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Multifractal spectra of Birkhoff averages
for a piecewise monotone interval map
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Franz Hofbauer (Wien)

Abstract. We study the entropy spectrum of Birkhoff averages and the dimension
spectrum of Lyapunov exponents for piecewise monotone transformations on the interval.
In general, these transformations do not have finite Markov partitions and do not sat-
isfy the specification property. We characterize these multifractal spectra in terms of the
Legendre transform of a suitably defined pressure function.

1. Introduction. Multifractal analysis of dynamical systems studies
the complexity of the level sets of local quantities, such as Birkhoff aver-
ages, local dimensions, and Lyapunov exponents. The complexity is usually
measured either by topological entropy or by Hausdorff dimension. In the
first case one gets the so called entropy spectrum of the local quantity, in
the second case the dimension spectrum. For an introduction to this subject
see [1] or [11]. For several classes of dynamical systems, which usually either
have a finite Markov partition or satisfy the specification property, entropy
and dimension spectra have been investigated. They are characterized ei-
ther by a conditional variational principle or by the Legendre transform of
a pressure function (see for instance [13], [14], [15], [2]).

The class of dynamical systems we consider here are piecewise monotone
transformations on the interval [0, 1], which in general do not have a finite
Markov partition and do not satisfy the specification property. We investi-
gate the level sets of Birkhoff averages of regular functions g : [0, 1]→ R and
characterize their entropy and Hausdorff dimension in terms of the Legendre
transform of a pressure function. In the case of Hausdorff dimension we do
this only for the special case of Lyapunov exponents. We use similar methods
to [7], where a multifractal spectrum of local dimensions is considered.

2010 Mathematics Subject Classification: 37E05, 37B40, 37D35.
Key words and phrases: piecewise monotone map, Birkhoff averages, Lyapunov exponent,
multifractal spectra, Legendre transform, pressure function.

DOI: 10.4064/fm208-2-1 [95] c© Instytut Matematyczny PAN, 2010



96 F. Hofbauer

A transformation T : [0, 1]→ [0, 1] is called piecewise monotone if there
is a partition 0 = c0 < c1 < · · · < cN = 1 of [0, 1] such that T |(ci−1, ci) is
strictly monotone and continuous for 1 ≤ i ≤ N . Furthermore, we assume
that this partition is a generator, which means that

⋃∞
j=0 T

−j{c0, c1, . . . , cN}
is dense in [0, 1].

A closed subset A of [0, 1] is called invariant if T (A) ⊂ A. A closed
invariant subset A is called completely invariant if x ∈ A is equivalent to
T (x) ∈ A for all x ∈ [0, 1] \ P . Throughout the paper we work on a fixed
closed topologically transitive T -invariant subset A. It might be more nat-
ural for piecewise monotone transformations T to use T (A \ P ) ⊂ A as the
definition of an invariant subset, but in this case one can get T (A) ⊂ A by
redefining T on the set P , provided A is closed and topologically transitive.
Therefore we use T (A) ⊂ A as the definition of a T -invariant set.

The complexity of the level sets of Birkhoff averages is measured by
topological entropy or by Hausdorff dimension. Since these level sets are
not compact, we introduce a notion of topological entropy defined for any
subset Q of [0, 1] which we denote by entB(Q). It is essentially Bowen’s
definition given in [3], very similar to the definition of Hausdorff dimension.
We investigate this kind of entropy in Section 2.

Topological pressure is usually defined only for continuous transforma-
tions. Since we investigate transformations which are not continuous, we
need a suitable definition of topological pressure. This is given in Section 3.
We say that a function f : [0, 1] → R is regular if f+(x) := limy↓x f(y) for
x ∈ [0, 1) and f−(x) := limy↑x f(y) for x ∈ (0, 1] exist and if f(x) lies be-
tween f−(x) and f+(x) for all x ∈ (0, 1). For a closed T -invariant subset A
and a regular function f we define a pressure q(T |A, f) by exhausting A by
subsets which have a Markov partition, and approximating f by continuous
functions from below. This is the definition used also in [7]. It is shown there
that it coincides with the usual notion of pressure if T and f are continuous.
This means that in the case where the pressure is usually defined, we do not
change the notion of pressure.

Throughout this paper we shall assume that T is a piecewise monotone
transformation on [0, 1] and that the partition occurring in the definition of
piecewise monotonicity is a generator. We consider a completely invariant
topologically transitive closed subset A of ([0, 1], T ) with htop(T |A) > 0, and
investigate the Birkhoff averages of a regular function g : [0, 1] → R on A.
We set Sng =

∑n−1
j=0 g ◦ T j for n ≥ 1 and define the level sets

La =
{
x ∈ A : lim

n→∞

1
n
Sng(x) = a

}
for a ∈ R.

More generally, for u, v ∈ R with u ≤ v we consider the sets

Lu,v =
{
x ∈ A : lim inf

n→∞

1
n
Sng(x) ≥ u, lim sup

n→∞

1
n
Sng(x) ≤ v

}
.
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The level set La is then the set La,a. The Legendre transform of the pressure
function τ(s) = q(T |A, sg) is defined by

τ̂(a) = inf
s∈R

(τ(s)− as).

The set H on which τ̂ is finite is a bounded closed interval (it is a single
point if and only if τ is linear), and τ̂ is a concave function on H (see
Section 5). In Sections 4 and 7 we prove the following results (see Theo-
rems 10 and 17): For u and v in R with u ≤ v and H ∩ [u, v] 6= ∅ we
have entB(Lu,v) = maxa∈H∩[u,v] τ̂(a). In particular, entB(La) = τ̂(a) for all
a ∈ H. Furthermore, for each a ∈ H with τ̂(a) > 0 there is an ergodic
invariant probability measure µ with µ(La) = 1 and hµ = τ̂(a).

Since the pressure function involved in the above results is defined as a
supremum over Markov subsets of ([0, 1], T ), we cannot show that Birkhoff
averages are always inside H. But also no example is known for which
Birkhoff averages are outside H. Nevertheless, we prove the following re-
sult in Section 7: Let K be the set of all x ∈ A such that all limit points
of the sequence n−1Sng(x) are less than the left or greater than the right
endpoint of H. Then entB(K) = 0.

Results of this kind are well known for certain classes of dynamical sys-
tems, which are conjugate to subshifts of finite type, in particular geometric
constructions, repellers of smooth expanding maps, and locally maximal
hyperbolic sets of diffeomorphisms. In [2] more general multifractal spectra
are investigated. Results of [2] can also be applied to a piecewise monotone
transformation T . By doubling a countable set of points in [0, 1] one gets a
compact set X on which T is a continuous transformation. See Section 2 for
the details of this construction. Since T is expansive on X, Theorem 8 in [2]
applies to the dynamical system (X,T ). As a special case one gets a formula
for the entropy of the level sets of Birkhoff averages of a function g as the
Legendre transform of a pressure function, but only under the additional
assumption that g : X → R is continuous and has a unique equilibrium
state.

The characterization of the dimension spectrum of Birkhoff averages by
Legendre transforms works only in the special case of Lyapunov exponents.
Set ϕ = log |T ′|. For x ∈ [0, 1] the lower and the upper Lyapunov exponents
are defined by

χ(x) = lim inf
n→∞

1
n
Snϕ(x) and χ(x) = lim sup

n→∞

1
n
Snϕ(x).

If χ(x) = χ(x), this common value is called the Lyapunov exponent at x
and denoted by χ(x). Again let A be a completely invariant topologically
transitive closed subset of ([0, 1], T ) with htop(T |A) > 0 and suppose that
ϕ = log |T ′| is a regular function. For u, v ∈ R with u ≤ v we consider
again the set Mu,v = {x ∈ A : u ≤ χ(x) ≤ χ(x) ≤ v}. The level set
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Ma which is the set of all x ∈ A with χ(x) = a is then the set Ma,a. For
τ(s) = q(T |A, sϕ) define H and τ̂ as above and set τ̌(a) = (1/a)τ̂(a). Then
H is a bounded closed subinterval of [0,∞) (see Section 5). In Section 8
we prove the following result (see Theorem 20): For u and v in the interior
of H with u ≤ v we have dimH(Mu,v) = maxa∈[u,v] τ̌(a). In particular,
dimH(Ma) = τ̌(a) for all a ∈ intH.

This result has been shown in [4] under stronger assumptions. An invari-
ant subset of a piecewise monotone interval map is considered there, which
is conjugate to a mixing subshift of finite type and satisfies a distortion
property and a weak expansion condition. Under such assumptions, further
results are proved in [4], in particular sets of points with zero Lyapunov
exponent are investigated.

We finish with some comments on the assumptions. One can split the
nonwandering set of a piecewise monotone transformation T into closed
topologically transitive T -invariant subsets (see e.g. [5]). Those with nonzero
topological entropy are often called basic sets. By the results of [5] a basic
set can be written as

⋂∞
i=0 F \ T−iG where F and G are T -invariant subsets

which are finite unions of closed intervals and satisfy G ⊂ F . It is easy to
see that this is a completely invariant subset for the transformation T |F ,
which is again a piecewise monotone interval map. Hence the above results
hold for all basic sets of a piecewise monotone transformation.

We assume that the partition of [0, 1] into intervals on which T is mono-
tone is a generator. If this does not hold, then there is an interval I such
that Tn|I is monotone for all n. We call a nondegenerate interval with this
property an atomic interval. We have entB(I) = 0 and dimH(I) = 1 for
every atomic interval I. Therefore one cannot expect to characterize the
multifractal spectrum by the Legendre transform of a pressure function if
there are atomic intervals. In the case of the entropy spectrum we can con-
sider all atomic intervals as single points. This modified dynamical system
has a generator and we can apply the above result.

It does not matter how one defines the piecewise monotone transforma-
tion T and the regular function g at their points of discontinuity. The set W
of points whose orbits hit a point of discontinuity is countable. Changing T
or g at a point of discontinuity causes the change of the level sets of Birkhoff
averages of g at most on the countable set W . Therefore, the entropy and
Hausdorff dimension of the level sets do not change. Also the topological
pressure, which we define for a regular function f , is not influenced by the
values of T and f at their points of discontinuity.

