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Abstract. A subset of a topological space is said to be universally measurable if
it is measured by the completion of each countably additive σ-finite Borel measure on
the space, and universally null if it has measure zero for each such atomless measure.
In 1908, Hausdorff proved that there exist universally null sets of real numbers of car-
dinality ℵ1, and thus that there exist at least 2ℵ1 such sets. Laver showed in the 1970’s
that consistently there are just continuum many universally null sets of reals. The ques-
tion of whether there exist more than continuum many universally measurable sets of
reals was asked by Mauldin in 1978. We show that consistently there exist only contin-
uum many universally measurable sets. This result also follows from work of Ciesielski
and Pawlikowski on the iterated Sacks model. In the models we consider (forcing exten-
sions by suitably-sized random algebras) every set of reals is universally measurable if
and only if it and its complement are unions of ground model continuum many Borel
sets.

A subset of a topological space is said to be universally measurable if
it is measurable with respect to every complete σ-finite Borel measure on
the space, and universally null if it has measure zero for each such atomless
measure (see [13, 21], and 434D of [7], for instance). Hausdorff [11] proved
that there exists a universally null set of reals of cardinality ℵ1, which im-
plies that there exist at least 2ℵ1 such sets (more recently, Rec law [23] has
shown that every set of reals which is wellordered by a universally measur-
able relation is universally null). Laver (unpublished, see [16], pages 576–578
of [19] and Section 1.1 of [4]) showed that consistently there are just contin-
uum many universally null sets of reals. The question of whether there exist
more than continuum many universally measurable sets of reals was asked
by Mauldin in 1978 (personal communication), though the question may not
have appeared in print until 1984 (see [20, 21]). We show that in a forcing

2010 Mathematics Subject Classification: Primary 03E35; Secondary 28A05.
Key words and phrases: universally measurable set, random algebra, CPA.
Publication no. 947 of the third author.

DOI: 10.4064/fm208-2-4 [173] c© Instytut Matematyczny PAN, 2010



174 P. Larson et al.

extension by a suitable random algebra (B(κ) for κ = κc, where c denotes
the cardinal 2ℵ0) there exist only continuum many universally measurable
sets of reals, and moreover that every set of reals in such an extension is
universally measurable if and only if it and its complement are unions of
ground model continuum many Borel sets. We present two proofs of the
consistent negative answer to Mauldin’s question in the random algebra
extension.

The negative answer to Mauldin’s question also follows from work of
Ciesielski and Pawlikowski on the axiom CPA in the iterated Sacks model.
In Section 3 we give a proof that their axiom CPAcube implies that every
universally measurable set is the union of at most ℵ1 many perfect sets and
singletons, which is a very slight modification of their proof that CPAcube

implies that every universally null set has cardinality less than or equal
to ℵ1. Moreover, their axiom CPAgame

cube implies that the perfect sets can be
taken to be disjoint (see Section 2.1 of [4]).

In the final section we discuss several open questions and other issues
regarding universally measurable sets.

Notation. We use the symbol ⊆ to mean “subset”, and the symbol ⊂ to
mean “proper subset”.

1. Basic definitions and standard facts. A measure on a set X is a
function µ whose domain is some σ-algebra of subsets of X, with codomain
[0,∞], such that µ is countably additive for disjoint families. A set is said
to be measurable with respect to µ if it is in the domain of µ. A Borel
measure is a measure on a topological space whose domain contains the
Borel sets. A measure is complete if subsets of sets of measure 0 are in
the domain of the measure (and thus have measure 0). The completion of
a measure is the smallest complete measure extending it. If µ is a Borel
measure on a topological space X, and µ∗ is the completion of µ, then
a set A ⊆ X is in the domain of µ∗ if and only if there is a set B in
the domain of µ such that the symmetric difference A 4 B is contained
in a set of µ-measure 0 (see 212C of [6]). A measure µ on a set X is a
probability measure if µ(X) = 1, finite if µ(X) is finite, σ-finite if X is a
countable union of sets of finite measure, and atomless if singletons have
measure 0.

The set of universally measurable sets does not change if one replaces
“σ-finite” with “finite” or “probability” (see 211X(e) of [6]) or requires the
measures to be atomless. It follows that universally null sets are universally
measurable. Note that no perfect set is universally null, since any such set
has measure 1 for some Borel probability measure.

The following theorem (Theorem 15.6 of [13]) shows among other things
that the cardinality of the set of universally measurable subsets of any com-
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plete separable metric space (i.e., Polish space) is the same, since any such
space can be continuously injected into any other (see also Remark 2.9
of [21]).

Theorem 1.1. If X and Y are Polish spaces and µ and ν are atomless
Borel probability measures on X and Y respectively, then there is a Borel
bijection f : X → Y such that µ(I) = ν(f [I]) for all Borel I ⊂ X.

Combining this fact with Lusin’s theorem [17] that analytic sets are
Lebesgue measurable, we see that analytic sets are universally measurable.

2. The random algebra and measures. We review in this section
some standard facts about the random algebra, and the way in which names
in the random algebra give rise to measures. Our primary references are
[14, 1, 8].

Notation. Fixing a nonempty set X, for each x ∈ X and each i ∈ 2, we
let Cix denote the set {f ∈ X2 | f(x) = i}.

Definition 2.1. The Baire subsets of X2 are the members of the small-
est σ-algebra containing {Cix | x ∈ X, i ∈ 2}.

As pointed out in [14], the classes of Baire sets and Borel sets coincide
when X is countable, but otherwise singletons are Borel but not Baire.

Notation. We let µX denote the completion of the standard product
measure on the Baire subsets of X2, where µX(Cix) = 1/2 for each x ∈ X
and i ∈ 2 (see 254J of [6], for instance).

Notation. We let NX denote the set {B ⊂ X2 | µX(B) = 0}.
Definition 2.2. For each Baire B ⊆ X2, [B]µX is the set of Baire D ⊆

X2 such that B 4D ∈ NX . The random algebra B(X) is the partial order
whose conditions are sets of the form [B]µX , where B is a non-µX -null Baire
subset of X2, with the order

[B]µX ≤ [D]µX

(i.e., [B]µX is stronger than [D]µX ) if and only if B \D ∈ NX . Noting that
µX(C) = µX(B) for all C ∈ [B]µX , we let µX([B]µX ) denote this common
value.

