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Compactifications of N and Polishable subgroups of S∞

by

Todor Tsankov (Pasadena, CA)

Abstract. We study homeomorphism groups of metrizable compactifications of N.
All of those groups can be represented as almost zero-dimensional Polishable subgroups
of the group S∞. As a corollary, we show that all Polish groups are continuous homomor-
phic images of almost zero-dimensional Polishable subgroups of S∞. We prove a sufficient
condition for these groups to be one-dimensional and also study their descriptive complex-
ity. In the last section we associate with every Polishable ideal on N a certain Polishable
subgroup of S∞ which shares its topological dimension and descriptive complexity.

1. Introduction. It is well known that every compact metrizable topo-
logical space X can be realized in a unique way as the remainder X̃ \ N of

a metrizable compactification X̃ of the countable discrete space of the nat-
ural numbers N (see Propositions 2.1 and 2.3). This allows us to associate

with each compact metrizable X the homeomorphism group H(X̃) and a
certain subgroup of it, called the structure group of X (see Definition 2.5 be-
low). These groups were first studied by Lorch [8], who proved the following
interesting result:

Theorem 1.1 (Lorch). Two compact metrizable spaces are homeomor-

phic if and only if their structure groups are isomorphic.

Both the group H(X̃) and the structure group of X can be viewed as
Polishable subgroups of S∞, the group of all permutations of N (see Proposi-
tion 2.4 below). We study the topological dimension of the Polish topologies
of those groups as well as their descriptive complexity. In particular, we prove
the following (see Theorem 3.1, Corollary 4.7, and Theorem 4.8 below):
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Theorem 1.2. The group H(X̃) is almost zero-dimensional (and thus

at most one-dimensional). It is one-dimensional if the group H(X) contains

a path of finite length (in the natural complete metric of the group). Both

H(X̃) and the structure group of X are Π0
3 subgroups of S∞ and they are

Π0
3-complete iff X is infinite.

As an interesting corollary of the construction, we show the following
(see Corollary 4.11):

Theorem 1.3. Every Polish group is a continuous homomorphic image

of an almost zero-dimensional Polishable subgroup of S∞.

This is related to the open problem of whether every Polish group is a
factor of a zero-dimensional Polish group.

In the last section of the paper we study Polishable ideals on N and certain
almost zero-dimensional Polishable subgroups of S∞ associated with them.

Recall that a topological space is called Polish if it is separable and
completely metrizable; a topological group is Polish if its topology is Polish.
A Borel subgroup H of a Polish group G is called Polishable if there exists
a Polish group topology on H which has the same Borel structure as the
one inherited from G. By [5, 9.10], the Polish topology of a Polishable H is
always finer than the inherited topology. Two examples of Polish groups are
the homeomorphism groups of compact metrizable spaces with the compact-
open topology, which coincides with the uniform convergence topology, and
the group S∞ of permutations of the natural numbers with the pointwise
convergence topology. A complete metric on S∞ is given by

(1) d(f, g) = 2−min{f 6=g} + 2−min{f−1 6=g−1}.

The support of a permutation f ∈ S∞, denoted by supp f , is the set of
points moved by f . For a detailed treatment of Polish spaces and Polish and
Polishable groups, the reader is referred to [5].

In any metric space we will denote by Br(x) the open ball with center
x and radius r. Since we will often work with different topologies on the
same space, to avoid confusion, we will sometimes explicitly mention the
topology, e.g., (X, τ) is the space X with the topology τ . Throughout this
paper, I denotes the unit interval [0, 1] and Q = IN is the Hilbert cube.

2. Compact spaces as remainders of compactifications of N. The
following fact is well known; we include a simple proof, due to H. Toruńczyk,
and note the effectiveness of the construction.

Proposition 2.1. For every compact metrizable space X, there exists a

metrizable compactification X̃ of N (taken with the discrete topology) such

that the remainder X̃ \ N is homeomorphic to X.
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Proof. Fix a countable dense set D = {ak} in X. Set X̃ = X × {0} ∪A,
where A =

⋃
{a1, . . . , an}×{1/n}. Then A is countable, discrete, and dense

in X̃; X̃ is compact as a closed subspace of X × [0, 1].

We will think of the space X̃ as the union X ∪ N and we will also fix
a compatible metric d on X̃. Consider the homeomorphism group H(X̃).
With the topology induced by the metric

∂′(f, g) = sup
x∈X̃

d(f(x), g(x)),

it is a Polish group. The metric ∂′ is not complete but it is equivalent to the
complete metric ∂ defined by

∂(f, g) = ∂′(f, g) + ∂′(f−1, g−1).

Lemma 2.2. Let f : X → X be a homeomorphism and f̃ a homeomor-

phism of X̃ such that f and f̃ agree on X. If g : X → X is another homeo-

morphism and ∂(f, g) < r, then there exists a homeomorphism g̃ of X̃ such

that g̃ extends g and ∂(f̃ , g̃) < r.