2. Hausdorff dimension and entropy. We recall the definition of
the Hausdorff dimension dimH(Q) of a set Q ⊂ [0, 1]. For δ > 0 a finite or
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countable collection C of intervals of length ≤ δ satisfying Q ⊂
⋃
C∈C C is

called a δ-cover of Q. Let ∆δ(Q) be the set of all δ-covers of Q. For t ∈ R
define

νt(Q) = lim
δ→0

inf
C∈∆δ(Q)

∑
C∈C
|C|t

where |C| denotes the length of the interval C. Then νt is an outer measure
on [0, 1]. There is t0 such that νt(Q) = 0 for t > t0 and νt(Q) =∞ for t < t0.
This t0 is the Hausdorff dimension dimH(Q) of the set Q.

We need a notion of topological entropy for noncompact sets. We use a
definition similar to that of Hausdorff dimension, which was introduced by
Bowen in [3] (see also [12]). First we give a definition adapted to piecewise
monotone transformations.

We call a finite set Z of open pairwise disjoint subintervals of [0, 1] a
partition of [0, 1] if [0, 1] \

⋃
Z∈Z Z is a finite set. We say that T is piecewise

monotone with respect to the partition Z if T |Z is continuous and strictly
monotone for all Z ∈ Z.

Fix a partition Z with respect to which T is piecewise monotone. Set
Zj =

∨j−1
i=0 T

−iZ for j ≥ 1 and Wk =
⋃∞
j=k Zj for k ≥ 1. For Y ∈ W1 let

`(Y ) be the maximal j such that Y ∈ Zj .
For t ≥ 0 and Q ⊂ [0, 1] we define

γt(Q) = lim
k→∞

inf
U∈Γk(Q)

∑
Y ∈U

e−t`(Y )

where Γk(Q) is the set of all finite or countable subsets U of Wk with Q ⊂⋃
Y ∈U Y . It is easy to see that γt defines an outer measure. Furthermore,

for a subset Q of [0, 1], there is t0 ≥ 0 such that γt(Q) = ∞ for t < t0 and
γt(Q) = 0 for t > t0. We define entB(Q) = t0 and call it the topological
entropy of Q.

Since γt is an outer measure for t ≥ 0, it follows that entB(S) ≤ entB(Q)
if S ⊂ Q ⊂ [0, 1], and entB(

⋃∞
i=1Qi) = supi≥1 entB(Qi) for any Qi ⊂ [0, 1].

Because entB({x}) = 0 for all x ∈ [0, 1] this implies that entB(C) = 0 if C
is a countable set.

A partition Z with respect to which T is piecewise monotone is not
unique. The following two lemmas show that the above definition does not
depend on the choice of Z.

Lemma 1. Let Z be a partition with respect to which T is piecewise
monotone. If J ⊂ [0, 1] is an open interval such that T j |J is strictly mono-
tone for 1 ≤ j ≤ k, then J has nonempty intersection with at most k cardZ
intervals in Zk.

Proof. Let 0 = c0 < c1 < · · · < cN = 1 be the endpoints of the intervals
in Z. We have N = cardZ. Set D = {c1, . . . , cN−1}. Then

⋃k−1
j=0(T j |J)−1D
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are the endpoints of intervals in Zk which fall into J . Their number is
bounded by k(N − 1). Hence at most k(N − 1) + 1 intervals in Zk have
nonempty intersection with J . This proves the lemma, since k(N − 1) + 1 ≤
k cardZ.

Lemma 2. Let Q be a subset of [0, 1]. Then entB(Q) does not depend on
the partition Z used in its definition, provided that T is piecewise monotone
with respect to Z.

Proof. Let Z be a partition with respect to which T is piecewise mono-
tone and let Γk(Q) and γt(Q) be as above. Let Z̃ be another partition with
respect to which T is piecewise monotone and let Γ̃k(Q) and γ̃t(Q) be as
above, but for Z̃ instead of Z.

Let t ≥ 0 and ε > 0. There is a constant αt ∈ (0,∞) such that
e−(t+ε)nn card Z̃ ≤ αte

−tn for all n ≥ 1. Fix k and U ∈ Γk(Q). For Y ∈ U
set

KY = {Z ∈ Z̃`(Y ) : Z ∩ Y 6= ∅}.
Since T j |Y is strictly monotone for 1 ≤ j ≤ `(Y ), it follows from Lemma 1
that cardKY ≤ `(Y ) card Z̃. Let ˜̀(Z) be the maximal j such that Z ∈ Z̃j .
Because KY ⊂ Z̃`(Y ) we get ˜̀(Z) ≥ `(Y ) for all Z ∈ KY . This implies∑

Z∈KY

e−(t+ε)˜̀(Z) ≤ e−(t+ε)`(Y )`(Y ) card Z̃ ≤ αte−t`(Y ).

Set Ũ =
⋃
Y ∈U KY . Since Y ⊂

⋃
Z∈KY Z and ˜̀(Z) ≥ `(Y ) ≥ k for all

Z ∈ KY , we get Ũ ∈ Γ̃k(Q). Summing the above estimate over Y ∈ U we
get ∑

Z∈Ũ

e−(t+ε)˜̀(Z) ≤ αt
∑
Y ∈U

e−t`(Y ).

Since U ∈ Γk(Q) was arbitrary this implies γ̃t+ε(Q) ≤ αtγt(Q).
Now let t0 be such that γt(Q) = ∞ for t < t0 and γt(Q) = 0 for t > t0

and let t̃0 be such that γ̃t(Q) = ∞ for t < t̃0 and γ̃t(Q) = 0 for t > t̃0.
The above inequality implies t̃0 ≤ t0 + ε. Since ε > 0 was arbitrary, we get
t̃0 ≤ t0. The above proof with Z and Z̃ interchanged gives t0 ≤ t̃0. Hence
t0 = t̃0.

This kind of definition of the entropy was given by Bowen in [3]. The sets
considered there are subsets of topological dynamical systems. Since piece-
wise monotone transformations T : [0, 1] → [0, 1] may have discontinuities,
we first construct continuous versions.

Fix a partition Z with respect to which T is piecewise monotone. Here
we can choose the coarsest such partition. Let 0 = c0 < c1 < · · · < cN
= 1 be the finite set of the endpoints of the intervals in Z and set W =⋃∞
i=0 T

−i{c0, c1, . . . , cN}. We replace each x ∈W \ {0, 1} by two points, x−
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and x+. We denote this extended interval [0, 1] by X; it is compact with
respect to the order topology. There is a continuous extension of T from
[0, 1] \W to X, which we denote again by T . Now (X,T ) is a topological
dynamical system and {[0, c1−], [c1+, c2−], . . . , [cN−1−, 1]} is a partition of
X into closed-open intervals, which we again denote by Z.

Bowen’s definition of the entropy of a subsetQ ofX is then as follows. Let
A be a finite open cover of X. For E ⊂ X let mA(E) be the largest integer
such that T i(E) is contained in some element of A for 0 ≤ i < mA(E). Let
Γ̃A,k(Q) be the set of all finite or countable covers of Q by arbitrary subsets
E of X satisfying mA(E) ≥ k. For t ≥ 0 define

βA,t(Q) = lim
k→∞

inf
E∈Γ̃A,k(Q)

∑
E∈E

e−tmA(E) and βt(Q) = sup
A
βA,t(Q)

where the supremum is taken over all finite open covers A of X. The entropy
of Q is then defined in [3] as the nonnegative number h(Q) such that βt(Q)
is ∞ for t < h(Q) and 0 for t > h(Q).

The following lemma shows that Bowen’s definition of entropy given in
[3] coincides with the definition we use in this paper. The complements of
the set [0, 1]\W in [0, 1] and in X are countable and therefore have entropy
zero. Hence it suffices to consider a subset Q of [0, 1] \W , which is then a
subset of [0, 1] and of X.

Lemma 3. For a subset Q of [0, 1] \W we have h(Q) = entB(Q).

Proof. Let Z be the partition we have used in the definition of X. Let
A be a finite open cover of X. Since Z is a generator, W is dense in [0, 1].
Therefore, choosing partition points in W , we find a partition Y of [0, 1] with
respect to which T is piecewise monotone and such that the corresponding
partition of X is also an open cover of X, which refines A. By Lemma 2
we can use Y instead of Z in the definition of entB. If U ∈ Γk(Q), then
Q ⊂

⋃
Y ∈U Y , since Q ⊂ [0, 1] \W and the endpoints of intervals in U are

contained in W , and mA(Y ) ≥ mY(Y ) = `(Y ) ≥ k for all Y ∈ U , since Y
refines A. This implies U ∈ Γ̃A,k(Q) and

∑
Y ∈U e

−tmA(Y ) ≤
∑

Y ∈U e
−t`(Y )

for t ≥ 0. Since U ∈ Γk(Q) was arbitrary, we get βA,t(Q) ≤ γt(Q) for t ≥ 0.
Since A was an arbitrary finite open cover of X, we have βt(Q) ≤ γt(Q) for
t ≥ 0. This implies h(Q) ≤ entB(Q).

To show the opposite inequality we prove βZ,t(Q) ≥ γt(Q) where we
consider Z as a finite open cover of X. Let V ∈ Γ̃Z,k(Q). For E ∈ V
choose YE ∈ ZmZ(E) with E ∩ Q ⊂ YE . Then `(YE) ≥ mZ(E). With
U = {YE : E ∈ V} we have

∑
E∈V e

−tmZ(E) ≥
∑

Y ∈U e
−t`(Y ) for all t ≥ 0.

Because U ∈ Γk(Q) and V ∈ Γ̃Z,k(Q) was arbitrary, we get βZ,t(Q) ≥
γt(Q) and hence also βt(Q) ≥ γt(Q) for all t ≥ 0. This implies h(Q) ≥
entB(Q).
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We state the following two lemmas in the form we need in this paper,
and not in their strongest possible versions.

