On universality of countable and weak products of sigma hereditarily disconnected spaces

by

Taras Banakh (Lviv) and Robert Cauty (Paris)

Abstract. Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X^ω of any subspace $X \subseteq Y$ is not universal for the class \mathcal{A}_2 of absolute $G_{\delta\sigma}$-sets; moreover, if Y is an absolute $F_{\sigma\delta}$-set, then X^ω contains no closed topological copy of the Nagata space $\mathcal{N} = W(I, P)$; if Y is an absolute G_{δ}-set, then X^ω contains no closed copy of the Smirnov space $\mathcal{S} = W(I, 0)$.

On the other hand, the countable power X^ω of any absolute retract of the first Baire category contains a closed topological copy of each σ-compact space having a strongly countable-dimensional completion.

We also prove that for a Polish space X and a subspace $Y \subseteq X$ admitting an embedding into a σ-compact sigma hereditarily disconnected space Z the weak product $W(X, Y) = \{(x_i) \in X^\omega : \text{almost all } x_i \in Y\} \subseteq X^\omega$ is not universal for the class \mathcal{M}_3 of absolute $G_{\delta\sigma\delta}$-sets; moreover, if the space Z is compact then $W(X, Y)$ is not universal for the class \mathcal{M}_2 of absolute $F_{\sigma\delta}$-sets.

A topological space X is called \mathcal{C}-universal, where \mathcal{C} is a class of spaces, if for every space $C \in \mathcal{C}$ there is a closed embedding $f : C \to X$. It is well known that the Hilbert cube $Q = [0, 1]^\omega$ is \mathcal{M}_0-universal, whereas its pseudointerior $s = (0, 1)^\omega$ is \mathcal{M}_1-universal, where \mathcal{M}_0 and \mathcal{M}_1 are the Borel classes of compact and Polish spaces, respectively (all spaces considered in this paper are metrizable and separable, all maps are continuous). Let us remark that both Q and s are countable products of finite-dimensional spaces. This raises the following question: can the countable power X^ω of a finite-dimensional space X be \mathcal{C}-universal for a higher Borel class \mathcal{C}? Taking into account results of [BR] and [Ca$_1$], it was conjectured in [Ba] that the

2000 Mathematics Subject Classification: 54B10, 54F45, 54H05, 55M10, 55N10, 57N20.

Key words and phrases: universality, countable product, weak product, sigma hereditarily disconnected space, Nagata universal space.

The authors express their sincere thanks to Banach Center (Warsaw), where a considerable part of the paper was written.
countable power X^ω of any finite-dimensional (resp. strongly countable-dimensional) space X is not A_1-universal (resp. A_2-universal). Here A_1 and A_2 are the Borel classes of σ-compact and absolute $G_{\delta\sigma}$-spaces, respectively.

In this paper we confirm this conjecture. We define a space X to be \textit{sigma hereditarily disconnected} provided X can be written as a countable union $X = \bigcup_{n=1}^{\infty} X_n$ of hereditarily disconnected spaces. Recall that a space X is \textit{hereditarily disconnected} if it contains no connected subset containing more than one point (see [En, 1.4.2]).

For a class C of spaces we denote by $C(c.d.)$ and $C(s.c.d.)$ the subclasses of C consisting of countable-dimensional and strongly countable-dimensional spaces $C \in C$, respectively. Let us remark that each strongly countable-dimensional space is countable-dimensional and each countable-dimensional space is sigma hereditarily disconnected.

Theorem 1. (1) If a space X has a sigma hereditarily disconnected completion, then the countable power X^ω is not $A_1(s.c.d.)$-universal.

(2) If a space X embeds into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$-space, then X^ω is not $A_2(c.d.)$-universal.

(3) If a space X is sigma hereditarily disconnected, then X^ω is not A_2-universal.

For a class C of spaces let $C(s.c.d.c.)$ denote the subclass of C consisting of spaces with a strongly countable-dimensional completion. The class $A_1(s.c.d.)$ from the first statement of Theorem 1 is the best possible in the following sense.

Theorem 2. If X is an absolute retract of the first Baire category, then the countable power X^ω is $A_1(s.c.d.c.)$-universal.

Clearly, there exist finite-dimensional σ-compact absolute retracts of the first Baire category, for example the space $X = D \setminus E$, where D is a dendrite with a dense set E of end-points.

Countable powers are partial cases of \textit{weak products}

$$W(X, A) = \{(x_i) \in X^\omega : x_i \in A \text{ for all but finitely many indices } i\},$$

where A is a subset of a space X.

The most known and important weak products are the Smirnov space $\sigma = W(I, \{0\})$ and the Nagata space $N = W(I, \mathbb{P})$, where $I = [0, 1]$ and \mathbb{P} is the set of irrational numbers in I. Note that both σ and N are subsets of the Hilbert cube $Q = I^\omega$. It is well known that the Smirnov space σ is $A_1(s.c.d.)$-universal [Mo1] and the Nagata space N is $A_2(c.d.)$-universal [Mo2]. Let us remark that according to Theorem 1 the Smirnov space σ admits no sigma hereditarily disconnected completion, while the Nagata space N admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$-space. This answers Question 1.3 of [Mo2]. Recently T. Radul...
Universality of countable and weak products

[Ra] (see also [BRZ, §4.1, Ex. 3]) has shown that the weak product $W(Q, \sigma)$ is universal for the additive Borel class A_3 of absolute $F_{\sigma\delta\sigma}$-spaces. Can the weak product $W(X, Y)$ be C-universal for a higher Borel class, if Y is finite-dimensional or strongly countable-dimensional? In particular, can $W(X, Y)$ be universal for the multiplicative Borel classes M_2 and M_3 of absolute $F_{\sigma\delta}$- and $G_{\delta\sigma\delta}$-spaces, respectively?

