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Regular and limit sets for holomorphic correspondences

by

S. Bullett and C. Penrose (London)

Abstract. Holomorphic correspondences are multivalued maps f = Q̃+Q̃
−1
− : Z →W

between Riemann surfaces Z and W , where Q̃− and Q̃+ are (single-valued) holomorphic
maps from another Riemann surface X onto Z and W respectively. When Z = W one can
iterate f forwards, backwards or globally (allowing arbitrarily many changes of direction
from forwards to backwards and vice versa). Iterated holomorphic correspondences on
the Riemann sphere display many of the features of the dynamics of Kleinian groups and
rational maps, of which they are a generalization. We lay the foundations for a systematic
study of regular and limit sets for holomorphic correspondences, and prove theorems
concerning the structure of these sets applicable to large classes of such correspondences.

1. Introduction. A holomorphic correspondence is a multivalued map
f : Z → W between Riemann surfaces Z and W which has a factorization
f = Q̃+Q̃

−1
− , where Q̃− and Q̃+ are (single-valued) holomorphic maps from

another Riemann surface X onto Z and W respectively. For example, when
Z = W = C (the Riemann sphere) any polynomial P (z, w) determines a
holomorphic correspondence f : C→ C by z 7→ w ⇔ P (z, w) = 0. Here X is
the “desingularization” of the algebraic curve defined by the polynomial P .
Conversely, any holomorphic correspondence z 7→ w on the Riemann sphere
can be expressed in this form (by Chow’s Theorem, see Subsection 2.3).

When Z = W one can iterate f forwards, backwards or globally (allowing
arbitrarily many changes of direction from forwards to backwards and vice
versa). Iterated holomorphic correspondences [6, 7, 9] display many of the
features of the dynamics of Kleinian groups and rational maps, of which
they are a generalization. Examples (plotted by computer) are illustrated
in Figures 2b, 3b and 4c. In particular, the Riemann sphere is partitioned
into a “regular set” and a “limit set”, though there are some choices to be
made in definitions of these sets as we shall see. Below, we set out to lay
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the foundations for a systematic investigation of regular and limit sets for
holomorphic correspondences. There are three distinct levels involved in this
investigation: combinatorial, topological, and complex analytic. Wherever
possible we try to isolate the most appropriate level for each concept that
we introduce, but much of the richness of the study of algebraic functions
arises from the subtle interplay between all three levels.

In Section 2 we consider relations on topological spaces in general and
various notions of “continuity” for multivalued maps, and we define what
we mean by a branched-covering correspondence. We next define operations
combining correspondences and we introduce the idea of a “diagram con-
dition”, an analogue of the notion of a “relation” between generators of a
group. The class of separable correspondences (those for which there are quo-
tient maps Q+ : Z → Y and Q− : W → Y such that f : z → w if and only
if Q+(z) = Q−(w)) is defined by a particularly simple “diagram condition”.
We conclude the section by introducing a class of correspondences we term
“Galois”: for a rational function Q, the correspondence GalQ is that defined
by sending each z0 ∈ C to the set of all other roots z of Q(z) = Q(z0), and
its closure Gal

Q
is the correspondence obtained when we also allow z0 to

map to itself whenever z = z0 is a repeated root. Galois correspondences
are uninteresting from the dynamical point of view (all orbits are finite)
but the class of correspondences which share the same diagram conditions
as Galois correspondences plays a crucial role in our analysis later in the
paper. We say that a correspondence f is “off-separable” if there exists a
homeomorphism M such that the join of f with M is separable. We show
(Theorem 3) that any off-separable branched-covering correspondence on a
compact Hausdorff space can be written in the form M ◦Gal

Q
. In particular,

any off-separable holomorphic correspondence on the Riemann sphere can
be written in this form, with M Möbius and Q rational.

In Section 3 we are concerned with various notions of “regular” and
“limit” sets for iterated holomorphic correspondences. In the case of a (non-
elementary) Kleinian group G there are a number of equivalent definitions
of the regular set (the domain where G acts properly discontinuously, the
domain where the elements of G form a normal family etc.) and a number
of equivalent definitions of the limit set. Similarly, in the case of a rational
map there are a number of equivalent ways to define the “Fatou” and “Julia”
sets. When we generalize these various definitions to correspondences we find
they are no longer equivalent in general, but instead yield different notions of
“regular set” and “limit set” suitable for different purposes. We concentrate
our attention on one of these, the set Ω(f) which satisfies the strongest form
of regularity, namely “z0 ∈ Ω(f)⇔ z0 has a neighbourhood U having only
finitely many distinct returns under f ∗” (where f∗ denotes the union of all
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forward, backward and mixed iterates of f). A more formal definition is
given in the text. We call Ω(f) the “regular set”, and its complement Λ(f)
the “non-regular limit set”. We prove that Ω(f) is completely invariant
and that Ω(f)/f∗ is Hausdorff, as is the case for the orbit space Ω(G)/G
of the regular set of a Kleinian group. We also introduce the idea of the
equicontinuity set for the branches of an iterated correspondence f , and we
(tentatively) define the Julia set J (f) to be its complement.

It is a non-trivial problem to identify a “fundamental domain” for the
global iteration of f on Ω(f), in other words a transversal for the action of f ∗

on Ω(f), and much of the rest of the paper is concerned with resolving this
problem for correspondences satisfying appropriate diagram conditions. In
many situations our method also yields information concerning the various
limits sets. In Section 4 we start our investigation by solving the easier prob-
lem of finding transversals for “forward”, “backward” and “bidirectional”,
rather than “global”, iteration.

In Section 5 we achieve our goal of constructing fundamental domains for
global iteration, in the case when f is a reversible off-separable branched-
covering correspondence and hence of the form f = J ◦ Gal

Q
(by results

proved in Section 2). We define a (topological) directionality for a corre-
spondence f on a topological space X to be a subspace S of X such that
f(S) ⊂ S◦ and we define a “transversal directionality” for the (closed) cor-
respondence f = J ◦Gal

Q
to be a (topological) directionality D for f which

is also a transversal for Q. Various equivalent characterizations are listed in
the text. We prove:

Theorem 7. Let f be an n : n J-off-separable branched-covering cor-
respondence on a compact Hausdorff space X, where n ≥ 2 (almost every-
where) and J is an involution. If D is a transversal directionality for f
then any transversal ∆ for the action of J on D ∩ J(D) is a transversal
for the (global) action of f on the complement Ω(f,D) of the global attrac-
tor ω(f,D) = ω+(f,D) ∪ ω−(f,D) (where ω+(f,D) denotes

⋂
fn(D) and

ω−(f,D) denotes
⋂
f−n(JD)).

If X is a Riemann surface and f is holomorphic then Ω(f,D) is con-
tained in the regular set Ω(f) of f , and the various limit sets satisfy

∂ω(f,D) ⊂ J (f) ⊂ Λ(f) ⊂ ω(f,D).

The existence of a transversal directionality D has consequences for the
structure of the limit set of such a correspondence, as well as furnishing
a transversal for the action on the subset Ω(f,D) of the regular set. If
f is holomorphic and D is a topological disc, we can apply Douady and
Hubbard polynomial-like mapping theory to show that under appropriate
conditions the forward and backward “limit sets” under bidirectional iter-
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ation, ω+(f,D) and ω−(f,D) respectively, are copies of filled Julia sets of
polynomial maps. An example is plotted in Figure 2b. Further examples of
the class of “reversible off-separable” holomorphic correspondences are the
matings of quadratic maps with the modular group discussed in [6]. These
are a family of correspondences having actions which are conjugate on one
part of the Riemann sphere to an action of PSL(2,Z) and on other parts to
forward and backward branches of maps of the form qc : z 7→ z2 + c.

The definition of a “J-off-separable holomorphic correspondence” might
at first sight seem of rather limited applicability, chosen to capture the es-
sential properties of the matings described above, but it turns out rather
remarkably that the very much more natural class of all separable holomor-
phic correspondences fits naturally into the same framework. In Section 6
we introduce the strategy of replacing any given separable correspondence
f , acting on a space X, by a new reversible-off-separable correspondence F
which acts on a double cover of X and has as its bidirectional orbits the
grand orbits of f . We then apply the methods and results of Section 5 to
identify “fundamental domains” for F , and hence for f , and to show that
in appropriate situations the limit set of f is an infinite union of copies of
polynomial Julia sets, as illustrated in Figure 3b (and in [7]). In the spe-
cial case of f reversible we adapt the construction to obtain a reversible
off-separable F acting on X itself rather than the double cover (an example
is illustrated in Figure 4c). Further examples to which the theory applies
are the deformations of circle-packing representations of C2 ∗C4 considered
in [9].

In a sequel to the present article we shall consider the conformal structure
of limit sets of correspondences, in particular identifying conditions under
which these limit sets are made up of copies of filled Julia sets of polynomial
functions. The techniques involved for this analysis include Douady and
Hubbard polynomial-like mapping theory and the combinatorial and metric
properties of Yoccoz puzzle-pieces.

The subject of iterated correspondences is one in which computer ex-
perimentation and abstract theory have developed in parallel. For computer
plotted illustrations of the results proved below, the reader is invited to
look at the authors’ paper [7] (which also contains the first announcements
of some of these results).

The dynamical theory of holomorphic correspondences may be viewed as
bridging the gap between the theory of Kleinian groups and that of rational
maps, or perhaps more accurately it should be viewed as a third area of
holomorphic dynamics needing considerable development to catch up with
the first two. Sullivan very successfully applied methods and insight from
Kleinian group theory to prove major results about rational maps, and vice
versa [31]–[33], and his “dictionary” between the two areas has been much
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expanded by McMullen and others [21]–[23]. The existence of this “dictio-
nary” has been a major motivation for our work, and our long-term objective
is to extend it to include holomorphic correspondences.

Acknowledgements. The authors have had many useful discussions
with Bill Harvey. We also thank Caroline Series, Dave Griffiths, Richard
Sharp, Ricardo Perez-Marco, Brian Bowditch, Jeremy Kahn, Curt McMullen,
Misha Lyubich and Adam Epstein for conversations concerning various as-
pects of this work, and we thank the referee for suggesting a more direct
proof of Theorem 1 than the one we first proposed.

2. Relations and multivalued maps. A relation between two spaces
Z and W , that is, a subset of Z × W , determines a multivalued map, or
correspondence, f between Z and W as follows. We say f : z 7→ w if and
only if (z, w) lies in a prescribed subset, which we shall also denote by f , of
Z×W . Clearly, the order of Z and W is important. The transpose relation,
a subset of W × Z, induces the inverse multivalued map f−1 between W
and Z. Thus

f−1 : w 7→ z ⇔ (w, z) ∈ f−1 ⇔ (z, w) ∈ f.
We note the coordinate projections π− = π

(Z,W )
− : Z×W → Z (the backward

projection) and π+ = π
(Z,W )
+ : Z ×W →W (the forward projection). When

restricted to the subset f of Z ×W these give an alternative description of
the multivalued maps:

f = π+ ◦ (π−|f )−1, f−1 = π− ◦ (π+|f )−1.

The image of a point z under f will be a subset of W :

f{z} := {w ∈W : (z, w) ∈ f}
and the image of a subset S of Z will be

f(S) :=
⋃

z∈S
f{z} = π+((π−|f )−1(S)) = π+(π−1

− (S) ∩ f).

Likewise, the inverse image of a subset T of W will be

f−1(T ) := π−((π+|f )−1(T )) = π−(π−1
+ (T ) ∩ f).

Note that, for T ⊂ W , the set f−1(T ) in our notation is the same as
McGehee’s f∗(T ) (see [20]) and is different from his “f−1(T )” which denotes
only the set of points all of whose images under f lie in T . This latter set
we shall write f−McG(T ). As McGehee observes [20], there is a connection:

f−McG(T ) = (f−1(T c))c.

For subsets T of W , we can generally only say

f(f−McG(T )) ⊂ T.
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However, we have equality precisely when T is an image set (of f), that is,
a set of the form f(S) for some S ⊂ Z. Likewise, for subsets S of Z, we can
generally only say

S ⊂ f−McG(f(S)).

This time we have equality precisely when S is a co-image set (of f−1), that
is, a set of the form (f−1(T ))c for some T ⊂W . Every set S ⊂ Z naturally
enlarges to a co-image, namely f−McG(f(S)).

For the record we note that f is symmetric if Z = W and f−1 = f .
We shall say that f is symmetrizable if there exists an identification

of Z and W whereby f becomes symmetric, in other words, a bijection
M : Z →W satisfying f−1 ◦M = M−1 ◦ f . We shall say that f is reversible
if W = Z, f is symmetrizable, and the automorphism M : Z → Z sym-
metrizing f is an involution.

2.1. Topological considerations. Given a correspondence (multivalued
map) f between topological spaces Z and W (defined by its graph f ⊂
Z ×W ) we list some possible properties of f at a point z ∈ Z which are
needed to replace the now defunct concept of “continuity” which was the
general working assumption in the case of f single-valued.

Definitions. We say f is lower semicontinuous at z if, for each w ∈
f{z} and each neighbourhood V of w, there exists a neighbourhood U of z
such that for all z′ ∈ U there exists a w′ ∈ V such that w′ ∈ f{z′}. We say
f is upper semicontinuous at z if, for each neighbourhood V of f{z}, there
is a neighbourhood U of z such that f(U) ⊂ V .

Note that

(i) f is lower semicontinuous ⇔ f−1 maps open sets to open sets;
(ii) f is upper semicontinuous⇔ f−McG maps open sets to open sets, in

other words ⇔ f−1 maps closed sets to closed sets.

Definition. We say that f is a closed relation if the graph f is closed
as a subset of Z ×W (equipped with the product topology).

It is easily proved that when f is a relation between Hausdorff spaces Z
and W then

(iii) f closed (as a relation) ⇒ f(K) closed for any compact subset K of
Z (and in particular, for K a single point);

(iv) f closed (as a relation) and W compact ⇒ π−|f is both proper and
closed as a map, that is, the pre-image (under π−|f ) of a compact set is
compact and the image of a closed set is closed.

It follows from (ii) and (iii) that

(v) a closed relation f between Hausdorff Z and compact Hausdorff W
is upper semicontinuous.
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Definition. We say that f (⊂ Z×W ) is an open relation if the projec-
tions π−|f and π+|f are open maps, that is, they project open subsets of f
to open sets (in Z, W respectively).

From (i) we note that

(vi) if f is an open relation then both f and f−1 are lower semicontinuous.

