on the
homology H1(T 2) = R2. At the same time, a linear map A in the plane
with integer coefficients induces a covering of the two-torus whose induced
map is A. Moreover, the map f belongs to the same homotopy class as the
associated linear map.
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The example of Section 4 induces the linear map
(
2 0
0 1

)
. It is easy to

imitate the idea to produce a C1 stable map whose induced map is the
expanding matrix

(
2 0
0 2

)
.

In both cases, however, the covering is semiconjugate to an expanding
map. Indeed, Przytycki’s example is semiconjugate to z 7→ z2 in S1.

Question 1. Is every C1 stable map in the two-torus semiconjugate to
an expanding map?

An affirmative answer to this question would be very useful towards a
classification of C1 stable maps of the two-torus.

The homotopy class of a diffeomorphism always contains a C1 stable
diffeomorphism; also, the class of an expanding map contains a C1 stable
map.

Question 2. Does every homotopy class contain a C1 stable map?

If the answer to the second question is negative when the manifold is the
two-torus, then the answer to the first question is affirmative.
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Universidad de La República
Julio Herrera y Reissig 565
C.P. 11300, Montevideo, Uruguay
E-mail: jorgei@fing.edu.uy

aldo@fing.edu.uy
leva@cmat.edu.uy

Received 26 November 2011;
in revised form 9 July 2012


	Introduction
	Definitions
	Necessary conditions
	Example
	Sufficient conditions
	Controlling unstable intersections
	Fundamental domains
	Local perturbations
	Construction of unstable foliations
	Construction of the conjugacy on the basins of the attractors
	Extension of h to the whole manifold

	More examples and questions

