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Abstract. Let R be a ring with identity such that R
+, the additive group of R,

is torsion-free. If there is some R-module M such that R ⊆ M ⊆ QR (= Q ⊗Z R)
and EndZ(M) = R, we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that
whenever R

+ is free of finite rank, then R is a Zassenhaus ring. We will show that if R
+ is

free of countable rank and each element of R is algebraic over Q, then R is a Zassenhaus
ring. We will give an example showing that this restriction on R is needed. Moreover, we
will show that a ring due to A. L. S. Corner, answering Kaplansky’s test problems in the
negative for torsion-free abelian groups, is a Zassenhaus ring.

1. Introduction. In 1963 A. L. S. Corner [5] proved his celebrated
result that any countable, torsion-free, reduced ring is the endomorphism
ring of a countable torsion-free, reduced abelian group. Moreover, he was
able to show that if R is such a ring of finite rank n, then there exists an
abelian group A such that End(A) = R and A has rank 2n. He also gave
an example of a ring R of rank n that is not the endomorphism ring of any
group of rank less than 2n. This makes it natural to ask for which torsion-free
rings R of rank n there exists an abelian group A of the same rank n such
that End(A) = R. An answer was obtained by H. Zassenhaus [15] in 1967:
If R is a ring with identity such that R+, the additive group of R, is free of
finite rank, then there exists an R-module M such that R ⊆ M ⊆ QR and
End(M) = R. Of course, the first clause means that R and M have the same
rank. In 1968, M. C. R. Butler [4], using similar techniques to those in [15],
extended this result to finite rank rings R such that Rp, the localization of
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R+ at the prime p, is a free Zp-module for all primes p. We introduce the
following

Definition 1. Let R be a ring with 1 ∈ R such that R+ is torsion-free.
If there exists an R-module M such that R ⊆M ⊆ QR and EndZ(M) = R,
then we call R a Zassenhaus ring with module M .

Recently, Zassenhaus rings made a somewhat surprising appearance in
connection with quasi-localizations: Extending the well-known notion of a
localization (see e.g. [13, p. 462 ff.]), a homomorphism α : A → B is called
a quasi-localization of A if for all homomorphisms φ : A → B there exists
some natural number n and a unique ψ ∈ EndB such that nφ = αψ. It
was shown in [1] that an injective homomorphism α : Z → M is a quasi-
localization (equivalently, a localization in the quasi-category of torsion-free
abelian groups) if and only if there is a Zassenhaus ring R with module M .

On the one hand, several new examples of Zassenhaus rings of finite as
well as infinite rank were presented in [1] and [2]. We will give an example
to show that not all rings R such that R+ is free of countable rank are
Zassenhaus rings. On the other hand, we will obtain the following extension
of Zassenhaus’ theorem.

Theorem 1. Let R be a ring with identity such that R+ is free of count-

able rank. If each element of R is algebraic over Q, then R is a Zassenhaus

ring.

A. L. S. Corner introduced rings L for the Leavitt theorem (cf. [13,
Section 15.1]) that lead to negative answers to the Kaplansky test problems
in the category of torsion-free abelian groups, rendering this class hopeless
for classification. The same holds for ℵ1-separable groups (cf. [10]). We will
show that these rings L are Zassenhaus rings. This shows that Kaplansky
test problems have a negative answer also in the class of torsion-free quasi-
localizations of Z.

2. Zassenhaus’ result for rings of infinite rank. We will consider
rings R such that R+ is free abelian of any rank. We will always identify
elements r ∈ R with their action on R by right multiplication, i.e. r(x) = xr
for all x ∈ R. We begin with a well-known fact but we include a proof for
the convenience of the reader.

Proposition 1. Let f(x) ∈ Z[x] and a1(x) ∈ Q[x] be monic polynomials

and a2(x) ∈ Q[x] such that f(x) = a1(x)a2(x). Then ai(x) ∈ Z[x] for i =
1, 2.

Proof. Note that a2(x) is monic as well. Consider the ideals {z ∈ Z :
zai(x) ∈ Z[x]} = αiZ. It is easy to see that αiai(x) ∈ Z[x] is primitive
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for i = 1, 2. Then α1α2f(x) = (α1a1(x))(α2a2(x)) is primitive by Gauss’
lemma, which means α1α2 ∈ {1,−1} and thus ai(x) ∈ Z[x].

We will introduce some notations which will be used throughout this
section.