The time will come when we shall have to consider relations with graphs
which are not closed, for example the relation obtained from a given holo-
morphic correspondence by removing some or all of the singular points of
the graph, or that obtained from a holomorphic correspondence by taking
the union of all its iterates. A useful construction then will be to consider
the relation f which has graph the closure, in Z ×W , of the graph of f .
The proposition and corollary below provide useful information about the
relationship between f(S) and f(S) for a subset S of Z. The preliminary
lemma is elementary.

Lemma 1. If R is an open subset of Z ×W containing the product of
compact sets K×L then there exist open sets U in Z and V in W such that
K × L ⊂ U × V ⊂ R.

Proposition 1. If f is a relation between spaces Z and W and S ⊂ Z
then f(S) ⊆ ⋂U◦⊃S f(U) and equality holds whenever S is compact.

Proof. We show the contra-positive, namely that given w ∈ W , if there
exists U , a neighbourhood of S, such that f(U) does not contain w then
w 6∈ f(S) (and vice versa in the case S is compact):

(∃U◦ ⊃ S)(w 6∈ f(U))⇔ (∃U◦ ⊃ S, ∃V ◦ 3 w)((U × V ) ∩ f = ∅)
(⇐)⇒ (S × {w}) ∩ f = ∅ ⇔ w 6∈ f(S),

(using the above lemma for the reverse implication when S is compact).

Corollary 1. If U is open then f(U) ⊂ f(U). If S is compact then
f(S) ⊃ f(S). In particular , if z ∈ Z then f{z} ⊃ f{z}.

2.2. Singular and non-singular points:
branched-covering correspondences

Definition. We say that a point (z, w) ∈ f is forward non-singular (or
that the arrow f : z → w is non-singular) if there exists a neighbourhood U
of (z, w) in f such that π−|U is a homeomorphism onto its image (a subset
of Z). The (single-valued) composite π+ ◦ (π−|U )−1 is then called a branch
of f at z.

Analogously (z, w) ∈ f is called backward non-singular if π+ is locally a
homeomorphism onto its image (a subset of W ).

We shall also refer to a point z ∈ Z as forward non-singular, meaning
that for all w in f{z} the point (z, w) of the graph is forward non-singular, or
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refer to a point w ∈W as backward non-singular, with the obvious analogous
meaning.

Example. When f ⊂ C× C is an algebraic curve, defined by a polyno-
mial equation P (z, w) = 0, the arrow f : z → w is singular if and only if
(z, w) is a point where ∂P/∂w = 0, and the arrow f−1 : w → z is singular if
and only if (z, w) is a point where ∂P/∂z = 0. The “singular points” in the
sense of algebraic curves ([15]) are those points (z, w) which are singular for
both f and f−1.

We can generalize the notion of a “branched-covering” map to the context
of relations:

Definition. We say that a relation f between locally compact spaces
Z and W is a branched-covering correspondence if it satisfies the following
conditions:

(i) f is open and closed (as a relation);
(ii) f{z} and f−1{w} are discrete for all z ∈ Z and w ∈W ;

(iii) the forward singular points z of f are isolated (in Z), and the back-
ward singular points w of f are isolated (in W ).

In particular, if f is a branched-covering correspondence between com-
pact Hausdorff Z and W then f is both lower and upper semicontinuous,
f must have at most finitely many forward and backward singularities, and
each f{z} and f−1{w} must be finite. Moreover, it follows at once from the
local continuity of branches at non-singular points that z 7→ #(f{z}) is lo-
cally constant at points z which are non-singular for f , and w 7→ #(f−1{w})
is locally constant at points w which are non-singular for f−1. We say that
f is an m : n correspondence if all non-singular z have n images and all
non-singular w have m inverse images.

2.3. Holomorphic correspondences, algebraic varieties and desingular-
ization. We are mainly interested in relations f ⊂ Z × W where Z and
W are geometric manifolds (e.g. Riemann surfaces such as the Riemann
sphere C = C ∪ {∞}) and f is a relation preserving some geometric (e.g.
conformal) structure. Any polynomial equation of the form P (z, w) = 0
determines such a relation on the Riemann sphere. Here z and w are ini-
tially complex numbers, and P (z, w) = 0 initially defines an algebraic curve
in C × C but by completing using homogeneous co-ordinates we obtain a
subvariety of C × C. Note that there are two different ways to “complete”
the curve P (z, w) = 0. The first (which is the standard construction in the
study of algebraic curves) is to transform P into a homogeneous polynomial
P (z, w, t) = 0 which can then be regarded as defining a curve in the complex
projective plane CP 2. The second is to introduce four variables z0, z1, w0, w1

homogenizing z and w separately via z = z0/z1 and w = w0/w1 and hence
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obtain a polynomial P (z0, z1, w0, w1) = 0 which we may regard as a subva-
riety of CP 1 × CP 1 = C × C. It is this second completion which we use to
view the equation P (z, w) = 0 as the graph of a relation f on the Riemann
sphere.

If P (z, w) is an irreducible polynomial of degree m ≥ 1 in z and degree
n ≥ 1 in w, then P (z, w) = 0 determines an m : n branched-covering corre-
spondence f on the Riemann sphere in the sense of the previous subsection.
The projection maps π− and π+ from the graph of f are branched coverings
in the usual sense for maps, except at points (z, w) ∈ f which correspond
to arrows f : z → w and f−1 : w → z which are both singular. To cope
with such points in f we appeal to a theory of desingularization which con-
structs for f ⊂ Z ×W a manifold cover, which we shall write Γ (f), and
branched-covering maps

Q̃
(f)
− : Γ (f)→ Z, Q̃

(f)
+ : Γ (f)→W

such that the product map Q̃
(f)
× = Q̃− × Q̃+ : Γ (f) → Z ×W (given by

Q̃×(x) = (Q̃−(x), Q̃+(x)) for x ∈ Γ (f)) has image-set the branched-covering
correspondence f and is one-to-one except over certain of the points (z, w)
which are singular for both f and f−1. See for example [14] and [15] for
elementary accounts of the theory of Riemann surfaces (in particular, in
Chapter 7 of [15] there is an explanation of how to desingularize an algebraic
curve P (z, w) = 0).

More generally, f is a singular Riemann surface if it has a desingulariza-
tion whereby Γ (f) is a Riemann surface and the above maps Q̃− and Q̃+

are holomorphic branched coverings.

Definition. A holomorphic correspondence is a multivalued map f :
Z → W between compact Riemann surfaces Z and W which has a fac-
torization f = Q̃+Q̃

−1
− , where Q̃+ and Q̃− are (single-valued) holomorphic

maps from some Riemann surface X onto Z and W respectively.

Theorem 1. If f : Z →W is a holomorphic correspondence of compact
Riemann surfaces, determined by holomorphic maps Q̃− : X → Z and Q̃+ :
X →W , then the graph f ⊂ Z ×W is a (singular) Riemann surface.

Proof. Let (z, w) ∈ f ⊂ Z × W and suppose firstly that z is not a
critical value of Q̃−. Let U be a disc neighbourhood of z over which the
fibre bundle Q̃−1

− (U) → U is trivial. Then f ∩ (U × W ) is the union of
the graphs of deg(Q̃−) functions from U to W . Some of these graphs may
be identical, and each of them is the bijective image of a disc in X. By
choosing U sufficiently small we may arrange that any two graphs in the
collection which pass through (z, w) are either identical or intersect only at
(z, w), since if two of the graphs intersect at points arbitrarily close to (z, w)
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the corresponding functions U → W agree at a sequence of points {zn}
converging to z and being analytic are therefore identical (by a standard
result of complex analysis, Theorem 1.35 of [24]).

The case when w is not a critical value of Q̃+ is analogous, so we just
have to deal with the (finite) set of points (z, w) ∈ f for which both z and
w are critical values. Given one of these points (z, w), let U ′ = U \ {z}
be a punctured disc neighbourhood of z in Z, small enough to avoid all
other critical values of Q̃−. Desingularize f ∩ (U ′ × W ) at any multiple
points, that is to say, points where two sheets intersect (as described in the
previous paragraph), by replacing each with a separate point on each sheet.
Each component of the desingularized graph is a punctured disc, since it
evenly covers the punctured disc U ′ (by the first part of the proof). Filling
in the puncture point in each component makes it into a disc, which is a
quotient of a disc in X by a (finite cyclic) covering group and is also the
graph of a multivalued function U → W defined by a “Puiseux expansion”
(see Proposition 4 in Section 2.4). Finally observe that by choosing U to
be sufficiently small we may again arrange that the sheets of the graph
which pass through (z, w) intersect only at (z, w), since Puiseux expansions
agreeing on a sequence of points converging to z define identical multivalued
functions.

Note that the desingularization of f is X except when Q̃− and Q̃+ have
a common right factor, in which case it is the quotient of X by the highest
such factor. An extreme example is when Z = W and Q̃− = Q̃+, when the
graph f is the diagonal in Z ×W whatever the Riemann surface X.

It follows from Theorem 1 that if f is a holomorphic correspondence
between compact Riemann surfaces Z and W then without loss of generality
we may take its X to be the desingularized graph Γ (f) of f . This Riemann
surface is a disjoint union of finitely many compact connected Riemann
surfaces and the “projection” maps Q̃− and Q̃+ are holomorphic branched
coverings. We deduce that f is a branched-covering correspondence in the
sense of the previous subsection. Moreover, if Z and W are connected the
projection maps will have well defined degrees m and n respectively, and f
will be an m : n correspondence. We say that P (z, w) is a non-degenerate
polynomial if every irreducible factor is of degree at least one in both z and
w. If P is a non-degenerate and square-free polynomial, then P (z, w) = 0
defines an m : n holomorphic correspondence on the Riemann sphere, where
m and n are the degrees of P in z and w respectively. Such a P is represented
by an (m + 1) × (n + 1) matrix of coefficients and the correspondence is
determined by the projective matrix [P ]:

z [P ]wt = 0
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where

z = [zm0 , z
m−1
0 z1, . . . , z0z

m−1
1 , zm1 ], w = [wn0 , w

n−1
0 w1, . . . , w0w

n−1
1 , wn1 ]

in homogeneous co-ordinates. Conversely:

Theorem 2. Every holomorphic correspondence on the Riemann sphere
is algebraic, that is to say , can be expressed in the form P (z, w) = 0 for
some polynomial P in two variables.

Proof. This follows from Chow’s Theorem [10], [30] that every compact
complex analytic projective variety is algebraic. Chow’s Theorem concerns
subvarieties of complex projective space CP n. However, the product of two
Riemann spheres CP 1 × CP 1 embeds in CP 3 (in homogeneous co-ordinates
the map being ([z0, z1], [w0, w1]) 7→ [z0w1, z1w0, z1w1, z0w0]) and so a codi-
mension one subvariety of CP 1×CP 1 can be regarded as a codimension two
subvariety of CP 3.

For a holomorphic correspondence on the Riemann sphere it is a straight-
forward algebraic exercise to compute the singular points.

Example. Consider the 2 : 2 holomorphic correspondence f : z 7→ w
defined on the Riemann sphere by P (z, w) = 0 where

P (z, w) = zw2 − (z − w)2.

The forward singular points of this correspondence are the values of z which
have a single image w. To compute these we regard P (z, w) as a polynomial
in w and write down the condition on its coefficients that it have a repeated
root:

z2 = (1− z)z2.

Thus the forward singular points are z = 0 and z = ∞. All points z other
than these have two distinct images under f . To find the backward singular
points we regard P (z, w) as a polynomial in z and observe that the condition
for a repeated root yields w = 0 and w = −4. All points w other than
these have two distinct inverse images. Thus the “singular arrows” (z, w)
are: (∞,∞), which is singular for f ; (4,−4), which is singular for f−1; and
(0, 0), which is singular for both f and f−1.

We compute the maximal number of singular points for a general m : n
holomorphic correspondence f on the Riemann sphere:

Proposition 2. An m : n holomorphic correspondence on the Riemann
sphere has at most 2(m − 1)n backward singular points w and at most
2(n− 1)m forward singular points z.

Proof. Let the correspondence be defined by P (z, w) = 0. Write this
equation as a polynomial in w:

(a00 + a10z + . . .+ am0z
m) + . . .+ (a0n + a1nz + . . .+ amnz

m)wn = 0.
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Partial differentiation with respect to z yields

(a10 + . . .+mam0z
m−1) + . . .+ (a1n + . . .+mamnz

m−1)wn = 0.

A point w is backward singular if and only if for this value of w the first
equation above has a repeated root z, and hence if and only if the two
equations above have a common solution z. But we can eliminate the terms
in zm in the first equation (by multiplying the first equation by m and then
subtracting z times the second equation) and now express the condition that
the two equations have a common root z as the vanishing of the determinant
of a 2(m − 1) × 2(m − 1) matrix of polynomials of degree n in w (the
resultant of the two equations [15]). This determinant is a polynomial of
degree 2(m − 1)n in w. The same reasoning, but for f−1 in place of f ,
counts the forward singular points.

Corollary 2. If P (z, w) is an irreducible polynomial of degree m in z
and n in w, then the graph f of the holomorphic correspondence defined on
the Riemann sphere by P (z, w) = 0 has genus at most (m− 1)(n− 1).

Proof. The graph is an m-fold branched cover of the sphere, branched
over the (at most 2(m− 1)n) backward singular points. Hence f has Euler
characteristic at least 2m−2(m−1)n. Resolving any multiple points only fur-
ther increases Euler characteristic, and so the desingularized graph Γ (f) also
has Euler characteristic at least 2m−2(m−1)n = 2−2(m−1)(n−1). Hence,
by the Riemann–Hurwitz formula, the genus of f is at most (m−1)(n−1).

Remarks. 1. By taking into account the exact number of backward
critical points, and the number of points added in passing from the graph
f to its desingularization Γ (f) (both of which will depend on the types of
the doubly singular arrows z → w), one can compute the exact value of the
genus of f rather than simply an upper bound.

2. As already mentioned earlier in this subsection, the Riemann surface
f ⊂ CP 1 × CP 1 should not be confused with the subvariety of CP 2 defined
by the equation P (z, w) = 0 (where P is now regarded as a homogeneous
polynomial in three variables in the obvious way). This latter variety is also
a Riemann surface, and is a completion of the same algebraic curve in C×C,
but has genus ≤ (d−1)(d−2)/2 where d is the degree of P as a homogeneous
polynomial, the exact value being given by Noether’s formula [15].