Lemma 4. Let Q ⊂ [0, 1] and let µ be an ergodic T -invariant prob-
ability measure on [0, 1]. If Q contains a subset of µ-measure one, then
hµ ≤ entB(Q).

Proof. If hµ = 0 there is nothing to show. If hµ > 0 then µ assigns
measure zero to single points and Q has a subset D with µ(D) = 1 and
D ∩W = ∅. Hence D can be considered as a subset of X, and µ can be
considered as an invariant probability measure on (X,T ). By Theorem 1 in
[3] we get hµ ≤ entB(D). This implies hµ ≤ entB(Q).

For a probability measure µ on [0, 1] one defines the Hausdorff dimension
dimH(µ) as follows:

dimH(µ) = inf{dimH(B) : B a Borel subset of [0, 1] with µ(B) = 1}.
Then we have a lemma similar to the one above.

Lemma 5. Let Q ⊂ [0, 1]. Suppose that ϕ = log |T ′| is a regular function
and let µ be an ergodic T -invariant probability measure on [0, 1] with hµ > 0.
If Q contains a Borel subset of µ-measure one, then hµ/µ(ϕ) ≤ dimH(Q).

Proof. By Theorem 2 in [6] we get µ(ϕ) > 0. We can apply Theorem 1
of [8] under the present assumptions (see the remark after Corollary 1 in
[8]). This gives dimH(µ) = hµ/µ(ϕ). By the definition of dimH(µ) we have
dimH(Q) ≥ dimH(µ) and the lemma is proved.

3. Pressure. Topological pressure is usually defined for continuous trans-
formations and continuous functions on compact metric spaces. Since the
transformations and functions we consider may have discontinuities, we give
a suitable definition of pressure for a closed invariant subset A of ([0, 1], T )
and a regular function f . We do this by approximation from below.

A closed subset B of [0, 1] is called a Markov subset if there exists a
partition Y of [0, 1] with respect to which T is piecewise monotone with
T (B ∩ Y ) ⊂ B for all Y ∈ Y and such that for any two elements Y1 and Y2

of Y one has either T (B ∩ Y1)∩ Y2 = ∅ or T (B ∩ Y1) ⊃ B ∩ Y2. We then say
that Y is a Markov partition for B.

For a Markov subset B with Markov partition Y and a regular function
f : [0, 1] → R we define the pressure as follows. Set Yn =

∨n−1
i=0 T

−iY and
Yn(B) = {B ∩ Y 6= ∅ : Y ∈ Yn}. Then we define

p(T |B, f) = lim
n→∞

1
n

log
∑

Y ∈Yn(B)

sup
Y
eSnf .

Let A be a closed T -invariant subset and letM(A) be the set of all Markov
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subsets of A. We assume that M(A) is not empty. For a regular function
f : [0, 1] → R let C(f) be the set of all continuous functions h : [0, 1] → R
satisfying h ≤ f . We define

q(T |A, f) = sup
B∈M(A)

sup
h∈C(f)

p(T |B, h).

This can be written as q(T |A, f) = supB∈M(A) q(T |B, f), since for a Markov
subset B we have q(T |B, f) = suph∈C(f) p(T |B, h), because B itself is an el-
ement ofM(B). The following elementary properties are easy consequences
of the definition.

Lemma 6. Let A be a closed invariant subset with M(A) 6= ∅ and let f
and g be regular functions. Then q(T |A, f + c) = q(T |A, f) + c for all c ∈ R,
and if f ≤ g, then q(T |A, f) ≤ q(T |A, g).

A partition Z with respect to which T is piecewise monotone is not
unique. Let A be a closed T -invariant subset of [0, 1] and let Z be a partition
with respect to which T is piecewise monotone. Let M(A,Z) be the set of
all B ∈M(A) which allow a Markov partition Y refining Z, and define

qZ(T |A, f) = sup
B∈M(A,Z)

sup
h∈C(f)

p(T |B, h).

In this paper we consider a topologically transitive completely invariant
closed subset A of ([0, 1], T ) with htop(T |A) > 0. Then M(A,Z) is not
empty. This can be shown using the so-called Markov diagram of the piece-
wise monotone transformation T with respect to the partition Z (see [5]),
which is a directed graph (D,→) with countable vertex set D, whose paths
represent the orbits of ([0, 1], T ). As explained in Section 4 of [7], the topolog-
ically transitive completely invariant subset A corresponds to an irreducible
subgraph (A,→) of (D,→), which considered as a 0-1-matrix has spectral
radius larger than 1 due to htop(T |A) > 0 (see Section 3 in [5]). By the
results in Chapter II of [5] there is a finite subset B of A such that the sub-
graph (B,→) still has spectral radius larger than 1. The set of all points in
A whose orbits are represented by paths in (B,→) is then a Markov subset
of A. In this way one gets M(A,Z) 6= ∅ and hence also M(A) 6= ∅. So
q(T |A, f) and qZ(T |A, f) are well defined.

Further results which we shall need in this paper and which are proved
in Section 4 of [7] using the Markov diagram are collected in the following
lemma.

Lemma 7. Let A be a topologically transitive completely invariant closed
subset of ([0, 1], T ) with htop(T |A) > 0 and let Z be a partition with re-
spect to which T is piecewise monotone. Then htop(T |A) = q(T |A, 0) and
qZ(T |A, f) = q(T |A, f) for all regular functions f : [0, 1]→ R. Furthermore,
for regular functions f1, . . . , fk and ε > 0 there is a topologically transitive
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subset C ∈M(A,Z) with htop(T |C) > 0 such that q(T |A, fi) < q(T |C, fi)+ε
for 1 ≤ i ≤ k.

Next we show a kind of variational principle for the pressure introduced
above. For a Markov subset B and a regular function f let F(B, f) be the
set of all ergodic invariant probability measures on B which assign measure
zero to discontinuity points of T and f , and let F(B) be the set of all
ergodic invariant probability measures on B which assign measure zero to
all single points. For a completely invariant closed subset A of ([0, 1], T ) and
a partition Z with respect to which T is piecewise monotone, set

E(A,Z, f) =
⋃

B∈M(A,Z)

F(B, f) and E(A,Z) =
⋃

B∈M(A,Z)

F(B).

Lemma 8. Let f be a regular function. For a Markov subsetB of ([0, 1], T )
we have q(T |B, f) ≥ supµ∈F(B,f)(hµ + µ(f)). For a topologically transitive
completely invariant closed subset A of ([0, 1], T ) with htop(T |A) > 0 and a
partition Z with respect to which T is piecewise monotone, we have

q(T |A, f) = sup
µ∈E(A,Z,f)

(hµ + µ(f)) = sup
µ∈E(A,Z)

(hµ + µ(f)).

Proof. Let B be a Markov subset. Let µ ∈ F(B, f). Then there are
hn ∈ C(f) with hn(x) ↑ f(x) for all x where f is continuous. Since µ as-
signs measure zero to all points where f is discontinuous, it follows that
limn→∞ µ(hn) = µ(f). By the variational principle we have hµ + µ(hn) ≤
p(T |B, hn) for all n, which implies hµ+µ(f) ≤ q(T |B, f). Since µ ∈ F(B, f)
was arbitrary,
(3.1) q(T |B, f) ≥ sup

µ∈F(B,f)
(hµ + µ(f)).

This is the first part of the lemma.
Let B be a topologically transitive Markov subset with htop(T |B) > 0.

Choose ε > 0. There is a function h ∈ C(f) with q(T |B, f)− ε < p(T |B, h).
Since h is continuous, there is k ≥ 1 and a function h̃ : B → R which is
constant on all cylinder sets of length k and satisfies h̃ ≤ h and q(T |B, f)−
ε < p(T |B, h̃). Since B is a topologically transitive Markov subset with
htop(T |B) > 0, there is an ergodic equilibrium state for the function h̃ on
the Markov shift conjugate to (B, T |B), which is a Markov measure with
full support (see the proof of Lemma 4.7 in [16]). It assigns measure zero
to single points and can therefore be considered as an invariant probability
measure ν on (B, T |B). We have

q(T |B, f)− ε < p(T |B, h̃) = hν + ν(h̃) ≤ hν + ν(f).

Because ν ∈ F(B) and ε > 0 was arbitrary, we get

(3.2) q(T |B, f) ≤ sup
µ∈F(B)

(hµ + µ(f)).
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Now let A be a topologically transitive completely invariant closed subset
of ([0, 1], T ) with htop(T |A) > 0 and let Z be a partition with respect to
which T is piecewise monotone. Using Lemma 7 and (3.1) we get

q(T |A, f) = qZ(T |A, f) = sup
B∈M(A,Z)

q(T |B, f) ≥ sup
µ∈E(A,Z,f)

(hµ + µ(f)).

Let M̃(A,Z) be the set of all B ∈M(A,Z) which are topologically transi-
tive and satisfy htop(T |B) > 0. We get q(T |A, f) = supB∈M̃(A,Z) q(T |B, f)
again by Lemma 7, and together with (3.2) this implies

q(T |A, f) ≤ sup
B∈M̃(A,Z)

sup
µ∈F(B)

(hµ + µ(f)) ≤ sup
µ∈E(A,Z)

(hµ + µ(f)).

Since E(A,Z) ⊂ E(A,Z, f) by definition, this completes the proof of the
second part of the lemma.

We shall need Lemma 8 for the following two purposes: The equality
q(T |A, f) = supµ∈E(A,Z,f)(hµ + µ(f)) shows that the pressure which we use
in this paper, and the pressure used in [9], are the same. And using the
equality q(T |A, f) = supµ∈E(A,Z)(hµ + µ(f)) one easily shows that the map
f 7→ q(T |A, f) is convex on the set of regular functions.