Let F be a free abelian group and F̃ = QF the corresponding Q-vector
space. If τ ∈ End(F ), then τ has a unique extension τ̃ : F̃ → F̃ .

We say that τ ∈ End(F ) is algebraic if there is a non-trivial polynomial
g(x) ∈ Q[x] such that g(τ) = 0.

Let 0 6= e ∈ F and V = eQ[τ ], g(τ) = 0. Then V is the τ -invariant

subspace (of dimension ≤ deg(g)) of F̃ generated by e, and W∗ := V ∩ F
is a pure, τ -invariant subgroup of F . Since W∗ is a finite rank subgroup
of the free group F , the group W∗ is finitely generated and free. Consider
the ascending chain Cj =

∑j
i=0 eτ

iZ ⊆W∗. Since W∗ is Noetherian, there is
some k such that τk ∈ Ck−1. This shows that there is some monic f(x) ∈ Z[x]
of minimal degree such that f(τ) = 0. Let m(x) ∈ Q[x] be the (monic)
minimal polynomial of τ̃↾V . Then f(x) = m(x)h(x) for some h(x) ∈ Q[x].
By Proposition 1, m(x) ∈ Z[x] and it follows that m(x) = f(x) and k =

dim(V ) = rank(W∗). Let W =
⊕k−1

i=0 eτ
iZ. Then W∗ is the purification of

W in F .
We have shown the following:

Claim 1. Let τ ∈ End(F ) be algebraic and 0 6= e ∈ F . Then there is

some n ∈ N such that W := eZ[τ ] =
⊕n−1

i=0 eτ
iZ is free abelian of rank n and

the minimal polynomial of τ↾W is monic with integer coefficients. The same

holds for the minimal polynomial of τ . Let W∗ be the purification of W in F .

Then there exists a unique, least natural number k such that kW∗ ⊆W .

We still use our notations in the next

Claim 2. Let c ∈ Z be a non-eigenvalue of τ and z ∈ Z. Then ze ∈
F (c− τ) implies that det((c− τ)↾W ) divides kz.

Proof. There exists g(x) ∈ Z[x] of minimal positive degree such that
g(c − τ) = 0. If g(0) = 0, then g(x) = xh(x) and it follows that 0 =
g(c− τ) = (c− τ)h(c− τ), and h(c− τ) 6= 0 by the minimality of deg(g(x));
moreover, each non-zero element in Fh(c− τ) 6= {0} is an eigenvector of τ
with eigenvalue c. This shows that, by the choice of c, we have g(0) 6= 0.
Solving the equation g(c − τ) = 0 for the constant term, setting q = g(0),
we find that q(c− τ)−1 ∈ Z[c− τ ] ⊆ Z[τ ] and thus eq(c− τ)−1 ∈W .

Now assume z ∈ Z is such that ze ∈ F (c− τ).
Then ze(c − τ)−1 ∈ F ∩ (1/q)W ⊆ F ∩ QW = W∗. It follows that

ze ∈W∗(c− τ) and thus kze ∈ kW∗(c− τ) ⊆W (c− τ). We infer that there

are zi ∈ Z for 0 ≤ i ≤ n − 1 such that kze = (
∑n−1

i=0 eziτ
i)(c − τ). Define

h(x) = −kz +
∑n−1

i=0 zix
i(c − x) ∈ Z[x] and note that eh(τ) = 0. Now the
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(monic) characteristic polynomial χ(x) of τ↾W is the same as the (monic)
minimal polynomial of τ↾W and has degree n. This implies that h(x) =
zn−1χ(x), so that −kz = h(c) = zn−1χ(c) and thus χ(c) = det((c − τ)↾W )
divides kz.

We will need the following

Lemma 1. Let A be a torsion-free ring with 1 ∈ A, and F = {Pi =
biA | i < ω} a countable family of principal right ideals of A such that

the bi are not zero-divisors. Moreover , suppose there exist distinct prime

integers pi and di ∈ Z, ri ∈ N such that pri

i diA ⊆ Pi and gcd(pi, di) = 1. Let

M = A +
∑

i<ω p
−riPi ⊆ QA. If y ∈ M is such that right multiplication by

y is an endomorphism of M , then y ∈ A.