We recall that a space X is defined to be σ-complete if X can be written as a countable union $X = \bigcup_{i=1}^{\infty} X_i$, where each X_i is complete-metrizable and closed in X.

Theorem 3. Let Y be a subspace of a Polish space X.

1. If Y has a sigma hereditarily disconnected completion, then the weak product $W(X, Y)$ is not M_2-universal;
2. If Y embeds into a σ-complete sigma hereditarily disconnected space, then $W(X, Y)$ is not M_3-universal.

The proofs of our theorems rely on simple homological arguments, so we need to recall some standard notations from homology theory. For every integer $q \geq 0$ let $H_q(X)$ denote the qth singular homology group of a space X (reduced in dimension zero so that $H_0(X) = 0$ if and only if X is path-connected) and let $H_*(X) = \bigoplus_{q=0}^{\infty} H_q(X)$. For closed subsets $B \subset A$ of the Hilbert cube Q we denote by j_B^A the homomorphism of $H_*(Q \setminus A)$ into $H_*(Q \setminus B)$ induced by inclusion. A closed subset A of Q is defined to be an irreducible barrier for an element $\alpha \in H_q(Q \setminus A)$ if $\alpha \neq 0$ but $j_B^A(\alpha) = 0$ for any closed proper subset $B \subset A$; and A is an irreducible barrier in Q if either $A = Q$ or A is a closed irreducible barrier for some (non-trivial) element $\alpha \in H_q(X \setminus A)$, $q \geq 0$.

The following lemma plays a crucial role in the proof of Theorems 1, 3 and seems to have an independent value.

Main Lemma. For every countable cover $\{X_n\}_{n \in \mathbb{N}}$ of an irreducible barrier A in the Hilbert cube Q, one of the sets X_n contains a connected subset $C \subset X_n$ whose closure \overline{C} is an irreducible barrier in Q.

Proof of Main Lemma. We need the following two homological lemmas proven in [Ca_2].

Lemma 1. Suppose A is a closed subset of the Hilbert cube Q such that $H_q(Q \setminus A) \neq 0$ for some $q \geq 0$. Then A contains an irreducible barrier B for some $\alpha \in H_q(Q \setminus B)$.

Lemma 2. If A is an irreducible barrier in Q then for every closed subset $B \subset A$ separating A we have $H_*(Q \setminus B) \neq 0$.
To prove the Main Lemma assume on the contrary that \(\{X_n\}_{n=1}^{\infty} \) is a countable cover of an irreducible barrier \(A \subset Q \) such that no \(X_n \) contains a connected subset \(C \) whose closure is an irreducible barrier in \(Q \). To get a contradiction we will construct a decreasing sequence \(A = A_0 \supset A_1 \supset \ldots \) of irreducible barriers in \(Q \) such that \(A_n \cap X_n = \emptyset \) for every \(n \geq 1 \).

Then by compactness of \(A \) we will find a point \(a \in \bigcap_{n=1}^{\infty} A_n \subseteq A \) that does not belong to \(\bigcup_{n=1}^{\infty} X_n \supseteq A \), a contradiction.

The construction of \(\{A_n\} \) is inductive. Set \(A_0 = A \) and suppose that for an \(n \geq 0 \) irreducible barriers \(A_0 \supset \ldots \supset A_n \) satisfying \(A_k \cap X_k = \emptyset \) for \(1 \leq k \leq n \) have been constructed. By our hypothesis, \(A_n \cap X_{n+1} \) is either disconnected or not dense in \(A_n \). In both cases, one may easily construct a closed subset \(B \) separating \(A_n \) and missing \(X_{n+1} \).

By Lemma 2, we have \(H_s(Q \setminus B) \neq 0 \), and by Lemma 1, \(B \) contains an irreducible barrier \(A_{n+1} \) in \(Q \). Evidently, \(A_{n+1} \) is as required because \(A_{n+1} \cap X_{n+1} = \emptyset \).

\[\text{Some auxiliary results.} \]

For any \(n \geq 0 \) irreducible barriers \(A_0 \supset \ldots \supset A_n \) satisfying \(A_k \cap X_k = \emptyset \) for \(1 \leq k \leq n \) have been constructed. By our hypothesis, \(A_n \cap X_{n+1} \) is either disconnected or not dense in \(A_n \). In both cases, one may easily construct a closed subset \(B \) separating \(A_n \) and missing \(X_{n+1} \). By Lemma 2, we have \(H_s(Q \setminus B) \neq 0 \), and by Lemma 1, \(B \) contains an irreducible barrier \(A_{n+1} \) in \(Q \). Evidently, \(A_{n+1} \) is as required because \(A_{n+1} \cap X_{n+1} = \emptyset \).

\[\text{Lemma 3. If } A \subset Q \text{ is an irreducible barrier for some } \alpha \in H_q(Q \setminus A) \text{, then for any subcube } P \text{ of } Q \text{ whose interior meets } A \text{ we have } H_q(P \setminus A) \neq 0. \]

\[\text{Lemma 4. If } A \text{ is an irreducible barrier in } Q \times Q \text{ and } Y \text{ is an } \infty \text{-dense subset in } Q, \text{ then there is a point } y \in Y \text{ such that } A \cap (\{y\} \times Q) \text{ contains an irreducible barrier } B \text{ in } \{y\} \times Q. \]