Finally, we mention that all theorems in this paper hold if we assume
that A is a Markov subset, instead of assuming that A is completely invari-
ant. This follows, since only the three lemmas of this section are needed in
subsequent proofs, and it is easily seen that these lemmas also hold for a
Markov subset A instead of a completely invariant subset A.

4. Lower bounds. For a topologically transitive completely invariant
closed subset A of ([0, 1], T ) with htop(T |A) > 0 and a regular function
g : [0, 1]→ R we define

τ(s) = q(T |A, sg) for s ∈ R.

The map τ : R→ R is convex, since it is the supremum of linear functions by
Lemma 8. Set H = {a ∈ R : infs∈R(τ(s)− as) > −∞}, which is a nonempty
interval, since τ is a convex function. We consider the Legendre transform
τ̂ : H → R of τ defined by

τ̂(a) = inf
s∈R

(τ(s)− as).

In order to get lower bounds for topological entropy and Hausdorff dimen-
sion, we construct suitable ergodic invariant probability measures.

Proposition 9. Let g : [0, 1] → R be a regular function and let A be a
completely invariant topologically transitive closed subset of ([0, 1], T ) with
htop(T |A) > 0. Then for every a ∈ H we have τ̂(a) ≥ 0 and there is a
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sequence (µk)k≥1 of ergodic invariant probability measures on A satisfying
limk→∞ µk(g) = a and limk→∞ hµk = τ̂(a).

Proof. First we construct differentiable approximations of τ . To this end
fix δ > 0 and let F be a finite subset of R. Choose α ∈ (0, δ) such that
|αs| < δ for all s ∈ F and let g̃ be a step function satisfying g − α < g̃ ≤
g. This is possible, since g is a regular function. Using Lemma 6 we get
|q(T |A, sg) − q(T |A, sg̃)| < δ for all s ∈ F . Let Z be a partition of [0, 1]
with respect to which T is piecewise monotone and such that g̃ is constant
on each element of Z. By Lemma 7 there exists a topologically transitive
B ∈M(A,Z) with htop(T |B) > 0 such that |q(T |A, sg)−q(T |B, sg̃)| < δ for
all s ∈ F . Set τ̃(s) = q(T |B, sg̃). We have shown that for each finite subset
F of R and each δ > 0 there are a topologically transitive set B ∈ M(A)
with htop(T |B) > 0 and a step function g̃ which is constant on each element
of a Markov partition Y of B such that

(4.1) g − δ < g̃ ≤ g and |τ(s)− τ̃(s)| < δ for all s ∈ F.

Let K be the transition matrix of the Markov map T |B with respect to the
Markov partition Y. Then K is irreducible, as B is topologically transitive,
and not a permutation matrix, as htop(T |B) > 0. For s ∈ R let M(s) be the
matrix one gets if one multiplies the Y th column of K by the value of the
function esg̃ at Y for all Y ∈ Y. As in the proof of Lemma 4.7 in [16] one gets
an equilibrium state for the function sg̃ on the Markov shift conjugate to
(B, T |B), which is a Markov measure. It is determined by a left and a right
eigenvector of M(s). As K is irreducible and not a permutation matrix, this
equilibrium state is unique and ergodic and has full support and nonzero
entropy (uniqueness follows as in Section 4 of [10]). It assigns measure zero
to single points and can therefore be considered as a probability measure on
(B, T |B), which we denote by νs. We have

(4.2) p(T |B, sg̃) = hνs + νs(sg̃).

Lemma 8 implies hνs + νs(ug̃) ≤ q(T |B, ug̃) for all u ∈ R, since νs assigns
measure zero to single points. Because of q(T |B, sg̃) ≤ p(T |B, sg̃) and (4.2)
we have equality for u = s and we get p(T |B, sg̃) = q(T |B, sg̃) = τ̃(s).
Since p(T |B, sg̃) is the logarithm of the spectral radius of M(s), which is
a differentiable function in s, and since u 7→ hνs + uνs(g̃) is the tangent to
this differentiable function at the point s by the above results, it follows
that

(4.3) τ̃(s) = p(T |B, sg̃) is differentiable and τ̃ ′(s) = νs(g̃).

Furthermore,

(4.4) s 7→ νs is weakly continuous
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since using Theorem 8.2 of [17] one easily shows that each weak limit point
of a sequence (νsk)k≥1 with sk → s is an equilibrium state for sg̃ and hence
is the unique equilibrium state νs.

After this preparation fix a ∈ H. Set

l(u) = τ̂(a) + au for u ∈ R and L = {s ∈ R : τ(s)− l(s) = 0}.

By the definition ofH and τ̂ we have l(u) ≤ τ(u) and infu∈R(τ(u)−l(u)) = 0.
Therefore l is a tangent to τ with slope a. Since τ is convex, either L is a
closed interval, which may be unbounded, or L is empty. We have τ̂(a) =
τ(s)− as for all s ∈ L.

Suppose first that L is bounded and not empty. Then L = [p, q] with
p ≤ q. In order to find µk, fix k ≥ 1 and let G be a finite subset of L
containing p and q such that two adjacent points in G have distance < 1/k.
Set v = p− 1/k and w = q+ 1/k. Choose δ ∈ (0, 1/k) with 3δ < τ(u)− l(u)
for u ∈ {v, w}. Set F = G ∪ {v, w} and let g̃ and B be as above such
that (4.1) holds. By (4.3), (4.1) and since τ̃ is convex with τ(p) = l(p) and
τ(v) > l(v) + 3δ, we have

νv(g̃) = τ̃ ′(v) <
τ̃(p)− τ̃(v)

1/k
<
τ(p)− τ(v) + 2δ

1/k
<
l(p)− l(v)− δ

1/k
= a− kδ.

Similarly we get νw(g̃) > a + kδ. By (4.1) we have νv(g) ≤ νv(g̃) + δ < a
and νw(g) ≥ νw(g̃) > a. The measures νs assign measure zero to single
points. Therefore s 7→ νs(g) is continuous by (4.4), since the set where g
is discontinuous is at most countable. By the mean value theorem there
is z ∈ (v, w) with νz(g) = a. By the choice of G there is y ∈ G with
|z − y| < 1/k. We write C for max(|p|, |q|), so that |y| ≤ C. By (4.1) and
(4.3),

|zνz(g̃)− yνz(g)| ≤ |zνz(g̃)− yνz(g̃)|+ |yνz(g̃)− yνz(g)| < 1
k
‖g‖∞ + Cδ,

|τ̃(z)− τ(y)| ≤ |τ̃(z)− τ̃(y)|+ |τ̃(y)− τ(y)| < 1
k
‖τ̃ ′‖∞ + δ ≤ 1

k
‖g‖∞ + δ.

Applying these estimates to hνz + zνz(g̃) − τ̃(z) = 0, which follows from
(4.2) and (4.3), we obtain

|hνz + yνz(g)− τ(y)| < 2
k
‖g‖∞ + δ(1 + C) <

1
k

(1 + C + 2‖g‖∞).

Furthermore, since y ∈ G ⊂ L we have τ(y)− yνz(g) = τ(y)− ya = τ̂(a).
Set µk = νz. We have shown that µk is an ergodic invariant probability

measure on A satisfying µk(g) = a and |hµk− τ̂(a)| < (1/k)(1+C+2‖g‖∞),
which implies limk→∞ hµk = τ̂(a). Because hµk ≥ 0 we also have τ̂(a) ≥ 0.
Hence the desired results are proved in the case where L is bounded and
nonempty.
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Now suppose that L is empty or unbounded. Then lims→∞(τ(s)− l(s))
= 0 or lims→−∞(τ(s)− l(s)) = 0. Let (sk)k≥1 be such that τ is differentiable
at sk for k ≥ 1 and sk ↑ ∞ in the first case, and sk ↓ −∞ in the second. Set
ak = τ ′(sk). Then ak → a and τ̂(ak)→ τ̂(a) as k →∞, since τ is convex.

In order to find the measures µk, fix k ≥ 1 and choose ε ∈ (0, 1) such
that ∣∣∣∣τ(sk + h)− τ(sk)

h
− ak

∣∣∣∣ < 1
k|sk|

for h ∈ {−ε, ε}.

Let g̃ and B be as above such that (4.1) holds with δ = ε/k|sk| and F =
{sk−ε, sk, sk+ε}. Let τ̃ and the measures νs be as above. Since |τ(s)− τ̃(s)|
< δ for all s ∈ F by (4.1) we get∣∣∣∣τ(sk + h)− τ(sk)

h
− τ̃(sk + h)− τ̃(sk)

h

∣∣∣∣ < 2δ
ε

=
2

k|sk|
and hence also∣∣∣∣ τ̃(sk + h)− τ̃(sk)

h
− ak

∣∣∣∣ < 3
k|sk|

for h ∈ {−ε, ε}.

As τ̃ is convex, τ̃ ′(sk) lies between τ̃(sk+ε)−τ̃(sk)
ε and τ̃(sk−ε)−τ̃(sk)

−ε and we get

(4.5) |τ̃ ′(sk)− ak| <
3

k|sk|
.

Set µk = νsk for k ≥ 1. By (4.1) we get |µk(g)−µk(g̃)| ≤ δ. By (4.3) we have
τ̃ ′(sk) = µk(g̃), and so |µk(g)− ak| < δ + 3/k|sk| < 4/k|sk| from (4.5). This
implies limk→∞ µk(g) = limk→∞ ak = a. Now, by (4.2) and (4.3) we have
hµk = τ̃(sk)−skµk(g̃) = τ̃(sk)−skτ̃ ′(sk). Because τ̂(ak) = τ(sk)−aksk we get

|hµk − τ̂(ak)| ≤ |τ̃(sk)− τ(sk)|+ |sk| · |τ̃ ′(sk)− ak| < δ +
3
k
<

1
k

(
1
|sk|

+ 3
)

using (4.1) and (4.5). This implies limk→∞ hµk = limk→∞ τ̂(ak) = τ̂(a).
Because hµk ≥ 0 we also get τ̂(a) ≥ 0.