Proof. Set ε = (r−∂(f, g))/6. Since f̃ , g, f̃−1, g−1 are all uniformly con-
tinuous, we can find δ < ε so small that

∀x, y ∈ X̃ d(x, y) < δ ⇒ d(f̃(x), f̃(y)) < ε & d(f̃−1(x), f̃−1(y)) < ε,

∀x, y ∈ X d(x, y) < δ ⇒ d(g(x), g(y)) < ε & d(g−1(x), g−1(y)) < ε.

Using a standard back-and-forth argument, we will define a permutation
h : N → N and then will set g̃ = g ∪ h. First find a number N so large that
d(n, X) < δ for all n > N . Find points xn ∈ X such that d(n, xn) = d(n, X)
for each n and note that the set {xn : n ∈ N} is dense in X. Set h0 =

f̃ |
[0,N ]∪f̃−1([0,N ])

.

Now suppose we are at a forward step of the construction, say number
2k−1, and let n = min{N\dom h2k−2}. Find an m such that d(g(xn), xm) <
2−kδ and m /∈ ran h2k−2. Define h2k−1 to agree with h2k−2 on domh2k−2 and
set h2k−1(n) = m. Now we prove that this extension does not move us too

far from f̃ . We have the following estimates:

(2)

d(h2k−1(n), f̃(n)) ≤ d(m, xm) + d(xm, g(xn))

+ d(g(xn), f(xn)) + d(f(xn), f̃(n))

≤ d(g(xn), f(xn)) + 3ε;

d(h−1
2k−1(m), f̃−1(m)) ≤ d(f̃−1(m), f−1(xm)) + d(f−1(xm), g−1(xm))

+ d(g−1(xm), xn) + d(xn, n)

≤ d(f−1(xm), g−1(xm)) + 3ε.
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At a backward step 2k proceed similarly, let m = min{N \ ranh2k−1}.
Find an n such that d(g(xn), xm) < 2−kδ and n /∈ domh2k−1. Define h2k

to agree with h2k−1 on dom h2k−1 and set h2k(n) = m. Then (2) will again
hold with h2k replacing h2k−1.

Set h =
⋃∞

k=0 hk and g̃ = g ∪ h. We will first prove that the g̃ so defined

is a homeomorphism of X̃. It is enough to show that for any sequence {nk},
nk → z ⇒ h(nk) → g(z) for z ∈ X. This is easily seen:

nk → z ⇔ xnk
→ z ⇔ g(xnk

) → g(z)

⇔ xh(nk) → g(z) ⇔ h(nk) → g(z).

Now, using (2), we also check that ∂(f̃ , g̃) < r:

∂(f̃ , g̃) = sup
x∈X̃

d(f̃(x), g̃(x)) + sup
x∈X̃

d(f̃−1(x), g̃−1(x))

≤ ∂′(f, g) + 3ε + ∂′(f−1, g−1) + 3ε = ∂(f, g) + 6ε < r.

The next proposition is essentially contained in [8]. It also follows from
the proof of Lemma 2.2 above.

Proposition 2.3. If X, Y are compact metrizable, f : X → Y is a hom-

eomorphism, X̃ and Ỹ are compactifications of N as above, and X →֒ X̃
and Y →֒ Ỹ are given embeddings onto the remainders, then there exists a

homeomorphism f̃ : X̃ → Ỹ such that the diagram

X̃
f̃

−−−−→ Ỹ
x

x

X
f

−−−−→ Y
commutes.

In particular, Propositions 2.1 and 2.3 show that with every compact
metrizable space we can associate a unique metrizable compactification X̃
of N such that X ∼= X̃ \ N.

Proposition 2.4. The Polish group H(X̃) can be identified with a Pol-

ishable subgroup of S∞.

Proof. Since N is the set of all isolated points in X̃, for every homeo-
morphism f ∈ H(X̃) we must have f(N) = N and f(X) = X. Therefore

the restriction map R : H(X̃) → S∞, R(f) = f |N, is a well defined group

homomorphism. It is injective because N is dense in X̃, and hence a hom-
eomorphism is entirely determined by its action on N. The map R is also
continuous as the composition of the identity map from H(X̃) to the same
space, equipped with the pointwise convergence topology, and the restric-
tion from the latter to S∞ (which also carries the pointwise convergence
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topology). Therefore we can identify H(X̃) with a Borel subgroup of S∞,

which is Polishable because H(X̃) itself is Polish.

Now, following Lorch, we consider the pointwise stabilizer of X in H(X̃).

Definition 2.5 (Lorch). The closed subgroup

H(X) = {f ∈ H(X̃) : ∀x ∈ X f(x) = x}

of H(X̃) is called the structure group of X.

We will write H instead of H(X) if there is no danger of confusion. The

restriction map q : H(X̃) → H(X), q(f) = f |X , is a continuous group homo-
morphism, has kernel H and, by Proposition 2.3, is onto H(X). Therefore H

is a closed normal subgroup of H(X̃), and H(X) ∼= H(X̃)/H as topological
groups.