For any \(q \geq 0 \) let \(N_q = \{(t_i)_{i \in \omega} \in Q : \text{at most } q \text{ coordinates } t_i \text{ are rational}\} \) denote the analog of the Nöbeling space in the Hilbert cube. It is easily seen that \(N_q \) is a \(G_\delta \)-set in \(Q \) and \(\mathcal{N} = \bigcup_{q=0}^{\infty} N_q \).

\[\text{Lemma 5. For every } q \geq 0 \text{ the sets } \sigma, s, Q \setminus s, N, \text{ and } N_q \text{ are } q \text{-dense in } Q. \]

\[\text{Proof. The } q \text{-density of } \sigma, s, Q \setminus s \text{ in } Q \text{ is easily seen and well known.} \]

The \(q \)-density of \(N_q \) in \(Q \) can be proven by analogy with the proof of the universality of the Nöbeling space (see [En, 1.11.5]). Finally, the \(q \)-density of \(N \) in \(Q \) follows from the \(q \)-density of \(N_q \) in \(Q \) and the inclusion \(N_q \subset N \).

\[\text{Lemma 6. If } A \subset Q \text{ is an irreducible barrier for some } \alpha \in H_q(Q \setminus A) \text{ then } A \cap X \text{ is dense in } A \text{ for every } (q+1) \text{-dense subset } X \subset Q. \]
Thus of the sets β barrier in G the intersection the coordinate projection pr such that contradiction. h and (h) then in X each j such that (h) is irreducible barrier A such that (h) has a sigma hereditarily disconnected completion we may a closed embedding this embedding extends to an embedding A that A has a $(q+1)$-dimensional polyhedron K, a function $f : K \to Q \setminus A$, and an element $\beta \in H_q(K)$ with $f_\ast(\beta) = \alpha$. Since $j_B^A(\alpha) = 0$, there exists a $(q+1)$-dimensional polyhedron L containing K and a function $g : L \to Q \setminus B$ such that $g|K = f$ and $i_\ast(\beta) = 0$, where i is the embedding of K into L (see [Ma, p. 293]). If $h : L \to X$ is sufficiently near to g, then $h(L) \subset Q \setminus B$ and $h|K$ is homotopic to f in $Q \setminus A$. This yields $f_\ast(\beta) = (h|K)_\ast(\beta)$ and from $h(L) \subset Q \setminus B$, we get $h(L) \cap A \subset (A \setminus B) \cap X = U \cap A \cap X = \emptyset$. Then in $H_q(Q \setminus A)$ we have $\alpha = f_\ast(\beta) = (h|K)_\ast(\beta) = h_\ast \circ i_\ast(\beta) = 0$, a contradiction.

In what follows we will need the following modification of the Main Lemma.

Lemma 7. Suppose X is an ∞-dense G_δ-set in Q and A is an irreducible barrier in Q. If $\{X_n\}_{n \in \mathbb{N}}$ is a countable cover of the set $A \cap X$, then one of the sets X_n contains a connected subset $C \subset X_n$ whose closure \overline{C} is an irreducible barrier in Q.

Proof. Since X is a G_δ-set in Q, we may write $A \setminus X = \bigcup_{n \in \mathbb{N}} A_n$, where each A_n is compact. Then we have a countable cover $\{A_n, X_n\}_{n \in \mathbb{N}}$ of the irreducible barrier A. By the Main Lemma, there is a connected set $C \subset Q$ such that \overline{C} is an irreducible barrier in Q and either $C \subset A_n$ or $C \subset X_n$. The case $C \subset A_n$ is impossible. Indeed, by the compactness of A_n, $\overline{C} \subset A_n$. Thus $C \cap X = \emptyset$, a contradiction with Lemma 6.

Finally, we need the following particular case of [BRZ, 3.1.1]:

Lemma 8. Let X be a Polish space and $Y \subset X$.

(1) If Y is A_2-universal, then there is an embedding $\varphi : Q^\omega \to X$ such that $\varphi^{-1}(Y) = W(Q, s)$.

(2) If Y is M_2-universal, then there is an embedding $\varphi : Q^\omega \to X$ such that $\varphi^{-1}(Y) = Q^\omega \setminus W(Q, s)$.

(3) If Y is M_3-universal, then there is an embedding $\varphi : Q^\omega \to X$ such that $\varphi^{-1}(Y) = Q^\omega \setminus W(Q, \sigma)$.

Proof of Theorem 1. (1) Suppose X^ω is $A_1(s.c.d.)$-universal and X has a sigma hereditarily disconnected completion Y. Since $\sigma \in A_1(s.c.d.)$, we may fix a closed embedding $\varphi : \sigma \to X^\omega$. By Lavrent’ev’s Theorem, this embedding extends to an embedding $\overline{\varphi} : G \to Y^\omega$ of some G_δ-set $G \subset Q$ containing σ. Since $\varphi(\sigma)$ is closed in X^ω and dense in $\overline{\varphi}(G)$, we have $\overline{\varphi}^{-1}(X^\omega) = \sigma$. For $m \geq 0$ denote by $\varphi_m : G \to Y$ the composition of φ with the coordinate projection $pr_m : Y^\omega \to Y$.