Now we consider the level sets La = {x ∈ A : limn→∞ n
−1Sng(x) = a}.

Theorem 10. Let g : [0, 1] → R be a regular function and let A be a
completely invariant topologically transitive closed subset of ([0, 1], T ) with
htop(T |A) > 0. For all a ∈ H with τ̂(a) > 0 there is an ergodic invariant
probability measure µ on A with hµ ≥ τ̂(a) and µ(La) = 1.

Proof. We consider the following compactification of the dynamical sys-
tem ([0, 1], T ). Let F ⊂ [0, 1] be a finite or countable set such that T and g are
continuous on [0, 1]\F . Set W =

⋃∞
j=0 T

−jF and replace each x ∈W \{0, 1}
by two points x− and x+. We denote this extended interval [0, 1] by X; it
is compact with respect to the order topology. The extensions of T and g
from [0, 1] \W to X are continuous. Let A be the closure of A \W in X.
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Let L be the set of all T -invariant probability measures on A satisfying
µ(g) = a and hµ ≥ τ̂(a). Let (µk)k≥1 be the sequence of probability measures
found in Proposition 9. Because limk→∞ hµk = τ̂(a) > 0, we have hµk > 0
for all k greater than or equal to some k0. Since these measures are also
ergodic, they assign measure zero to the countable set W . Therefore we can
consider these measures µk as measures on A\W ⊂ X. Let µ be a limit point
of the sequence (µk)k≥k0 in X. Then µ is concentrated on A and satisfies
hµ ≥ τ̂(a) and µ(g) = a. This shows that L is not empty.

Moreover, L is a compact and convex subset of the set of all T -invariant
probability measures on A. Hence there is an ergodic probability measure
µ in L. The assumption τ̂(a) > 0 implies hµ > 0. Thus countable sets
have µ-measure zero and µ can again be considered as a measure on A,
since A \ (A \W ) is at most countable. Hence we have found an ergodic
probability measure µ on A with µ(g) = a and hµ ≥ τ̂(a). By the ergodic
theorem we have limn→∞ n

−1Sng(x) = µ(g) = a for µ-almost all x ∈ A,
which implies µ(La) = 1.

5. Legendre transforms. For a topologically transitive completely in-
variant closed subset A of ([0, 1], T ) with htop(T |A) > 0 and a regular func-
tion g : [0, 1]→ R we introduced the pressure function τ(s) = q(T |A, sg) for
s ∈ R and its Legendre transform τ̂ defined by τ̂(a) = infs∈R(τ(s)− as) on
the set H of all a for which this infimum exists. Since τ is convex, H is a
nonempty interval.

We also introduce the function

τ̌(a) =
1
a
τ̂(a) =

1
a

inf
s∈R

(τ(s)− as) for all a ∈ H \ {0}.

We shall use the Legendre transform τ̂ to characterize the entropy spectrum
of Birkhoff averages, and the function τ̌ to characterize the dimension spec-
trum of Lyapunov exponents. First we show some properties of the Legendre
transform.

Proposition 11. Let A be a completely invariant closed subset of
([0, 1], T ) with htop(T |A) > 0 and let g : [0, 1]→ R be a regular function. Let
the pressure function τ and the transforms τ̂ and τ̌ , which are defined on the
set H, be as above. Then H equals {a ∈ R : as ≤ τ(s) for all s ∈ R}, which
is a bounded closed interval, and τ̂ : H → R is concave and hence continu-
ous and attains its supremum τ(0) on H. If there is s0 > 0 with τ(s) ≤ 0
for s ≤ −s0 and τ(s) > 0 for s > −s0, then H is a subset of [0,∞),
and a 7→ τ̌(1/a) can be extended to a concave and continuous function on
H−1 := {1/a : a ∈ H}, which is a subinterval of (0,∞]. Furthermore,
a 7→ τ̌(1/a) attains its supremum s0 on H−1.
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Proof. If a ∈ H, then τ̂(a) + as ≤ τ(s) for all s ∈ R by the definition
of τ̂ , and Proposition 9 says that τ̂(a) ≥ 0. Therefore as ≤ τ(s) for all s ∈ R.
This shows H ⊂ {a ∈ R : as ≤ τ(s) for all s ∈ R}. Since as ≤ τ(s) for all
s ∈ R implies that infs∈R(τ(s) − as) exists, we also get H ⊃ {a ∈ R : as ≤
τ(s) for all s ∈ R}.

One sees that H = {a ∈ R : as ≤ τ(s) for all s ∈ R} is a closed interval.
If a ∈ H we have a ≤ τ(1) and −a ≤ τ(−1). This gives H ⊂ [−τ(−1), τ(1)].

By its definition, τ̂ is the infimum of linear functions and hence is con-
cave. Since τ is convex, there is a ∈ R such that τ(s) ≥ τ(0) + as for all
s ∈ R. The definition of τ̂ implies that τ̂(a) ≥ τ(0) for this a. Furthermore,
τ̂(a) = infs∈R(τ(s)−as) ≤ τ(0) for all a ∈ H. Hence τ̂ attains its supremum
τ(0) in H.

Now suppose that there is s0 > 0 with τ(s) ≤ 0 for s ≤ −s0 and
τ(s) > 0 for s > −s0. If a ∈ H, then −as0 ≤ τ(−s0) ≤ 0, which implies
a ≥ 0. This shows that H ⊂ [0,∞). For a ∈ H \ {0} we have τ̌(a) =
(1/a)τ̂(a) ≥ 0 by Proposition 9 and τ̌(a) = (1/a)τ̂(a) ≤ (1/a)τ(−s0) + s0

≤ s0 by definition of τ̂ . This implies that a 7→ τ̌(1/a) is a bounded function
on H−1 \ {∞}, which is concave and continuous, since it is the infimum of
the linear functions a 7→ aτ(s) − s over s ∈ R. Therefore we can extend
a 7→ τ̌(1/a) to a continuous concave function on H−1, which is bounded
below by 0 and above by s0.

By the convexity of τ and the properties of s0, for every n ≥ 1 there
is bn > 0 such that τ(s) ≥ bn(s + s0 − 1/n) for all s ∈ R, which implies
τ̂(bn) ≥ bn(s0 − 1/n) and τ̌(bn) ≥ s0 − 1/n. Since H is a compact interval,
the sequence (bn)n≥1 has a limit point b in H. By the above results, τ̌ has
a continuous extension to H, and we get τ̌(b) ≥ s0. This shows that a 7→
τ̌(1/a) attains its supremum s0 in H−1.

It may happen that the function τ̌ : H → R is not concave. The following
example is similar to an example given in [2]. Choose u ∈ (0, log 2) and set
v = − log(1 − e−u). We have 0 < u < v. Let T : [0, 1] → [0, 1] be defined
by

T (x) =
{
eux for 0 ≤ x ≤ e−u,
−ev(x− 1) for e−u ≤ x ≤ 1.

The set A = [0, 1] is completely invariant and topologically transitive. Let
g : [0, 1] → R be defined by g(x) = u for 1 ≤ x < e−u and g(x) = v for
e−u < x ≤ 1, so g = log |T ′|. For g(e−u) we can choose any value in [u, v].
We have τ(s) = p(T |A, sg) = log(esu+esv) since A itself is a Markov subset.
The function τ : R→ R is convex and differentiable and the set of values of
its derivative is the interval (u, v). This implies that H = [u, v]. Computing
the infimum in the definition of τ̂ , one gets
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τ̂(a) = log
((

v − a
a− u

)a−u
v−u

+
(
a− u
v − a

) v−a
v−u
)

for a ∈ H.

If one draws the graph of the function a 7→ (1/a)τ̂(a) = τ̌(a) for u = 0.04,
then it turns out that this function is not concave.

This example also shows that the interval H need not contain the point
zero. To get an example for which 0 ∈ H, let T : [0, 1]→ [0, 1] be defined by

T (x) =

{ x

1− x
for 0 ≤ x ≤ 1/2,

−2(x− 1) for 1/2 ≤ x ≤ 1.

Again, the set A = [0, 1] is completely invariant and topologically transitive.
For g we choose again the map ϕ = − log |T ′|, which has value 0 at the fixed
point 0 and satisfies ϕ(x) > 0 for x ∈ (0, 1]. It follows that τ(s) = p(T |A, sg)
satisfies τ(s) ≥ sg(0) = 0 for all s ∈ R. By Lemma 12 below there is s0 > 0
such that τ(s) = 0 for s ≤ −s0. This implies that 0 is the left endpoint
of H, and we have an example with 0 ∈ H. In this case ∞ ∈ H−1 and by
Proposition 11 the function a 7→ τ̌(1/a) must attain its supremum at∞ and
therefore τ̌ : H → R attains its supremum at 0.

Now we consider the case where g is the function log |T ′|.

Lemma 12. Let A be a topologically transitive completely invariant closed
subset of ([0, 1], T ) with htop(T |A) > 0. Suppose that ϕ = log |T ′| is a regular
function and set τ(s) = q(T |A, sϕ) for s ∈ R. Then τ : R → R is a nonde-
creasing continuous function. Furthermore, there is s0 ∈ (0, 1] with τ(s) ≤ 0
for s ≤ −s0 and τ(s) > 0 for s > −s0.

Proof. Let Z be a partition which is a generator and with respect to
which T is piecewise monotone. From Lemma 8 we deduce that τ(s) =
supµ∈E(A,Z)(hµ + sµ(ϕ)). In particular, τ is a convex continuous function.
We show that µ(ϕ) ≥ 0 for all µ ∈ E(A,Z).

To this end suppose that there is a probability measure µ ∈ E(A,Z) with
µ(ϕ) < 0. Since µ assigns measure zero to single points, we find a continuous
function f : [0, 1]→ R satisfying f ≥ ϕ and µ(f) < 0. Since µ is supported
on a Markov subset B and Markov subsets have the specification property,
there is a probability measure π which is concentrated on a periodic orbit
and satisfies π(f) < 0. Because f ≥ ϕ we get π(ϕ) < 0. This means that
we have an attracting periodic orbit, contradicting the fact that Z is a
generator. Therefore µ(ϕ) ≥ 0 for all µ ∈ E(A,Z).