Proof. Since the pi are distinct, tpi
(M/A) = (p−ri

i Pi+A)/A and y = v/k
for some v ∈ A and k =

∏
i∈Iy

psi

i for some si ∈ N and some finite subset

Iy of ω. By induction over e =
∑

i∈Iy
si we will show that y ∈ A. To get

started, assume that e = 1, i.e. k = pi for some i < ω. Then

(p−ri

i Piy +A)/A =

(
p−ri

i Pi
v

pi
+A

)
/A ⊆ tpi

(M/A) = (p−ri

i Pi +A)/A

and we have p−ri−1
i Piv ⊆ p−ri

i Pi +A. Multiplying this inclusion by pri

i di we
get p−1

i diPiv ⊆ diPi + pri

i diA ⊆ Pi by our hypothesis. Thus diPiv ⊆ piPi

and Piv ⊆ piPi since gcd(pi, di) = 1. This implies that biv = pibia for some
a ∈ A and so bi(v − pia) = 0. Since bi is not a zero-divisor in A, we infer
v − pia = 0 and it follows that y = v/pi ∈ A.

The rest of the induction is now easy. Consider ỹ = p−1
i ky for some

i ∈ Iy. By the above, we find that ỹ ∈ A and thus piỹ ∈ A. Now we can use
the induction hypothesis and conclude that y ∈ A.

We are now ready to prove the main result of this section.

Theorem 2. Let A be a ring with 1 ∈ A such that A+, the additive

group of A, is free of at most countable rank and each a ∈ A is algebraic

over Q. Then A is a Zassenhaus ring.

Proof. Let

Σ = {σ | σ ∈ Hom(D,A), D of finite rank, 1 ∈ D ⊆∗ A
+, σ(1) = 0 6= σ},

where “⊆∗” denotes a pure subgroup. Clearly any D in Σ is a summand of
the free group A+ because its rank is finite. Note that the set Σ is countable
and we choose an enumeration Σ = {σi | i < ω} where Di is the domain
of σi. By induction over i < ω we choose:

(1) ai ∈ Di with ei = −aiσi 6= 0. This can be done since σi 6= 0.
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(2) Wi := eiZ[ai] and ki ∈ N such that ki(Wi)∗ ⊆Wi. Moreover, ci is not
an eigenvalue of ai. (Here we identify ai ∈ A with right multiplication
by ai.) Let fi(x) be the monic, integer minimal polynomial of ai↾Wi.

(3) Finally, choose distinct prime integers pi, ci ∈ Z, and ri, di ∈ N with
gcd(di, pi) = 1 such that diei /∈ (ci − ai)A and pridiA ⊆ (ci − ai)A.

Assume all the above data have been defined for j = 0, 1, . . . , i − 1. By a
result in [3] (see also [13, p. 407, Proposition 12.1.5]), the set

Ni = {q | q a prime such that fi(x) mod q has a root in Z/qZ}

is infinite. Now simply choose pi ∈ Ni − {p0, p1, . . . , pi−1} such that pi does
not divide ki, and since fi(c) ≡ 0 mod pi has infinitely many solutions in
Z, we may pick a solution ci that is not an eigenvalue of ai and also not a
root of fi(x). Let fi(ci) = pri

i di with ri > 0 and gcd(pi, di) = 1. We have
seen above that there is some ai ∈ A such that (ci − ai)a = pri

i di1 and
pri

i diA ⊆ (ci − ai)A. Moreover, di(ci − ai)σi = −di(aiσi) = diei /∈ (ci − ai)A
since fi(ci) = pri

i di does not divide diki.
Now set Pi = (ci − ai)A and define the right A-module

M = A+
∑

i<ω

p−ri

i Pi ⊆ QA

and consider ϕ ∈ End(M). Then there is some n ∈ N such that nϕ(1) ∈ A
and define σ = nϕ− nϕ(1). Note that σ(1) = 0.

Case 1: σ = 0. In this case, ϕ = ϕ(1) ∈M is right multiplication by the
element ϕ(1) ∈M . By Lemma 1, we have the desired result ϕ = ϕ(1) ∈ A.

Case 2: σ 6= 0. We will show that this case does not occur. Let D be
a finite rank, pure subgroup of A+ such that 1 ∈ D and σ↾D 6= 0. Then
there are some i < ω and ℓ ∈ N such that D = Di and ℓσ↾D = σi ∈ Σ
since Di is finitely generated. By construction, there exist ai ∈ Di and
ci ∈ Z such that ℓ(−ai)σ = (−ai)σi = ei /∈ (ci − ai)A = Pi ⊇ pri

i diA.
Let D∗

i denote the purification of Di in M . Since σi : Di → A, it follows
that σi induces a map σ̃i from D∗

i /Di into M/A. In particular, σ̃i maps
tpi

(D∗
i /Di) = ((p−ri

i Pi ∩D
∗
i ) +Di)/Di into tpi

(M/A) = (p−ri

i Pi +A)/A and
we infer that di(Pi ∩ p

riD∗
i )σi ⊆ Pidi + pridiA ⊆ Pi and ci − ai ∈ Pi ∩ p

riD∗
i

and so we get the contradiction di(ci − ai)σi = di(−ai)σi = diei ∈ Pi, i.e.
Case 2 does not occur. This shows that End(M) = A.