 Universality of countable and weak products

101
Using the fact that $Y \setminus X$ and σ are sigma hereditarily disconnected, write $Y \setminus X = \bigcup_{n=1}^{\infty} Y_n$ and $\sigma = \bigcup_{n=1}^{\infty} Z_n$, where Y_n and Z_n are hereditarily disconnected. Write also $Q \setminus G = \bigcup_{n=1}^{\infty} G_n$, where each G_n is compact. Since $\sigma \subset G$, we have $\sigma \cap G_n = \emptyset$ for $n \geq 1$.

Thus, the Hilbert cube $Q = \sigma \cup (Q \setminus G) \cup (G \setminus \sigma)$ has the countable cover $\{Z_n, G_n, \varphi^{-1}_m(Y_n)\}_{n,m \in \mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that C is an irreducible barrier in Q and either $C \subset Z_n$, $C \subset G_n$, or $C \subset \varphi^{-1}_m(Y_n)$ for some $n, m \in \mathbb{N}$.

Since all Z_n’s are hereditarily disconnected, no Z_n can contain the (connected) set C. Next, assuming that $C \subset G_n$ for some n, we derive from the compactness of G_n that $\overline{C} \subset G_n$ and thus $\overline{C} \cap \sigma = \emptyset$, a contradiction with Lemmas 6 and 5.

Thus $C \subset \varphi^{-1}_m(Y_n)$ for some $n, m \in \mathbb{N}$. Then $\varphi_m(C)$, being a connected subset of a hereditarily disconnected space, is a single point $y \in Y_n \subset Y \setminus X$. Since $\varphi^{-1}_m(y)$ is a closed subset in G missing σ, it follows that \overline{C} is an irreducible barrier in Q missing σ, contrary to Lemmas 6 and 5 again.

(2) Suppose X^ω is \mathcal{A}_2-(c.d.)-universal and X embeds into a sigma hereditarily disconnected $F_{\sigma\delta}$-space Y. Since $\mathcal{N} \in \mathcal{A}_2$-(c.d.), we may fix a closed embedding $\varphi : \mathcal{N} \rightarrow X^\omega$. It follows easily from the Lavrent’ev Theorem that this embedding extends to an embedding $\overline{\varphi} : G \rightarrow Y^\omega$ of some $F_{\sigma\delta}$-set $G \subset Q$ containing the Nagata space \mathcal{N}. As in the preceding case, observe that $\overline{\varphi}^{-1}(X^\omega) = \mathcal{N}$. For $m \geq 0$ let $\varphi_m = \text{pr}_m \circ \varphi : G \rightarrow Y$.

Using the fact that $Y \setminus X$ and \mathcal{N} are sigma hereditarily disconnected, write $Y \setminus X = \bigcup_{n=1}^{\infty} Y_n$ and $\mathcal{N} = \bigcup_{n=1}^{\infty} Z_n$, where Y_n and Z_n are hereditarily disconnected. The complement $Q \setminus G$, being a $G_{\delta\sigma}$-subset of Q^ω, can be written as $Q \setminus G = \bigcup_{n=1}^{\infty} G_n$, where each G_n is a G_{δ}-set in Q^ω. Observe that $\mathcal{N} \cap G_n = \emptyset$ for $n \geq 1$.

Thus, Q has the countable cover $\{Z_n, G_n, \varphi^{-1}_m(Y_n)\}_{n,m \in \mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that \overline{C} is an irreducible barrier for some non-trivial $\alpha \in H_q(Q \setminus \overline{C})$ and either $C \subset G_n$, $C \subset Z_n$, or $C \subset \varphi^{-1}_m(Y_n)$ for some $n, m \in \mathbb{N}$.

As in the preceding case we can show that the last two inclusions are impossible. Thus, $C \subset G_n$ for some $n \geq 1$. Since C is dense in \overline{C}, we find that $\overline{C} \cap G_n$ is a dense G_{δ}-set in \overline{C}. By Lemma 6, $\overline{C} \cap \mathcal{N}_{q+1}$ is a dense G_{δ}-set in \overline{C} as well. Then by the Baire Theorem, $\overline{C} \cap \mathcal{N}_{q+1} \cap G_n$ is dense in \overline{C}. But $G_n \cap \mathcal{N}_{q+1} = \emptyset$ by construction, a contradiction.

(3) Suppose X is sigma hereditarily disconnected and X^ω is \mathcal{A}_2-universal. Let Y be any completion of X. By Lemma 8, there is a map $\varphi : Q^\omega \rightarrow Y^\omega$ such that $\varphi^{-1}(X^\omega) = W(Q, s)$.

For $g_0, \ldots, q_n \in Q$ let $Q(q_0, \ldots, q_n) = \{(q_0, \ldots, q_n)\} \times \prod_{i>n} Q \subset Q^\omega$ and $S(q_0, \ldots, q_n) = \{(q_0, \ldots, q_n)\} \times \prod_{i>n} s \subset Q^\omega$. For $n \geq 0$ let $\varphi_n = \text{pr}_n \circ \varphi : Q^\omega \rightarrow Y$.

T. Banakh and R. Cauty
By induction, for every \(n \geq 0 \) we will construct points \(x_n \in X \), \(q_n \in Q \) and a closed subset \(A_n \subset Q(q_0, \ldots, q_n) \) such that

1. \(q_n \notin s \);
2. \(A_n \supset A_{n+1} \);
3. \(A_n \) is an irreducible barrier in \(Q(q_0, \ldots, q_n) \);
4. \(\varphi_n(A_n) = \{x_n\} \subset X \).

To get a contradiction, observe that the point \(q = (q_n)_{n \geq 0} \in Q^\omega \), being the intersection of \(A_n \)'s, belongs to \(\varphi^{-1}(X^\omega) = W(Q,s) \) by (4). On the other hand, (1) implies \(q \notin W(Q,s) \).