2.4. Local normal forms for holomorphic correspondences: simultaneous
normalization, Puiseux expansions. We first consider the question of local
normal forms for holomorphic maps between Riemann surfaces.

For a Riemann surface X and a point x ∈ X, a chart map at x is a con-
formal homeomorphism δx from a neighbourhood of x to a neighbourhood
of the origin in the complex plane C, satisfying δx(x) = 0. Every chart map
(defined on a neighbourhood of x) can be normalized, e.g. by translation, to
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a chart map at x. Thus, fixing such a chart, by abuse of notation, we may
write nearby points x′ uniquely as “x+ δx” where δx = δx(x′). Thus

“x+ δx” = δ−1
x (δx).

In the case X = C (and δx is purely the translation x′ 7→ x′− x) this agrees
with the standard notation.

Recall that if Q is a holomorphic map between Riemann surfaces X and
Y then for any x ∈ X and y ∈ Y satisfying Q(x) = y and for chart maps δx
and δy (at x and at y respectively) there exists a Taylor expansion

δy =
∑

k≥1

αk(δx)k

with positive radius of convergence and coefficients αk ∈ C such that for
all x′ ∈ X with |δx(x′)| sufficiently small, the value δy(y′) for the point
y′ = Q(x′) satisfies

δy(y′) =
∑

k≥1

αk(δx(x′))k.

The smallest k for which αk 6= 0 is independent of the chart maps δy and δx
and is called the local degree of Q at x, written degxQ.

Proposition 3. If Q : X → Y is a holomorphic map of Riemann sur-
faces and has local degree d at a point x ∈ X then for any chart map δy at
y = Q(x) there exists a chart map δx at x such that the Taylor expansion
of Q about x becomes

δy = (δx)d.

Proof. We simply lift the chart map δy to the branched coverings corre-
sponding to Q and to x 7→ xd on its domain and range respectively.

The reverse proposition may be false for d > 1: given a chart δx at x there
may be no chart δy at y which gives the Taylor series for Q as δy = (δx)d.
For instance, if d = 2 then we can modify a chart δy so that the expansion
for Q becomes δy = (δx)2 if and only if, for the original chart δy, the Taylor
series of Q:

δy =
∑

k≥2

αk(δx)k

is an even function of δx, that is, αk = 0 for all odd k. The criterion is that
Q(x+ δx) = Q(x− δx) for all small δx.

We now move on to the question of local normal forms for holomor-
phic correspondences. Suppose f : Z → W is a holomorphic correspon-
dence defined by holomorphic maps of Riemann surfaces Q̃− : X → Z and
Q̃+ : X →W . Without loss of generality we may take X to be the desingu-
larization Γ (f) of the graph f ⊂ Z×W and Q̃− and Q̃+ to be its projections



124 S. Bullett and C. Penrose

onto Z and W . Suppose we are given a point x ∈ X at which Q̃− has lo-
cal degree n and at which Q̃+ has local degree m. Given any chart δz at
z = Q̃−(x) we can “normalize” Q̃− by an appropriate choice of the chart δx
(as in the above proposition). Likewise given any chart δw at w = Q̃+(x) we
can “normalize” Q̃+ by an appropriate choice of the chart δx.

Definition. We say that Q̃− and Q̃+ can be simultaneously normalized
if there exist charts δx, δz, δw such that

δz = (δx)n, δw = (δx)m.

Clearly, “simultaneous normalization” is always possible if either m = 1
or n = 1. More generally, if the local degrees m and n of Q̃− and Q̃+ at
x ∈ X are coprime, Q̃− and Q̃+ can be simultaneously normalized at x if
and only if the (local) covering transformations of Q̃− commute with those
of Q̃+.

Comments. 1. “Simultaneous normalization” is impossible if m and n
have a common factor since otherwise δz and δw would both be powers of
some non-trivial power of δx whence the supposed desingularizing map

Q̃×(x+ δx) = (z + (δx)n, w + (δx)m)

would not be one-to-one at any point in a neighbourhood of x (except pos-
sibly at the point x itself)—contrary to the fact that multiple points are
isolated for a holomorphic correspondence.

2. “Simultaneous normalizability” is equivalent to “local separability”: if
Q̃− : Ux → Vz and Q̃+ : Ux → Vw are simultaneously normalizable on a
neighbourhood Ux of x we can construct push-out maps R : Vz → W and
S : Vw → W such that Q̃+Q̃

−1
− maps z′ ∈ Vz to w′ ∈ Vw if and only if

R(z′) = S(w′). Conversely, if there exist such R and S then Q̃− and Q̃+ are
simultaneously normalizable in Ux. We shall have much more to say about
separability later.

“Simultaneous normalizability” gives us a canonical local form for a cor-
respondence. If (z, w) ∈ f lifts to a unique point x ∈ Γ (f), and if x is a
point at which the projection maps Q̃− and Q̃+ (to Z and W respectively)
are “simultaneously normalizable”, then we can find charts δz, δw around
z ∈ Z and w ∈W in which f has the local form

δw = (δz)m/n.

More generally, if (z, w) ∈ f lifts to several points x1, . . . , xl of Γ (f) (that
is, if (z, w) is a multiple point of the graph f), then if the projection maps
Q̃− and Q̃+ are simultaneously normalizable at each xj we have a local form

δjw = (δjz)mj/nj
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for each sheet of the graph. In general, we cannot expect to find a single
pair of charts δw, δz that will give this form simultaneously for all sheets.

When we do not have “simultaneous normalization” the most useful gen-
eral tool available to us is that of “Puiseux expansions”. Consider the cor-
respondence P (z, w) = 0 and suppose (without loss of generality) that the
singular point we wish to analyse has co-ordinates z = 0, w = 0. A proof of
the following proposition can be found (for example) in [15].

Proposition 4. There exist holomorphic functions (“Puiseux expan-
sions”)

gj(t) =
∑

r>0

a(j)
r tr

for 1 ≤ j ≤ l, defined near 0, and positive integers m1, . . . ,ml such that the
curve P (z, w) = 0 is given in a neighbourhood of the point (0, 0) ∈ C×C by

⋃

1≤j≤l

⋃

1≤s≤mj

{(z, w) : w = gj(e2πis/mjz1/mj)}.

This is exactly what we would expect in view of our discussion earlier
in this subsection: the chart δz lifts to a chart δ1/mj

z on the jth of the l
intersecting sheets of the graph at (z, w) ∈ f , and the projection down to
δw is a holomorphic function. Thus restricted to any sheet of f we can write
our correspondence locally in the form

w =
∑

r>0

a(j)
r zr/mj

without even altering the charts at either end.

2.5. Separable correspondences. We say that a relation f from Z to W
is separable, or that the graph f is “rectangle-complete”, if

(z, w), (z′, w), (z, w′) ∈ f ⇒ (z′, w′) ∈ f.
When f is separable we get induced equivalence relations ∼+ on Z and

∼− on W defined by

z ∼+ z′ ⇔ (∃w ∈W )((z, w), (z′, w) ∈ f) or z = z′,

w ∼− w′ ⇔ (∃z ∈ Z)((z, w), (z, w′) ∈ f) or w = w′.

There is a natural identification of the quotient spaces π−(f)/∼+ and
π+(f)/∼−, and so f can be written as {(z, w) ∈ Z ×W : Q+(z) = Q−(w)}
where Q+ : Z → Z/∼+, Q− : W → W/∼− are the relevant quotient maps.
Here the images Z/∼+ and W/∼− are embedded in a common space Y such
that Y = Z/∼+ ∪W/∼− and Z/∼+ ∩W/∼− = π−(f)/∼+ = π+(f)/∼−.
The space Y is thus the push-out of the maps π−|f and π+|f and will be
called the separating space of f .
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Fig. 1a. The separable correspondence formed by co-domain identification of Q+ and Q−

Conversely, given a space Y and maps Q+ : Z → Y and Q− : W → Y ,
we can obtain a separable relation f between Z and W whose graph is
{(z, w) ∈ Z × W : Q+(z) = Q−(w)} (Figure 1a). Assuming that Y =
image(Q+)∪image(Q−) we see that Y is the separating space of f if and only
if Q+ is one-to-one outside Q−1

+ (image(Q−)) and Q− is one-to-one outside
Q−1
− (image(Q+)) and otherwise Y is a quotient of the separating space of f .

If Z, W are compact Hausdorff and f is closed then separability of f
implies that Q+, Q− are closed maps and that the separating space Y is
Hausdorff. Conversely, if Q+ : Z → Y and Q− : W → Y are continuous
maps to a Hausdorff space Y then the resulting separable correspondence
between Z and W is closed.

In the case when Z and W are Riemann spheres, separability of a holo-
morphic correspondence f is equivalent to “separation of variables”, i.e. the
correspondence can be written in the form Q+(z) = Q−(w) where Q+ and
Q− are rational maps of degrees d+ and d− respectively (here of course the
separating space Y is also a Riemann sphere) and hence the polynomial re-
lation P (z, w) = 0 defining the correspondence can be expressed in the form
p+(z)q−(w) = q+(z)p−(w). Examples of separable correspondences are d : 1
correspondences (rational maps) and 1 : d correspondences (their inverses).
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Fig. 1b. The product correspondence formed by domain identification of Q− and Q+

Given holomorphic maps Q− and Q+ of Riemann surfaces and an iden-
tification of their domains (Figure 1b) the composite Q+ ◦ Q−1

− is a holo-
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morphic correspondence (by definition). We now check that the (separable)
composite Q−1

− ◦Q+ obtained by co-domain identification (Figure 1a) is also
a holomorphic correspondence.

Proposition 5. If Z, W and Y are Riemann surfaces and Q+ : Z →
Y , Q− : W → Y are holomorphic maps then the (singular) Riemann surface

Q−1
− ◦Q+ := {(z, w) ∈ Z ×W : Q+(z) = Q−(w)}

has a desingularization Q̃× : Γ (Q−1
− ◦ Q+) → Q−1

− ◦ Q+ such that Q̃− =
π−◦Q̃× and Q̃+ = π+◦Q̃× are holomorphic. Thus Q−1

− ◦Q+ is a holomorphic
correspondence.

Proof. Given a point (z, w) ∈ Q−1
− ◦ Q+, where degzQ+ = m, degwQ−

= n, and given a chart map δy at y = Q+(z) = Q−(w) we obtain chart maps
δz at z and δw at w satisfying

(δz)m = δy = (δw)n.

Thus δw = ζk(δz)m/n where ζ is a primitive nth root of unity and k an
integer. As z + δz winds once around z, the image w + δw performs m/n
turns about w, so that the net effect is k 7→ k + m (modn). Thus ñ =
LCM(m,n)/m turns of δz are required to return δw to its original value.
In so doing k sweeps through an (n/ñ)Z-congruence class (mod nZ). Hence,
for each k in the range 0 ≤ k < HCF(m,n) = n/ñ, we obtain a distinct
desingularization point xk of (z, w) whence

# Q̃−1
× (z, w) = HCF(m,n).

The local behaviour of Q̃− and Q̃+ about each point xk is given respectively
by δz = (δxk)ñ and δw = ζk(δxk)m̃ (where m̃ = LCM(m,n)/n). Clearly, at
each xk, the maps Q̃− and Q̃+ are simultaneously normalizable.

Example. In the case of a separable 2 : 2 correspondence f of the
Riemann sphere—i.e. a “map of pairs”—given by Q+(z) = Q−(w) where
Q+ and Q− are degree two rational maps, there are three possibilities for
the topology of the desingularized graph Γ (f) according to the number of
coincidences of critical values (in Y ) of Q+ and Q−:

#(crit values(Q+) ∩ crit values(Q−)) topology of Γ (f)

0 torus

1 sphere

2 two spheres

To see this, observe firstly that by Corollary 2 (Subsection 2.3) these are
the only possible topological types for the graph of a 2 : 2 correspondence,
and secondly that each coincidence of a critical value of Q− with one of
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Q+ gives rise to a double point (z, w) of the graph f , since we can find
co-ordinates in which the correspondence (being separable) takes the local
form w2 = z2.

Finally we remark that for any holomorphic correspondence f from a
Riemann surface X to itself the corresponding graph correspondence Γ (f)→
Γ (f) defined by x 7→ y ⇔ Q̃+(x) = Q̃−(y) (which has the same dynamical
behaviour as f) is separable, by its very definition. We shall have more to
say about graph correspondences in Subsection 2.7.

2.6. Diagram conditions on correspondences. We shall be interested in
classes of correspondences which satisfy particular diagram conditions relat-
ing images of points and the inverse images of these images. These conditions
should be thought of as the analogue for correspondences of relations among
the generators of a finitely generated Kleinian group.

The first such condition is that of separability, discussed in the previous
subsection. One way to express this condition is to require that whenever f
maps z to w every image of every inverse image of w is also an image of z
and every inverse image of every image of z is also an inverse image of w.
In other words, the images of z and the inverse images of these images are
the vertices of a complete bipartite graph (with edges “arrows” (z, w)).

With this example in mind, we define a diagram template G to be a
(connected) bipartite graph on a set of vertices. This means that G can be
written as a subset of U × V where the set of vertices is the disjoint union
of U and V . Certain rules must be satisfied:

(i) for every u ∈ U there exists v ∈ V such that (u, v) ∈ G,
(ii) for every v ∈ V there exists u ∈ U such that (u, v) ∈ G,

In addition we will usually insist that G be connected, that is:

(iii) any function F on the vertices U ∪V satisfying (u, v) ∈ G⇒ F (u) =
F (v) is constant.

An isomorphism of diagram templates G ⊂ U × V and G′ ⊂ U ′ × V ′ is
a pair of bijections U → U ′ and V → V ′ transporting G to G′.

We say G is a diagram condition for a correspondence f if whenever
z0 ∈ Z or w0 ∈ W there is an assignment i : U → Z and an assignment
j : V →W satisfying

(i) z0 ∈ i(U) (or w0 ∈ j(V )),
(ii) if z = i(u) then (z, w) ∈ f ⇔ (∃v ∈ V )((u, v) ∈ G and w = j(v)),

(iii) if w = j(v) then (z, w) ∈ f ⇔ (∃u ∈ U) ((u, v) ∈ G and z = i(u)).

In addition we would normally insist that the diagram condition be faithfully
satisfied:

(iv) Generically (in z0 and in w0) the assignments i and j are one-to-one.
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For example when f is an m to n holomorphic correspondence the condi-
tion that f be separable is equivalent to requiring that f faithfully satisfies
the diagram condition which has as template the complete bipartite graph
on sets of cardinality m and n.