Corollary 1. Let Qc be the algebraic closure of Q in the field of com-

plex numbers. Then any subring S of Qc such that S+ is free is a Zassenhaus

ring. Moreover , S is a subring of the ring of algebraic integers of Qc.

In the above theorem, we have to restrict ourselves to rings whose addi-
tive group is free of at most countable rank since there are only countably
many prime integers. We can allow rings with free additive groups in the
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following, weaker result. Let A be any ring and RA the family of all right
ideals of A and End(A,RA) = {ϕ ∈ End(R+) | Jϕ ⊆ J for all J ∈ RA}. We
will show that all rings with free additive group and algebraic over Q have
“enough right ideals”.

Theorem 3. Let A be a ring with identity and with free additive group

such that all elements of A are algebraic over Q. Then End(A,RA) = A.

Proof. We will employ ideas and results from the previous proof. Let
a ∈ A, 0 6= e ∈ A, and W = eZ[a]. As we have seen above, the element a↾W
has a monic minimal polynomial f(x) ∈ Z[x]. Let W∗ = QW ∩ A be the
purification of W in A. Then, as we have seen, there exists some kW ∈ N
such that kWW∗ ⊆ W . Let c ∈ Z be such that c is not an eigenvalue of a,
which we identify with the right multiplication by a. We may also assume
that f(c) 6= 0. Let z ∈ Z. We have seen that ze ∈ (c − a)A implies that
f(c) divides the product zkW . Choose a prime q such that f(c) ≡ 0 mod q.
We have seen that there are infinitely many primes q and integers c to
choose from. Thus we may assume that f(c) = qrd and q divides neither d
nor kW . Since c is no eigenvalue of a we again obtain qrdA ∈ (c− a)A but
de /∈ (c − a)A, since q divides f(c) but not dkW , which implies that f(c)
does not divide dkW . Let κ denote the cardinality of A and

Σ = {σ ∈ Hom(D,A) | D ⊑ A+ of finite rank, 1 ∈ D and σ(1) = 0 6= σ}.

Since this set has cardinality κ we may label Σ = {σi | i < κ}. For each i < κ
we pick ai ∈ Di and ci ∈ Z such that σi(ai) = ei /∈ (ci − ai)A =: Ji. Now let
ϕ ∈ End(A,RA) be such that ϕ(1) = 0 6= ϕ. Then there exists some i < κ
such that ϕ↾dom(σi) = σi and ci−ai ∈ Di∩Ji but ϕ(ci−ai) = σi(ci−ai) =
−σi(ai) = −ei /∈ Ji and thus ϕ /∈ End(A,RA). We conclude that for any
ϕ ∈ End(A,RA) with ϕ(1) = 0 we have ϕ = 0, i.e. End(A,RA) = A.

We construct a natural example to show that the algebraic hypothesis
is needed.

Example 1. Let L = {f(x)/g(x) | f(x), g(x) ∈ Z[x], g(x) primitive}.
Then L is a commutative ring with free additive group and RL = {nL |
n ∈ N ∪ {0}} is the set of all ideals of L. This means that End(L,RL) =
End(L+) 6= L and L is not a Zassenhaus ring.

Proof. By Gauss’ lemma, the set of all primitive integer polynomials is
closed under multiplication, which implies that L is a ring and each ele-
ment of L is an integer multiple of a unit in L. This shows that RL is as
stated, which implies End(L,RL) = End(L+) 6= L. We will use Pontrya-
gin’s criterion [11, Theorem 19.1] to show that the countable group L+ is
free abelian. (The argument is similar to the one used in [12].) Let X be
a finite subset of L. Then there exists some primitive polynomial g and a
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finite subset Y of Z[x] such that X ⊆ g−1Y. Let W be the pure subgroup
of Z[x] generated by Y . Then W is free, and so also is X ⊆ g−1W ∼= W .
We have to show that g−1W is pure in L. Let p be a prime, f/h ∈ L and
b ∈W such that pf/h = b/g ∈ g−1W . This implies that pgf = bh. We read
this equation modulo p in the integral domain (Z/pZ)[x] to conclude that
b ≡ 0 mod p since the primitive polynomial g 6= 0 mod p. This shows that
b ∈ pZ[x] ∩ W = pW so that pb′/g = b/g and b′/g ∈ g−1W . Thus X is
contained in the pure, free subgroup g−1W of L+. This proves that L+ is
free.