The restriction of the metric d to N is totally bounded and induces the
discrete topology on N. Let UH(N, d) denote the group of all uniform homeo-
morphisms of N with respect to the metric d (i.e., all uniformly continuous
permutations N → N with uniformly continuous inverses). UH(N, d) be-
comes a topological group with the uniform convergence topology. It is clear
that any f ∈ UH(N, d) extends to a homeomorphism f̃ of X̃, and conversely,

any homeomorphism of X̃ restricts to a uniform homeomorphism of N. It is
easy to check that this correspondence is a topological group isomorphism
between H(X̃) and UH(N, d), so from now on we can identify these two
groups.

As was pointed out by A. S. Kechris, this viewpoint may also be rele-
vant to the problem of characterizing the complexity of homeomorphism of
compact metrizable spaces. More precisely, in view of the universality of the
Hilbert cube Q (cf. [5, 4.14]), we can think of the hyperspace K(Q) of all
compact subsets of Q (equipped with the Vietoris topology) as the space
of all compact metrizable spaces and define the equivalence relation Eh on
K(Q) by

K Eh L ⇔ K is homeomorphic to L.

Similarly, we can consider the Borel set D ⊆ IN×N consisting of all totally
bounded, discrete metrics on N of diameter not greater than 1 and define
the equivalence relation Eu on D by

d1 Eu d2 ⇔ (N, d1) and (N, d2) are uniformly homeomorphic.

For two equivalence relations E and F defined on the standard Borel spaces
X and Y , respectively, we write E≤B F if there exists a Borel map f : X→Y
satisfying

xE y ⇔ f(x)F f(y).
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If E ≤B F and F ≤B E, we say that E and F are Borel bireducible. See [6]
and the references therein for general background on the theory of equiv-
alence relations and [4, Chapter 10] for more details on different (open)
classification problems.

We have the following corollary from Propositions 2.1 and 2.3:

Corollary 2.6. Eh and Eu are Borel bireducible.

Proof. First construct a map K(Q) → D which reduces Eh to Eu. Given
K ∈ K(Q), by [5, 12.13], we can find in a Borel way a dense countable
subset of K and then use the construction from the proof of Proposition 2.1
to define a metric on N. Proposition 2.3 shows that this map is indeed a
reduction.

Conversely, to reduce Eu to Eh, consider first the inclusion map i : D →
QN = IN×N. By the proof of [5, 4.14] and using the total boundedness of the
elements of D, if we consider i(d), d ∈ D, as a countable subset of Q, then
the closure of i(d) in Q is homeomorphic to the completion of (N, d). The
closure map c : QN → K(Q) defined by c((an)) = {an : n ∈ N} is Borel and
the composition c ◦ i is the desired reduction.

3. Descriptive complexity of H(X̃) and H(X). Both H(X̃) and
H(X) are Borel subgroups of S∞, so we can ask where they fit in the Borel
hierarchy.

Theorem 3.1. If X is a one-point space, then H(X̃) = H(X) = S∞.

If X has more than one but finitely many points, both H(X̃) and H(X)

are Σ0
2-complete. Finally , if X is infinite, both H(X̃) and H(X) are Π0

3-

complete.

Proof. Put G = H(X̃) and H = H(X). The first statement of the theo-
rem is obvious. Let now X = {xi}

k
i=0 be finite and, without loss of generality,

assume that d(xi, xj) = 1 for i 6= j. Then Σ0
2 descriptions of G and H are

given by:

f ∈ G ⇔ ∃σ ∈ Sk+1 ∃δ ∀m ∈ N d(m, xi) < δ ⇒ d(f(m), xσ(i)) < 1/2,

f ∈ H ⇔ ∀i ≤ k ∃δ ∀m ∈ N d(m, xi) < δ ⇒ d(f(m), xi) < 1/2.

Neither G nor H can be Gδ because they both contain the permutations
with finite support, which are dense in S∞ (see Exercise 9.11 in [5]).

Let finally X be infinite and {ak}
∞
k=0 be a countable dense set. First of

all, the following are Π0
3 descriptions of G and H:

f ∈ G ⇔ ∀ε ∃δ ∀m, n ∈ N d(m, n) < δ ⇒ d(f(m), f(n)) < ε,

f ∈ H ⇔ f ∈ G & (∀ε ∃δ ∀k ∀m ∈ N d(m, ak) < δ ⇒ d(f(m), ak) < ε).
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Now consider the Π0
3-complete set C ⊆ 2N×N defined by

A ∈ C ⇔ ∀n {k : (n, k) ∈ A} is finite.

(We look at the elements of 2N×N as subsets of N×N. For more information
on Π0

3-complete sets, see [5, 23.A].) We will construct a continuous map
Φ : 2N×N → S∞ such that

(3) (A ∈ C ⇒ Φ(A) ∈ H) & (A /∈ C ⇒ Φ(A) /∈ G),

so Φ is a reduction of C to both G and H. Fix a convergent sequence {xk}
∞
k=0

of distinct elements of X, xk → y, and let {bk,j} be a 2-indexed sequence of
distinct elements of N satisfying the following conditions:

(i) ∀k, j d(bk,j, xk) < 2−(k+j),
(ii) N \ {bk,j : k, j ∈ N} is dense in X.