Forcing with B(X) adds a generic function F : X → 2 defined by letting
F (x) = i if and only if Cix is in the generic filter. We sometimes refer to the
generic function F without mentioning the corresponding filter G, and talk
of the model V [F ].

Notation. Given B ⊆ X2, Y ⊆ X and y ∈ Y2, we let

By = {z ∈ X\Y 2 | y ∪ z ∈ B}.
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Fubini’s Theorem in this context says that for any nonempty Y ⊆ X
and any Baire B ⊆ X2, B ∈ NX if and only if {y ∈ Y2 | By 6∈ NX\Y } ∈ NY
(see [14] or 252B and 254N of [6]).

Definition 2.3. Given B ⊆ X2 and Y ⊆ X, we say that B has support
Y if for all y ∈ Y2, By ∈ {X\Y 2, ∅} (so the support of B is not unique). A
condition [B]µX has support Y if some B ∈ [B]µX has support Y . We say
that B has finite support if B has support Y for some finite Y , and countable
support if it has support Y for some countable Y , and similarly for [B]µX .

By Fubini’s Theorem, [B]µX has support Y if and only if

{y ∈ Y2 | µX\Y (By) 6∈ {0, 1}} ∈ NY .
Remark 2.4. Baire sets are built in countably many stages by countable

unions and complements from sets of the form Cix, for x ∈ X and i ∈ 2. It
follows that they have countable support, and can be coded by countable
subsets of X × ω. These codes give rise to reinterpretations of these sets in
generic extensions. For infinite cardinals γ, we fix a (suppressed) coding of
Baire subsets of γ2 by elements of γ2, and let eval(c) denote the Baire subset
of γ2 coded by c. We refer the reader to [14] for more on codes. Whenever
possible, we prefer to talk about Baire and Borel sets in the ground model
and their reinterpretations in generic extensions, and suppress mention of
codes and their evaluations.

Given a code c for a Baire subset of X2, if the set coded by c is empty, this
remains true in any forcing extension. (For each code c for a Borel sets of
reals, one can build a tree on ω×ω whose projection is (absolutely) equal to
eval(c), working recursively by Borel rank. If the projection of such a tree is
empty, this is witnessed absolutely by a ranking function. The corresponding
fact for Baire sets follows, as they have countable support.) It follows that
relations such as x ∈ B, x 6∈ B and B ∈ NX (for a given Baire set B in
the ground model) are preserved when one passes from a Baire set to its
reinterpretation in a generic extension.

Similarly, a Polish space in an inner model naturally reinterprets in an
outer model, via any countable dense subset. We typically ignore the dis-
tinction.

Using the fact that B(X) is c.c.c., and arguing by induction on the rank
of the Baire subsets of X2, it is not hard to see that the generic function F
is a member of every member (reinterpreted) of the generic filter. Moreover,
a function F : X → 2 is B(X)-generic over some model of ZF if and only
if it is a member of every (reinterpreted) Baire set of µX -measure 1 in the
model.

Since µX is a finite countably additive measure, B(X) has no uncountable
antichains. It follows that each B(X)-name η

∼
for a real is decided by the
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restriction of the generic filter to B(Y ), for some countable Y ⊆ X depending
only on the name itself, in which case we say that η

∼
has support Y (again,

the support of η
∼

is not unique).
In order to study the set of universally measurable sets in the random

algebra extension, we are going to look at those measures which are induced
by names for reals. Let P be a Polish space. For each B(X)-name η

∼
for

an element of P , there is a Borel probability measure σ on P defined by
letting σ(I) (for each Borel I ⊆ ω2) be µX([[η

∼
∈ Ǐ]]), where [[η

∼
∈ Ǐ]] is the

condition p in B(X) with the property that p  η
∼
∈ Ǐ and every condition

incompatible with p forces that η
∼
6∈ Ǐ. To see that there is such a p, note

that B(X) is c.c.c. and the collection of Baire subsets of X2 is a σ-algebra.
The following is a standard fact about the random algebra (see Theo-

rem 552P of [8] or Theorem 3.13 of [14]).

Theorem 2.5. If Y is a nonempty proper subset of X, then B(X) is
forcing-equivalent to the iteration B(Y ) ∗ B(X \ Y ).

Each intermediate extension V [H] then generates a new class of measures
on P , those induced by the B(X\Y )-names for elements of P . Our first proof
uses the measures σ(H, η

∼
), where η

∼
is a B(X)-name in V for an element of a

Polish space P in V and H is a V -generic filter for B(Y ), for some nonempty
proper subset Y of X. For each Borel set I ⊆ P , σ(H, η

∼
)(I) is defined to be

µX\Y ([[η
∼
/H ∈ Ǐ]]),

where, as before, [[η
∼
/H ∈ Ǐ]] is the condition in B(X \ Y ) (as interpreted in

V [H]) forcing that η
∼
/H ∈ Ǐ, such that every condition incompatible with it

forces that η
∼
/H 6∈ Ǐ (here η

∼
/H is a B(X \ Y )-name whose realization in the

B(X \ Y )-extension of V [H] will be the same as the realization of η
∼

in the
B(X)-extension of V induced by H and the V [H]-generic filter for B(X\Y )).

The following fact appears in [14, 8]. Combining it with Theorem 2.7, we
see that consistently there exist just continuum many universally measurable
sets of reals.

Theorem 2.6. Suppose that κ is a cardinal such that κc = κ. Then
2ℵ0 = 2(cV ) = κ in the B(κ) extension.

2.1. First proof

Theorem 2.7. Let P be a Polish space. For any nonempty set X, every
universally measurable subset of P is the union of cV many Borel sets in the
B(X) extension.