Inductive step. Let \(A_{-1} = Q^\omega \). Suppose that for some \(n \geq -1 \) the points \(q_0, \ldots, q_n \in Q \) and the irreducible barrier \(A_n \subset Q(q_0, \ldots, q_n) \) have been constructed. Write \(X = \bigcup_{i=1}^\infty X_i \), where \(X_i \) are hereditarily disconnected. Observe that \(s(q_0, \ldots, q_n) \subset W(Q,s) \) is a \(\omega \)-dense \(G_\delta \) set in \(Q(q_0, \ldots, q_n) \).

Since the collection \(\{A_n \cap \varphi_{n+1}^{-1}(X_i)\}_{i \in \mathbb{N}} \) covers \(A_n \cap s(q_0, \ldots, q_n) \), we may apply Lemma 7 to find an \(i \in \mathbb{N} \) and a connected set \(C \subset A_n \cap \varphi_{n+1}^{-1}(X_i) \) such that \(C \) is an irreducible barrier in \(Q(q_0, \ldots, q_n) \). Since \(\varphi_{n+1}(C) \) is a connected subset of the hereditarily disconnected space \(X_i \), we have \(\varphi_{n+1}(C) = \{x_{n+1}\} \) for some \(x_{n+1} \in X_i \subset X \). Then \(\varphi_{n+1}(C) = \{x_{n+1}\} \) as well. By Lemma 4, there is a \(q_{n+1} \in Q \setminus s \) such that \(C \cap Q(q_0, \ldots, q_{n+1}) \) contains an irreducible barrier \(A_{n+1} \) in \(Q(q_0, \ldots, q_{n+1}) \). Evidently, the points \(x_{n+1}, q_{n+1} \), and the set \(A_{n+1} \) satisfy the conditions (1)–(4).

Proof of Theorem 3. Let \(Y \) be a subspace of a Polish space \(X \).

(1) Suppose \(Y \) has a sigma hereditarily disconnected completion \(\hat{Y} \) and the weak product \(W(X,Y) \) is \(\mathcal{M}_2 \)-universal. By Lemma 8, there is an embedding \(\varphi : Q^\omega \to X^\omega \) such that \(\varphi^{-1}(W(X,Y)) = Q^\omega \setminus W(Q,s) \). For \(n \geq 0 \) let \(\varphi_n : Q^\omega \to X \) be the composition of \(\varphi \) and the coordinate projection \(\text{pr}_n : X^\omega \to X \).

By induction, for every \(n \geq 0 \) we will construct a point \(q_n \in Q \) and a closed subset \(A_n \subset Q(q_0, \ldots, q_n) \) such that

1. \(A_n \supset A_{n+1} \);
2. \(A_n \) is an irreducible barrier in \(Q(q_0, \ldots, q_n) \);
3. either \(\varphi_n(A_n) \subset Y \) or \(\varphi_n(A_n) \subset X \setminus Y \);
4. \(q_n \notin s \) if and only if \(\varphi_n(A_n) \subset Y \).

To get a contradiction, observe that the point \(q = (q_n)_{n \geq 0} \in Q^\omega \) is the intersection of the sets \(A_n \). Let \(x = (x_n)_{n \geq 0} = \varphi(q) \in X^\omega \). By (3) and (4), \(x_n \in Y \) if and only if \(q_n \in s \). This yields \(\varphi(q) = (x_n) \in W(X,Y) \) if and only if \(q = (q_n) \in W(Q,s) \), contrary to \(\varphi^{-1}(W(X,Y)) = Q^\omega \setminus W(Q,s) \).

Inductive step. Let \(A_{-1} = Q^\omega \). Suppose that for some \(n \geq -1 \) the points \(q_0, \ldots, q_n \in Q \) and the irreducible barrier \(A_n \subset Q(q_0, \ldots, q_n) \) have
been constructed. According to the Lavrent’ev Theorem, we may assume \(\widehat{Y} \) to be a subspace of \(X \). Write \(\widehat{Y} = \bigcup_{i=1}^{\infty} Y_i \) and \(X \setminus \widehat{Y} = \bigcup_{i=1}^{\infty} F_i \), where for every \(i \geq 1 \), \(Y_i \) is a hereditarily disconnected set and \(F_i \) is closed in \(X \). Because the countable collection \(\{ \varphi_{n+1}^{-1}(Y_i), \varphi_{n+1}^{-1}(F_i) : i \in \mathbb{N} \} \) covers the irreducible barrier \(A_n \), we may apply the Main Lemma to find a connected set \(C \subset A_n \) such that \(\overline{C} \) is an irreducible barrier in \(Q(q_0, \ldots, q_n) \) and either \(C \subset \varphi_{n+1}^{-1}(F_i) \) or \(C \subset \varphi_{n+1}^{-1}(Y_i) \) for some \(i \).

We claim that either \(\varphi_{n+1}(\overline{C}) \subset X \setminus Y \) or \(\varphi_{n+1}(\overline{C}) \subset Y \). Indeed, if \(C \subset \varphi_{n+1}^{-1}(F_i) \), then \(\varphi_{n+1}(\overline{C}) \subset F_i \subset X \setminus Y \) (because \(F_i \) is closed in \(X \)). If \(C \subset \varphi_{n+1}^{-1}(Y_i) \), then because \(C \) is connected and \(Y_i \) is hereditarily disconnected, we deduce that \(\varphi_{n+1}(C) \) consists of a unique point \(y \in Y_i \). Then \(\varphi_{n+1}(\overline{C}) = \{y\} \) and hence \(\varphi_{n+1}(\overline{C}) \subset Y \) if \(y \in Y \) and \(\varphi_{n+1}(\overline{C}) \subset X \setminus Y \) otherwise.