Note that a sequence {bkn,jn
}∞n=0 converges to a point of X iff either kn → ∞

(in which case bkn,jn
→ y), or kn is eventually constant and jn → ∞ (then

bkn,jn
→ xlim kn

). Now define Φ(A) =
∏

(k,j)∈A(b2k,j b2k+1,j), where (m n)

denotes the transposition in S∞ which switches m and n. If A ∈ C, then the
only limit point of suppΦ(A) is y and it is easy to see that Φ(A) ∪ idX is a

homeomorphism of X̃. If, on the other hand, A /∈ C, then any continuous
extension of Φ(A) to X must switch x2k and x2k+1 for some k, which is
impossible because of (ii). Hence Φ(A) /∈ G and (3) is verified.

4. Topological properties of the groups H(X̃) and H(X). On the

groups H(X̃) and H(X) we have two natural topologies, the Polish topology
τ and the topology σ inherited from S∞, i.e., the topology of pointwise
convergence on N. Clearly σ ⊆ τ . We have the following easy fact.

Proposition 4.1. (H, τ) is zero-dimensional.

Proof. Note first that if f, g ∈ H then there exists a ∈ N such that
∂′(f, g) = d(f(a), g(a)). We will now show that every open ball Br(1H) in
H is also closed. Indeed, let {gn} be a sequence in Br(1) such that gn →
g ∈ H. There exists a ∈ N for which ∂′(1H , g) = d(a, g(a)) but for some n,
gn(a) = g(a) (because convergence in the topology of H implies convergence
in the coarser topology of S∞). Therefore, for this n,

∂′(1H , g) = d(a, gn(a)) ≤ ∂′(1H , gn) < r.

Hence g ∈ Br(1H) and the proof is complete.

To continue our analysis, we need the notion of almost zero-dimension-
ality, introduced in Oversteegen–Tymchatyn [10]. Recall that a basis for a
topological space X is a collection B of (not necessarily open) subsets of X
such that for every open U ⊆ X and every x ∈ U , there exists B ∈ B with
B ⊆ U and x contained in the interior of B. Similarly, we say that B is a
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neighborhood basis at the point x if for every open U containing x, there
exists B ∈ B with B ⊆ U and x contained in the interior of B. An open

basis is a basis consisting of open sets.

Definition 4.2 ([10, 2]). A separable metrizable space is almost zero-

dimensional if there exists a basis for its topology consisting of intersections
of clopen sets.

Note that almost zero-dimensionality is a hereditary property. An im-
portant fact about almost zero-dimensional spaces is the following:

Theorem 4.3 (Oversteegen–Tymchatyn [10], cf. Levin–Pol [7]). Every

almost zero-dimensional space is at most one-dimensional.

The original definition of almost zero-dimensionality Oversteegen and
Tymchatyn used to prove their theorem is somewhat different from Defini-
tion 4.2 (which we borrowed from Dijkstra–van Mill–Steprāns [2]) but the
equivalence of the two definitions is proved in [2]. Almost zero-dimensional
topologies are intimately related to certain coarser zero-dimensional topolo-
gies on the same space. This was noticed by van Mill and Dijkstra who
suggested the following

Definition 4.4. Let (X, T ) be a separable metrizable space. We say
that a separable metrizable zero-dimensional topology W on X witnesses

the almost zero-dimensionality of (X, T ) if W ⊆ T and (X, T ) has a basis
consisting of closed sets of W .

As S. Solecki pointed out, using a result of his, we can exactly determine
when the topology of a zero-dimensional Polish group witnesses the almost
zero-dimensionality of a Polishable subgroup. To do this, we shall need some
of the machinery developed in Solecki [13].

Let (H, τ) be a Polishable subgroup of a Polish group (G, σ) and {Vn :
n ∈ N} be an open neighborhood basis at 1 for (H, τ), satisfying the condi-
tions

(4) Vn = V −1
n and V 3

n+1 ⊆ Vn.

Let Fn = V
σ
n and for x, y ∈ G, define

δl(x, y) = inf{2−k : x−1y ∈ Fk}, δr(x, y) = inf{2−k : xy−1 ∈ Fk},

and

dl(x, y) = inf
{n−1∑

i=0

δl(xi, xi+1) : x0 = x, xn = y, xi ∈ G
}

and similarly for dr. Then

H̃ = {g ∈ G : ∀V ((1 ∈ V & V is τ -open)(5)

⇒ ∃h1, h2 ∈ H g ∈ h1V
σ
∩ V h2

σ
)}
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is a Π0
3 Polishable subgroup of G with a Polish topology τ̃ defined by the

metric ̺ = dl + dr restricted to H̃. Furthermore,

(6) δl ≥ dl ≥
1
2δl and δr ≥ dr ≥ 1

2δr.

H is a dense subgroup of (H̃, τ̃) and for any Π0
3 set A ⊆ G with H ⊆ A,

A ∩ H̃ is comeager in (H̃, τ̃). For all of the above, see [13].