Proof. Let A∼ be a B(X)-name for a universally measurable set of reals.
Then for every B(X)-name ṁ for a Borel measure on P there are B(X)-
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names B∼ and N∼ for Borel subsets of P such that every condition forces that
A∼4 B∼ ⊆ N∼ and that N∼ has ṁ-measure 0. Furthermore, every measure in
the extension is the realization of a B(X)-name with countable support, and
B∼ and N∼ can be taken to have countable support. For any countable Z ⊆ X,
there is a set of continuum many names giving rise to all the reals in the B(Z)
extension. It follows then that there is a nonempty set Y ⊆ X of cardinality
at most c such that if H ⊂ B(Y ) is a V -generic filter, then for every Borel
measure ρ on P in V [H] there are Borel sets B, N such that ρ(N) = 0 and
every condition in B(X \ Y ) forces that A∼/H 4 B̌ ⊆ Ň (this is somewhat
abusive notation: B̌ and Ň refer to the reinterpretations of B and N in the
B(X\Y )-extension; strictly speaking we should fix codes c and d for B and N
and refer to eval(č) and eval(ď)). For every B(X)-name η

∼
in V , the measure

σ(H, η
∼
) exists in V [H]. Letting B, N be the corresponding Borel sets for this

measure, it follows that every condition in B(X \ Y ) forces that η
∼
/H 6∈ Ň ,

and therefore that η
∼
/H ∈ A∼ if and only if η

∼
/H ∈ B̌. It follows that in the

B(X)-extension, the realization of A∼ is the union of all the (reinterpreted)
Borel sets in the corresponding B(Y ) extension (specifically, sets of the form
B \N) which are subsets of A∼. Since each such Borel set is the realization of
a name with support a countable subset of Y , there are just cV many such
sets.

The forcing axiom MAκ (Martin’s Axiom for κ many dense open sets)
implies that the union of κ many null sets is null, for any Borel measure on a
Polish space (see the proof of Theorem 7.3 of [2]). From this it follows (again,
under MAκ) that unions of κ many Borel sets are universally measurable
(since if Bα (α < κ) are µ-measurable sets, the set Bα \

⋃
β<αBβ must be

µ-null for a tail of α). It is tempting then to think that consistently the
universally measurable sets are exactly the unions of κ many Borel sets, for
some cardinal κ. The following fact rules this out, however.

Theorem 2.8 (Grzegorek (see [20])). If λ is the least cardinality of a
nonmeasurable set of reals, then there is a universally null set of cardinal-
ity λ.

A universally null set of cardinality λ cannot be a union of less than λ
many Borel sets, since it would then have to contain a perfect set (we thank
Jörg Brendle for pointing this out to us).

However, the argument given here shows the following fact.

Theorem 2.9. Let P be a Polish space and let X be a set of cardinality
greater than c. In the B(X)-extension, for every set A ⊆ P , the following
are equivalent:

(1) A is universally measurable.
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(2) A and its complement are unions of less than c many Borel sets.
(3) A and its complement are unions of cV many Borel sets.

The implication (1)⇒(3) of Theorem 2.9 is given by Theorem 2.7, plus
the fact that a subset of a Polish space is universally measurable if and only
if its complement is. The implication (3)⇒(2) follows from the assumption
that |X| > cV .

David Fremlin has pointed out to us a relatively simple proof of the
remaining implication of Theorem 2.9. By convention, cov(N ) denotes the
smallest cardinality of a collection of Lebesgue null sets whose union covers
the real line. By Theorem 1.1, for any finite Borel measure µ on any Polish
space P , cov(N ) is the same as the smallest cardinality of a collection of
µ-null sets covering P . It is a standard fact that if X is a set of cardinality
greater than c, then cov(N ) = c in the B(X)-extension—this follows for
instance from the fact that any B(ω)-generic real falls outside of all (rein-
terpreted) ground model Lebesgue null sets. With these facts in mind, the
implication (2)⇒(1) follows from the following argument, which is similar
to Exercise 522Yk of [8].

Theorem 2.10. Suppose that P is a Polish space, µ is an atomless finite
Borel measure on P , and A is a subset of P such that A and P \A are unions
of less than cov(N ) many µ-measurable sets. Then A is µ-measurable.

Proof. Fix κ < cov(N ) and µ-measurable sets Bα, Cα (α < κ) such that
A =

⋃
α<κBα and P \A =

⋃
α<κCα. There exist countable subsets of κ, E

and F , such that for all countable G ⊆ κ,

µ
( ⋃
α∈G

Bα

)
≤ µ

( ⋃
α∈E

Bα

)
and µ

( ⋃
α∈G

Cα

)
≤ µ

( ⋃
α∈F

Cα

)
.

Let H =
⋃
α∈E Bα ∪

⋃
α∈F Cα. If µ(H) = µ(P ), then A is µ-measurable,

and we are done. Otherwise, let µ′ be the finite Borel measure on P defined
by letting µ′(I) = µ(I \H) for all Borel I ⊆ P . We see that for all α ∈ κ,
µ(Bα ∪ Cα ∪H) = µ(H), which implies that µ′(Bα ∪ Cα) = 0. Thus P is a
union of κ many µ′-null sets, giving a contradiction.

In the rest of this section, we give our original proof of the implication
(2)⇒(1) of Theorem 2.9. This proof uses the following definition.

Definition 2.11. Suppose that A is a subset of a Polish space P , Q is
a partial order, and G ⊂ Q is a V -generic filter. The Borel reinterpretation
of A in V [G] is the union of all the reinterpreted ground model Borel sets
contained in A.

A version of the following fact is mentioned in [5].
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Lemma 2.12. Let P be a Polish space, and let A be a subset of P . Then
the following are equivalent.

(1) A is universally measurable.
(2) The Borel reinterpretations of A and P \A are complements in every

B(ω)-extension.
(3) For every infinite set X, the Borel reinterpretations of A and P \A

are complements in every B(X)-extension.

Proof. The implication (3)⇒(2) is immediate. For (1)⇒(3), fix an infi-
nite set X and let G ⊂ B(X) be a V -generic filter. The Borel reinterpre-
tations of A and P \ A are clearly disjoint, so it suffices to see that each
x ∈ (P )V [G] is in one set or the other. Each such x is the realization of
a B(X)-name η

∼
, and there is a corresponding measure σ on P defined by

letting σ(I) (for each Borel set I ⊆ P ) be the µX -measure of the condition
in B(X) asserting that the realization of η

∼
is in I. Then there is a Borel set

B ⊆ P such that A4B is contained in a σ-null Borel set N . Then x 6∈ N , so
x is in the reinterpretation of either B \N or (P \B)\N . Finally, B \N ⊆ A
and (P \B) \N ⊆ P \A.