Recall that if R is a Zassenhaus ring, then R is right rigid, that is,
End(R,RR) = R as shown (for left rigidity) in [1]; see also [13, pp. 408–
410]. It is not clear when the converse holds. The following result can be
found (implicitly) in [1]:

Theorem 4. Let R be a ring such that 1 ∈ R and R+ is torsion-free

and homogeneous of type zero. Let F be a family of at most countably many

right ideals of the Q-algebra QR such that the following holds.

(1) EndQ(QR,F) = QR.

(2) R+ =
∑

F .

(3) R+/(X ∩R) is homogeneous of type zero for all X ∈ F .

(4) For any prime integer p, the ring R/pR has no non-zero nilpotent

elements.

Then R is a Zassenhaus ring.

3. Some rings due to A. L. S. Corner. First we generalize a con-
struction due to Corner [8] (see also [13]). Let Λ be a lattice with smallest
element 1 ∈ Λ and L a family of sublattices of Λ such that:

(a) Λ =
⋃

L∈L L,
(b) (Λ− L) ∨ µ ⊆ Λ− L for all L ∈ L and µ ∈ Λ.

Condition (b) is equivalent to saying that if σ ∈ Λ − L then σ ∨ µ /∈ L as
well. Define R =

⊕
λ∈Λ λZ and for L ∈ L let RL =

⊕
λ∈L λZ. We define

a multiplication on R by setting λ · µ = λ ∨ µ for all λ, µ ∈ Λ. This turns
R into a commutative ring such that all λ ∈ Λ are idempotent, and the
minimal element 1 of the lattice becomes the 1 6= 0 of the ring. Obviously,
RL is a subring of R and R = RL ⊕ NL where NL =

⊕
λ∈Λ−L λZ. Clause

(b) implies that NL is an ideal of R for all L ∈ L. We define a topology
T on R by employing the ideals NL, L ∈ L, as a basis of neighborhoods
of 0. Then T is Hausdorff and each RL, L ∈ L, is discrete with respect to T

and R becomes a topological ring. Let R̂ denote the completion of R. Then
R̂ ⊆

∏
L∈LR/NL

∼=
∏

L∈LRL and R̂ = RL ⊕ N̂L for all L ∈ L. Moreover

(rL +NL)L∈L ∈ R̂ if and only if rL′ − rL ∈ NL for all L ⊆ L′ ∈ L. Consider
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the following family F of ideals of R̂:

F = {λRL⊕N̂L : λ ∈ L ∈ L}∪{(1−λ)RL⊕N̂L : λ ∈ L ∈ L}∪{N̂L : L ∈ L}.

Our first goal is to show that End(R̂,F) = R̂. To this end, let ψ ∈

End(R̂,F) and L ∈ L. Then R̂ = RL ⊕ N̂L and with respect to that decom-
position, we can write

ψ =

(
αL 0

βL γL

)

where αL : RL → RL, γL : N̂L → N̂L and βL : RL → N̂L. Moreover,
αL(λRL) ⊆ λRL and αL((1 − λ)RL) ⊆ (1 − λ)RL for all λ ∈ L ∈ L. Let
αL(λ) =

∑
̺∈L ̺z̺λ ∈ RL and note that λRL =

⊕
λ≤µ∈L µZ. We infer that

z̺λ 6= 0 implies ̺ ≥ λ, or equivalently, z̺λ = 0 whenever ̺ � λ.