Lemma 4.5. Let {Bn} be an arbitrary basis at 1 for (H, τ). Then B̃n =

B
σ
n ∩ H̃ defines a basis at 1 for H̃.

Proof. For each k ∈ N, let Ũk ⊆ H̃ be the open ball (in the metric ̺)
with center 1 and radius 2−k. Fix k and find n such that Bn ⊆ Vk+2. Then

B̃n ⊆ Fk+2 and for any x ∈ B̃n,

dl(1, x) ≤ δl(1, x) ≤ 2−(k+2) < 2−(k+1)

and similarly dr(1, x) < 2−(k+1). Hence ̺(1, x) < 2−k and B̃n ⊆ Ũk.
Conversely, for a fixed n, find k such that Vk ⊆ Bn. Then for any x ∈

Ũk+1,
δl(1, x) ≤ 2dl(1, x) ≤ 2̺(1, x) < 2−k.

Hence x ∈ Fk ∩ H̃ ⊆ B̃n, Ũk+1 ⊆ B̃n and we are done.

Proposition 4.6. Let (G, σ) be a zero-dimensional Polish group and

(H, τ) a Polishable subgroup. Then the following are equivalent :

(i) H is Π0
3 in G;

(ii) σ|H witnesses the almost zero-dimensionality of (H, τ);
(iii) every open set in (H, τ) is Σ0

2 in (H, σ|H).

Proof. (i)⇒(ii). Let (H̃, τ̃) be defined as in (5). Since H is Π0
3, by [13],

H is comeager in H̃, so we must have H̃ = H (see [5, Exercise 9.11]). Then

the basis {B̃n} of closed sets of σ|H , defined in Lemma 4.5 (starting with
an arbitrary basis {Bn} of H), shows that (ii) is true.

(ii)⇒(iii). Let B be a basis for τ consisting of closed sets in σ|H . Since
τ is Lindelöf, every open set is a countable union of elements of B and thus
Σ0

2(σ|H).
(iii)⇒(i). This follows easily from a result in Farah–Solecki [3]. For A ⊆

G and a τ -open V ⊆ H, we define the Vaught transform A△V as

A△V = {g ∈ G : {h ∈ H : hg ∈ A} is non-meager in (V, τ)}.

We will use a claim from the proof of [3, Theorem 3.1].

Claim. For A ⊆ G, A ∈ Σ0
2(σ) and any τ -open U ⊆ H, A△U ∩ H̃ is

τ̃ -open.

Let V be any open τ -neighborhood of 1 in H. Since V ∈ Σ0
2(σ|H), there

exists A ⊆ G such that A ∈ Σ0
2(σ) and A ∩ H = V . Then 1 ∈ A△V and
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by the Claim, A△V ∩ H̃ is τ̃ -open. Therefore A△V ∩ H is τ̃ |H-open and it
is not hard to check that A△V ∩ H ⊆ V −1V . For any τ -open neighborhood
U of 1, we can find V as above with V −1V ⊆ U . Furthermore, (H, τ) is

a Polishable subgroup of (H̃, τ̃) and by [5, 9.10], τ̃ |H ⊆ τ . Thus the set
{A△V ∩H : V is a τ -neighborhood of 1} (where A depends on V ) is a basis
at 1 for τ consisting of τ̃ |H-open sets and hence τ̃ |H = τ . Therefore (H, τ̃ |H)

is a Polish subgroup of H̃. Since H is dense in H̃, we must have H = H̃ (see
[5, Exercise 9.11]).

Now, going back to the group H(X̃), by Theorem 3.1, it is Π0
3 in S∞,

hence Proposition 4.6 applies and we have the following corollary.

Corollary 4.7. (H(X̃), τ) is almost zero-dimensional.

H(X̃) can be zero-dimensional, e.g., if X is a one-point space, then

H(X̃) ∼= S∞. Below we give a sufficient condition for (H(X̃), τ) not to be
zero-dimensional. Recall that the length of a path f : [a, b] → Y in a metric
space (Y, d) is defined as

len(f) = sup
{n−1∑

i=0

d(f(xi), f(xi+1)) : a = x0 < x1 < · · · < xn = b
}
.

If x, y ∈ [a, b] write len(x, y) for the length of the path f |[x,y].

Theorem 4.8. If the group H(X) has the property that there exists a

homeomorphism g 6= idX which can be connected to idX via a path of finite

length (in the complete metric ∂), then H(X̃) is not zero-dimensional.

Proof. Put G = H(X̃), K = H(X) and let f be a path of finite length
defined on the unit interval [0, 1] with f(0) = 1K and f(1) = g 6= 1K . Set
r = ∂(1K , g). The quotient map q : G → K is Lipschitz and by Lemma 2.2
it sends open balls to open balls of the same radius. Suppose that G is
zero-dimensional; then there exists a clopen set U ⊆ Br(1G). Towards a

contradiction, define inductively transfinite sequences {tα}, {hα} and {h̃α},
α < ω1, of elements of [0, 1], K and G, respectively, satisfying the following
conditions:

• f(tα) = hα = q(h̃α); h̃α ∈ U ;
• α < β ⇒ tα < tβ;

• ∂(h̃α, h̃β) ≤ 2 len(tα, tβ).