For (2)⇒(1), let ν be an atomless probability measure on P . Applying
Theorem 1.1, let π : ω2 → P be a Borel isomorphism such that ν(π[I]) =
µω(I) for every Borel I ⊆ ω2, where µω is as defined at the beginning of
Section 2. Letting F denote the B(ω)-generic function, we have a dense set
of conditions in B(ω) forcing that π(F ) will be contained in a ground model
Borel set which is contained in either A or its complement. Since B(ω) is
c.c.c., there exist Borel sets B0 and B1 such that π[B0] ⊆ A, π[B1] ⊆ P \A
and µω(B0 ∪ B1) = 1. Then π[B0] and π[P \ (B0 ∪ B1)] witness universal
measurability for A and ν.

The following appears in [8], with a different proof.

Theorem 2.13. Suppose that A is a universally measurable subset of a
Polish space P , X is a nonempty set and F : X → 2 is a V -generic func-
tion for B(X). Then the Borel reinterpretation of A in V [F ] is universally
measurable.

First proof of Theorem 2.13. Let A∗ denote the Borel reinterpretation of
A in V [F ]. If A∗ is not universally measurable in V [F ], then there is a generic
extension of V [F ] by B(ω) (as understood in V [F ]) in which the Borel rein-
terpretations of A∗ and its complement (using Borel sets from V [F ]) are
not complements. By Theorem 2.5, this extension is a generic extension
of V by the forcing B((X × {0}) ∪ (ω × {1})) in which the Borel rein-
terpretations of A and its complement (using Borel sets from V ) are not
complements. This contradicts the universal measurability of A in V , by
Lemma 2.12.
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We give a second proof which uses material from Section 2.2.

Second proof of Theorem 2.13. By Theorem 1.1, it suffices to prove the
theorem in the case where P is ω2. A measure on ω2 in V [F ] is coded by
an element of ω2, which in turn is realized by a Borel function f : Y2 → ω2
for some countable Y ⊆ X, as in Theorem 2.17 below. Letting mx denote
the measure coded by x ∈ ω2, f gives rise to a measure υ on ω2: υ(E) =	
mf(y)(E) dπ, where π is the product measure on Y2. Since A is universally

measurable, there is a Borel set B ⊆ ω2 such that A4B is contained in an
υ-null set N . Then, letting F be the generic function, F �Y is in the set of
y ∈ Y2 such thatN ismf(y)-null, so the reinterpretation ofN ismf(F�Y )-null.
Since B\N is contained in the Borel reinterpretation of A, and (ω2\B)\N is
contained in the Borel reinterpretation of (ω2 \A), the symmetric difference
of the Borel reinterpretation of A with the reinterpretation of B is contained
in the reinterpretation of N .

Proof of implication (2)⇒(1) of Theorem 2.9. Let F be a B(X)-generic
function, and let κ be a cardinal less than |X|. Suppose that A is a set of reals
in V [F ], and that B̄ = {Bα : α < κ} and C̄ = {Cα : α < κ} are collections
of Borel sets in V [F ] such that A =

⋃
α<κBα and P \ A =

⋃
α<κCα. Then

there is a set Y ⊂ X such that X \Y is uncountable, and such that B̄ and C̄
(that is, the corresponding sets of codes) are in V [F �Y ]. By Theorem 2.13,
it suffices to see that

⋃
B̄ is universally measurable in V [F �Y ].

Suppose towards a contradiction that
⋃
B̄ is not universally measurable

in V [F �Y ]. Then there is a condition p in B(ω) forcing that some new mem-
ber of P will not be in either

⋃
B̄ or

⋃
C̄. Since X \ Y is uncountable,

there are densely many such conditions in B(X \Y ). To see this, let D ⊆ ω2
be a Borel set in V [F �Y ] such that p = [D]µω and let E ⊆ X\Y 2 be a
non-µX\Y -null Baire set in V [F �Y ]. Then E has countable support, so we
may fix an injection i : ω → X \ Y such that the range of i is disjoint from
the support of E. Let E′ be the set of f ∈ E such that for some h ∈ D,
f(i(n)) = h(n) for all n ∈ ω. Then [E′]µX\Y forces that F ∗ ◦ i (where F ∗

is the B(X \ Y )-generic function) will be V [F �Y ]-generic for the restriction
of the partial order B(ω) below p, and therefore that

⋃
B̄ and

⋃
C̄ will not

be complements. Since
⋃
B̄ and

⋃
C̄ are complements in V [F ], we have the

desired contradiction.

2.2. More on the random algebra and measures. Our original
solution to Mauldin’s question requires more background information on
the random algebra. Again, we fix a nonempty set X.

Definition 2.14. Given a Baire set B ⊆ X2 and a nonempty set Y ⊂ X,
BY denotes the set of y ∈ Y2 such that By 6∈ NX\Y . Given a Baire set
E ⊆ Y2, EX is the set of x ∈ X2 such that x�Y ∈ E.
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Remark 2.15. If B is a Baire subset of X2 and B has support Y ⊆ X,
then µX(B) = µY (BY ).

Notation. By Fubini’s Theorem, if B, B′ are Baire subsets of X2, Y is
a nonempty proper subset of X and B 4 B′ ∈ NX , then BY 4 B′Y ∈ NY ,
so we can let ([B]µX )Y denote [BY ]µY . Similarly, if E0, E1 are Baire subsets
of Y2 such that E0 4 E1 ∈ NY , then EX0 4 EX1 ∈ NX , so we can let [E0]XµY

denote [EX0 ]µX .

Remark 2.16. As mentioned above, if G ⊂ B(X) is a V -generic filter,
F is the corresponding generic function, and B ⊆ X2 is a Baire set in V ,
then F is an element of B (reinterpreted in the extension) if and only if
[B]µX ∈ G. This can be proved by induction on the rank of B (i.e., the
number of steps needed to generate B from sets of the form Cix).