It is clear that two connected diagram templates which are diagram con-
ditions faithfully satisfied by the same correspondence are isomorphic and
thus we can refer to the diagram condition of a correspondence.

Two examples of possible diagram conditions for a 2 : 2 correspondence
are

-�
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���

-

@
@
@@Rz2

z1

w2

w1

for a separable correspondence (referred to as a “map of pairs” in [3]), and

-�
�
���@

@
@@R

�
�
���@

@
@@R

-

z3

z2

z1

w1

w2

w3

for a “map of triples” [6].

2.7. Joins, splittings and compositions of correspondences. If f1 and f2
are correspondences from Z to W then we can form the “union” f1∪f2 which
is also a correspondence from Z to W whose graph is the union of f1 and f2.
For instance, if f1 is defined by P1(z, w) = 0 and f2 by P2(z, w) = 0 then f1∪
f2 is defined by the vanishing of the product polynomial P1(z, w)P2(z, w).
Clearly, if S is a subset of Z then (f1 ∪ f2)(S) = f1(S) ∪ f2(S).

If f1 ∩ f2 is empty or contains at most finitely many points then we call
the union f1∪f2 the “join” of f1 and f2 and we may write f1 +f2. Such will
be the case if f1 and f2 are defined by polynomials P1(z, w) and P2(z, w)
with no factor in common.

Conversely, we say a (geometric) correspondence f admits a splitting
f = f1 + f2 if f1 and f2 are (geometric) correspondences whose graphs
intersect only at isolated points. This will mean that the desingularized
graph Γ (f) is the disjoint union of Γ (f1) and Γ (f2). In the case when f is
defined by a squarefree polynomial P (z, w) then splitting of f is equivalent to
factorization of P (z, w) as P1(z, w)P2(z, w). Of particular interest is the case
when f is an n : n correspondence of C to itself whose defining polynomial P
factorizes completely into n distinct non-degenerate linear factors P1, . . . , Pn
(i.e. Pi(z, w) = cizw+ diw− aiz − bi with aidi 6= bici). Thus f is the “join”
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of n Möbius transformations

fi : z 7→ aiz + bi
ciz + di

.

Properties of the group 〈f1, . . . , fn〉 of Möbius transformations generated by
composition of the fi (and their inverses) can be obtained as properties of
appropriate “iteration” of the correspondence f .

Suppose f is a correspondence from Z to W and suppose g is a correspon-
dence from W to another space X (whose graph is a subset g of W ×X).
Then we can form the composed correspondence g ◦ f between Z and X
where

g ◦ f = {(z, x) ∈ Z ×X : (∃w ∈W )((z, w) ∈ f, (w, x) ∈ g)}.
Thus, for subsets S of Z, we have (g ◦ f)(S) = g(f(S)). As for maps,
composition “◦” of correspondences is associative. Moreover, it is both left
and right distributive over “∪”.

Notice that there is also a separable “graph correspondence” between the
graphs (of) f and (of) g which is defined formally by its own graph

{((z, w), (w′, x)) ∈ f × g : w = w′}
but which we will embed in Z ×W ×X as

f ∧ g = {(z, w, x) ∈ Z ×W ×X : (z, w) ∈ f, (w, x) ∈ g}
noting the projections π(Z,W,X)

− : (z, w, x) 7→ (z, w) and π
(Z,W,X)
+ : (z, w, x)

7→ (w, x) (whose restrictions to f ∧ g map respectively to f and to g). The
object f ∧ g can also be thought of as the space of paths of length two. Its
image under the projection (z, w, x) 7→ (z, x) is g ◦ f .

An important observation is that if f and g are closed relations then g◦f
will also be a closed relation provided that W is compact (see McGehee [20]).

We are normally interested only in the case f and g are holomorphic
correspondences, with desingularizations:

Q̃
(f)
4 = Q̃

(f)
× = Q̃

(f)
− × Q̃

(f)
+ : Γ (f)→ f (⊂ Z ×W ),

Q̃
(g)
4 = Q̃

(g)
× = Q̃

(g)
− × Q̃

(g)
+ : Γ (g)→ g (⊂W ×X).

Thus the geometric version of the “graph correspondence” is the separable
correspondence between manifolds Γ (f) and Γ (g) given by

(Q̃(g)
− )−1 ◦ Q̃(f)

+ = {(u, v) ∈ Γ (f)× Γ (g) : Q̃(f)
+ (u) = Q̃

(g)
− (v)}.

Noting that the desingularized graph of the graph correspondence is the same
as the desingularization Γ (f ∧ g) of the path-space variety f ∧ g, we denote
the graph projections (arising from the desingularization of the separable
correspondence (Q̃(g)

− )−1 ◦ Q̃(f)
+ in Γ (f) × Γ (g) as described in the proof

of Proposition 5, in Subsection 2.5) by Q̃
(f∧g)
− and Q̃

(f∧g)
+ . It follows that
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the desingularizing map Q̃
(f∧g)
4 : Γ (f ∧ g) → f ∧ g is a composition of the

desingularizing map

Q̃
(f∧g)
× = Q̃

(f∧g)
− × Q̃(f∧g)

+ : Γ (f ∧ g)→ (Q̃(g)
− )−1 ◦ Q̃(f)

+ (⊂ Γ (f)× Γ (g)),

followed by a map

Q̃44 : (Q̃(g)
− )−1 ◦ Q̃(f)

+ → f ∧ g (⊂ Z ×W ×X).

Here we define Q̃44(u, v) to be the concatenation of Q̃(f)
4 (u) ∈ f (⊂ Z×W )

and Q̃(g)
4 (v) ∈ g (⊂W ×X) (where u ∈ Γ (f), v ∈ Γ (g)); this is well defined

since π+Q̃
(f)
4 (u) = Q̃

(f)
+ (u) = Q̃

(g)
− (v) = π−Q̃

(g)
4 (v). We thus “desingularize”

π
(Z,W,X)
− and π

(Z,W,X)
+ with the equations

π− ◦ Q̃(f∧g)
4 = Q̃

(f)
4 ◦ Q̃

(f∧g)
− and π+ ◦ Q̃(f∧g)

4 = Q̃
(g)
4 ◦ Q̃

(f∧g)
+ .

By an inductive process we can similarly desingularize spaces of paths of
greater length, noting the associative law Γ ((f ∧ g) ∧ h) = Γ (f ∧ (g ∧ h))
and defining Q̃(f∧g∧h)

4 : Γ (f ∧ g ∧ h)→ f ∧ g ∧ h, etc.
Returning to the composition g ◦ f , in the case of f and g holomorphic

correspondences, it is possible that Γ (f∧g) may not be the desingularization
of this composition. Certainly we have holomorphic “projections”:

Q̃
(f∧g)
−− = Q̃

(f)
− ◦ Q̃

(f∧g)
− : Γ (f ∧ g)→ Z,

Q̃
(f∧g)
++ = Q̃

(g)
+ ◦ Q̃

(f∧g)
+ : Γ (f ∧ g)→ X.

However, the image set of Q̃−−× Q̃++ in Z×X may have desingularization
a quotient of Γ (f ∧ g)—in other words, the maps Q̃−− and Q̃++ have a
holomorphic common factor. The image of the “highest common factor”
map we write as Γ (g ◦ f). From Theorem 1 (Subsection 2.3) we see that
the portrait g ◦ f (⊂ Z × X) is a branched-covering correspondence with
Γ (g ◦ f) a genuine desingularization. In the case when Z = W = X = C
and f and g are determined by the vanishing of polynomials in C[z, w] and
C[w, x] respectively we may alternatively obtain g ◦f as the vanishing set of
the resultant of the polynomials for f and g with respect to the polynomial
ring C[z, x](w).

A common situation where Γ (g ◦ f) 6= Γ (f ∧ g) is when g is the inverse
correspondence to f .

2.8. Galois correspondences. Recall that f−1 ◦ f includes id|π−(f) and
f ◦ f−1 includes id|π+(f) and, in general, these are strict inclusions. Indeed,
at least in the case when f is a holomorphic correspondence of compact
Riemann surfaces, we see that f−1 ◦ f is a splitting of idZ and another
symmetric correspondence. Likewise, f ◦ f−1 is a splitting of idW and a



132 S. Bullett and C. Penrose

symmetric correspondence. We define

Gal(f)
+ = (f−1 ◦ f) \ idZ , Gal(f)

− = (f ◦ f−1) \ idW .

In the case of a single-valued map Q : X → Y we simplify notation and
write

GalQ = (Q−1 ◦Q) \ idX .

In general, Gal(f)
+ and Gal(f)

− are rather complicated objects so we first
examine the case of separable f = Q−1

− ◦ Q+ (where Q− and Q+ have
the same range). In this case f−1 ◦ f = Q−1

+ ◦Q+ and f ◦ f−1 = Q−1
− ◦Q−.

These resulting compositions are then separable symmetric correspondences.
Striking out the graph-diagonals gives us Gal(f)

+ = GalQ+ and Gal(f)
− =

GalQ− . In the case when Q (= Q+ or Q−) is continuous with Hausdorff
quotient, putting back in any “fixed points” of GalQ gives us (via the closure
of the graph) the Galois correspondences Gal

Q+ and Gal
Q− which are the

non-identity covering “transformations” of Q+ and Q− respectively. In the
case when f is a separable holomorphic 2 : 2 correspondence C → C these
are just Möbius involutions which we call the forward involution I+ and the
backward involution I− respectively.

Example. If d+ = 3 and Q+ is a cubic rational map of the form z 7→ z3

then Gal
Q+ : z 7→ w is represented by the polynomial equation

0 =
Q+(w)−Q+(z)

w − z =
w3 − z3

w − z = w2+zw+z2 = (w−e2πi/3z)(w−e−2πi/3z)

and so splits into two Möbius rotations z 7→ e±2πi/3z. If d+ = 3 but Q+ is
of the form z 7→ z3 − 3z then Gal

Q+ : z 7→ w is represented by the equation

0 =
Q+(w)−Q+(z)

w − z =
w3 − z3 − 3w + 3z

w − z = w2 + zw + z2 − 3

and does not split. However, this correspondence can usefully be thought
of as the “projection” of the Möbius transformations u 7→ v = e±2πi/3u±1

under the degree 2 branched covering z = u+ 1/u (with w = v + 1/v).

More generally, if f is a m : n separable correspondence then Gal
(f)
+ is an

(m−1) : (m−1) symmetric correspondence and Gal
(f)
− is an (n−1) : (n−1)

symmetric correspondence.
The situation is more complicated for non-separable f and so we first

look to the graph. For simplicity we take f holomorphic and work using the
desingularization Γ (f) of the graph. In place of Gal

Q+ and Gal
Q− we must

examine

G̃al+ := Gal
Q̃

(f)
+ and G̃al− := Gal

Q̃
(f)
−
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(which act on Γ (f)). In the case when f is 2 : 2 these are the covering
involutions Ĩ+ and Ĩ− (of Q̃+ and Q̃− respectively). Separability of f is
equivalent to the commuting of Ĩ+ and Ĩ−. If f is m : n then instead of Ĩ+

and Ĩ− we have (m−1) : (m−1) and (n−1) : (n−1) correspondences G̃al+
and G̃al− on Γ (f), and f is separable if and only if these correspondences
“commute” in the obvious sense.

Our original Gal
(f)
+ and Gal

(f)
− are thus “projections” of their upstairs

counterparts. When f is not separable, they may be as bad as n(m − 1) :
n(m − 1) and m(n − 1) : m(n − 1) correspondences, and should not in
general be thought of as Galois correspondences, but as “non-linear” Galois
correspondences.

Example. Consider the 2 : 2 holomorphic correspondence ft : z 7→ w
(t 6= ±2) given by

z2 − tzw + w2 = 4− t2.
This has graph a Riemann sphere which can be parametrized by the complex
variable u via the projection maps Q̃− : u 7→ u+1/u and Q̃+ : u 7→ u/ζ+ζ/u
where ζ is a solution of t = ζ + 1/ζ. Note that the points u = 0 and u =∞
are identified (corresponding to (z, w) = (∞,∞)). The graph involutions are
thus Ĩ− : u 7→ 1/u and Ĩ+ : u 7→ ζ2/u. Thus Ĩ− and Ĩ+ generate a dihedral
group with cyclic subgroup generator Ĩ+ ◦ Ĩ− : u 7→ ζ2u (which has trace
t). One sees that ft is separable only in the case ζ = ±i which is the case

t = 0. Since ft is symmetric the correspondence Gal
(ft)
+ equals Gal

(ft)
− and

is given by
w2 − (t2 − 2)zw + z2 = t2(4− t2)

(which only in the separable case t = 0 simplifies to a 1 : 1 map (z 7→ −z)).

2.9. Off-separable correspondences. We say a correspondence f from a set
X to itself is off-separable if there is a bijection M : X → X whose graph
intersects that of f (if at all) in a finite set of points, and such that the
correspondence f +M is separable. If we wish to specify M then we say f is
M -off-separable. For example, a 2 : 2 correspondence which has the diagram
condition of a “map of triples” (Subsection 2.6) is off-separable provided
that there are at most finitely many zi where the diagram condition is not
faithfully satisfied. Here M is the map which sends zi to wi, and when joined
to f gives a separable 3 : 3 correspondence. It is only at the finitely many
points zi where the diagram “collapses” that the arrow zi → wi may already
be in f . A particular example of an off-separable f is the correspondence
f−1 ◦M (with equation (Mz)2 + (Mz)w+w2 = 3) involving the symmetric
correspondence ft from the previous subsection on Galois correspondences,
in the case when the graph parameter ζ is a cube root of unity.
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A 3 : 3 off-separable correspondence has diagram condition
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Again M is the map sending zi to the “antipodal” vertex wi. An m : n off-
separable correspondence is one which satisfies the diagram condition having
as template G a bipartite graph with vertex sets U and V of cardinalities
m+ 1 and n+ 1 respectively, and where each vertex of U has valency n and
each vertex of V has valency m. (The “missing” arrows, which when added
to the graph make it separable, define a bijection M : Z →W .)

There is a close connection between off-separable correspondences and
Galois correspondences (implying, in particular, that m = n):

Lemma 2. If f is M -off-separable then M−1 ◦ f + id is an equivalence
relation. Hence M ◦GalQ ⊂ f ⊂M ◦(Q−1Q) for a (unique) quotient map Q.