Now τ is the supremum of linear functions of nonnegative slope each.
This implies that τ is nondecreasing. Furthermore, for µ ∈ E(A,Z) we have
hµ ≤ µ(ϕ). If hµ = 0, this follows from µ(ϕ) ≥ 0. If hµ > 0, it follows
from Theorem 2 in [6]. Because hµ − µ(ϕ) ≤ 0 for all µ ∈ E(A,Z) we get
τ(−1) ≤ 0. By Lemma 7 we have τ(0) = q(T |A, 0) = htop(T |A) > 0. Since
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τ is nondecreasing and continuous, there is an s0 with the desired proper-
ties.

6. Exceptional sets. In order to get upper estimates of entropy and
Hausdorff dimension, we have to consider certain exceptional sets. Let Z be
a partition of [0, 1] with respect to which T is piecewise monotone. Set RZ =⋂∞
i=0 T

−i(
⋃
Z∈Z Z). For n ≥ 1 let Zn(x) be the element of Zn =

∨n−1
j=0 T

−jZ
which contains x. If x ∈ RZ then Zn(x) is defined for all n ≥ 1.

Let A be a completely invariant closed subset of ([0, 1], T ) and let % be
a probability measure on A. For an open interval (p, q) and r ∈ (p, q) set

%r((p, q)) = min{%((p, r)), %((r, s))}.

This can be considered as a distance of the point r to the boundary of
the interval (p, q) where the distance is determined by the measure %. For
x ∈ RZ and d > 0 set

Id(x) = {n ≥ 1 : %Tn(x)(T
nZn(x)) ≥ d}

and Nd = N0 ∪ {x ∈ A ∩RZ : card Id(x) <∞} where N0 = A \RZ .
In order to show that the sets Nd are small, for a partition Z of the

interval [0, 1] and a function f : [0, 1]→ R we define

varZ(f) = sup
Z∈Z

sup
x,y∈Z

|f(x)− f(y)|

and prove the following lemma.

Lemma 13. Let Z be a partition of [0, 1] with respect to which T is
piecewise monotone, and set ϕ = log |T ′|. Suppose that varZ(ϕ) < α. Then
for every x ∈ RZ with χ(x) ≥ α there is cx such that |Zn(x)| ≤ e−nγ for all
n ≥ cx, where γ = 1

2(α− varZ(ϕ)).

Proof. Because χ(x) ≥ α there is cx such that Snϕ(x) ≥ n(α − γ) for
all n ≥ cx. For all y ∈ Zn(x) we have Snϕ(y) ≥ Snϕ(x)− n varZ(ϕ), which
gives |Zn(x)| ≤ |Tn(Zn(x))| supZn(x) e

−Snϕ ≤ e−Snϕ(x)+n varZ(ϕ) ≤ e−nγ for
all n ≥ cx.

Lemma 14. Let A be a completely invariant closed subset of ([0, 1], T )
and let % be a probability measure with support A. For a partition Z of [0, 1]
with respect to which T is piecewise monotone, let Nd be the set defined
above. Then limd↓0 entB(Nd) = 0. Furthermore, for every α > 0 we have
limd↓0 dimH(Nd ∩Dα) = 0 if varZ(ϕ) < α, where Dα = {x ∈ A : χ(x) ≥ α}
and ϕ = log |T ′|.

Proof. For l ≥ 1 and Z ∈ Zl we define

Gl,Z = {x ∈ Z ∩A ∩RZ : %Tn(x)(T
nZn(x)) < d for all n ≥ l}.
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We estimate the entropy of these sets. For fixed d > 0 small enough choose
k = k(d) maximal such that %(Y ) ≥ d for all Y ∈ Zk with Y ∩A 6= ∅. Since
% has support A, all open intervals Y with Y ∩A 6= ∅ satisfy %(Y ) > 0. This
implies limd↓0 k(d) =∞.

For every n ≥ 0 we construct a subset Cn of Zl+nk which satisfies
card Cn ≤ 4n and Gl,Z ⊂

⋃
C∈Cn C. We start with C0 = {Z}. Suppose that

Cj is constructed. For a set Y ∈ Cj ⊂ Zl+jk we have %T l+jk(x)(T l+jkY ) < d

for all x ∈ Y ∩ Gl,Z . Therefore T l+jk(Y ∩ Gl,Z) is contained in the closure
of two open intervals with %-measure at most d each and a common end-
point with the interval T l+jkY . By the choice of k = k(d) there is a subset
AY of Zk with cardAY ≤ 4 such that T l+jk(Y ∩ Gl,Z) ⊂

⋃
E∈AY E. Set

BY = {Y ∩ T−l−jk(E) : E ∈ AY }. We have Y ∩ Gl,Z ⊂
⋃
C∈BY C, which

implies Y ∩Gl,Z ⊂
⋃
C∈BY C, since the endpoints of the intervals in BY are

not in RZ . Set Cj+1 =
⋃
Y ∈Cj BY . This is a subset of Zl+(j+1)k of cardinality

less than or equal to 4j+1, which satisfies Gl,Z ⊂
⋃
C∈Cj+1

C. This finishes
the construction of the sequence (Cn)n≥0.

We estimate entB(Nd). For t = 2/k and n ≥ 1 we have∑
C∈Cn

e−t`(C) ≤ 4ne−t(l+nk) = e−tl(4/e2)n.

This implies γt(Gl,Z) = 0. As Nd ⊂ N0 ∪
⋃∞
l=1

⋃
Z∈Zl Gl,Z and as N0 is

countable, we get γt(Nd) = 0. Therefore entB(Nd) ≤ t = 2/k. Since k tends
to infinity as d goes to zero, this implies limd↓0 entB(Nd) = 0.

Now we estimate the Hausdorff dimension of Nd ∩ Dα. To this end set
γ = 1

2(α − varZ(ϕ)), and for x ∈ Dα ∩ RZ let cx be as in Lemma 13. Set
Dm = {x ∈ Dα ∩ RZ : cx ≤ m} and Dn = {C ∈ Cn : C ∩ Dm 6= ∅} for
m,n ≥ 1. By Lemma 13 we have |C| ≤ e−(l+nk)γ for all C ∈ Dn, if n ≥ m.
Setting t = 2/γk we get, for n ≥ m,∑

C∈Dn

|C|t ≤ 4ne−t(l+nk)γ = e−tlγ(4/e2)n.

Because Gl,Z ∩ Dm ⊂
⋃
C∈Dn C, we get νt(Gl,Z ∩ Dm) = 0. By Lemma 13

we have
⋃∞
m=1Dm = Dα ∩ RZ . Therefore νt(Gl,Z ∩ Dα) = 0. As Nd ⊂

N0 ∪
⋃∞
l=1

⋃
Z∈Zl Gl,Z and as N0 is countable, we get νt(Nd ∩Dα) = 0. This

gives dimH(Nd∩Dα) ≤ t = 2/γk. Since k tends to infinity as d goes to zero,
we conclude that limd↓0 dimH(Nd ∩Dα) = 0.

We finish with a lemma, which we shall need in Section 8.

Lemma 15. Let % be a probability measure on [0, 1]. For every d > 0
there is b > 0 such that for any open interval I ⊂ [0, 1] and any u ∈ I with
%u(I) ≥ d we have |I| ≥ b.
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Proof. Fix d > 0. Suppose that for every n ≥ 1 there are an open interval
In and a point un ∈ In with %un(In) ≥ d such that limn→∞ |In| = 0. Let
u be a limit point of (un)n≥1. Because %un(In) ≥ d for all n ≥ 1, u cannot
be an endpoint of [0, 1]. Choose v > 0 such that %([u − 2v, u)) < d and
%((u, u+ 2v]) < d. For infinitely many n we have either [u− 2v, u− v] ⊂ In
or [u+ v, u+ 2v] ⊂ In, contradicting limn→∞ |In| = 0.

7. The entropy spectrum of Birkhoff averages. Let g : [0, 1]→ R
be a regular function and let A be a completely invariant closed subset of
([0, 1], T ). In order to give the definition of the sets whose entropy we shall
estimate, we split H into intervals on which τ̂ is constant, increasing and
decreasing. Set H0 = {a ∈ H : τ̂(a) = τ(0)}. This is the set where τ̂ attains
its supremum. Since τ̂ is concave, H0 is a closed interval, possibly a single
point. Set H+ = {a ∈ H : a > b for all b ∈ H0} and H− = {a ∈ H : a < b
for all b ∈ H0}. For a ∈ H we define

Ua =


{x ∈ A : lim sup

n→∞
n−1Sng(x) ≤ a} if a ∈ H−,

A if a ∈ H0,
{x ∈ A : lim inf

n→∞
n−1Sng(x) ≥ a} if a ∈ H+.

Now we can estimate the entropy of these sets.

Theorem 16. Let g : [0, 1] → R be a regular function and let A be a
completely invariant topologically transitive closed subset of ([0, 1], T ) with
htop(T |A) > 0. For each a ∈ H we have entB(Ua) ≤ τ̂(a).

Proof. For each a ∈ H0 we have τ̂(a) = τ(0). Since τ is a convex function,
the definition of τ̂ implies that τ̂(a) = infs<0(τ(s) − as) if a ∈ H−, and
τ̂(a) = infs>0(τ(s)− as) if a ∈ H+.

Fix a ∈ H and ε > 0. Choose s ∈ R such that τ(s)− sa < τ̂(a) + ε. We
can do this in such a way that s = 0 if a ∈ H0, s < 0 if a ∈ H−, and s > 0
if a ∈ H+.