Furthermore, if Z ⊂ Y are nonempty subsets of X, and B ⊆ X2 has
support Y , then, by Fubini’s Theorem (applied twice), the set of x ∈ B such
that (BY )x�Z ∈ NY \Z has measure 0 (to see this, first note that (BY )z ∈
NY \Z if and only if Bz ∈ NX\Z). It follows that if [B]µX ∈ G then (BY )F�Z 6∈
NY \Z in V [G], again using the reinterpretation of B.

Given a Polish space P in the ground model, every B(X)-name for an
element of P is represented by a Borel function in the following way (see
Definition 551C of [8], or Theorems 3.1.5 and 3.1.7 of [1], and their proofs).

Theorem 2.17. Suppose that X is a nonempty set, P is a Polish space
and η

∼
is a B(X)-name for an element of P . Suppose that Y ⊆ X is countable

and η
∼

has support Y . Then there exists a Borel function f : Y2→ P such that
[X2]µX forces in B(X) that f(F �Y ) = η

∼G
, where G ⊂ B(X) is the generic

filter, F : X → 2 is the associated generic function and f is identified with
its reinterpretation in the generic extension.

Remark 2.18. If f : Y2 → P and f ′ : Y
′
2 → P are two functions as

in Theorem 2.17 for the same X and η
∼
, then µX({x ∈ X2 | f(x�Y ) =

f ′(x�Y ′)}) = 1.

Theorem 2.17 gives us another way to associate measures to names for
reals.

If
• B is a Baire member of P(X2) \ NX ,
• Y ⊂ X is countable and B has support Y ,
• P is a Polish space,
• f : Y2→ P is a Borel function,
• Z is a proper subset of Y ,
• z ∈ Z2 and (BY )z 6∈ NY \Z ,

then there is a Borel probability measure ρ(z,B, f) on P defined by letting
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ρ(z,B, f)(I) be
µY \Z((BY )z ∩ {y ∈ Y \Z2 | f(y ∪ z) ∈ I})

µY \Z((BY )z)

for all Borel I ⊆ P . (If we removed the denominator of this expression
we would still have a suitable measure, just not necessarily a probability
measure.)

It follows from Remark 2.16 that if

• G ⊂ B(X) is a V -generic filter,
• F is the associated generic function,
• p = [B]µX is a member of B(X),
• η
∼

is a B(X)-name,
• Y ⊂ X is countable and nonempty, and B and η

∼
have support Y ,

• f : Y2→ P witnesses Theorem 2.17 for η
∼
,

• Z is a proper subset of Y ,
• pXZ ∈ G (here we are using the notation specified after Remark 2.15),

then in V [G] (indeed, in V [F �Z]) there is a Borel probability measure
ν(F �Z, p, η

∼
) on P defined by letting

ν(F �Z, p, η
∼
)(I) = ρ(F �Z,B, f)(I)

for all Borel I ⊆ ω2, using the reinterpretations of f and B in V [G]. By
Remarks 2.15, 2.16 and 2.18, ν(F �Z, p, η

∼
) does not depend on the choice

of f , Y or B.
The reader may check that the measure ν(F �Z, [X2]µX , η∼) is the same as

the measure σ(H, η
∼
) from above, when F �Z is the part of the generic function

corresponding to H. We will not use this fact, however. The following lemma
is trivial when we use the measures σ(H, η

∼
).

Lemma 2.19. Suppose that
• X is a nonempty set,
• G ⊂ B(X) is a V -generic filter,
• F is the associated generic function,
• p is a member of B(X),
• P is a Polish space,
• η
∼

is a B(X)-name for a member of P ,
• Y ⊂ X is countable and nonempty, and p and η

∼
have support Y ,

• Z is a proper subset of Y ,
• pXZ ∈ G,
• ξ
∼

is a B(X)-name for an element of ω2 coding a ν(F �Z, p, η
∼
)-null set,

• W ⊆ X \ (Y \ Z) is countable,
• ξ
∼

has support W .

Then η
∼G
6∈ eval(ξ

∼G
).
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Proof. Let f : Y2→ P witness Theorem 2.17 for η
∼
, and let B be a Baire

subset of X2 in V with support Y such that p = [B]µX . Let B0 be the set
of x ∈ B such that (BY )x�Z 6∈ NY \Z . By Remark 2.16, B0 4 B ∈ NX . Let
g : W 2 → ω2 witness Theorem 2.17 for ξ

∼
. Then the set of x ∈ B0 such that

g(x�W ) is a code for a ρ(x�Z,B0, f)-null set is in G. Call this set B1. For
each x ∈ B1, the set of y ∈ Y \Z2 such that

y ∪ (x�Z) ∈ (B1)Y

and
f(y ∪ (x�Z)) is in the set coded by g(x�W )

is in NY \Z . Let B2 be the set of x ∈ B1 such that f(x�Y ) is not in the set
coded by g(x�W ). Then B1 4B2 ∈ NX , so [B1]µX = [B2]µX ∈ G.

Given X 6= ∅, Y ⊆ X and an injective function π : Y → X, we extend
π to all Baire subsets of X2 with support Y , by letting π(Cix) = Ciπ(x) for
all y ∈ Y and i ∈ 2, and letting π(

⋂
i∈ω Bi) =

⋂
i∈ω π(Bi) and π(X2 \ B) =

X2 \ π(B). This map preserves µX , so it extends also to conditions in B(X)
with support Y . We extend π to B(X)-names with support Y for members
of ground model Polish spaces as follows. For any Polish space P and any
B(X)-name η

∼
with support Y for a member of P , π(η

∼
) is a B(X)-name

with support π[Y ] for a member of P . Furthermore, if θ∼ is a B(X)-name
with support Y for a Borel subset of P (i.e., a name for a code for the
realization of θ∼ has support Y ), then π(θ∼) is a B(X)-name with support
π[Y ] for a Borel subset of P (the name induced by the π-image of the name
for the code corresponding to θ∼), and, for each p ∈ B(X) with support Y ,
π(p)  π(η

∼
) ∈ π(θ∼) if and only if p  η

∼
∈ θ∼.

The following lemma is immediate from the definitions.