Proof. Suppose that (z, z′) ∈M−1◦f , that is,M(z′) ∈ f{z}. Separability
of f +M implies that f{z} ∪M(z) = f{z′} ∪M(z′). It follows that, in all
cases, M(z) ⊂ f{z′} ⊂ f{z} ∪M(z) (since the case M(z) = M(z′) yields
z = z′ and so (z′, z) ∈ M−1 ◦ f). Applying M−1 gives {z} ⊂ M−1f{z′} ⊂
M−1f{z} ∪ {z}. The first inclusion thus tells us that the relation M−1 ◦ f
(and so its union with id) is symmetric. The second inclusion implies that
M−1 ◦ f ∪ id is transitive and so an equivalence relation.

The graphs of GalQ and M ◦ GalQ are isomorphic (it is just that the
“axes” Z and W are identified via the identity in one case and via M in
the other). Thus the diagram condition satisfied by an off-separable cor-
respondence is precisely that associated with GalQ for the corresponding
quotient map Q. Indeed, an alternative way to characterize off-separable
correspondences is as those which satisfy the diagram condition of a Galois
correspondence.

We now move from the set-theoretic level to the topological level.

Definition. A continuous surjection Q : X → Y of locally compact
Hausdorff spaces X and Y is said to be a branched-covering map if

(i) Q is an open mapping;
(ii) Q−1(y) is discrete for each y ∈ Y ;

(iii) Q is a local homeomorphism except at a (possibly empty) set S ⊂ X
having image Q(S) a discrete subset of Y .
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Note that since any continuous surjection f : X → Y with Y Haus-
dorff has closed graph, a branched-covering map is in particular a branched-
covering correspondence in the sense of our earlier definition. We now restrict
our attention to correspondences on compact Hausdorff spaces X, so the dis-
crete sets in both definitions become finite sets. For a branched-covering map
Q on such a space X, the difference in graphs between GalQ and its closure
is

Gal
Q −GalQ = {(x, x) : x critical for Q}

where a critical point of Q is any point x ∈ X at which Q fails to be locally
injective. These points form the set S of (iii) above.

Theorem 3. Let X be a compact Hausdorff space and M : X → X be
a homeomorphism.

(i) If Q is a branched-covering map defined on X, then both M ◦GalQ

and its closure the branched-covering correspondence M ◦Gal
Q

, are M -off-
separable. If Q has degree d + 1 (almost everywhere) then M ◦ Gal

Q
is a

d : d correspondence.
(ii) Conversely , if f is an M -off-separable branched-covering correspon-

dence on X then f = M ◦Gal
Q

for a (unique) quotient map Q defined on X.
Moreover , X/Q is compact Hausdorff and Q is a branched-covering map.

Proof. (i) follows at once from the definition of M -off-separability and
the fact that Q−1Q is closed in X×X (since X/Q is Hausdorff). For (ii), we
first note that by Lemma 2 we have a quotient map Q such that M ◦GalQ ⊂
f ⊂M ◦ (Q−1Q). Now, by the definition of M -off-separability, the graph of
f contains at most finitely many points in addition to those of M ◦GalQ, but
if f is a branched-covering correspondence its graph contains M ◦Gal

Q
since

f is closed, and has no isolated points since f is open. Thus f = M ◦Gal
Q

.
Moreover, M ◦ (Q−1Q) is closed in X ×X, being the union of closed graphs
f and M . Hence Q−1Q is also closed in X ×X. Thus the diagonal is closed
in X/Q × X/Q, whence X/Q is Hausdorff. To show that Q is an open
map we first note that M ◦ (Q−1Q), being the union of f and M , is a
branched-covering correspondence itself, and thus so is Q−1Q. In particular,
the projections from the graph Q−1Q ⊂ X×X to X are open maps. Thus for
any open subset U of X, the set Q−1Q(U) is open in X, and so Q(U) is open
in X/Q (by the definition of the quotient topology). That Q satisfies the
remaining conditions ((ii) and (iii)) of the definition of a branched-covering
map also follows easily from the fact that Q−1Q is a branched-covering
correspondence.

Corollary 3. A holomorphic n : n correspondence on a compact Rie-
mann surface X, with n ≥ 2, is off-separable if and only if it has the form
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M ◦ Gal
Q

for some conformal automorphism M of X and holomorphic
branched-covering map of Riemann surfaces Q : X → X/Q.

Proof. If f is holomorphic and M -off-separable, and n ≥ 2, then M is
necessarily conformal since M ⊂ f ◦ f−1 ◦ f . The rest is easy.

3. Regular and limit sets. If f is a correspondence between X and
itself we can consider the iterates fn, n ≥ 0, with graph fn ⊂ X × X.
For ease of notation we shall write f−n for (f−1)n. One must be aware,
however, that fm+n will only equal fm ◦ fn if m and n have the same sign.
We shall write f∗ for the orbit correspondence, the union of arbitrarily long
compositions of mixtures of f and f−1.

For an iterated rational map f the dynamics naturally partitions the
Riemann sphere into two completely invariant subsets, the Fatou set where
behaviour is “regular” and the Julia set where behaviour is “chaotic”. For a
Kleinian group G there is a similar partition of the Riemann sphere into a
regular set and a limit set. In both cases there are a number of different, but
equivalent, ways to define these sets. So when it comes to generalizing to
correspondences we have a number of choices to make. Our difficulty is that
it is no longer clear which versions of definitions are equivalent, and, where
they are not, which versions will be the most useful. Our main concern in
this section is with the analogue for correspondences of the regular (or proper
discontinuity) set of a Kleinian group, an analogue we shall make use of in
the remaining sections of this article. In Subsection 3.2 we also discuss how
one might generalize the Fatou (or equicontinuity) set of a rational map to
an appropriate notion for holomorphic correspondences.

3.1. The regular set Ω(f). Given a holomorphic correspondence f : z 7→
w on a compact Riemann surface X, we construct a canonical regular set
Ω(f) and its complement—the (non-regular) limit set—both fully invariant.
We shall see later (Corollary 5 in Subsection 3.2) that Ω(f) has Hausdorff
orbit-quotient under f . In the case when f is a union of Möbius transforma-
tions which define a discrete (Kleinian) group G, the set Ω(f) is the regular
set of G in the usual sense of Kleinian groups, and its complement is the
limit set of the group.

Both f−1 and f map open sets to open sets. As a consequence the orbit
correspondence f∗ also maps open sets to open sets. Note that f ∗, being
an equivalence relation, is the covering relation of an orbit-quotient map
Q∗ (= Q

(f)
∗ ), that is, f∗ = Q−1

∗ ◦ Q∗. Thus Q∗ is an open mapping (where
the orbit-quotient space has the standard quotient topology—the maximal
making Q∗ continuous). Note, however, that in general f ∗ will not be a
closed relation on the whole of X, the quotient by Q∗ not being Haus-
dorff.
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Since the motivation for regular sets and limit sets comes from Kleinian
groups, we will first examine the case when f is an n : n correspondence
which splits into n Möbius transformations f1, . . . , fn which generate a
Kleinian group G. Recall that the regular set Ω(G) of G consists of those
points z where G acts discontinuously, that is, having a neighbourhood U
such that g(U) ∩ U 6= ∅ for only finitely many g ∈ G. In the case when
f1, . . . , fn generate G freely, this is equivalent to saying gw(U) ∩ U 6= ∅
for only finitely many words w in the free group 〈f1, . . . , fn〉 (where gw =
wk ◦ . . . ◦w1 for w = w1 . . . wk, wi ∈ {f1, f

−1
1 , . . . , fn, f

−1
n }). If, on the other

hand, the fi do not generate G freely, then arbitrarily long words w give
gw(U) ∩ U 6= ∅. However, we can say that

{(z′, gw(z′)) ∈ U × U : w ∈ {f±1
1 , . . . , f±1

n }∗}
is accounted for as the union of {(z′, gw(z′)) : z′ ∈ X}∩ (U ×U) over finitely
many words w ∈ {f±1

1 , . . . , f±1
n }∗. (This uses the observation that the global

action of a Möbius transformation g is determined by its local action near z.)
As a holomorphic correspondence f (or at least component(s) thereof) is

likewise determined by its local behaviour near a point z we can formulate
a similar notion of “discontinuous action” for f :

We first define f e, for e ∈ {−1, 1}∗, to be the correspondence composition
f ek ◦ . . .◦f e1 where e = e1 . . . ek, ei ∈ {−1, 1}. In the case when f splits into
Möbius generators f1, . . . , fn one can think of this as the join (or union) of
gw over all words w ∈ {f±1

1 , . . . , f±1
n }k with signature e.

Thus f∗ is the union over all e ∈ {−1, 1}∗ of f e. We say a correspondence
f acts discontinuously at a point z if there exists a neighbourhood U and a
number N ≥ 1 such that

f∗ ∩ (U × U) ⊂
⋃

|e|<N
f e

where |e| denotes the length of e. In other words, U has only finitely many
distinct returns under f ∗.

Definition. The regular set of f is the set Ω(f) of points z where f
acts discontinuously.

This set is clearly open. Our main aim in this subsection is to prove that
it is completely invariant under f and that its orbit quotient Ω(f)/f ∗ is
Hausdorff.

To prove these results it is necessary to reduce U to a “nice neighbour-
hood” in a sense similar to that for Kleinian groups: Recall that a nice
neighbourhood of a point z for a Kleinian group G is one satisfying g(U) = U
for all g in the stabilizer Gz of z and where g(U)∩U = ∅ for all g ∈ G \Gz.
(Note that the hypothesis z ∈ Ω(G) implies that Gz is finite.) (See Maskit
[19].)
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Definition. A connected open subset U of X is called a nice neighbour-
hood of a point z in X if the birestriction of f ∗ to U splits into a finite union
of self-homeomorphisms fλz of U , each fixing z. Thus

f∗ ∩ (U × U) =
⋃

λ

fλz .

When z has a nice neighbourhood we write Stabf∗(z), or just Stab(z), for⋃
λ f

λ
z , the stabilizer group of f∗ at z. Defining degz Q∗ to be the degree of

Q∗|U at z, we obtain degz Q∗ = #Stabf∗(z).

Example. Let f be the map z 7→ z2 + 1/4, regarded as a 2 : 1 corre-
spondence, let z0 = i/2 and let D = {z : |z| < 1/5}. Then the component of
f−1(D) containing z0 is a nice neighbourhood of z0 and Stab(z0) is a cyclic
group of order 2, the pullback of the group {z 7→ ±z} which acts on D.

Lemma 3. If z has neighbourhood U in X satisfying f ∗ ∩ (U × U) ⊂⋃
|e|<N f

e, that is, z ∈ Ω(f), then U contains a nice neighbourhood of z.

Proof. For each word e = e1 . . . ek ∈ {−1, 1}∗ with f e fixing z (and
k < N) we claim that z is both forward and backward non-singular, or desin-
gularizable, for f e. In other words, we claim that each u ∈ (Q̃(fe)

× )−1(z, z)

(in Γ (f e)) is neither a critical point of Q̃(fe)
− nor a critical point of Q̃(fe)

+ :

Suppose Q̃(fe)
− and Q̃

(fe)
+ have local degrees, respectively, n and m at u.

Given a chart δz at z we can choose a chart δu at u so that at least Q̃(fe)
− is

normalized. Writing the Taylor expansion of Q̃(fe)
+ , with respect to the same

charts δw = δz (at w = z) and δu (at u), as

δw =
∑

k≥m
αk(δu)k

(where δw may be different from δz) we obtain an expression for the local
behaviour of the (u-)branch of f e, through (z, w), as

δw =
∑

k≥m
αk(δz)k/n.

If we had n 6= m then for δz small, this branch of f e would behave like

z + δz 7→ z + αm(δz)m/n

(where αm is non-zero). In the case n < m, forward iterating this branch
produces an orbit accumulating on z. In the case m < n, backward iterating
this branch produces an orbit accumulating on z. Neither is possible for
z ∈ Ω(f). The case m = n is more tricky.

Write λ for αm (= αn) so that the branch of f e becomes

z + δz 7→ z + λδz +
∑

k>n

αk(δz)k/n.
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In the case |λ| < 1, forward iterating this branch produces an orbit accu-
mulating on z. Likewise, in the case |λ| > 1, backward iterating this branch
produces an orbit accumulating on z. Thus |λ| = 1. Furthermore, the fact
that U has only finitely many distinct returns under f ∗ is sufficient to prove
that λ must be a root of unity.

Now observe that the highest common factor of {k : αk 6= 0} must be
one since if d is a common factor then both Q̃

(fe)
− and Q̃

(fe)
+ locally factor

through a map of the form

u+ δu 7→ v + (δu)d

whence so will their product Q̃(fe)
× . Since desingularization is almost every-

where one-to-one we must have d = 1. It follows that if n > 1 there must
be a least k (with αk 6= 0) which is not a multiple of n. Write k/n in low-
est terms as p/q (with 1 < q < p and q |n.) Thus although this branch is
n-valued, the first multivalued approximation is q-valued:

δw = λ δz +
[p/q]∑

j=2

αnj(δz)j + µ(δz)p/q + . . .

where µ = αpn/q 6= 0. Given δw small but non-zero the first approximation to
the solutions for δz is λ−1 δw. We need the first multivalued approximation,
which is given by

hλ(δz) = δw − µλ−p/q(δw)p/q

where hλ is the (locally) biholomorphic transformation

hλ(δz) =
[p/q]∑

j=1

αnj(δz)j.

Thus the images w+δw′ of w+δw under the inverse branch followed by the
forward branch (as in a local “non-linear Galois” approximation) are given,
to the first multivalued approximation, by

δw′ = δw − (1− ζr)µλ−p/q(δw)p/q

where ζ is a primitive qth root of unity and r ranges over integers between
0 and q. Since δw′/δw tends to one as δw tends to zero, an iteration can be
set up (say fixing r 6= 0) to produce arbitrarily large local orbits.

Thus the only possibility is m = n = 1 as claimed, whence u defines a
locally invertible single-valued branch of f e at z. Since the desingularization
of (z, z) for each f e is finite and there are less than 2N words e to consider,
there exists a common neighbourhood U ′ (⊂ U) on which is defined a single-
valued and invertible map fu for each u, each representing the branch of the
appropriate f e through u. A similar line of argument to the above now shows
that the single-valued map in fact only depends on the value of λ. Thus we
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write it as fλz . The set of possible λ’s is a finite, hence cyclic, group of roots
of unity. We now create a further subneighbourhood U ′′ defined by

U ′′ := {z′ ∈ U ′ : fλz (z′) ∈ U ′ for all fλz }.
Observe that U ′′ is our desired nice neighbourhood.

