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Kelley's spe
ialization of Ty
hono�'s Theoremis equivalent to the Boolean Prime Ideal TheorembyEri
 S
he
hter (Nashville, TN)
Abstra
t. The prin
iple that �any produ
t of 
o�nite topologies is 
ompa
t� is equiv-alent (without appealing to the Axiom of Choi
e) to the Boolean Prime Ideal Theorem.1. Introdu
tion. The prin
iple that is nowadays 
ommonly known (1)as Ty
hono�'s Theorem states that(TT) any produ
t of 
ompa
t spa
es is 
ompa
t,when the produ
t spa
e is equipped with the produ
t topology. It was provedin 1930s by several methods, all using the Axiom of Choi
e (2) (AC). In1950 John L. Kelley published a proof of the 
onverse, TT ⇒ AC, thusdemonstrating equivalen
e of the two prin
iples. His proof 
ontained a veryminor error (3), whi
h is easily 
orre
ted. This was mentioned by �o± andRyll-Nardzewski in 1951; a 
orre
ted proof was published by Plastria in 1972.In
identally, Plastria's proof also shows that TT and AC are equivalent to2000 Mathemati
s Subje
t Classi�
ation: Primary 03E25.Key words and phrases: Axiom of Choi
e, Boolean Prime Ideal Theorem, generalizedsequen
e, Moore�Smith sequen
e, net, produ
t topology, Ty
hono�'s Theorem, ultra�lter,universal net.
(1) A
tually, what Ty
hono� himself proved is the more spe
ialized result TTI , listedlater in this se
tion. The formulation that we are 
alling TT was given later by �e
h.
(2) The Axiom of Choi
e, in its simplest form, says that any produ
t of nonempty setsis nonempty; we may arbitrarily 
hoose a member from ea
h of those nonempty sets. Forthe bene�t of any new
omers to this subje
t, we restate the axiom in other terms: AC isa non
onstru
tive assertion of existen
e, requiring a formalist philosophy of mathemati
s.When we a

ept AC, we are agreeing to the 
onvention that, even if we are unable toexhibit a parti
ular example of a member of a produ
t of nonempty sets, we are stillpermitted to use a hypotheti
al member of that produ
t in proofs, as though it exists insome sense.
(3) Unfortunately, Kelley's error was propagated in my book [9℄. I am grateful toMi
hael Greine
ker for bringing it to my attention.[285℄
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he
hterthe statement that any produ
t of 
ompa
t T1 spa
es is 
ompa
t; see relatedremarks at the end of this se
tion.Kelley had argued TT ⇒ TTcf

∗
⇒ AC, using the intermediate prin
iple(TTcf) any produ
t of 
o�nite topologies is 
ompa
t,but his proof of ∗

⇒ was faulty. Plastria's 
orre
ted proof of TT ⇒ AC didnot involve TTcf , and left open this question: Is the impli
ation ∗
⇒ true butunproved, or is it a
tually false?In this note we shall show that ∗

⇒ is false. It turns out that TTcf is equiv-alent to the Boolean Prime Ideal Theorem (BPI), a prin
iple well known (4)to be stri
tly weaker than AC.This note is not a
tually 
on
erned with Boolean prime ideals. We havementioned BPI only as an identi�er; it is the most famous of a whole familyof prin
iples known to be equivalent to one another. Here are four membersof that family:(TT2) 2J is 
ompa
t for any set J , if 2 = {0, 1} has the dis
rete topology.(TTI) [0, 1]J is 
ompa
t, for any set J .(TTh) Any produ
t of 
ompa
t Hausdor� spa
es is 
ompa
t.(U) A topologi
al spa
e P is 
ompa
t if and only if every universal netin P 
onverges to at least one limit in P .Obviously Kelley's prin
iple TTcf implies My
ielski's prin
iple TT2. To es-tablish equivalen
e, we shall show that the universal net prin
iple U im-plies TTcf .TTh and TT2 have often been useful in the study of equivalents of BPI,be
ause a number of 
ompa
tness prin
iples C are trivially seen to satisfyTTh ⇒ C ⇒ TT2. However, Kelley's prin
iple TTcf does not yield to thatanalysis; the 
o�nite topology on any in�nite set is T1 but not Hausdor�.2. Tutorial on nets. Some readers may be unfamiliar with nets andwith universal nets; to make this paper self-
ontained, we now give a brieftutorial on that subje
t. A more detailed introdu
tion 
an be found in [5℄or [9℄.Sequen
es (xn : n ∈ N) are useful tools in metri
 spa
es and in someother topologi
al spa
es. For analogous tools in arbitrary topologi
al spa
esone may turn to nets (also known as generalized sequen
es or as Moore�Smith sequen
es). These may be written in the form (xδ : δ ∈ D), where thesubs
ripts δ are members of any dire
ted set�i.e., a set D whose ordering
4 is re�exive and transitive and has the further property that ea
h �nitesubset of D has a 4-upper bound in D.