Lemma 2.20. Suppose that

• X is a nonempty set,
• F : X → 2 is a V -generic function for B(X),
• Y is a countable subset of X,
• Z is a proper subset of Y ,
• π : Y → X is an injection which fixes the members of Z,
• p = [B]µX is a condition in B(X) with support Y ,
• pXZ ∈ G,
• P is a Polish space,
• η
∼

is a B(X)-name for an element of P ,
• p and η

∼
have support Y .

Then in V [F ], ν(F �Z, π(p), π(η
∼
)) = ν(F �Z, p, η

∼
).
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2.3. Second proof. In this section we present our original proof of our
main theorem. We note that David Fremlin [9] has written up the argument
of this section in the style of his treatise on measure theory (e.g. [6, 7, 8]).

In this section we force with B(κ), where κc = κ. So the X’s from the
previous section will become κ’s. Likewise, Y , Z and W will become b, a
and d.

Theorem 2.21. Suppose that κ is a cardinal such that κc = κ, and let
P be a Polish space. Then B(κ) forces that 2ℵ0 = 2ℵ1 = κ and that the set
of universally measurable subsets of P has cardinality κ.

Proof. It follows from Theorem 2.6 that B(κ) forces 2ℵ0 = 2ℵ1 = κ.
It remains to see that the set of universally measurable subsets of P has
cardinality κ.

Let T be the set of 〈a, b, p, η
∼
〉 such that

• p ∈ B(κ),
• b ∈ [κ]ℵ0 ,
• a ⊆ b,
• η
∼

is a B(κ)-name for an element of P ,
• p and η

∼
have support b.

We will associate to each B(κ)-name A∼ for a universally measurable subset
of P a set u(A∼) ⊂ κ of cardinality 2ℵ0 and a continuum-sized collection
R(A∼) of sequences 〈t, a, b, p, η

∼
〉 such that

• t ∈ {True,False},
• 〈a, b, p, η

∼
〉 ∈ T ,

in such a way that the realization of A∼ is completely determined by u(A∼),
R(A∼) and the generic filter (so A∼ itself is not needed). Since there are only
κ many such pairs (u(A∼), R(A∼)) in the ground model, the collection of uni-
versally measurable subsets of P in the extension will have cardinality κ.

We say that two elements 〈a, b, p, η
∼
〉, 〈a′, b′, p′, η

∼
′〉 of T are isomorphic

if a = a′ and there is a bijection π : b → b′ which fixes the members of a
such that p′ = π(p) and η

∼
′ = π(η

∼
). The following claim follows from the fact

that every 〈a, b, p, η
∼
〉 ∈ T is isomorphic to a sequence 〈a, b′, p′, η

∼
′〉 ∈ T with

b′ ⊆ a ∪ (sup(a), sup(a) + ω).

Claim 1. For each countable a∗ ⊂ κ, there are 2ℵ0 many isomorphism
classes of {〈a, b, p, η

∼
〉 ∈ T | a = a∗}.

Let A∼ be a B(κ)-name for a subset of P such that every condition forces
that the realization of A∼ will be universally measurable. Let T+ be the set
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of 〈t, a, b, p, η
∼
〉 such that

• 〈a, b, p, η
∼
〉 ∈ T ,

• t ∈ {True,False},
• p  “η

∼
∈ A∼ ⇔ t.”

We say that two elements 〈t, a, b, p, η
∼
〉, 〈t,′ a′, b′, p′, η

∼
′〉 of T+ are isomorphic

if 〈a, b, p, η
∼
〉 and 〈a′, b′, p′, η

∼
′〉 are isomorphic and t = t′.

Suppose that C is an isomorphism class of T such that a is a proper
subset of b for every 〈a, b, p, η

∼
〉 in C. For each 〈a, b, p, η

∼
〉 ∈ C, the condition

pκa is the same. By Lemma 2.20, pκa forces that the measure ν(F �a, p, η
∼
) exists

and is the same for all 〈a, b, p, η
∼
〉 ∈ C, where F is the generic function. Let

ν∼ be a B(κ)-name for this measure, as forced by pκa. Since A∼ is a B(κ)-name
for a universally measurable set, there exist B(κ)-names θ∼ and ζ

∼
for Borel

subsets of P such that pκa forces that ζ
∼G

will be ν∼G-null, and also that the
symmetric difference of A∼G and θ∼G will be contained in ζ

∼G
, where G is

the generic filter. Let D(C) be the set of all countable d ⊂ κ for which
there exist B(κ)-names for codes for such θ∼G and ζ

∼G
with support d. For

notational convenience, let D(C) = {∅} whenever C is an isomorphism class
of T such that a = b for all 〈a, b, p, η

∼
〉 in C.

For each isomorphism class C∗ of T+, let K(C∗) be the set of countable
c ⊂ κ such that (b \ a) ∩ c is nonempty for all 〈t, a, b, p, η

∼
〉 ∈ C∗.

Claim 2. Suppose that

• C is an isomorphism class of T ,
• d ∈ D(C),
• 〈a, b0, p0, η

∼
0〉 and 〈a, b1, p1, η

∼
1〉 are both in C,

• 〈t, a, b0, p0, η
∼

0〉 ∈ T+,
• K(C∗) = ∅, where C∗ is the isomorphism class of 〈t, a, b0, p0, η

∼
0〉,

• (b1 \ a) ∩ d = ∅.
Then 〈t, a, b1, p1, η

∼
1〉 ∈ T+.

Proof of Claim 2. If a = b for all 〈a, b, p, η
∼
〉 ∈ C, then the claim follows

immediately, so suppose that a is a proper subset of b for all 〈a, b, p, η
∼
〉 ∈ C.

Applying the fact that K(C∗) = ∅, we may assume, by replacing
〈t0, a, b0, p0, η

∼
0〉 with an isomorphic copy if necessary, that b0 \ a and b1 \ a

are disjoint from d and each other.
Since d ∈ D(C), there are B(κ)-names with support d for members of ω2

inducing B(κ)-names θ∼ and ζ
∼

for Borel subsets of P such that pκa forces that
ζ
∼G

will be ν∼G-null, and also that the symmetric difference of A∼G and θ∼G will
be contained in ζ

∼G
, where G is the generic filter. By Lemma 2.19, pκa forces
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that the realizations of η
∼

0 and η
∼

1 will both fall outside of the realization
of ζ
∼
.
Let π be a permutation of κ, fixing the members of a ∪ d, such that

p1 = π(p0) and η
∼

1 = π(η
∼

0). Then θ = π(θ∼), so we have the following.

t= True⇔ p0  η
∼

0 ∈ A
∼

(by the definition of T+)

⇔ p0  η
∼

0 ∈ θ
∼

(by the previous paragraph)

⇔ π(p0)  π(η
∼

0)∈π(θ
∼
) (by the remarks before Lemma 2.20)

⇔ p1  η
∼

1 ∈ θ
∼

(since p1 = π(p0), η
∼

1 = π(η
∼

0) and θ= π(θ
∼
))

⇔ p1  η
∼

1 ∈ A
∼

(by the previous paragraph).