Lemma 4. A nice neighbourhood U of a point z ∈ Ω(f) is a component
of its image under global iteration f∗(U).

Proof. Suppose, on the contrary, that a point x of ∂U is contained in
f∗(U). This means that there exists w ∈ U and some word e ∈ {−1, 1}∗
such that w ∈ f e{x}. Since f e is lower semicontinuous at x we can find a
sequence xn, in U , tending to x with a sequence wn (also in U) tending
to w, satisfying (xn, wn) ∈ f e. By hypothesis, we have (xn, wn) ∈ fλnz ,
i.e. fλnz (xn) = (wn), for some sequence λn among the finite collection of
λ’s. Thus some (infinite) subsubsequence (xnr , wnr) is contained in one fλz
(λ fixed). Since fλz is a homeomorphism of U and since wnr → w, we must
have xnr tending to a limit in U , namely (fλz )−1(w). This contradicts the
assumption that x was in the boundary of U .

Lemma 5. The image of any component of a fully invariant open set W
under either f or f−1 is a finite union of components of W .

Proof. Clearly, if U is open in W then so is f(U) (by the lower semicon-
tinuity of f−1). Likewise, f−1(U) is open. On the other hand, if U is closed
in W (say U is a component of W ) then for any w ∈ W \ f(U) we deduce
that f−1{w} is disjoint not only from U but also from the closure of U in
X. It follows (by the upper semicontinuity of f−1) that the same is true
for f−1{w′} for all w′ sufficiently close to w. We have therefore proved that
f(U) is closed in W . Similarly, f−1(U) is closed in W .

Remark. Likewise, the inverse image f−1(V ) of a component V of f(U)
is closed in W and hence contains U . As a consequence the components U
and V of W are components of f ∗(V ).

Theorem 4. The set Ω(f) is completely invariant under f .

Proof. Given an open set U which is a component of f ∗(U) and a com-
ponent V of f(U), we have seen that U and V are components of f ∗(V ) and
(hence) that f∗(V ) = f∗(U). It is an easy matter to verify the equalities

(f ∩(U×V ))◦(f∗∩(U×U)) = f∗∩(U×V ) = (f∗∩(V ×V ))◦(f ∩(U×V )).

It follows that if f∗ ∩ (U × U) ⊂ ⋃|e|<N f e then

f∗ ∩ (V × V ) ⊂
⋃

|e|<N
f ◦ f e ◦ f−1 ⊂

⋃

|e|<N+2

f e.
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Similarly, if f∗ ∩ (V × V ) ⊂ ⋃|e|<N f e then

f∗ ∩ (U × U) ⊂
⋃

|e|<N
f−1 ◦ f e ◦ f ⊂

⋃

|e|<N+2

f e.

Corollary 4. The correspondence f ∩(U×V ) induces an isomorphism
between the local orbifolds U/f∗ and V/f∗.

As a prelude to proving equicontinuity of the regular set in the following
subsection, we ask even more of a nice neighbourhood :

Definition. A very nice neighbourhood of z is a neighbourhood U in
Ω(f) of z which is a connected component of f ∗(U), all of whose components
are simply connected and intersect f ∗{z} in exactly one point. The following
lemma shows that this is equivalent to saying that U is a simply connected
nice neighbourhood of z such that the singularities of f intersect f ∗(U) only
in f∗{z}.

Lemma 6. If U is a neighbourhood in Ω(f) of z which is a component
of f∗(U), is simply connected and intersects f∗{z} only in z, then

(i) U is a nice neighbourhood of z;
(ii) a component V of f(U) is simply connected and intersects f ∗{z} in

a unique point if and only if f ∩ (U × V ) has no forward singular points in
U \ {z};

(iii) a component V of f−1(U) is simply connected and intersects f∗{z}
in a unique point if and only if f ∩ (V ×U) has no backward singular points
in U \ {z}.

Proof. (i) Since z is the only element of f ∗{z} in U we have

deg(Q∗|U ) = degz Q∗ = #Stabf∗(z).

Since U is simply connected, an Euler characteristic computation (counting
critical points with mulitiplicities) yields

#{critical points of Q∗|U} = deg(Q∗|U ) · χ(U/f∗)− χ(U) = deg(Q∗|U )− 1

whence U contains no critical point of Q∗|U other than z.
(ii) Recall from Lemma 5 that V is a component of f ∗(U) and note the

identification of quotients U/f ∗ and V/f∗ as in Corollary 4.
Since U is a nice neighbourhood of z, the assumption for f ∩ (U × V )

to have no forward singular points in U \ {z} also applies to the separable
correspondence

f∗ ∩ (U × V ) = (f ∩ (U × V )) ◦ (f ∗ ∩ (U × U)).

Hence, by the proof of Proposition 5 (Subsection 2.5), the only critical points
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of Q∗|V lie on f∗{z}. Thus a similar Euler characteristic computation yields:
∑

w∈V ∩f∗{z}
(degwQ∗ − 1) = #{critical points of Q∗|V }

= deg(Q∗|V ) · χ(V/f∗)− χ(V ).

Since χ(V/f∗) = χ(U/f∗) = 1 and deg(Q∗|V ) =
∑

w∈V ∩f∗{z} degwQ∗ we
deduce that χ(V ) equals #(V ∩f ∗{z}). Since V is connected and V ∩f ∗{z}
6= ∅ we deduce both numbers are equal to 1.

Conversely, suppose that V is simply connected and contains a unique
element w of f∗{z}. Then the argument in (i) applied to V shows that w
is the only possible critical point of Q∗|V . It follows, again by the proof of
Proposition 5 (Subsection 2.5), that the separable correspondence f ∗∩ (U ×
V ) has singularities only on the orbit f ∗{z}, whence the same is true of
f ∩ (U × V ) ⊂ f∗ ∩ (U × V ).

(iii) The proof is completely analogous to that of (ii).

Lemma 7. If z ∈ Ω(f) then z has a very nice neighbourhood.

Proof. Let U ′′ be the nice neighbourhood constructed in Lemma 3. For
some k sufficiently large the set

⋃
|e|<k f

e(U ′′) covers all (forward and back-
ward) singularities of f which are contained in f ∗(U ′′). Now as we shrink
U ′′ down to {z} (among simply connected nice neighbourhoods) we see that⋃
|e|<k f

e(U ′′) shrinks down towards the finite set
⋃
|e|<k f

e{z} and so even-
tually evades any singularities of f which are not in this finite set. It follows,
by the equivalent definition of very nice neighbourhood, that U ′′ is now very
nice.

Examples. 1. If a finitely generated Kleinian group G is regarded as
the correspondence f having graph the union of the graphs of a finite set of
generators of G, then Ω(f) is just the usual regular set Ω(G) in the sense
of Kleinian groups.

2. If a rational map f is regarded as a correspondence, then Ω(f) consists
of a union of components and punctured components of the Fatou set of
f . To be precise, Ω(f) is made up of the basins of parabolic cycles of f
and the basins of attractive (but not superattractive) periodic cycles, the
latter punctured by the removal of the grand orbits of the attracting cycles
themselves.

Definition. The (non-regular) limit set Λ(f), for a holomorphic corre-
spondence f , is the complement of the regular set Ω(f).

3.2. Equicontinuity sets. Defining the equicontinuity set for a general
correspondence is quite tricky. First we must define the notion of a branch
of iteration along a path:
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Definition. A path of global iteration of f is a sequence z of points
z0, z1, . . . , zn in X and a sequence e of signs e1, . . . , en in {−1, 1} satisfying
(zi−1, zi) ∈ f ei for each i = 1, . . . , n.

A primitive notion of a branch of iteration of f along a path ascribes
to each connected (open) neighbourhood U0 of z0 a sequence of connected
(open) neighbourhoods Ui of zi given by: Ui is the component of f ei(Ui−1)
which contains zi.

This notion is good enough for the definition of the regular or proper
discontinuity set (in the previous subsection) but tends to be too coarse in
some other situations, with the resulting connected neighbourhood Un of
zn too large. An example to bear in mind is the behaviour in the basin of
a superattractive periodic point. Consider the map f : z 7→ z2 and let z0
be in the basin of 0. However small a neighbourhood U of z0 we take, for
sufficiently large n the image fn(U) will be an annulus surrounding 0 and
hence f−n(fn(U)) will also be an annulus around 0, so that the path which
takes z0 → z1 → . . .→ zn and then retraces its steps back to z0 will map U
to this large annulus, rather than simply back to U as we would wish. To
overcome this problem we revise our definition of a “branch”:

Definition. For a path z = z0, z1, . . . , zn where (zi−1, zi) ∈ f ei and
ei ∈ {−1, 1}, the branch of iteration along the path, denoted by f ez , assigns
to each (open) connected neighbourhood U of z a multivalued map from
U onto a connected neighbourhood of zn, written f ez (U). The graph of this
multivalued map is obtained from the connected component Ûn of (f e1 ∧
. . . ∧ f en) ∩ (U ×Xn) which contains z = (z0, z1, . . . , zn), by projecting, via
π0 × πn, into U × f ez (U) (⊂ U ×X). In effect the connected component Ûn
of (f e1 ∧ . . .∧ f en)∩ (U ×Xn) is a “desingularized component” of the graph
of the composition

f en |Un−1 ◦ . . . ◦ f e1 |U0

where U0 = U and each Ui is the component of f ei(Ui−1) which contains
zi, as in the primitive version. Assuming that f is an open and closed re-
lation we have π0(Ûn) = U0 but note that in general πi(Ûn) ⊂ Ui without
equality.

In the case when f is a holomorphic correspondence we may further
desingularize (using the procedure outlined in Subsection 2.7) and in effect
split Ûn into algebraically irreducible components. Let Ũn,α be the (desin-
gularized) irreducible components which contain z. Each Ũn,α is an open
(connected) Riemann surface which is a ramified cover over U , the compo-
nent of (Q̃(fe1∧...∧fen)

−n )−1(U) which contains (z, α) in (Q̃(fe1∧...∧fen)
4 )−1(z).

Here π0 induces the holomorphic projection Q̃−n = π0 ◦ Q̃(fe1∧...∧fen)
4 . Like-
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wise, πn induces the holomorphic projection Q̃n = πn ◦ Q̃(fe1∧...∧fen)
4 which

maps Ũn,α onto a neighbourhood f ez,α(U) = Q̃n(Ũn,α) of zn. We call each
f ez,α an (irreducible) branch of the iterated holomorphic correspondence f .

Usually, only one Q̃4(Ũn,α) will contain z but an example to bear in mind is
that of a correspondence which consists of a finite union of Möbius transfor-
mations: where two sheets of the graph cross at (zn−1, zn) we regard them
as separate branches.

To summarize, we have Un ⊃ πn(Ûn) ⊃ Q̃n(Ũn,α) 3 zn.

Definition. The iterates of the holomorphic correspondence f at z0 are
said to be equicontinuous if for every ε > 0 there exists δ > 0 such that for
all branches f ez,α along paths z starting at z0,

f ez,α(Bδ(z0)) ⊂ Bε(zn).

The above definition of equicontinuity is not well adapted to the task of
developing a theory analogous to the classical Fatou–Julia theory for ratio-
nal maps. The difficulty is that it is by no means clear what one should mean
by saying that the (possibly multivalued) branches of an iterated correspon-
dence f form a normal family at z. However, if the point z is such that only
a finite degree of branching occurs on the grand orbit f ∗(z) we can adapt the
definition for maps without too much difficulty, following an idea developed
by Münzner and Rasch in their analysis of (bidirectional) iteration of alge-
braic functions [25]. Let U be a neighbourhood of z0. As described above,
associated with any (irreducible) branch of iteration f ez,α along a path z of

length n emanating from z0 is a ramified cover Ũn,α of U equipped with a
covering projection Q̃z,α−n (= π0 ◦ Q̃4|Ũn,α) to U , and a forward projection

Q̃z,αn (= πn ◦ Q̃4|Ũn,α) to the Riemann sphere. Removing the final step from

any path of iteration induces a factor map Q̃− : Ũn,α → Ũn−1,α satisfying

Q̃
(z0,...,zn−1),α
−(n−1) ◦Q̃− = Q̃

(z0,...,zn),α
−n . Let Ũ be a finite ramified cover of U and z∗

be a marked point in Ũ . A collection of covering projections π̃z,α : Ũ → Ũn,α,
one for each branch of iteration starting at z0, is said to be compatible if
each sends the marked point z∗ to the canonical point (z, α) ∈ Ũn,α and

π̃(z0,...,zn−1),α = Q̃− ◦ π̃(z0,...,zn),α.

Definition. A point z0 is in the normality set N(f) of f if there exists
a neighbourhood U of z0, a finite ramified cover Ũ of U , and a compatible
set of covering projections π̃z,α for the branches emanating from z0, such
that when lifted to Ũ , where they become single-valued maps Q̃z,αn ◦ π̃z,α,
these branches form a normal family.
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From the classical result of complex analysis that a normal family of maps
on a subset of the Riemann sphere is equicontinuous it follows at once that
the normality setN(f) of a holomorphic correspondence f is contained in the
equicontinuity set. For a counterexample to the converse consider the critical
value c of a quadratic map z 7→ z2 + c where c is outside the Mandelbrot
set (i.e. the critical value c is in the basin of the superattracting fixed point
at infinity). There are points arbitrarily close to c with grand orbits passing
through c and hence there is no way to construct a single ramified cover Ũ on
which to lift all branches to single-valued maps. In fact, in this exampleN(f)
omits a whole circle of points (those on the “equipotential” of c) and its pre-
and post-images; however, under any reasonable definition of “equicontinuity
of branches” all these missing points are in the equicontinuity set.

The following definition should be regarded as provisional until such time
as the questions above concerning the definitions of “equicontinuity” and
“normality” are resolved.

Definition. The Julia set J (f) of a holomorphic correspondence f is
the complement of the equicontinuity set.

Comments. 1. If f is a rational map then with this definition J (f) will
contain the grand orbits of attractive and superattractive periodic points as
well as those points in the conventional Julia set.

2. The forward equicontinuity set of a correspondence f is defined in the
obvious way by restricting attention to forward branches of iteration. Its
complement J−(f) is the conventional Julia set when f is a rational map.