By Lemma 4, there is a point \(q_{n+1} \in Q \) such that \(\overline{C} \cap Q(q_0, \ldots, q_{n+1}) \) contains an irreducible barrier \(A_{n+1} \) in \(Q(q_0, \ldots, q_{n+1}) \). Moreover, since \(s \) and \(Q \setminus s \) are \(\infty \)-dense in \(Q \) the point \(q_{n+1} \) can be chosen so that \(q_{n+1} \in s \) if and only if \(\varphi_{n+1}(\overline{C}) \subset Y \). Evidently, the point \(q_{n+1} \) and the set \(A_{n+1} \) satisfy the conditions (1)–(4).

(2) Suppose \(Y \) embeds into a \(\sigma \)-complete sigma hereditarily disconnected space \(\widehat{Y} \) and the weak product \(W(X, Y) \) is \(\mathcal{M}_3 \)-universal. By Lemma 8, there is an embedding \(\varphi : Q^\omega \to X^\omega \) such that \(\varphi^{-1}(W(X, Y)) = Q^\omega \setminus W(Q, \sigma) \). For \(n \geq 0 \) let \(\varphi_n = \text{pr}_n \circ \varphi : Q^\omega \to X \). Let also \(\pi_n : Q^\omega \to Q \) be the projection onto the \(n \)th coordinate.

According to the Lavrent’ev Theorem, we may assume \(\widehat{Y} \) to be a subspace of \(X \). Write \(\widehat{Y} = \bigcup_{k=1}^{\infty} Y_k \), where each \(Y_k \) is an absolute \(G_\delta \)-set closed in \(\widehat{Y} \). Denote by \(\overline{Y_k} \) the closure of \(Y_k \) in \(X \). Write also \(\sigma = \bigcup_{k=1}^{\infty} I_k \), where \(I_k \) are compact subsets of \(Q \). By induction for every \(k \geq 0 \) we will construct a partition of \(\{0, \ldots, k\} \) into three subsets \(H_i(k) \), \(i = 1, 2, 3 \), so that

(1) for \(i = 1, 2, H_i(k) \subset H_i(k') \) if \(k \leq k' \).

For every \(r \in \bigcup_{k \geq 0} H_1(k) \cup H_2(k) \) we will construct a point \(q_r \in Q \) and for every \(k \geq 0 \) we let

\[
P_k = \bigcap_{r \in H_1(k) \cup H_2(k)} \pi_r^{-1}(q_r) \subset Q^\omega
\]

and \(P_{-1} = Q^\omega \). By (1) we have \(P_k \supset P_{k+1} \) for every \(k \). We shall also construct a subcube \(R_k \) of \(P_k \) and an irreducible barrier \(A_k \) in \(R_k \) such that the following conditions are satisfied for every \(k \):

(2) \(A_k \supset A_{k+1} \);
(3) if \(r \in H_1(k) \), then \(q_r \in \sigma \) and \(\varphi_r(A_k) \subset Y \);
(4) if \(r \in H_2(k) \), then \(q_r \in Q \setminus \sigma \) and \(\varphi_r(A_k) \subset X \setminus Y \);
(5) if \(r \in H_3(k) \), then \(R_k \cap \pi_r^{-1}(I_k) = \emptyset \) and \(\varphi_r(A_k) \cap \overline{Y_k} = \emptyset \).
To get a contradiction, observe that by (2) there exists a point $z = (z_r) \in \bigcap_{k \geq 0} A_k$. By (3)–(5), $z_r \in \sigma$ if and only if $\varphi_r(z) \in Y$. Thus $z \in W(Q, \sigma)$ if and only if $\varphi(z) \in W(X, Y)$, contrary to $\varphi^{-1}(W(X, Y)) = Q^\omega \setminus W(Q, \sigma)$.

Inductive construction. Let $R_{-1} = A_{-1} = Q^\omega$. Suppose $k = 0$ or $k \geq 1$ and our objects are constructed up to order $k - 1$. Let $k = r_0, r_1, \ldots, r_l$ be the elements of the set $\{k\} \cup H_3(k - 1)$. We shall construct two finite decreasing sequences

$$R_{k-1} = U_{-1} \supset U_0 \supset \ldots \supset U_l, \quad A_{k-1} = B_{-1} \supset B_0 \supset \ldots \supset B_l,$$

where U_j is a subcube in R_{k-1} and B_j is an irreducible barrier in U_j for $j \leq l$. From the construction of these sets we will see to which of the sets $H_i(k)$ an element r_j should be assigned (elements of $\{0, \ldots, k\} \setminus \{r_0, \ldots, r_l\}$ belong to $H_1(k)$ or $H_2(k)$ according to (1)).

Suppose for $j \geq 0$ the sets U_{j-1} and B_{j-1} are constructed. We distinguish two cases:

(a) $\varphi_{r_j}^{-1}(X \setminus \overline{Y}_k) \cap B_{j-1} \neq \emptyset$. Then we can find a subcube U_j in U_{j-1} whose interior in U_{j-1} meets the barrier B_{j-1} and $U_j \subset \varphi_{r_j}^{-1}(X \setminus \overline{Y}_k)$. By Lemmas 1 and 3, $B_{j-1} \cap U_j$ contains an irreducible barrier B_j in U_j. We assign r_j to $H_3(k)$.