Similarly, t = False if and only if p1  η
∼

1 6∈ A∼. Thus 〈t, a, b1, p1, η
∼

1〉 ∈ T+.
This completes the proof of Claim 2.

For each isomorphism class C of T , fix a set d(C) ∈ D(C). For each
isomorphism class C∗ of T+, fix a set k(C∗) ∈ K(C∗) ∪ {∅} such that
k(C∗) ∈ K(C∗) if K(C∗) 6= ∅. Applying Claim 1, let u(A∼) be a subset of κ
of cardinality 2ℵ0 such that

• d(C) ⊂ u(A∼) whenever C is the isomorphism class of a sequence
〈a, b, p, η

∼
〉 with a ⊂ u(A∼),

• k(C∗) ⊂ u(A∼) whenever C∗ is the isomorphism class of a sequence

〈t, a, b, p, η
∼
〉 ∈ T+

with a ⊂ u(A∼).

Let T (u(A∼)) be the set of 〈a, b, p, η
∼
〉 ∈ T such that a = b ∩ u(A∼), and define

T+(u(A∼)) similarly. Then for any 〈t, a, b, p, η
∼
〉 ∈ T+(u(A∼)), K(C∗) = ∅,

where C∗ is the isomorphism class of 〈t, a, b, p, η
∼
〉 (since k(C∗) ⊂ u(A∼)).

Let b(A∼) = (sup(u(A∼)), sup(u(A∼))+ω). Let R(A∼) be the set of sequences
〈t, a, b, p, η

∼
〉 ∈ T+(u(A∼)) such that b \ a = b(A∼).

Let G ⊂ B(κ) be a V -generic filter. We claim that A∼G can be recovered
from u(A∼ ), R(A∼) and G. To see this, let η

∼
be a B(κ)-name for an element

of P . Let b ⊂ κ be countable such that η
∼

has support b and b \ u(A∼) is
infinite, and let a = b ∩ u(A∼). Let π : b → a ∪ b(A∼) be a bijection fixing a.
Then if η

∼G
∈ A∼G, there exists p0 ∈ G such that

• 〈a, b, p0, η
∼
〉 ∈ T (u(A∼)),

• 〈True, a, b(A∼), π(p0), π(η
∼
)〉 ∈ R(A∼) (by Claim 2).
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Furthermore, if η
∼G
6∈ A∼G, there exists p1 ∈ G such that

• 〈a, b, p1, η
∼
〉 ∈ T (u(A∼)),

• 〈False, a, b(A∼), π(p1), π(η
∼
)〉 ∈ R(A∼) (by Claim 2).

However, such conditions p0 and p1 cannot both exist, since they would be
compatible, and thus π(p0) and π(p1) would be compatible.

3. CPA. The consistency of the negative answer to Mauldin’s question
follows from a very slight variation of Ciesielski and Pawlikowski’s proof [4]
that every universally null set has cardinality at most ℵ1 in the iterated
Sacks model. The modified version of their proof shows that every universally
measurable set is the union of at most ℵ1 many perfect sets and singletons
in this model. Following [4], we say that a cube is a continuous injection
from

∏
n∈ω Cn to P , where P is a Polish space and each Cn is a perfect

subset of ω2. Let Fcube denote the set of cubes, and let Perf(P ) denote the
collection of perfect subsets of P . A set E ⊆ Perf(P ) is said to be Fcube-dense
if for each f ∈ Fcube there is a g ∈ Fcube such that g ⊆ f and range(g) ∈ E .
The axiom CPAcube(P ) says that for every Fcube-dense E ⊆ Perf(P ) there
is an E0 ⊆ E such that |E0| ≤ ℵ1 and |ω2 \

⋃
E0| ≤ ℵ1.

The following two lemmas are Fact 1.0.2 and Claim 1.1.4 of [4].

Lemma 3.1. A set E ⊆ Perf(P ) is Fcube-dense if and only if for every
continuous injection f :

∏
n∈ω

ω2 → P there is a cube g ⊆ f such that
range(g) ∈ E.

Lemma 3.2. If D is a Borel subset of
∏
n∈ω

ω2 and D has positive mea-
sure in the usual product measure on

∏
n∈ω

ω2, then D contains a set of the
form

∏
n∈ω Cn, where each Cn ∈ Perf(ω2).

The proof of the following is essentially the same as the proof of The-
orem 1.1.4 of [4], which shows that CPAcube(P ) implies that universally null
sets have cardinality less than or equal to ℵ1.

Theorem 3.3. If P is a Polish space and CPAcube(P ) holds, then every
universally measurable set is the union of at most ℵ1 many sets, each of
which is either a perfect set or a singleton.

Proof. Let A ⊆ P be universally measurable, and suppose that
CPAcube(P ) holds. Let E be the collection of perfect subsets of P which
are either contained in or disjoint from A. It suffices to see that E is Fcube-
dense. This follows almost immediately from the two lemmas above. Let
f :
∏
n∈ω

ω2→ P be a continuous injection, and let µ be the Borel measure
on P defined by letting µ(I) be the measure of f−1[I] in the standard prod-
uct measure on

∏
n∈ω

ω2. Then there exist Borel subsets B, N of P such
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that A4 B ⊂ N and µ(N) = 0. Then one of B \ N and (P \ B) \ N has
positive µ-measure, so by Lemma 3.2 there is a function g ⊆ f as desired.

In the model obtained by forcing over a model of the GCH with an ω2-
length countable support iteration of Sacks forcing, CPAcube(P ) holds for
every Polish space P , along with the equation c = 2ℵ1 = ℵ2 (see pages 52,
143–144 and 159–160 of [4]).