3. The regular set Ω(f) of a correspondence f is a subset of the equicon-
tinuity set. In fact:

Theorem 5. The regular set Ω(f) is a subset of the normality set N(f).

Proof. Take Uz to be a very nice neighbourhood of the point z ∈ Ω(f)
(as in Lemma 7). Having defined degwQ∗ = #Stabf∗(w) for w ∈ Ω(f),
define LCM = LCMw∈f∗{z} degwQ∗ (which will be finite since degwQ∗ is

bounded over w in f∗{z}) and write Ũz for a degree LCM/degzQ∗ cover of
Uz ramified totally over z.

Now, if we write Uw for the components of f ∗(Uz) containing the respec-
tive w ∈ f∗{z}, the action of f induces a commuting system of isomorphisms
between the local orbifolds {Uw/f∗ : w ∈ f∗{z}}. Since Uw is a nice neigh-
bourhood for each w ∈ f ∗{z} (by Lemma 6), it follows that pre-composing
the isomorphism Uz/f

∗ → Uw/f
∗ by the projection Ũz → Uz/f

∗ induces
degwQ∗ single-valued maps (lifts of the action of f) from Ũz to Uw.

It remains to observe that the union of all these single-valued maps taken
over all w ∈ f∗{z} is a normal family, since they are uniformly bounded.
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Corollary 5. The orbit quotient Ω(f)/f ∗ of the regular set is Haus-
dorff.

Proof. This is equivalent to saying that the equivalence relation f ∗ ∩
(Ω(f) × Ω(f)) is closed (as a subset of Ω(f) × Ω(f)). To prove this, con-
sider any (z, w) in (Ω(f) × Ω(f)) \ f ∗. The point {w} is disjoint from the
closed (even discrete) subset f ∗{z} of Ω(f). By equicontinuity it follows
that f∗(U) ∩ V = ∅ for some neighbourhoods U of z and V of w.

Examples. 1. For a rational map f , the equicontinuity set of f (regarded
as a correspondence) consists of the Fatou set of f (regarded as a rational
map) but with the grand orbit of any attractive or superattractive periodic
orbit of f excised from it. In particular, grand orbits of Siegel discs or
Herman rings are in the equicontinuity set.

2. For a finitely generated Kleinian group G (regarded as a correspon-
dence f) the equicontinuity set is equal to the regular set Ω(f) (which of
course is itself the same as the regular set Ω(G) defined in the usual way
for a Kleinian group).

3. For a critically finite correspondence (i.e. where the grand orbits of all
critical points, forwards or backwards, are finite) [3],[4], the equicontinuity
set contains the complement of the union of the critical orbits, provided this
union contains at least three points.

Finally in this section we propose the following conjecture, which we shall
verify later in certain special cases (see the Remark at the end of Section 5).

Conjecture. For holomorphic correspondences ∂Λ(f) ⊂ J (f).

4. Directionalities, and fundamental sets for forward and
bidirectional iteration

4.1. Directionalities. A set S defines a directionality for f (⊂ Z × Z) if

f(S) ⊂ S◦

or, in other words, if
(S × Sc) ∩ f = ∅.

This is thus equivalent to saying that Sc is a directionality for f−1. In
practice we shall exclude the trivial directionalities given by S = ∅ and
S = Z.

Associated with a directionality is an “attractor-repeller pair” where the
attractor and repeller are respectively given by

ω+(S) = ω+(f, S) :=
⋂

n→∞
fn(S),

ω−(S) = ω−(f, S) := ω+(f−1, Sc) =
⋂

n→∞
(f−1)n(Sc).
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Note that we can replace S by any S ′ such that S ⊂ S′ ⊂ f(S) and obtain
exactly the same attractor-repeller pair, so there is a notion of “equivalence”
for directionalities. There is a duality between attractors and repellers (of
directionalities) when Z is a compact Hausdorff space and f is a closed
relation. The general theory is covered by McGehee’s paper [20]. However,
we record here for later use some properties of the boundary ∂ω+(f, S) of
the forward attractor. First some terminology:

Definition. We say that a subset S of Z is backward complete if f−1{z}∩
S 6= ∅ for all z ∈ S, and that it is forward invariant if f(S) = S. The
notions of forward complete and backward invariant are defined analogously
by exchanging the roles of f and f−1.

Note that as well as satisfying f(S) ⊂ S, forward invariant sets are
necessarily backward complete, for the statement that f−1{z} ∩ S 6= ∅ for
all z ∈ S is just the inclusion f(S) ⊃ S.

Proposition 6. The boundary of the attractor of a directionality for an
open and closed relation f is backward complete.

Proof. Since the attractor ω+(f, S) for a directionality S for a closed
relation f is always backward complete [20], it suffices, for the analogous
property for ∂ω+(f, S), to prove that all images w under f of a point z ∈
(ω+(f, S))◦ lie in (ω+(f, S))◦. By lower semicontinuity of f−1 at such a
w there exists a neighbourhood V such that for all w′ ∈ V there exists
z′ ∈ (ω+(f, S))◦ such that w′ ∈ f{z′}. It follows that V ⊂ ω+(f, S) and w
lies in the interior.

Proposition 7. The boundary of the attractor of a directionality S for
an open and closed relation f is forward invariant if f is injective on S (that
is, if f{z} ∩ f{z′} = ∅ for z, z′ ∈ S with z 6= z′).

Proof. Clearly, f(∂ω+(f, S)) ⊂ ω+(f, S). On the other hand, if w ∈
(ω+(f, S))◦ then, by injectivity and backward completeness, f−1{w} ∩ S =
{z} for some z ∈ ω+(f, S). We claim that, always, z ∈ (ω+(f, S))◦. By
lower semicontinuity of f at z, there exists a neighbourhood U of z such
that for all z′ ∈ U there exists w′ ∈ f{z′} ∩ ω+(f, S). Choosing U ⊂ S, by
injectivity we have f−1{w′} ∩ S = {z′}, whence by backward completeness,
z′ ∈ ω+(f, S). Thus U ⊂ ω+(f, S) and z is in the interior. It follows therefore
that f(∂ω+(f, S)) ⊂ ∂ω+(f, S). Since we know the reverse inclusion, the
result follows.

Proposition 8. The boundary of the attractor of a directionality for an
open and closed relation f on a compact metric space is contained in J+(f)
(the backward non-equicontinuity set).
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Proof. Let the distance between S \ f(S) and ω+(f, S) be ε. For any
point z0 ∈ ∂ω+(f, S) and any δ there exists some point z ∈ fn(S) \ fn+1(S)
for some n, with the distance from z0 to z less than δ. Now by the backward
completeness of ∂ω+(f, S) the backwards orbit of z0 has a branch remaining
in ∂ω+(f, S), but the corresponding branch of the backward orbit of z has its
nth point in (f(S)c) and therefore distance at least ε away from ∂ω+(f, S).

4.2. Fundamental sets for forward and bidirectional iteration. For the
remainder of Section 4 we shall be working at the set-theoretic level, return-
ing once again to the topological level in Section 5. A set-directionality for
a correspondence f is a set S which merely satisfies

f(S) ⊂ S.

Definition. We say that S is injective as a set-directionality if f{z} ∩
f{z′} = ∅ whenever z, z′ ∈ S with z 6= z′.

Note that while ω+(f, S) =
⋂
fn(S) is no longer an attractor in the

topological sense, the following proposition is an immediate corollary of
these definitions:

Proposition 9. If S is an injective set-directionality for f then F =
S \ f(S) is a fundamental set for the forward iteration of f on S \ω+(f, S)
in the sense that

(F1) S \⋂n≥0 f
n(S) =

⋃
n≥0 f

n(F ),
(F2) F ∩ fn(F ) = ∅ for all n > 0,
(F3) for each z ∈ ⋃n>0 f

n(F ) exactly one element of f−1{z} lies in⋃
n≥0 f

n(F ).

We now move on to the question of fundamental sets for bidirectional
iteration, where from a given starting point we allow purely forward and
purely backward but not mixed iteration. If T is a transversal to the single-
valued map Q : X → Y , that is, a subset of X mapped bijectively by Q
onto Y , then T is a maximal injective set for Q. Furthermore, the image
GalQ(T ) equals X \ T . We shall see that a transversal is a special case of a
more general concept, which is the key to the construction of bidirectional
fundamental sets.

Definition. We say that S is a co-injective set for a correspondence f
if:

(CO1) S is a co-image, i.e. f−1((f(S))c) = Sc,
(CO2) S is injective for f ,
(CO3) (f(S))c is injective for f−1.
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A co-injective set S for a correspondence f partitions the graph f into
three sets:

CO+ = {(z, w) ∈ f : z ∈ S},
CO− = {(z, w) ∈ f : w ∈ (f(S))c},
AMB = {(z, w) ∈ f : z ∈ Sc and w ∈ f(S)}.

Thus π+ maps CO+ injectively onto f(S) and π− maps CO− injectively
onto Sc. Furthermore, Gal(π+|f )(CO+) = AMB = Gal(π−|f )(CO−). Observe
also that π−(CO+) = π−(f) ∩ S and that π+(CO−) = π+(f) ∩ f(S)c.

Lemma 8. Let f be of the form M ◦GalQ where M is a bijection. Then
any set T which is transversal to Q is a co-injective set for f .

Proof. The correspondence f maps T injectively onto (M(T ))c and f−1

maps M(T ) injectively onto T c.

Given a point z ∈ X define

O+(z) = O
(f)
+ (z) :=

⋃

n>0

fn{z},

O−(z) = O
(f)
− (z) :=

⋃

n>0

f−n{z},

O±(z) = O
(f)
± (z) :=

⋃

n∈Z
fn{z} = O−(z) ∪ {z} ∪O+(z).

We say a set U is a bidirectional fundamental set for a subset Ω of X if:

(U1) Ω =
⋃
n∈Z f

n(U),
(U2) U ∩ fn(U) = ∅ for all n 6= 0,
(U3) if z ∈ ⋃

n<0 f
n(U) then exactly one element of f{z} lies in⋃

n≤0 f
n(U),

(U4) if z ∈ ⋃
n>0 f

n(U) then exactly one element of f−1{z} lies in⋃
n≥0 f

n(U).

Observe that conditions (U2), (U3) and (U4) are equivalent to the fol-
lowing:

(U2′) fm(U) ∩ fn(U) = ∅ whenever m 6= n,
(U3′) f−1|f−n(U) is injective for all n ≥ 0,
(U4′) f |fn(U) is injective for all n ≥ 0.

The main point about bidirectional fundamental sets is the following:

Proposition 10. For every z ∈ Ω the set O±(z) intersects U in exactly
one point. If z 6∈ Ω then O±(z) ∩ U = ∅.

One should note that, a priori, Ω is not fully invariant under f and in
particular that z ∈ Ω does not imply O±(z) ⊂ Ω.
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Definition. S is a co-injective set-directionality for f if S is a co-
injective set and f(S) ⊂ S.

Proposition 11. If S is a co-injective set-directionality for f then U =
S \ f(S) is a bidirectional fundamental set for f on the complement Ω(f, S)
of
⋂
n→∞ f

n(S) ∪⋂n→∞ f
−n(Sc).

Proof. First observe that U = S \ f(S) = S ∩ (f(S))c = (f(S))c \ Sc =
(f(S))c \ f−1((f(S))c). Now since S is an injective set-directionality for f
and (f(S))c is an injective set-directionality for f−1 the fact that U satisfies
conditions (U1) to (U4) follows at once from Proposition 9.

If we call S the region of “forward convergence”, condition (U3) says
that for z0 ∈ Sc there is a unique forward “diverging” path (zi) (where
zi+1 ∈ f{zi}) which terminates (i.e. enters S) (if at all) at a point of U .
Thus the points z0 which have un-ending forward “diverging” paths consti-
tute precisely the “repeller”

⋂
n→∞ f

−n(Sc). Likewise, if we call (f(S))c the
region of “backward convergence”, condition (U4) says that for z0 ∈ f(S)
there is a unique backward “diverging” path (z−i) (where z−i−1 ∈ f−1{z−i})
which terminates (i.e. enters (f(S))c) (if at all) at a point of U . The points
z0 which have un-ending backward “diverging” paths constitute precisely
the “attractor”

⋂
n→+∞ f

n(S).

CO−
��- Sc -

AMB
f(S) ���CO+

��
�*

U
CO− HHHjCO+

For our applications the key example of a co-injective set-directionality
and associated bidirectional fundamental set is given by the following (which
follows at once from Lemma 8 and Proposition 11):

Lemma 9. If f = M ◦GalQ and T is a transversal to Q with the addi-
tional property that T∪M(T ) = X, then T is a co-injective set-directionality
for f and T ∩M(T ) is the associated bidirectional fundamental set U for
Ω(f, T ).

From Lemma 8 it is clear that co-injective sets are plentiful when f is of
the form M ◦ GalQ. In general, for holomorphic correspondences the exis-
tence or non-existence of co-injective sets is purely a feature of the diagram
condition. Let f be a holomorphic correspondence satisfying a diagram con-
dition G. A necessary condition for the existence of co-injective sets for f
is the existence of a co-injective set for the template correspondence G. For
example, in the diagram template for an off-separable 3 : 3 correspondence
(Subsection 2.9) the set S consisting of the singleton {z1} is a co-injective
set and (f(S))c is the singleton {w1}. This condition on templates is also
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a sufficient condition for the existence of a co-injective set for f provided
there are no points where there is “collapse of the diagram template”. Given
a subset S of the left vertices U which is co-injective under G we can form
a “transversal” T which is a subset of X satisfying T ∩ i(U) = i(S) for a
“left assignment” i : U → X corresponding to each “generic” z0 ∈ X. If
there are instances of collapse of the diagram template we may be lucky
and find that all of them also admit co-injective sets so that we can com-
plete the “transversal” T as a co-injective set for f . However, it is not hard
to construct examples of collapses to diagrams not admitting co-injective
sets—e.g. in the diagram for an off-separable 3 : 3 correspondence if we
identify z1 with z2, z3 with z4, w1 with w2 and w3 with w4 we obtain

-�
�
���

-

@
@
@@R

z3 = z4

z1 = z2

w3 = w4

w1 = w2

which no longer admits a co-injective set. To deal with this problem we
resort to deleting from the graph of f the relevant points (z0, w0) where
degeneracy of the diagram condition occurs, and to considering co-injective
sets for the resulting correspondence. In particular, although f = M ◦GalQ

admits co-injective sets, its closure f = M ◦ Gal
Q

(with graph including
(z,Mz) for multiple points of Q) will not do so in general. This technical
difficulty will oblige us to carefully distinguish between f and f in a number
of proofs below.