Choose δ > 0 such that δ|s| ≤ ε. Let Z be a partition of [0, 1] with
respect to which T is piecewise monotone, and such that varZ(g) < δ, which
means supx,y∈Z |g(x) − g(y)| < δ for all Z ∈ Z. This is possible, since g is
regular. There is a function g̃ which is constant on each interval in Z and
such that |g̃ − g| ≤ δ and q(T |A, sg̃) = q(T |A, sg) = τ(s). This is possible
by the properties of the pressure function given in Lemma 6.

Lemma 8 shows that the notion of pressure we use here is the same as
in [9]. Hence we can apply Theorem 2 of [9], which together with Lemma 4
of [7] shows the existence of a probability measure % with support A which
is eτ(s)−sg̃-conformal. This means that %(TY ) =

	
Y e

τ(s)−sg̃ d% for all inter-
vals Y contained in elements of Z.
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We choose d > 0 such that entB(Nd) < ε, which is possible by Lemma 14,
and set W = {x ∈ A \ Nd : lim infn→∞ sn−1Sng(x) ≥ sa}. We then have
Ua ⊂W ∪Nd for all a ∈ H. We now estimate the entropy of the set W .

Fix k ∈ N. The definition of W implies sSng(x) ≥ nsa−nε for all x ∈W
and all but finitely many n. For each x ∈W choose nx such that

nx ∈ Id(x), nx ≥ k, sSnxg(x) ≥ nxsa− nxε.

Set Yx = Znx(x), which is well defined because W ⊂ RZ . Since g̃ is constant
on each element of Z, we have %(T j+1Yx) = eτ(s)−sg̃(T j(x))%(T jYx) for 0 ≤
j ≤ nx − 1 by the definition of a conformal measure, which implies

%(Yx) = esSnx g̃(x)−nxτ(s)%(TnxYx).

By the definition of g̃ and the choice of nx and δ we get

sSnx g̃(x) ≥ sSnxg(x)− nx|s|δ ≥ nxsa− nxε− nx|s|δ ≥ nxsa− 2nxε.

Because nx ∈ Id(x) we have

%(TnxYx) ≥ %Tnx (x)(T
nxYx) ≥ d.

Putting all this together we get

%(Yx) ≥ denxsa−nxτ(s)−2nxε for all x ∈W.

Set Ũ = {Yx : x ∈ W} ⊂
⋃∞
j=k Zj . Since two elements of

⋃∞
j=k Zj are

either disjoint or one contains the other, there is a subset U of Ũ which still
covers W and consists of pairwise disjoint intervals. We write n(Y ) for nx if
Y = Yx. The above estimate implies∑

Y ∈U
e−(τ(s)−sa+2ε)n(Y ) ≤ 1

d

∑
Y ∈U

%(Y ) ≤ 1
d
.

We have chosen s ∈ R such that τ(s)− sa < τ̂(a) + ε, so we get∑
Y ∈U

e−(τ̂(a)+3ε)n(Y ) ≤ 1
d
.

Furthermore, `(Y ) ≥ n(Y ) because Y ∈ Zn(Y ). This gives∑
Y ∈U

e−(τ̂(a)+3ε)`(Y ) ≤ 1
d

as τ̂(a) is nonnegative. Since U ⊂
⋃∞
j=k Zj and k ∈ N can be chosen arbi-

trary, we get γτ̂(a)+3ε(W ) ≤ 1/d. This implies entB(W ) ≤ τ̂(a)+3ε. Further-
more, we have chosen d so that entB(Nd) < ε and W so that Ua ⊂W ∪Nd.
This gives entB(Ua) ≤ τ̂(a) + 3ε. Since ε > 0 was arbitrary, we conclude
that entB(Ua) ≤ τ̂(a).
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For u, v ∈ R with u ≤ v we now consider the set

Lu,v =
{
x ∈ A : lim inf

n→∞

1
n
Sng(x) ≥ u, lim sup

n→∞

1
n
Sng(x) ≤ v

}
.

The level set La = {x ∈ A : limn→∞ n
−1Sng(x) = a} is then the set La,a.

We compute the entropy of these sets.

Theorem 17. Let g : [0, 1] → R be a regular function and let A be a
completely invariant topologically transitive closed subset of ([0, 1], T ) with
htop(T |A) > 0. Suppose that u and v are in R with u ≤ v and H ∩ [u, v] 6= ∅.
Then entB(Lu,v) = maxa∈H∩[u,v] τ̂(a).

Proof. By Theorem 10, for each a ∈ H ∩ [u, v] with τ̂(a) > 0 there exists
an ergodic invariant probability measure µ on A with µ(La) = 1 and hµ ≥
τ̂(a). By Lemma 4 we get entB(La) ≥ hµ, which implies entB(Lu,v) ≥ τ̂(a)
because La ⊂ Lu,v. Therefore entB(Lu,v) ≥ maxa∈H∩[u,v] τ̂(a).

In order to show the opposite inequality, we divide H into the sets H−,
H+ and H0, which have been introduced above. If H0 ∩ [u, v] 6= ∅, then
Lu,v ⊂ A = Ub for some b ∈ H0, which implies

entB(Lu,v) ≤ entB(Ub) ≤ τ̂(b) = τ(0) = max
a∈H∩[u,v]

τ̂(a)

using Theorem 16. If H0 ∩ [u, v] = ∅, then either u ∈ H+ or v ∈ H−. In the
first case we get Lu,v ⊂ Uu, which implies

entB(Lu,v) ≤ entB(Uu) ≤ τ̂(u) ≤ max
a∈H∩[u,v]

τ̂(a)

using Theorem 16. In the second case we get Lu,v ⊂ Uv, which implies

entB(Lu,v) ≤ entB(Uv) ≤ τ̂(v) ≤ max
a∈H∩[u,v]

τ̂(a)

again using Theorem 16.

Proposition 11 shows that the set H on which τ̂ is defined is a bounded
closed interval. We denote its endpoints by minH and maxH. Let K− be
the set of all x ∈ A with lim supn→∞ n−1Sng(x) < minH, and K+ be the
set of all x ∈ A with lim infn→∞ n−1Sng(x) > maxH. Let K be the union
of these two sets. Then we have

Theorem 18. Let g : [0, 1] → R be a regular function and let A be a
completely invariant topologically transitive closed subset of ([0, 1], T ) with
htop(T |A) > 0. Then entB(K) = 0.

Proof. Suppose that entB(K)>0. Then either entB(K+)>0 or entB(K−)
> 0. We give the proof for the first case; the other case is similar.

For c ∈ R set Kc = {x ∈ A : lim infn→∞ n−1Sng(x) ≥ c}. Since
entB(K+) > 0, there exists c > maxH satisfying entB(Kc) > 0. Set ε =
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(c−maxH)/2 > 0. Let Z be a partition of [0, 1] such that T is piece-
wise monotone with respect to Z and supu,v∈Z |g(u) − g(v)| < ε for all
Z ∈ Z. Let % be a probability measure with support A which assigns mea-
sure zero to single points. We consider the set Nd introduced in Section 6
for this partition Z and this measure %. By Lemma 14 there is d > 0 with
entB(Nd) < entB(Kc). In particular, there is x ∈ Kc \Nd.

Choose k such that %(Y ) < d for all Y ∈ Zk with Y ∩ A 6= ∅. This is
possible since % assigns measure zero to single points and Z is a generator.
The point x chosen above is not an element of Nd. Hence for all n ≥ 0
there is Yn ∈ Zk with Tn(x) ∈ Yn and there are infinitely many n with
%Tn(x)(TnZn(x)) ≥ d, which implies Yn ⊂ TnZn(x) by the choice of k. Since
Zk is finite, we find C ∈ Zk and n0 < n1 < n2 < · · · such that Tnj (x) ∈ C
and C ⊂ TnjZnj (x) for j ≥ 0.

Set y = Tn0(x) and mj = nj − n0 for j ≥ 1. Because
TnjZnj (x) = Tnj (Zn0(x) ∩ T−n0Zmj (y))

= Tmj (Tn0Zn0(x) ∩ Zmj (y)) ⊂ TmjZmj (y)

we get C ⊂ TmjZmj (y) for j ≥ 1. Furthermore, for all j ≥ 1 with mj ≥ k
we have Zmj (y) ⊂ C because y ∈ C. For these j we find a point pj in the
closure of Zmj (y) which is a fixed point under Tmj . Let νj be the T -invariant
probability measure on the orbit Bj of pj . Since supu,v∈Z |g(u) − g(v)| < ε
for all Z ∈ Z we get |νj(g) − (1/mj)Smjg(y)| < ε for all j large enough,
since there can only be finitely many j such that Bj contains an endpoint
of an interval in Z. This implies

(7.1) lim inf
j→∞

νj(g) ≥ lim inf
j→∞

1
mj

Smjg(y)−ε = lim inf
j→∞

1
nj
Snjg(x)−ε ≥ c−ε

where we have also used that x ∈ Kc. The function g need not be contin-
uous on the finite set Bj . But the height of jumps of g at the points of Bj
tends to zero as j → ∞. Since the sets Bj are Markov subsets of A, this
implies that the set of limit points of p(T |Bj , sg) as j → ∞ is bounded
by q(T |A, sg) = τ(s). Furthermore, νj(sg) = p(T |Bj , sg) since Bj is a peri-
odic orbit. We infer that s lim infj→∞ νj(g) ≤ τ(s) for all s ∈ R, and hence
lim infj→∞ νj(g) ∈ H by Proposition 11. By the choice of ε this contradicts
(7.1), and the theorem is proved.