4. Universal measurability and the Baire property. A fundamen-
tal question about universally measurable sets, which remains open, was
asked by Mauldin, Preiss and Weizsäcker [18] in 1983:

Question 4.1. Is it consistent that every universally measurable set of
reals has the Baire property?

One could also ask whether it consistent that every universally measur-
able set of reals has universally null symmetric difference with a set with
the Baire property. The following theorem shows that these two questions
are equivalent.

Theorem 4.2. If S is a universally measurable set of reals without the
Baire property, then S × R is a universally measurable set which does not
have universally null symmetric difference with any set with the Baire prop-
erty.

Proof. To see that S × R is universally measurable, let µ be a finite
atomless Borel measure on R × R. Let ν be the projection measure on R
given by ν(I) = µ(I × R). Then µ(S × R) = ν(S).

Suppose towards a contradiction that S×R has universally null symmet-
ric difference with P ⊆ R× R, and that P has the property of Baire. Since
S does not have the Baire property, there is an open interval in which S is
neither meager nor comeager in any subinterval. By restricting to this inter-
val if necessary, we may assume that S itself is neither meager nor comeager
in any interval. Furthermore, we may assume without loss of generality that
P is meager or comeager in R × R, since we can pass to an open rectangle
where this is the case, and replace S with its restriction to the x-axis of the
cube, where it still does not have the Baire property.

We now derive a contradiction to the fact that the symmetric difference
of S × R and P is universally null. We shall use the fact that if x ∈ R
and Y ⊆ R is comeager, then {x} × Y is not universally null. To see this
note that Y contains a perfect set, and so there are nonatomic measures
concentrating on {x} × Y .

Suppose first that P is meager in R× R. Then the set of x ∈ R so that
Px = {y | 〈x, y〉 ∈ P} is meager, must be comeager. Since S is not meager
it cannot be contained in the complement of this set. So there is x ∈ S with
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Px meager. Then (S×R)\P ⊇ {x}× (R\Px), and since R\Px is comeager,
this set is not universally null.

Suppose next that P is comeager in R× R. Then the set of x ∈ R such
that Px = {y | 〈x, y〉 ∈ P} is comeager, must be comeager. Since S is not
comeager there must be x in this set which does not belong to S, namely
there must be x 6∈ S with Px comeager. Then P \ (S × R) ⊇ {x} × Px, and
since Px is comeager, this set is not universally null.

In most natural models one may consider, there are universally mea-
surable sets without the property of Baire. First let us note that in many
cases the existence of such sets is a consequence of the existence of a medial
limit. A medial limit is a universally measurable function from P(ω) to [0, 1]
which is finitely additive for disjoint sets, and maps singletons to 0 and ω
to 1. Godefroy and Talagrand showed [10] that if f is a medial limit, then
f−1[{1}] is a universally measurable filter without the property of Baire
(their argument can be easily modified to show that f−1[{1}] does not have
universally null symmetric difference with a set with the property of Baire,
either). Many models have medial limits. For example, the cardinal invariant
equation cov(M) = c implies the existence of medial limits (see [8]; this is a
consequence of Martin’s Axiom). Theorem 2.13 can be used to show, using
Borel reinterpretations, that there is a medial limit in a B(X)-extension if
there is one in the ground model. The first author has recently shown [15]
that consistently all universally measurable filters on ω have the property
of Baire, and therefore consistently there are no medial limits. A model in
which there are no medial limits is obtained by iterating super-perfect tree
forcing (Miller forcing) ω2 times, starting from a model of the CH. In this
model there is a universally null set of reals of size ℵ1 without the property
of Baire [3]. Note that any universally null set with the property of Baire
must be meager, since otherwise it would contain a perfect set.

The argument below proves the existence of a nonmeager universally null
set from the cardinal invariant equation cov(M) = cof(M). The invariant
cov(M) is the smallest cardinality of a collection of meager sets of reals
whose union is the entire real line, while cof(M) is the smallest cardinality
of a collection of meager sets such that every meager set is contained in a
member of the collection. It follows immediately from the definitions that
ℵ1 ≤ cov(M) ≤ cof(M) ≤ c. In the model obtained by the super-perfect
iteration described in the previous paragraph, cov(M) = ℵ1 and cof(M) =
ℵ2 = c (see [2]).

Theorem 4.3. Suppose that cof(M) = cov(M). Then there is a non-
meager universally null set.

Proof. Let κ = cof(M) and suppose that {Dα : α < κ} is a collection of
meager sets such that every meager set is contained in some Dα. Pick reals
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xα (α < κ) and countable sets Yα (α < κ) such that:

• each Yα is a countable dense subset of R \ (Dα ∪ {xβ : β < α});
• each xα ∈ R \

⋃
β≤α(Dβ ∪ Yβ).

Note that the unions
⋃
β≤α(Dβ ∪ Yβ) do not cover any nonempty open

subset of R, since α < cov(M). We use here the assumption that cov(M) =
cof(M).

Then {xα : α < κ} is not meager, since it is not contained in any Dβ.
Also, {xα : α < κ} is not comeager in any nonempty open set O, since

for any meager set M there is a β < κ such that M ⊆ Dβ, and (Yβ \Dβ)∩O
is nonempty and disjoint from {xα : α < κ}.

Finally, since for any measure µ there is a comeager set C such that
µ(C) = 0 (see for example [22]), there is some β <κ such that µ(R \Dβ) = 0.
So µ({xα : α < κ}) = 0, since {xα : α < β} is universally null by virtue
of having cardinality less than κ = cov(M) ≤ non(N ) (see [1] for the last
inequality; non(N ) is the least cardinality of a nonnull set), and {xα : β ≤
α < κ} ⊆ R \Dβ.

Theorem 4.3 has been recently improved [3], with the hypothesis weak-
ened to the assumption that cof(M) = min{non(N ), d}, where d is the
dominating number (see [1]). We note that in the B(c)-extension of a model
of the CH (as well as the corresponding iterated random real model, see [2]),
universally null sets of reals have size at most ℵ1, and sets of reals of size
ℵ1 are meager.
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