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Kelley’s specialization of Tychonoff’s Theorem
is equivalent to the Boolean Prime Ideal Theorem

by

Eric Schechter (Nashville, TN)

Abstract. The principle that “any product of cofinite topologies is compact” is equiv-
alent (without appealing to the Axiom of Choice) to the Boolean Prime Ideal Theorem.

1. Introduction. The principle that is nowadays commonly known (1)
as Tychonoff’s Theorem states that

(TT) any product of compact spaces is compact,

when the product space is equipped with the product topology. It was proved
in 1930s by several methods, all using the Axiom of Choice (?) (AC). In
1950 John L. Kelley published a proof of the converse, TT = AC, thus
demonstrating equivalence of the two principles. His proof contained a very
minor error (®), which is easily corrected. This was mentioned by FLo$ and
Ryll-Nardzewski in 1951; a corrected proof was published by Plastria in 1972.
Incidentally, Plastria’s proof also shows that TT and AC are equivalent to
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(*) Actually, what Tychonoff himself proved is the more specialized result T'T;, listed
later in this section. The formulation that we are calling TT was given later by Cech.

(?) The Axiom of Choice, in its simplest form, says that any product of nonempty sets
is nonempty; we may arbitrarily choose a member from each of those nonempty sets. For
the benefit of any newcomers to this subject, we restate the axiom in other terms: AC is
a nonconstructive assertion of existence, requiring a formalist philosophy of mathematics.
When we accept AC, we are agreeing to the convention that, even if we are unable to
exhibit a particular example of a member of a product of nonempty sets, we are still
permitted to use a hypothetical member of that product in proofs, as though it exists in
some sense.

(*) Unfortunately, Kelley’s error was propagated in my book [9]. I am grateful to
Michael Greinecker for bringing it to my attention.
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the statement that any product of compact T spaces is compact; see related
remarks at the end of this section.
Kelley had argued TT = TT¢ = AC, using the intermediate principle

(TT¢) any product of cofinite topologies is compact,

but his proof of = was faulty. Plastria’s corrected proof of TT = AC did
not involve TT¢, and left open this question: Is the implication = true but
unproved, or is it actually false?

In this note we shall show that = is false. It turns out that TT is equiv-
alent to the Boolean Prime Ideal Theorem (BPI), a principle well known (%)
to be strictly weaker than AC.

This note is not actually concerned with Boolean prime ideals. We have
mentioned BPI only as an identifier; it is the most famous of a whole family
of principles known to be equivalent to one another. Here are four members
of that family:

(TTy) 27 is compact for any set .J, if 2 = {0, 1} has the discrete topology.

(TT;) [0,1])7 is compact, for any set J.

(TT}) Any product of compact Hausdorff spaces is compact.

(U) A topological space P is compact if and only if every universal net
in P converges to at least one limit in P.

Obviously Kelley’s principle TT.s implies Mycielski’s principle TTs. To es-
tablish equivalence, we shall show that the universal net principle U im-
plies TT .

TT}, and TTs have often been useful in the study of equivalents of BPI,
because a number of compactness principles C are trivially seen to satisfy
TTy, = C = TTs. However, Kelley’s principle TTs does not yield to that
analysis; the cofinite topology on any infinite set is T; but not Hausdorff.

2. Tutorial on nets. Some readers may be unfamiliar with nets and
with universal nets; to make this paper self-contained, we now give a brief
tutorial on that subject. A more detailed introduction can be found in [5]
or [9].

Sequences (zp : n € N) are useful tools in metric spaces and in some
other topological spaces. For analogous tools in arbitrary topological spaces
one may turn to nets (also known as generalized sequences or as Moore—
Smith sequences). These may be written in the form (x5 : § € D), where the
subscripts § are members of any directed set—i.e., a set D whose ordering
< is reflexive and transitive and has the further property that each finite
subset of D has a <-upper bound in D.

(*) Proved by Halpern and Lévy [2]. See [3], [9], and sources cited therein for further
discussion of AC, BPI, and their relatives.
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A net (z5) is said to satisfy some condition eventually if the condition is
satisfied by x; for all ¢ later than some dg. A net (z4) is universal if for each
set S we have either eventually x5 € S or eventually z5 ¢ S. For example, if
a net is eventually constant, then it is universal (°). Conversely, if a universal
net takes values in a finite set, then the net must be eventually constant.

In a topological space, we say that a net (z5) is convergent to a limit z
(written x5 — 2) if x5 is eventually in each neighborhood of z. In particular,
any eventually constant net is convergent. A net converges in a product
topology if and only if it converges coordinatewise; that is, x5 — z in Hj Y;
if and only if x5; — z; in each Yj.

3. Main results

MURANOV’S LEMMA (%).  Suppose that (z5) is a universal net in a set
equipped with the cofinite topology. Then either (x5) converges to every point
in the space, or (x5) is eventually constant.

Proof (without using AC or BPI). Suppose there is at least one point z to
which the net does not converge. Then z has at least one open neighborhood
G for which we do not eventually have x5 € . Since the net is universal,
eventually x5 € CG, where [ denotes complement.

Now G is nonempty (since it contains z), and it is an open set in a cofinite
topology. Thus (G is finite. Therefore (x4) is eventually constant. m

Proof of U = TT¢. Let {Y; : j € J} be a collection of topological
spaces, each equipped with the cofinite topology. We are to show that the
product topology on P = HjeJYj is compact. Since the only topology on
the empty set is a compact topology, we may assume that P is nonempty.
Thus we may assume that we are given some particular point u € P; its jth
coordinate is some particular u; € Y.

Let (z5 : § € D) be a universal net taking values in P. In view of prin-
ciple U, it suffices to show that (z;) has at least one limit in P. Since con-
vergence of nets in product topologies is coordinatewise, it suffices to show
that

H{limits of (x5;)} is nonempty,
Jj€J

(%) Strangely, although there are other universal nets besides the eventually constant
ones, there are no other ezamples of universal nets; the existence arguments are all inher-
ently nonconstructive. This makes universal nets difficult to visualize, which may be why
many mathematicians are reluctant to use them. Nontrivial universal nets are a triumph
of formalism: One might say that in this paper we are not really working with the universal
nets themselves, but rather with sentences about hypothetical universal nets.

(5) I am grateful to Alexey Muranov, who extracted this lemma from an earlier version
of my paper and thereby simplified things greatly.
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i.e., that we can choose a member of this product. But we may not use
the Axiom of Choice, since we are trying to prove the equivalence of U and
TT. as weakenings of AC. Thus, what we actually must show is how to
nonarbitrarily choose a particular limit z; of the projected net (zs;) in each
factor space Yj.

We easily verify that (z5;) is universal in Y;. Thus Muranov’s Lemma is
applicable. Now choose z; nonarbitrarily, by this rule:

o If (x5;) converges to every member of Y}, then take z; = u;.
e Otherwise, (z5;) is eventually constant; let z; be the constant value
that the net eventually assumes.

In either case, we have selected a particular z; for which z5; — z;. =
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