8. The dimension spectrum of Lyapunov exponents. Using simi-
lar methods to the last section, we estimate the Hausdorff dimension of level
sets of the Lyapunov exponent. Let A be a completely invariant closed sub-
set of ([0, 1], T ) with htop(T |A) > 0. Suppose that the function ϕ = log |T ′|
is regular and set τ(s) = q(T |A, sϕ). By Lemma 12 there is s0 ∈ (0, 1] with
τ(s) ≤ 0 for s ≤ −s0 and τ(s) > 0 for s > −s0. By Proposition 11 the
set H is a compact subinterval of [0,∞) and the set H−1 = {1/a : a ∈ H}
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is a closed subinterval of (0,∞]. Moreover, a 7→ τ̌(1/a) is a concave and
continuous function on H−1, which attains its supremum s0 on H−1. There-
fore the set G̃0 = {a ∈ H−1 : τ̌(1/a) = s0} is a nonempty closed interval,
possibly a single point. Set G̃+ = {a ∈ H−1 : a < b for all b ∈ G̃0} and
G̃− = {a ∈ H−1 : a > b for all b ∈ G̃0}. These sets may be empty. The map
a 7→ τ̌(1/a) is strictly increasing on G̃+ and strictly decreasing on G̃− since
it is concave. Finally, set G0 = {1/a : a ∈ G̃0}, G+ = {1/a : a ∈ G̃+} and
G− = {1/a : a ∈ G̃−}. Then the function τ̌ attains its supremum s0 on G0,
is strictly increasing on G− and strictly decreasing on G+.

For a ∈ H we define

Va =


{x ∈ A : 0 < χ(x) ≤ χ(x) ≤ a} if a ∈ G−,
{x ∈ A : χ(x) > 0} if a ∈ G0,
{x ∈ A : χ(x) ≥ a} if a ∈ G+.

Observe that 0 /∈ G+, since G0 is not empty. This implies χ(x) > 0 for all
x ∈ Va and a ∈ H. Now we can estimate the Hausdorff dimension of these
sets. The following proof is similar to the proof of Theorem 16, but details
are different.

Theorem 19. Let A be a completely invariant topologically transitive
closed subset of ([0, 1], T ) with htop(T |A) > 0 and suppose that ϕ = log |T ′|
is a regular function. For each a ∈ H \ {0} we have dimH(Va) ≤ τ̌(a).

Proof. For each a ∈ G0 we have τ̌(a) = s0. Since τ is a convex function,
the definition of τ̂ implies that τ̌(a) = infs≤s0((1/a)τ(s)− s) if a ∈ G−, and
τ̌(a) = infs>s0((1/a)τ(s)− s) if a ∈ G+.

Fix a ∈ H \ {0}. Choose ε > 0 and α > 0. Then we can find s ∈ R such
that (1/a)τ(s) − s < τ̌(a) + ε. We can do this in such a way that s = s0 if
a ∈ G0, s ≤ s0 if a ∈ G−, and s > s0 if a ∈ G+.

Now choose γ ∈ (0, α/2) and δ > 0 such that δ|s| ≤ εγ and δ|τ(s)| ≤ aεγ.
Let Z be a partition of [0, 1] with respect to which T is piecewise monotone
and with varZ(ϕ) < min(δ, α − 2γ). This is possible, since ϕ is regular.
There is a function ϕ̃ which is constant on each interval in Z and such that
|ϕ̃ − ϕ| ≤ δ and q(T |A, sϕ̃) = q(T |A, sϕ) = τ(s). This is possible by the
properties of the pressure function given in Lemma 6.

By Lemma 8, the notion of pressure we use here is the same as in [9].
Hence we can apply Theorem 2 of [9], which together with Lemma 4 in
[7] shows the existence of a probability measure % with support A which is
eτ(s)−sϕ̃-conformal. This means that %(TY ) =

	
Y e

τ(s)−sϕ̃d% for all intervals
Y contained in elements of Z.

Set

W =
{
x ∈ A : χ(x) > 0, lim inf

n→∞

τ(s)
an

Snϕ(x) ≥ τ(s)
}
.
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We have Va ⊂ W , since τ(s) = 0 if a ∈ G0, τ(s) ≤ 0 if a ∈ G−, and
τ(s) > 0, if a ∈ G+. Let Nd and Dα be as in Lemma 14. This lemma
says that there is d > 0 with dimH(Nd ∩ Dα) < ε, since varZ(ϕ) < α. Set
Wα = {x ∈W \Nd : χ(x) ≥ α}. We now estimate the Hausdorff dimension
of Wα.

Fix k ∈ N. The definition of W implies (τ(s)/a)Snϕ(x) ≥ nτ(s) − nγε
for all x ∈ Wα and all but finitely many n. Using also the definition of Nd

and Lemma 13, for each x ∈Wα we find an integer nx such that

nx ∈ Id(x), nx ≥ k,
τ(s)
a

Snxϕ(x) ≥ nxτ(s)− εγnx, |Znx(x)| ≤ e−γnx .

Set Yx = Znx(x) for x ∈ Wα, which is well defined because Wα ⊂ RZ . For
d > 0 found above let b > 0 be as in Lemma 15. Because nx ∈ Id(x) we get
%(TnxYx) ≥ %Tnx (x)(TnxYx) ≥ d and |TnxYx| ≥ b by Lemma 15. Since ϕ̃ is
constant on each element of Z, we have %(T j+1Yx) = eτ(s)−sϕ̃(T j(x))%(T jYx)
for 0 ≤ j ≤ nx − 1 by the definition of a conformal measure, which implies

(8.1) %(Yx) = esSnx ϕ̃(x)−nxτ(s)%(TnxYx) ≥ desSnx ϕ̃(x)−nxτ(s).

Because ϕ = log |T ′| we have |Yx| infYx eSnxϕ ≤ |TnxYx| ≤ |Yx| supYx e
Snxϕ.

By the definition of ϕ̃ and the choice of b, which satisfies 0 < b ≤ 1, this
implies esSnx ϕ̃(x) ≥ b|s||Yx|−se−|s|δnx . By the choice of δ and nx this gives

(8.2) esSnx ϕ̃(x) ≥ b|s||Yx|−se−εγnx ≥ b|s||Yx|−s+ε.

Similarly we get e−τ(s)Snxϕ(x)≥b|τ(s)||Yx|τ(s)e−|τ(s)|δnx≥b|τ(s)||Yx|τ(s)e−aεγnx .
We have nxτ(s) ≤ (τ(s)/a)Snxϕ(x) + εγnx and e−2εγnx ≥ |Yx|2ε by the
choice of nx. The last three inequalities imply

(8.3) e−nxτ(s) ≥ b|τ(s)/a||Yx|τ(s)/a+2ε.

Putting (8.2) and (8.3) into (8.1), we get

(8.4) %(Yx) ≥ db|s|+|τ(s)/a||Yx|τ(s)/a−s+3ε for all x ∈Wα.

Set Ũ = {Yx : x ∈Wα} ⊂
⋃∞
j=k Zj . Since two elements of

⋃∞
j=k Zj are either

disjoint or one contains the other, there is a subset U of Ũ which still covers
Wα and consists of pairwise disjoint intervals. Then (8.4) implies∑

Y ∈U
|Y |τ(s)/a−s+3ε ≤ c

∑
Y ∈U

%(Y ) ≤ c

where we have written c for d−1b−|s|−|τ(s)/a|. We have chosen s ∈ R such that
(1/a)τ(s)− s < τ̌(a) + ε. This gives

∑
Y ∈U |Y |τ̌(a)+4ε ≤ c. By the choice of

nx we have |Y | ≤ e−γk for all Y ∈ U , and k ∈ N can be chosen arbitrary. It
follows that ντ̌(a)+4ε(Wα) ≤ c and hence dimH(Wα) ≤ τ̌(a) + 4ε. This holds
for any α > 0. Furthermore, we have chosen d such that dimH(Nd) < ε.
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Because Va ⊂W ⊂ Nd ∪
⋃∞
m=1W1/m this gives dimH(Va) ≤ τ̌(a) + 4ε. Since

also ε > 0 was arbitrary, this proves dimH(Va) ≤ τ̌(a).

For u, v ∈ R with u ≤ v we now consider the set

Mu,v = {x ∈ A : u ≤ χ(x) ≤ χ(x) ≤ v}.
The level set Ma which is the set of all x ∈ A with χ(x) = a is then the set
Ma,a. We compute the Hausdorff dimension of these sets.

Theorem 20. Let A be a completely invariant topologically transitive
closed subset of ([0, 1], T ) with htop(T |A) > 0 and suppose that ϕ = log |T ′|
is a regular function. For u and v in the interior of H with u ≤ v we have
dimH(Mu,v) = maxa∈[u,v] τ̌(a).

Proof. By Theorem 10, for each a ∈ [u, v] with τ̂(a) > 0 there is an
ergodic invariant probability measure µ on A with µ(Ma) = 1 and hµ ≥
τ̂(a). Because µ(Ma) = 1 we have dimH(Ma) ≥ hµ/µ(ϕ) by Lemma 5 and
µ(ϕ) = a by the ergodic theorem. This gives dimH(Ma) ≥ hµ/a ≥ τ̂(a)/a =
τ̌(a). BecauseMa ⊂Mu,v we get dimH(Mu,v) ≥ τ̌(a), showing dimH(Mu,v) ≥
maxa∈[u,v] τ̌(a).

In order to show the opposite inequality, we divide H into the sets G−,
G+ and G0, introduced above. Suppose first that G0 ∩ [u, v] 6= ∅. Since
u ∈ intH and hence u > 0, we have Mu,v ⊂ Vb for some b ∈ G0 \ {0} by
definition of Vb. We get dimH(Mu,v) ≤ dimH(Vb) ≤ τ̌(b) = maxa∈[u,v] τ̌(a)
using Theorem 19. If G0∩ [u, v] = ∅, then either u ∈ G+ or v ∈ G−. Further-
more, 0 < u ≤ v since u ∈ intH. If u ∈ G+ we get Mu,v ⊂ Vu, which implies
dimH(Mu,v) ≤ dimH(Vu) ≤ τ̌(u) ≤ maxa∈[u,v] τ̌(a) using Theorem 19. Fi-
nally, if v ∈ G− we get Mu,v ⊂ Vv, which implies dimH(Mu,v) ≤ dimH(Vv) ≤
τ̌(v) ≤ maxa∈[u,v] τ̌(a) again by Theorem 19.
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