Set t0 = 0, h0 = 1K , h̃0 = 1G. Suppose that the sequences have been defined
for α < β. If β = γ + 1 is a successor, find ε with 0 < ε < ∂(hγ , g) such that

Bε(h̃γ) ⊆ U . Set tβ = sup{t ∈ [tγ , 1] : ∂(hγ , f(t)) = ε/2} and hβ = f(tβ).

Using Lemma 2.2, find h̃β ∈ G satisfying q(h̃β) = hβ, ∂(h̃γ , h̃β) < 3ε/4, and

hence, h̃β ∈ U . Finally, to verify the third condition, notice that for any
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α < β,

∂(h̃α, h̃β) ≤ ∂(h̃α, h̃γ) + ∂(h̃γ , h̃β) ≤ 2 len(tα, tγ) + 3ε/4

< 2 len(tα, tγ) + 2∂(hγ, hβ) ≤ 2 len(tα, tβ).

Now consider the case when β < ω1 is a limit ordinal. Since β is countable,
there exists an increasing sequence {γn} with lim γn = β. By compactness

of [0, 1], tγn
converges. By the inductive hypothesis,

∑
n ∂(h̃γn

, h̃γn+1
) ≤

2
∑

n len(tγn
, tγn+1

) < ∞, so {h̃γn
} is Cauchy and therefore converges. Set

h̃β = lim h̃γn
, hβ = q(h̃β), tβ = lim tγn

. By continuity, f(tβ) = hβ and

h̃β ∈ U because U is closed. Now fix α < β and verify the last condition:

∂(h̃α, h̃β) = lim
n→∞

∂(h̃α, h̃γn
) ≤ sup

n
2 len(tα, tγn

) ≤ 2 len(tα, tβ).

As a result of the construction, we obtain an order preserving embedding
ω1 → [0, 1], which is clearly impossible.

Proposition 4.9. There exists a path f : [1/2, 3/4] → H(I) with idI =
f(1/2) 6= f(3/4) and of finite length (in the complete metric ∂).

Proof. For each t ∈ [1/2, 3/4], consider the homeomorphism f(t) : I → I
which maps linearly [0, 1/2] onto [0, t] and [1/2, 1] onto [t, 1]. It is easy to
see that ∂(f(t), f(s)) ≤ 3|t − s|, so we have our path.

Endow the Hilbert cube Q = IN with its standard metric

d((x0, x1, . . . ), (y0, y1, . . . )) =
∞∑

n=0

2−n|xn − yn|.

Then we have the following

Corollary 4.10. There is a path f : [1/2, 3/4] → H(Q) of finite length

with idQ = f(1/2) 6= f(3/4), and hence H(Q̃) is one-dimensional.

Proof. The map i : H(I) → H(Q) defined by

i(h)(x0, x1, . . . ) = (h(x0), x1, . . . )

is an isometric embedding.

It is an open problem whether every Polish group is a homomorphic
image of a zero-dimensional Polish group. However, we have the following
interesting corollary, again pointed out by Kechris:

Corollary 4.11. Every Polish group is a factor of an almost zero-

dimensional Polishable subgroup of S∞.

Proof. Let K be a Polish group. It is well known that H(Q) is a universal
Polish group (see Uspenskĭı [15]), hence there exists an embedding i : K →

H(Q) onto a closed subgroup of H(Q). Let q : H(Q̃) → H(Q) be the quotient

map. Then q−1(i(K)) is a closed subgroup of H(Q̃) and q−1(i(K))/H ∼= K.
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Remark. Corollary 4.11 is false if we restrict ourselves to closed sub-
groups of S∞. In fact, using the characterization that the closed subgroups
of S∞ are exactly the Polish groups which admit a basis at the identity
consisting of open subgroups (see Becker–Kechris [1, Theorem 1.5.1]), it is
not hard to show that any factor of a closed subgroup of S∞ is isomorphic
to a closed subgroup of S∞.

5. Polishable ideals on N. Recall that an ideal on N is a collection
of subsets of N closed under finite unions and taking subsets. To avoid
trivialities, we will also assume that every ideal contains the ideal of finite
sets Fin. An ideal is called Polishable if it is a Polishable subgroup of the
Cantor group 2N (with symmetric difference as the group operation). A lower

semicontinuous (or lsc) submeasure on N is a function φ : P(N) → [0,∞]
satisfying

• φ(∅) = 0;
• a ⊆ b ⇒ φ(a) ≤ φ(b) for any a, b ⊆ N;
• φ(a ∪ b) ≤ φ(a) + φ(b); φ({n}) < ∞ for n ∈ N;
• φ(

⋃
k ak) = limk φ(ak) whenever a0 ⊆ a1 ⊆ · · · .

With every lsc submeasure we associate the following two ideals:

Exh(φ) = {a ⊆ N : lim
n

φ(a \ n) = 0}, Fin(φ) = {a ⊆ N : φ(a) < ∞}.