(b) $\varphi_{r_j}(B_{j-1}) \subset \overline{Y}_k$. Since Y_k is closed in \overline{Y} we get $\overline{Y}_k \cap \overline{Y} = Y_k$. Recalling that Y_k is a sigma hereditarily disconnected absolute G_δ-set, write $Y_k = \bigcup_{i=1}^\infty D_i$ and $\overline{Y}_k \setminus \overline{Y} = \overline{Y}_k \setminus Y_k = \bigcup_{i=1}^\infty F_i$, where the sets D_i are hereditarily disconnected and F_i are closed in X. Then the countable collection $\{\varphi_{r_j}^{-1}(D_i), \varphi_{r_j}^{-1}(F_i) : i \in \mathbb{N}\}$ covers the irreducible barrier B_{j-1}. By the Main Lemma, there is a connected subset $C \subset B_{j-1}$ such that \overline{C} is an irreducible barrier in B_{j-1} and either $C \subset \varphi_{r_j}^{-1}(F_i)$ or $C \subset \varphi_{r_j}^{-1}(D_i)$ for some i. As in the preceding proof, we have either $\varphi_{r_j}(\overline{C}) \subset Y$ or $\varphi_{r_j}(\overline{C}) \subset X \setminus Y$. Let $U_j = U_{j-1}$, $B_j = \overline{C}$, and assign z_j to $H_1(k)$ if $\varphi_{r_j}(B_j) \subset Y$ and to $H_2(k)$ if $\varphi_{r_j}(B_j) \subset X \setminus Y$.

Thus we constructed the sets $H_i(k)$, $i = 1, 2, 3$. Since the complement of the closed set $\bigcup_{r \in H_3(k)} \pi_r^{-1}(I_k)$ is ∞-dense in U_l, we may find a subcube $K \subset U_l$ whose interior relative to U_l meets the barrier B_l and such that $K \cap \bigcup_{r \in H_3(k)} \pi_r^{-1}(I_k) = \emptyset$ (see Lemma 6). By Lemma 1, the set $B_l \cap K$ contains an irreducible barrier B in K.

Applying Lemma 4 find for every $r \in H_1(k) \setminus H_1(k-1)$ a point $q_r \in \sigma$ and for every $r \in H_1(k) \setminus H_2(k-1)$ a point $q_r \in Q \setminus s$ such that $B \cap P_{q_r}$ contains an irreducible barrier A_k in the subcube $R_k = P_k \cap K$ of P_k. Clearly, the constructed objects satisfy the conditions (1)–(5).

Proof of Theorem 2. First we recall some definitions. Let $0 \leq n \leq \infty$. A subset A of a space X is called a Z_n-set in X if A is closed in X and every
map \(f : I^n \to X \) of the \(n \)-dimensional cube can be uniformly approximated by maps into \(X \setminus A \). A space \(X \) is called a \(\sigma Z_n \)-space if \(X \) can be written as a countable union \(X = \bigcup_{i=1}^{\infty} X_i \) of \(Z_n \)-sets \(X_i \) in \(X \). Note that each \(\sigma Z_n \)-space is a \(\sigma Z_m \)-space for every \(m \leq n \). Observe also that a space \(X \) is of the first Baire category if and only if \(X \) is a \(\sigma Z_0 \)-space.

The following fact is proven in [BT].

Lemma 9. If an absolute retract \(X \) is a \(\sigma Z_0 \)-space, then for every \(n \in \mathbb{N} \) its \(n \)-th power \(X^n \) is a \(\sigma Z_{n-1} \)-space.

In Lemma 5.4 of [DMM] T. Dobrowolski, W. Marciszewski, and J. Mogilski have proven that if an absolute retract \(X \) is a \(\sigma Z_\infty \)-space, then for every \(\sigma \)-compact space \(A \) there is a proper map \(f : A \to X \). Modifying their arguments and using results of [To] one may prove

Lemma 10. If for some \(n \geq 0 \) an absolute retract \(X \) is a \(\sigma Z_n \)-space, then for every \(n \)-dimensional \(\sigma \)-compact space \(A \) there exists a proper map \(f : A \to X \).

For a class \(C \) of spaces and \(n \geq 0 \) let \(C[n] = \{ C \in C : \dim(C) \leq n \} \). Let us recall that a map \(f : A \to X \) is **proper** provided the preimage \(f^{-1}(K) \) of any compact subset \(K \subset X \) is compact.

Lemma 11. If \(X \) is an absolute retract of the first Baire category, then for every \(n \in \mathbb{N} \) its power \(X^{3n+2} \) is \(A_1[n] \)-universal.

Proof. Fix \(n \in \mathbb{N} \) and a \(\sigma \)-compact space \(A \) with \(\dim(A) \leq n \). By Lemmas 9 and 10 there exists a proper map \(f : A \to X^{n+1} \). Since \(X \), being an absolute retract, contains a topological copy of the interval \(I \), we can apply the classical Menger–Nöbeling–Lefschetz Theorem [En, 1.11.4] to find an embedding \(g : A \to X^{2n+1} \). Then \(e = (f, g) : A \to X^{n+1} \times X^{2n+1} = X^{3n+2} \) is a closed embedding. \(\blacksquare \)

Proof of Theorem 2. By [To, 4.1, 2.4] the space \(X \) embeds into a complete-metrizable absolute retract \(\tilde{X} \) so that \(X \) is homotopy dense in \(\tilde{X} \). The latter means that there is a homotopy \(h : \tilde{X} \times [0,1] \to \tilde{X} \) such that \(h(\tilde{X} \times (0,1)) \subset X \) and \(h(x,0) = x \) for every \(x \in \tilde{X} \).