Now consider α′
L := αL −αL(1). Then α′

L(1) = 0 and, for all λ ∈ L ∈ L,
we have α′

L(λRL) ⊆ λRL as well as α′
L((1 − λ)RL) ⊆ (1 − λ)RL, which

means that α′
L(−λ) = α′

L(1 − λ) ∈ λRL ∩ (1 − λ)RL = {0}, since λ, 1 − λ
is a pair of orthogonal idempotents in RL. We infer α′

L = 0, and thus for
aL = αL(1) ∈ RL we have αL = aL. Now assume that L ⊆ L′ ∈ L. Then

ψ↾RL′ = aL′ ∈ RL′ and ψ↾RL = aL ∈ RL. This implies that aL′ − aL ∈ N̂L,
i.e. (aL)L∈L is a Cauchy sequence in R̂. Since R̂ is complete, there is some

a ∈ R̂ such that a − aL ∈ N̂L for all L ∈ L. Now consider ψ′ = ψ − a.
Then ψ′(R̂) = ψ′(RL ⊕ N̂L) ⊆ N̂L since ψ′(RL) ⊆ N̂L and N̂L ∈ F for all

L ∈ L. We conclude that ψ′(R̂) ⊆
⋂

L∈L N̂L = {0}, and thus ψ′ = 0 implies

ψ = a ∈ R̂.

We claim that R̂ as well as R̂/pR̂ have no non-zero nilpotent elements
for any prime p. Suppose that a 6= 0 is a nilpotent element. Then there is
some L ∈ L such that a = a′ + a′′ with 0 6= a′ ∈ RL and a′′ ∈ N̂L. Then
a′ is nilpotent and we may assume that a = a′ ∈ RL and a2 = 0. There is
a finite subset T of L such that a =

∑
̺∈T ̺z̺ with 0 6= z̺ in Z or Z/pZ.

Then 0 = a2 =
∑

µ µ(
∑

λ∨̺=µ zλz̺). Let µ be a minimal element in the
finite subset T of L. Then λ, ̺ ∈ T with λ ∨ ̺ = µ minimal in T implies
λ = µ = ̺ and it follows that z2

µ = 0 (or ≡ 0 mod p). This contradicts the
assumption that T 6= ∅. We infer a = 0.

Let L ∈ L and define

FL = {λRL : 1 < λ ∈ L} ∪ {(1 − λ)RL : 1 < λ ∈ L}.

As the proof above shows, we have End(RL,FL) = RL.

From now on we assume that Λ as well as L are countable.

Let P 0
L,λ and P 1

L,λ be disjoint, infinite sets of primes and define

T i
L,λ = 〈p−1 : p ∈ P i

L,λ〉,
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a subgroup of Q for all i = 0, 1 and λ ∈ L ∈ L. Let

ML =
∑

λ∈L

T 0
L,λλRL +

∑

λ∈L

T 1
L,λ(1 − λ)RL ⊆ QRL.

As in the proof of Theorem 2 it is not hard to show that End(ML) = RL,
and we have:

The ring RL is a Zassenhaus ring.

Employing our countability hypothesis, we can also show that the ring
R̂ is a Zassenhaus ring, but we also want to get a topological isomorphism
between End(M) and R̂. To this end consider

W =
⊕

L∈L

ML ⊆
⊕

L∈L

QRL
∼=
⊕

L∈L

Q(R̂/N̂L).

By the incompatibility of the types of the ML, each ML is fully invariant
in W . For each pair (L,L′) ∈ L × L with L ⊂ L′ we introduce some more
distinct infinite sets of primes PL,L′ which are disjoint from all the others
and define the corresponding subgroups TL,L′ of Q. Set

M = W +
∑

L⊂L′∈L

(1L + 1L′)TL,L′R̂

where 1L is the identity in the L-coordinate of W . Let ψ ∈ End(M). Then

ψ(ML) ⊆ ML and ψ↾ML = aL ∈ RL
∼= R̂/N̂L. Moreover, ψ(1L + 1L′) =

aL + aL′ ∈ (1L + 1L′)R̂ for all L ⊂ L′ ∈ L. It follows that aL − aL′ ∈ N̂L

and (aL)L∈L is a Cauchy sequence whose limit we denote by a ∈ R̂, i.e.

a − aL ∈ N̂L for all L ∈ L. This shows that End(M) = R̂ is a topological
isomorphism, i.e. the finite topology of End(M) is the same as the topology

T of R̂. We have shown:

Theorem 5. Let Λ be the countable lattice and L the countable family

of sublattices of Λ, and R be the commutative ring derived from the lattice

as above. Then there exists an R̂-module M such that M ⊆
⊕

L∈L Q(R̂/N̂L)

and End(M) with its finite topology is isomorphic as a topological ring to R̂
with its topology T.