(As is customary, we identify the natural number n with the set of its pre-
decessors.) It is easy to see that Exh(φ) ⊆ Fin(φ) and Fin(φ) is Σ0

2, while
Exh(φ) is Π0

3 in 2N. Since the ideals Exh(φ) and Fin(φ) do not change if we
replace φ with the submeasure φ′ defined by φ′(a) = φ(a) +

∑
n∈a 2−n, we

can restrict our considerations to submeasures φ satisfying φ({n}) > 0 for
all n. An ideal I is called a P-ideal if for every sequence {an} of elements
of I there exists a ∈ I such that an \ a is finite for all n. The following is a
summary of the results of Solecki [12, 11] which we shall need.

Theorem 5.1 (Solecki). An ideal I is an analytic P-ideal iff it is Pol-

ishable iff there exists a finite, lsc submeasure φ with I = Exh(φ). I is Σ0
2

Polishable iff there exists a lsc φ with I = Exh(φ) = Fin(φ).

If I = Exh(φ), then the Polish topology on I is induced by the metric
d(a, b) = φ(a △ b), where △ denotes the operation of symmetric difference.

We say that two ideals I and J are isomorphic if there exists a permu-
tation f : N → N such that a ∈ I ⇔ f(a) ∈ J . We denote the trivial ideal
P(N) simply by N. If I and J are ideals on N then I⊕J is the ideal on N×2
defined by

I ⊕ J = {a × {0} ∪ b × {1} : a ∈ I & b ∈ J}.
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An ideal is a trivial modification of Fin if it is of the form {a : a∩b is finite}
for some b ⊆ N. If an ideal I is Polishable, we will denote the topological
space I with its Polish topology by Iτ . Since every Polishable ideal is Π0

3,
Proposition 4.6 implies that Iτ is almost zero-dimensional, as witnessed by
the topology inherited from the compact group 2N. It is also easy to check
that (I ⊕ J)τ is homeomorphic to Iτ × Jτ .

We associate with each Polishable ideal I the subgroup SI ≤ S∞ defined
by

SI = {f ∈ S∞ : supp f ∈ I}.

Below we will make use of a lemma which can be proved in the same
way as the fact that all automorphisms of S∞ are inner. A very detailed
exposition can be found in Lorch [9].

Lemma 5.2. If G1 and G2 are isomorphic subgroups of S∞, both con-

taining all permutations with finite support , then they are conjugate, i.e.,
there exists f ∈ S∞ such that G2 = f−1G1f .

Theorem 5.3. With the above definition, SI is a Polishable subgroup

of S∞ which is almost zero-dimensional in its Polish topology. It is zero-

dimensional iff Iτ is zero-dimensional. The Borel complexity of SI in S∞

and I in 2N is the same. Furthermore, the groups SI and SJ are isomorphic

(algebraically) iff I and J are isomorphic ideals.

Proof. Let φ be a lsc submeasure such that I = Exh(φ). The group SI

acts on I in a natural way: g · a = {g(n) : n ∈ a}. The first thing we will
check is that this action is continuous in the second variable, i.e.,

(7) ∀g ∈ SI ∀ε ∃δ ∀a ∈ I φ(a) < δ ⇒ φ(g · a) < ε.

(Continuity at ∅ is sufficient because g · (a△b) = (g · a)△(g · b).) Fix g ∈ SI

and ε > 0. Find N ∈ N such that φ(supp g ∩ [N,∞)) < ε/2, and δ < ε/2 so
small that φ(a) < δ ⇒ a∩g−1 · [0, N) = ∅. Now for any a ∈ I with φ(a) < δ,
we have

φ(g · a) ≤ φ(a ∪ (supp g ∩ [N,∞))) ≤ φ(a) + φ(supp g ∩ [N,∞)) < ε.

Define the left invariant metric ∂′ on SI by ∂′(f, g) = φ({f 6= g}). It
is clear that every open ball in this metric is Borel in S∞. We next check
that multiplication is continuous. Fix f0, g0 ∈ SI and ε > 0. Using (7), find
δ < ε/2 so small that φ(a) < δ ⇒ φ(g−1

0 · a) < ε/2. Now for any f, g ∈ SI

with max(∂′(g, g0), ∂
′(f, f0)) < δ, we have

∂′(fg, f0g0) = φ({fg 6= f0g0}) ≤ φ({g 6= g0}) + φ({fg0 6= f0g0})

= ∂′(g, g0) + φ(g−1
0 · {f 6= f0}) ≤ ε/2 + ε/2 = ε.