Let \(A \in A_1(\text{s.c.d.c.}) \), i.e., \(A \) is a \(\sigma \)-compact space having a strongly countable-dimensional completion \(C \). By the Compactification Theorem [En, 5.3.5] the space \(C \) has a strongly countable-dimensional metrizable compactification \(K \). Write \(K = \bigcup_{i=0}^{\infty} K_i \), where each \(K_i \subset K_{i+1} \) is a compact finite-dimensional subspace of \(K \).

By Lemma 11, the countable power \(X^\omega \) is \(A_1[n] \)-universal for all \(n \in \mathbb{N} \). Then Theorem 3.1.1 of [BRZ] implies that for every \(i \) there exists an embedding \(f_i : K_n \to \tilde{X}^\omega \) with \(f_i^{-1}(X^\omega) = K_n \cap A \). Since \(X^\omega \) is homotopy dense in the absolute retract \(\tilde{X}^\omega \), the map \(f_i \) can be extended to a map \(\overline{f}_i : K \to \tilde{X}^\omega \).
such that $\overline{f_i}(K \setminus K_i) \subset X^\omega$. Consider the map $f = (\overline{f_i})_{i=0}^\infty : K \to (\overline{X})^\omega$ and notice that it is an embedding with $f^{-1}((X^\omega)^\omega) = A$. Thus the restriction $f|A : A \to (X^\omega)^\omega$ is a closed embedding, i.e., the space X^ω, being homeomorphic to $(X^\omega)^\omega$, is $A_1(\text{s.c.d.c.})$-universal.

Some questions and comments. The exponent $3n + 2$ in Lemma 11 is not optimal. In fact, for every locally path-connected space X of the first Baire category the power X^{2n+1} is $A_1[n]$-universal for every $n \geq 0$. The proof of this statement requires more involved arguments and will be given in another paper.

Question 1. For which Borel classes \mathcal{C} is there an absolute retract $A \in \mathcal{C}[1]$ whose power A^{n+1} is $\mathcal{C}[n]$-universal for every $n \in \mathbb{N}$?

Question 2. Suppose that X, Y are finite-dimensional σ-compact absolute retracts of the first Baire category. Are their countable powers X^ω and Y^ω homeomorphic?

Note that by Theorem 2 each of the spaces X^ω, Y^ω embeds as a closed subset into the other. By Lemma 9 these spaces are σZ_n-spaces for every $n \in \mathbb{N}$. By Theorem 1 and Lemma 5.4 of [DMM], they are not σZ-spaces, so that the standard technique of absorbing spaces (see [BRZ]) cannot be applied to answer Question 2.

Let us remark that the second assertion of Theorem 3 generalizes [Ca$_3$], the first assertion of Theorem 1 generalizes a result of [BR], and the third one generalizes [Ca$_1$]. As mentioned in the introduction, the Nagata space \mathcal{N} admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$-space. In this context it would be interesting to know answers to the following questions.

Question 3. Suppose $F \supset \mathcal{N}$ is an $F_{\sigma\delta}$-subset in Q containing the Nagata space \mathcal{N}.

(a) Does F contain a Hilbert cube (cf. [En, 5.3.6])?

(b) Is F strongly infinite-dimensional?

(c) Does $F \setminus \mathcal{N}$ contain an arc? Note that $F \setminus \mathcal{N}$ is connected, moreover, $A \cap (F \setminus \mathcal{N})$ is connected for every irreducible barrier A in Q.

(d) Does F contain a copy I of $[0,1]$ such that $I \cap \mathcal{N}$ is a countable dense subset of I? Note that F always contains a copy K of the Cantor set such that $K \cap \mathcal{N}$ is countable and dense in K.

Question 4. Does there exist a countable-dimensional absolute $F_{\sigma\delta}$-space containing a copy of each countable-dimensional compactum?

According to [En, 5.3.11 and 7.1.33], the Smirnov space σ contains a copy of all Smirnov cubes. This shows that there are σ-compact strongly
countable-dimensional spaces containing compacta of arbitrary high transfinite dimension ind.

The Main Lemma implies that irreducible barriers in Q are not sigma hereditarily disconnected. In fact, every sigma hereditarily disconnected compactum is weakly infinite-dimensional [Kr, §6]. It is not clear if the converse is also true.

Question 5. Is every weakly infinite-dimensional compactum sigma hereditarily disconnected?

It was remarked by R. Pol that this question is connected with the known open problem on existence of a weakly infinite-dimensional compactum whose square is strongly infinite-dimensional: such a compactum cannot be sigma hereditarily disconnected. Observe that the example of an uncountable-dimensional weakly infinite-dimensional compactum constructed by R. Pol [Po] is sigma hereditarily disconnected.

References

[Ca3] —, *Solution d’un problème de Radul sur les ensembles absorbants*, Mat. Stud. 7 (1997), 201–204.

Universality of countable and weak products

Department of Mathematics
Lviv University
Universytetska 1
Lviv 79000, Ukraine
E-mail: tbanakh@franko.lviv.ua

Université Paris VI
UFR 920
Boîte courrier 172
4, Place Jussieu
75252 Paris Cedex 05, France
E-mail: cauty@math.jussieu.fr

Received 16 February 1999;
in revised form 9 October 2000