In the proof of Theorem A in Corner [8, p. 254] (see also [13, p. 588,
Theorem 15.1.2]) a ring R is constructed as follows. Let I, J be sets of the
same cardinality κ. Let Λ be the lattice of all finite subsets of I × J and for
each finite subset ̺ of I let L̺ be the set of all finite subsets of ̺ × J . Let

L be the family of all these L̺’s. If, topologically, End(M) = R̂, then each
non-zero summand of M is a direct sum of κ summands. Setting κ = ℵ0 we
get

Corollary 2. If we choose the ring R̂ as in the proof of Theorem A

in [8], then the countably generated R̂-module M in Theorem 5 has the prop-
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erty that any non-zero summand of M is a direct sum of countably many

non-zero summands.

4. Corner’s ring for the Leavitt theorem. We will study the left
ideals of non-commutative rings whose original construction is due to A. L.
S. Corner [7] with the aim of showing that they are Zassenhaus rings. This
gives rise to their immediate realizations as endomorphism rings.

Let q be a fixed positive integer, [0, q] = {i | i ∈ N, 0 ≤ i ≤ q} a corre-
sponding interval and R an integral domain such that qR 6= R. We consider
the R-algebra A freely generated by elements σi, σ

j, i, j ∈ [0, q], subject only
to the relations σiσj = δij (the Kronecker delta) and

∑
i∈[0,q] σiσ

i = 1. We

call the elements in [0, q] letters and let W be the set of all words in these
letters. If u, v ∈W , then u∧v is the concatenation of u and v. For example,
if u = 123 and v = 045, then u ∧ v = 123045. We will use bold face letters
(like u) to denote elements in W . Moreover u+ denotes the last letter in the
word u, so 123+ = 3, and σu = σu1

. . . σuk
if u = u1 . . . uk with ui ∈ [0, q].

The element σu is defined in the same manner. From [13, p. 591, (15.1.5)]
it follows that A is a free R-module with basis

B = {σiσ
j : i, j ∈W, i+ 6= 0 or j+ 6= 0}.

If u = u1 . . . us, then we define ud = us . . . u1 by reversing the product. We
have

(∗) σsσ
tσiσ

k =





σsσ
t0∧k if t = t0 ∧ id,

σs∧i0σ
k if i = td ∧ i0,

0 otherwise.

If t = t0 ∧ i for some t0, we write i ≤r t. If i = t ∧ i0 for some i0, we write
t ≤ℓ i. For k ∈W , let km = k∧ . . .∧k denote the concatenation of m copies
of k. Moreover, we adopt the convention that if k = 〈k〉 ∈W is a singleton,
we write k in place of k. Let Wk = {t ∈W : k �r t}.

Claim 3. Let F =
⊕

i∈ω biQ be a vector space over Q and An =⊕
i∈N(nbi−1 + bi)Q be subspaces for n ∈ ω. Then

⋂∞
n=0An = {0} and

F = b0Q ⊕An for all n ≥ 0.

Proof. Observe that An =
⊕∞

i=1(−(−n)ib0 + bi)Z and let x =
∑m

i=0 bizi

in A0 be such that x ∈ An. It follows that

(n)
m∑

i=0

(−n)izi = 0.

Now we assemble the equations (1), (2), . . . , (m+1) to obtain a homogeneous
system of linear equations with a Vandermonde determinant; we infer that
all zi = 0 and thus x = 0.
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Claim 4. Let A be the free R-algebra as above. Then
∞⋂

n=0

QA(n+ σk) = {0} for all k ∈W

and each A(n+ σk) is a direct summand of A+.

Proof. Note that Aσk = 〈σsσ
t∧k : s, t ∈ W 〉 and let bs,τ ,j = σsσ

τ∧kj

where t ∧ k = τ ∧ kj and τ ∈Wk = {β ∈W : k �r β}. Then

QAσk =
⊕

s∈W

⊕

τ∈Wk

( ∞⊕

j=1

bs,τ ,jQ
)
.

We finally consider

A(n+ σk) = 〈nσsσ
t + σsσ

t∧k〉 =
⊕

s∈W

⊕

τ∈Wk

( ∞⊕

j=0

(nbs,τ ,j + bs,τ ,j+1)Z
)

and apply the previous claim to get our conclusion.

Next we prove

Claim 5. Let k ∈ [0, q] be a letter and Bk = A(σk + σi). Then QBk ∩
QBk′ = {0} for k 6= k′ ∈ [0, q] and each Bk is a direct summand of A+.

Proof. Note that

A(σk + σi) = 〈σsσ
t∧k + σsσ

tσi : s, t ∈W 〉

= 〈σsσ
τ∧id∧k + σsσ

τ : s, τ ∈W (i.e. id ≤r t)〉

⊕ 〈σsσ
τ∧k : τ ∈W, id, τ are ≤r -incomparable〉

⊕ 〈σsσ
t∧k + σs∧j : id = jd ∧ t, s ∈W (i.e. t ≤r id)〉.