The map f 7→ f−1 is continuous because the metric is left invariant and
multiplication is continuous. The next thing we show is that the metric
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∂(f, g) = ∂′(f, g)+∂′(f−1, g−1) is complete. Let {fn} be a Cauchy sequence
in this metric. Without loss of generality, we can assume that φ({n}) ≥ 2−n,
so ∂ dominates the standard complete metric on S∞ (1). Therefore the
pointwise limit g = limn fn exists. We check that g ∈ SI . Fix ε > 0 and
N ∈ N such that φ({fm 6= fn}) < ε/4 for all m, n > N . Fix m > N .
Let M ∈ N be so large that φ(supp fm \ M) < ε/4. Suppose, towards a
contradiction, that φ(supp g \ M) > ε. Then there is M1 > M such that
φ(supp g ∩ [M, M1]) > ε/2. Find k > N such that fk agrees with g on
[0, M1]. Then φ(supp fk \ M) > ε/2, which contradicts the choice of N
and M . Therefore supp g ∈ Exh(φ) = I. Now it remains to check that
φ({fn 6= g}) → 0. Again fix an ε and find N such that φ({fm 6= fn}) < ε/2
for all m, n > N . Fix m > N . Let M be such that φ({fm 6= g} \ M) < ε/2.
Find n > m such that fn and g agree on M . Then

φ({fm 6= g}) ≤ ε/2 + φ({fm 6= g} ∩ M) = ε/2 + φ({fm 6= fn} ∩ M) < ε.

Finally, the topology defined by ∂ is separable because the group of
permutations with finite support is dense in SI (since φ(supp f \ n) → 0 for
all f ∈ SI and thus permutations in SI can be approximated in the metric
∂′ by permutations of finite support). This completes the proof that SI is
Polishable.

If I = Fin or I = N, the remaining statements are clear. Suppose now
that this is not the case and let b /∈ I be an infinite set such that N \ b
is infinite and in I. Fix a bijection h between b and N \ b. Let I ′ = I|b =
{a ∩ b : a ∈ I} = Exh(φ|b). Then I ′ is Polishable and I ∼= I ′ ⊕ N. Let
p : 2N = 2b × 2N\b → 2b be the projection and consider the continuous maps
Φ : S∞ → 2N and Ψ : 2b → S∞ defined by

Φ(f) = supp f and Ψ(a) =
∏

n∈a

(n h(n)).

By the definition of SI , f ∈ SI ⇔ Φ(f) ∈ I. Furthermore, for a ∈ 2b,
suppΨ(a) = a ∪ h(a) and hence

a ∈ I ⇔ p(a) ∈ I ′ ⇔ Ψ(p(a)) ∈ SI .

Those reductions prove the statement about the Borel complexity of I
and SI . The fact that SI is Π0

3, together with Proposition 4.6, implies that
the Polish topology of SI is almost zero-dimensional.

Let now Iτ be zero-dimensional and {Uk} be a clopen basis at ∅. Then
{Φ−1(Uk)} is a clopen basis for SI at 1. Conversely, if SI is zero-dimensional,
notice that Ψ(I ′) = Ψ(2b)∩SI is a closed subgroup of SI and hence the group
homomorphism Ψ |I′ : I ′ → SI is a homeomorphic embedding I ′τ →֒ SI .
Therefore I ′τ is zero-dimensional and since Iτ ∼= I ′τ × 2N, Iτ is also zero-
dimensional.

The last statement is a direct consequence of Lemma 5.2.
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Finally, we use our methods from the proof of Theorem 4.8 to sketch an
alternative proof of the following fact, due to Solecki:

Proposition 5.4 (Solecki [14]). For a Σ0
2 Polishable ideal I, the follow-

ing are equivalent :

(i) Iτ is zero-dimensional ;
(ii) I is a trivial modification of Fin.

Proof. (ii)⇒(i). Let I = {a : a ∩ b is finite} for some b ⊆ N. If b is
finite, then I = N. If b is co-finite, then I = Fin. Finally, if b is infinite and
co-infinite, I = N ⊕ Fin and Iτ ∼= Finτ ×Nτ ∼= N × 2N is zero-dimensional.

(i)⇒(ii). Use Theorem 5.1 to find a lsc submeasure φ such that I =
Exh(φ) = Fin(φ). Suppose, towards a contradiction, that Iτ is zero-dimen-
sional but (ii) is not satisfied. Then it is not hard to see that

(8) ∀ε > 0 {n : φ({n}) < ε} /∈ I.

Indeed, if not, find ε > 0 with {n : φ({n}) < ε} ∈ I and set b = {n :
φ({n}) ≥ ε}. Then I = {a : a ∩ b is finite}, a contradiction. Let U ⊆ {a :
φ(a) < 1} be clopen. We will construct inductively a transfinite sequence
{aα}α<ω1

of elements of U satisfying α < β ⇔ aα ( aβ , thus obtaining
the desired contradiction. Start with a0 = ∅. At successor steps, given aβ,
use the openness of U and (8) to find n /∈ aβ such that aβ ∪ {n} ∈ U and
set aβ+1 = aβ ∪ {n}. At a limit α set aα =

⋃
β<α aβ and limn aγn

= aα in
the Polish topology of I for any sequence {γn} cofinal in α (use I = Exh(φ)
here). Hence aα ∈ U .

References

[1] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions,
London Math. Soc. Lecture Note Ser. 232, Cambridge Univ. Press, Cambridge, 1996.

[2] J. J. Dijkstra, J. van Mill and J. Steprāns, Complete Erdős space is unstable, Math.
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