(4) Proved by Halpern and Lévy [2℄. See [3℄, [9℄, and sour
es 
ited therein for furtherdis
ussion of AC, BPI, and their relatives.



Ty
hono�'s Theorem 287A net (xδ) is said to satisfy some 
ondition eventually if the 
ondition issatis�ed by xδ for all δ later than some δ0. A net (xδ) is universal if for ea
hset S we have either eventually xδ ∈ S or eventually xδ /∈ S. For example, ifa net is eventually 
onstant, then it is universal (5). Conversely, if a universalnet takes values in a �nite set, then the net must be eventually 
onstant.In a topologi
al spa
e, we say that a net (xδ) is 
onvergent to a limit z(written xδ → z) if xδ is eventually in ea
h neighborhood of z. In parti
ular,any eventually 
onstant net is 
onvergent. A net 
onverges in a produ
ttopology if and only if it 
onverges 
oordinatewise; that is, xδ → z in ∏
j Yjif and only if xδj → zj in ea
h Yj.3. Main results

Muranov’s Lemma (6). Suppose that (xδ) is a universal net in a setequipped with the 
o�nite topology. Then either (xδ) 
onverges to every pointin the spa
e, or (xδ) is eventually 
onstant.Proof (without using AC or BPI). Suppose there is at least one point z towhi
h the net does not 
onverge. Then z has at least one open neighborhood
G for whi
h we do not eventually have xδ ∈ G. Sin
e the net is universal,eventually xδ ∈ ∁G, where ∁ denotes 
omplement.Now G is nonempty (sin
e it 
ontains z), and it is an open set in a 
o�nitetopology. Thus ∁G is �nite. Therefore (xδ) is eventually 
onstant.Proof of U ⇒ TTcf . Let {Yj : j ∈ J} be a 
olle
tion of topologi
alspa
es, ea
h equipped with the 
o�nite topology. We are to show that theprodu
t topology on P =

∏
j∈J Yj is 
ompa
t. Sin
e the only topology onthe empty set is a 
ompa
t topology, we may assume that P is nonempty.Thus we may assume that we are given some parti
ular point u ∈ P ; its jth
oordinate is some parti
ular uj ∈ Yj.Let (xδ : δ ∈ D) be a universal net taking values in P . In view of prin-
iple U, it su�
es to show that (xδ) has at least one limit in P . Sin
e 
on-vergen
e of nets in produ
t topologies is 
oordinatewise, it su�
es to showthat ∏

j∈J

{limits of (xδj)} is nonempty,
(5) Strangely, although there are other universal nets besides the eventually 
onstantones, there are no other examples of universal nets; the existen
e arguments are all inher-ently non
onstru
tive. This makes universal nets di�
ult to visualize, whi
h may be whymany mathemati
ians are relu
tant to use them. Nontrivial universal nets are a triumphof formalism: One might say that in this paper we are not really working with the universalnets themselves, but rather with senten
es about hypotheti
al universal nets.
(6) I am grateful to Alexey Muranov, who extra
ted this lemma from an earlier versionof my paper and thereby simpli�ed things greatly.



288 E. S
he
hteri.e., that we 
an 
hoose a member of this produ
t. But we may not usethe Axiom of Choi
e, sin
e we are trying to prove the equivalen
e of U andTTcf as weakenings of AC. Thus, what we a
tually must show is how tononarbitrarily 
hoose a parti
ular limit zj of the proje
ted net (xδj) in ea
hfa
tor spa
e Yj.We easily verify that (xδj) is universal in Yj . Thus Muranov's Lemma isappli
able. Now 
hoose zj nonarbitrarily, by this rule:
• If (xδj) 
onverges to every member of Yj , then take zj = uj .
• Otherwise, (xδj) is eventually 
onstant; let zj be the 
onstant valuethat the net eventually assumes.In either 
ase, we have sele
ted a parti
ular zj for whi
h xδj → zj .
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