The rest is easy to see by inspection.

Let ψ ∈ End(A+) be such that ψ(1) = 0 and ψ(X) ⊆ X for all left
ideals X of A. Then ψ(σk) = ψ(n + σk) ∈

⋂∞
n=0A(n + σk) = {0} and we

have ψ(σk) = 0. Moreover, ψ(σi) = ψ(σk + σi) ∈ Bk for all 0 ≤ k ≤ q
and since Bk ∩ Bk′ = 0 for k 6= k′, we infer ψ(σi) = 0. Now consider
ψ(σiσ

k) = ψ(nσi + σiσ
k) = ψ(σi(n+ σk)) ∈ A(n+ σk) for all n ≥ 0, which

implies that ψ = 0 as desired.
Define

FP = {A(n+ σk) | n ∈ P, k ∈W} ∪ {A(σk + σi) | 0 ≤ k ≤ q, i ∈W}

where P is any infinite set of primes. What we have shown so far is the
following:

Lemma 2. With the above notations, End(A,FP ) = A.

A few minor modifications of the above arguments also yield
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Corollary 3. If F ′
P = {QX : X ∈ FP } is the corresponding family of

ideals in QA, then also EndQ(QA,F ′
P ) = QA.

We fix the following

Notation. Let R be a torsion-free ring with 1 ∈ R such that R+ is
homogeneous of type zero.

(1) Let F be a family of at most countably many left ideals of R such
that each V ∈ F is a pure subgroup of R+ and R+/V is homogeneous of
type zero for all V ∈ F .

(2) Let FQ = {QV : V ∈ F}, a family of left ideals of the Q-algebra QR,
such that End(QR,FQ) = QR.

(3) Let
∏

= {PV : V ∈ F} be a family of infinite, disjoint sets of prime
numbers. Let TV = 〈1/p : p ∈ PV 〉 for all V ∈ F , a subgroup of Q. Moreover,
let τV denote the type of TV .

(4) Define M = R+
∑

V ∈F TV V ⊆ QR.
(5) Let M(τV ), as usual, denote the subgroup of M of all elements of

type larger than or equal to τV ; see e.g. [14].

We will prove the following using these notations.

Lemma 3. We have M(τV ) = V∗, the purification of V in M for all

V ∈ F . Assume that for all v ∈ V ∈ F and p ∈ PV the inclusion vV ⊆ pR
implies that v ∈ pR. Then EndZ(M) = R.

Proof. Let V ∈ F and m′ ∈ M(τV ). Then there is some k ∈ N such
that m = km′ ∈ R ∩ M(τV ). Let P = {p ∈ PV : p−1m ∈ M}. Then
P is a cofinite subset of PV and p−1m ∈ tp(M/R) = (p−1V + R)/R and
thus m ∈

⋂
p∈P V + pR; it follows that m + V ∈ M/V has type τV and so

m ∈ V . Thus m′ ∈ V∗. This shows that QV ∩M = V∗ = M(τV ). Now let
ϕ ∈ End(M) and ψ ∈ End(QR) its unique extension, i.e. ψ↾M = ϕ. Since
ϕ(M(τV )) ⊆ M(τV ) = V∗ we see that ψ(QV ) ⊆ QV for all V ∈ F . By (2)
we have ψ ∈ QR and w = ψ(1) ∈M , which implies that wM ⊆M . We may
assume that w = v/p ∈ M − R for some v ∈ V and p ∈ PV and we have
vp−2V ⊆ M but p(tp(M/R)) = 0. Thus vp−1V ⊆ R and hence vV ⊆ pR.
Thus, by our hypothesis, v ∈ pR, a contradiction. We conclude that w ∈ R
as required.

Theorem 6. Let q ≥ 2 be a natural number and A the ring constructed

above. Then there exists A ⊆ M ⊆ QA such that End(M+) = R. It follows

that
⊕

nM
∼=
⊕

mM if and only if m ≡ n mod q.

Proof. We may assume that P ∩
⋃

V ∈F PV = ∅. All we need to show in
order to apply Lemma 2 is that vV ⊆ pA for some v ∈ V ∈ FP implies that
v ∈ pA. This follows easily by inspection. The last assertion follows as in
[6]; see also [11, Theorem 91.6].
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