4.3. Relations between bidirectional orbits. Recall (Lemma 2, in Subsec-
tion 2.9) that if f is M -off-separable then M ◦ GalQ ⊂ f ⊂ M ◦ (Q−1Q)
for some quotient map Q. One reason for studying off-separable correspon-
dences is that there is some inter-relation of “bidirectional orbits” O±:

Proposition 12. If f is an M -off-separable correspondence then

(z, w) ∈ f ⇒ O±(z) ∪O±(M(z)) = O±(w) ∪O±(M−1(w)).

Proof. Firstly see that

{z} ∪ f−1{M(z)} = {z} ∪GalQ{z} = Q−1Q(z) = Q−1Q(M−1(w))

= GalQ{M−1(w)} ∪ {M−1(w)} = f−1{w} ∪ {M−1(w)}
and so taking the union over all backward images gives

O−(z) ∪ {z} ∪O−(Mz) = O−(w) ∪ {M−1w} ∪O−(M−1w).

Secondly we see

f{z} ∪ {M(z)} = M(GalQ{z}) ∪ {M(z)}
= MQ−1Q(z) = MQ−1Q(M−1(w))
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= {MM−1(w)} ∪ M(GalQ{M−1(w)})
= {w} ∪ f{M−1(w)}

and so taking the union over all forward images gives

O+(z) ∪ {Mz} ∪O+(Mz) = O+(w) ∪ {w} ∪O+(M−1w).

Finally, observing that the union of the left-hand sides equals the union of
the right-hand-sides gives the result.

Proposition 12 is valid for any M -off-separable correspondence, in partic-
ular for f = M ◦GalQ and its closure f = M ◦Gal

Q
. We now specialize to the

situation of Lemma 9 and consider the possible paths of forward iteration
from M−1w to w. Proposition 13 (below) is true for f but not for f .

Proposition 13. Let f = M ◦GalQ, and T be a transversal to Q such
that T ∪ M(T ) = X. For w ∈ f(T ) \ ω+(f, T ) such that M−1w ∈ T c \
ω−(f, T ), let z be the unique pre-image of w under f which is contained in
T , so Mz is the unique image of M−1w which is contained in M(T ). Then
any path of forward iteration from M−1w to w must go via Mz and z.
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Proof. Forward images of M−1w and of z, and backward images of w
and of Mz are arranged as in the diagram above. Since the hypotheses of
Lemma 9 are satisfied, and z ∈ T \ ω+(f, T ), we have z ∈ fn−1(T ) \ fn(T )
for a unique n ≥ 1. Now f{M−1w}∪{w} = {Mz}∪f{z}, from the proof of
Proposition 12, and since Mz 6∈ f{z} and w 6∈ f{M−1w} (as z 6∈ GalQ{z}
and M−1w 6∈ GalQ{M−1w}, by definition) we deduce that

f{M−1w} \ {Mz} = f{z} \ {w} ⊂ fn(T ) \ {w}.
Thus any path of forward iteration from M−1w which does not pass through
Mz goes to a point in fn(T ) \ {w} at its first step, and then at subsequent
steps it goes to points in fm(T ), m > n. So it cannot reach w. Hence a
path of forward iteration from M−1w to w must pass through Mz on its
first step. Similarly, since by hypothesis Mz ∈ f−(n−1)(MT ) \ f−n(MT )
for some unique n ≥ 1 (not necessarily the same n as before), and since
{z} ∪ f−1{Mz} = f−1{w} ∪ {M−1w} (also from the proof of Proposition
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12), we deduce

f−1{w} \ {z} = f−1{Mz} \ {M−1w} ⊂ f−n(MT ) \ {M−1w}
and so any path from M−1w to w must pass through z on its last step.

Corollary 6. Let J be an involution, f = J ◦ GalQ, and T be a
transversal to Q such that T ∪ J(T ) = X. Then any path of forward it-
eration from Jw ∈ T c \ ω−(f, T ) to w ∈ f(T ) \ ω+(f, T ) must pass through
a fixed point of J and this fixed point must lie in T ∩ J(T ).

Proof. Since J = J−1 we can simply apply the proposition repeatedly
until we reach the level where z ∈ T \ f(T ) = T ∩ J(T ).

5. Fundamental domains for global iteration of reversible off-
separable correspondences

5.1. Reversible off-separable correspondences. Suppose now that f is a
reversible off-separable correspondence, that is to say, f is J-off-separable
where J is an involution. This implies in particular that f−1 = JfJ . By
Lemma 2 (Subsection 2.9) there exists a quotient mapQ such that J◦GalQ ⊂
f ⊂ J ◦ (Q−1Q).

Given a point x ∈ X, we define

O(x) := O±(x) ∪O±(J(x)).

Proposition 12 (in Subsection 4.3) now becomes

(z, w) ∈ f ⇒ O(z) = O(w)

and this has the following consequence:

Theorem 6. Let f be a reversible off-separable correspondence on a
set X. Then

(i) the grand orbit f∗{x} of any x ∈ X is contained in O(x), and
(ii) if the quotient map Q associated with f is of degree at least 3 at all

but finitely many points then any infinite grand orbit f∗{x} is equal to O(x).

Proof. By Proposition 12, if (x, y) ∈ f then O(x) = O(y). It follows at
once that f∗{x} is contained in O(x) for any x ∈ X. Next, if f ∗{x} is infinite
then the condition on Q in (ii) ensures that there is a point y ∈ f ∗{x} such
that Jy is also in f∗{x}, since if Q(y) = Q(y′) = Q(y′′) for y, y′, y′′ distinct
then

J(y) ∈ f{y′} ⊂ (f ◦ f−1){J(y′′)} ⊂ (f ◦ f−1 ◦ f){y}.
Thus O(y) = O±(y) ∪O±(Jy) is contained in f ∗{y} and therefore f ∗{y} =
O(y). But f∗{y} = f∗{x} and O(y) = O(x) (by Proposition 12).

Different choices of the point x on a single grand orbit of f yield different
partitions of that orbit into bidirectional orbits O±(x) and O±(J(x)). The
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diagrams below illustrate a single grand orbit split into a bidirectional orbit
and its J-twin in two different ways. Suppose that T is a transversal to Q
such that T ∪ J(T ) = X, our grand orbit passes through T ∩ J(T ), and in
each diagram we use the convention that moving to the right moves one to
a “deeper” level fn(T ) and moving to the left moves one to a “deeper” level
f−n(J(T )). Then the points z and Jz (in the right-hand diagram) are the
only two points on the grand orbit to lie in T ∩ J(T ). As we shall see in
Corollary 7, every grand orbit passing through T ∩ J(T ) contains a unique
such pair, or a point fixed by J .

-�
�� q -���q
�
��3�
�
���

q -��*q -
��*

q -���q
�
��3�
�
���

�
�
���q-

�
�� q
�
�
���

q-
��* q-
��* q-
�
��

�
��3

�
�
���

A
A
A
AU

q -
@
@Rq

A
A
AAU

q -
HHjq -
HHjq -
@
@R

Q
QQs

A
A
AAU

-
A
AUq-@@R q

Q
QQs

A
A
AAU

q-HHj q-
HHj

q-@@R q
Q
QQs

A
A
AAU

r

q

r

q

�
��3

�
��3

Q
QQs

Q
QQs

z Jz

O±(z) ∪O±(Jz)

-�
�� q -���q
�
��3�
�
���

q -��*q -
��*

q -���q
�
��3�
�
���

�
�
���q-

�
�� q
�
�
���

q-
��* q-
��* q-
�
��

�
��3

�
�
���

A
A
A
AU

q -
@
@Rq

A
A
AAU

q -
HHjq -
HHjq -
@
@R

Q
QQs

A
A
AAU

-
A
AUq-@@R q

Q
QQs

A
A
AAU

q-HHj q-
HHj

q-@@R q
Q
QQs

A
A
AAU

q

r

q

r

HHHHj

XXXXXXXXz

��
��*

���
���

��:

Jw w

O±(w) ∪O±(Jw)

Corollary 7. If f is as in Theorem 6(ii) and T is a transversal to
Q such that T ∪ J(T ) = X, then any transversal ∆ for the action of
J on T ∩ J(T ) is a transversal to the grand orbits of f passing through
T ∩ J(T ).

Proof. We know from Lemma 9 that T ∩ J(T ) is a fundamental set for
the bidirectional orbits {O±(z) : z ∈ T ∩ J(T )} of J ◦GalQ passing through
it, and that these orbits are all infinite. In fact, Corollary 6 of Subsection
4.3 implies that any point z in T ∩ J(T ) which is not fixed by J has O±(z)
disjoint from O±(Jz). The statement that ∆ is a transversal to the grand
orbits of J ◦GalQ passing through ∆ then follows from Theorem 6(i). The
statement that ∆ is a transversal to the grand orbits of J ◦GalQ, and so of
J ◦Gal

Q
passing through T ∩ J(T ), follows from Theorem 6(ii).
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5.2. Transversal directionality for off-separable correspondences. We re-
turn to the topological level and consider correspondences of the form M ◦
Gal

Q
, where Q is a branched-covering map on a compact Hausdorff space X.

Any off-separable branched-covering correspondence f on a compact Haus-
dorff space is of this type (Theorem 3, in Subsection 2.9) and in particular
any off-separable holomorphic correspondence on a compact Riemann sur-
face is of this type, with Q holomorphic and M conformal (Corollary 3, same
subsection).

Definition. A transversal directionality for an off-separable branched-
covering correspondence f = M ◦Gal

Q
on a compact Hausdorff space X is

a (topological) directionality D ⊂ X for f such that D is a (set-theoretic)
transversal to Q.

Proposition 14. If f is an M -off-separable branched-covering corre-
spondence on a compact Hausdorff space X, then a transversal D for the
associated map Q is a transversal directionality for f if and only if D◦ ∪
M(D◦) = X.

Proof. By definition D is a transversal directionality if and only if
Gal

Q
(D) ⊂ M−1(D◦), since M is a homeomorphism. Thus what we must

show is that if D is a transversal to Q then Gal
Q

(D) = X −D◦. Since D is
transversal to Q we know that GalQ(D) = X − D, and we are reduced to
showing that

Gal
Q

(D)−GalQ(D) = D ∩ ∂D
where ∂D is the boundary D −D◦ of D. It will suffice to prove that

Gal
Q

(D)−GalQ(D) = {x ∈ D ∩ ∂D : GalQ(x) ∩ ∂D = ∅}
and

GalQ(D)−GalQ(D) = {x ∈ D ∩ ∂D : GalQ(x) ∩ ∂D 6= ∅}.
But both these equalities follow from the following observations, all of which
are quite straightforward to prove:

(i) y ∈ GalQ(x)⇔ x ∈ GalQ(y);
(ii) GalQ(D) = X −D;
(iii) x is non-critical ⇔ Gal

Q
(x) = GalQ(x);

(iv) x is critical ⇔ Gal
Q

(x) = GalQ(x) ∪ {x};
(v) x ∈ D is critical ⇒ x ∈ ∂D;
(vi) x ∈ ∂D is non-critical ⇒ GalQ(x) ∩ ∂D 6= ∅;

(vii) x ∈ ∂D ⇒ GalQ(x) ∩D◦ = ∅.
Remarks. 1. If f is any M -off-separable correspondence, then any (topo-

logical) directionality S for f such that f(S) ⊂ (M(S))c ⊆ S◦ can be en-
larged to a transveral D to Q such that D◦ ∪M(D◦) = X.



156 S. Bullett and C. Penrose

2. The term equivariant directionality was used in [6], [7], [9] for what we
now call a transversal directionality.

The notion of a transversal directionality for f = M ◦Gal
Q

can be defined
in alternative ways at different “levels”. Definitions II and III below are
equivalent to the definition above, which we shall now refer to as Definition I.

Definition II. A transversal directionality for f is a directionality D
such that X is the disjoint union of M(D) and M ◦GalQ(D).

Definition III. A transversal directionality for f having Q of degree
almost everywhere greater than 2 is a directionality which is the projection
of a transversal for the (finite) correspondence generated by the covering
correspondences G̃al+ and G̃al− on the graph f .

For f holomorphic, Definition III excludes the case when f is 1 : 1.
As a motivating example, consider a 2 : 2 holomorphic M -off-separable
correspondence f . The pair of covering involutions Ĩ−, Ĩ+ for the graph
projections Q̃− and Q̃+ generate an action of the symmetric group S3 on
the desingularized graph Γ (f) (it is easily checked that Ĩ+Ĩ−Ĩ+(z, w) =
(M−1w,Mz) = Ĩ−Ĩ+Ĩ−(z, w)). A directionality D ⊂ X for f is a transversal
directionality for f if and only if D = Q̃−(∆) for some transversal ∆ for
this S3-action. This was the definition adopted in [6].

One may regard III as being the “upstairs” definition (on the graph), II as
on the “ground floor” (the dynamical space X) and the original Definition I
as in the “basement” (since it arises from considering X/Q). It can be useful
to switch levels to select the version of the definition most suitable to deal
with a particular problem.
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Fig. 2a. Graph of a 2 : 2 reversible off-separable correspondence on the real interval
[0, 1]. Here J is the involution z 7→ 1 − z. The open circles represent “missing arrows”.
A transversal directionality D is shown. Note that it is the projection of a fundamental
domain for the action of S3 on the graph.
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Figure 2a illustrates a transversal directionality for a 2 : 2 correspondence
on the real unit interval.

5.3. The main theorem

Theorem 7. Let f be an n : n J-off-separable branched-covering cor-
respondence on a compact Hausdorff space X, where n ≥ 2 (almost every-
where) and J is an involution. If D is a transversal directionality for f
then any transversal ∆ for the action of J on D ∩ J(D) is a transversal
for the (global) action of f on the complement Ω(f,D) of the global attrac-
tor ω(f,D) = ω+(f,D) ∪ ω−(f,D) (where ω+(f,D) denotes

⋂
fn(D) and

ω−(f,D) denotes
⋂
f−n(JD)).

If X is a Riemann surface and f is holomorphic then Ω(f,D) is con-
tained in the regular set Ω(f) of f , and the various limit sets satisfy

∂ω(f,D) ⊂ J (f) ⊂ Λ(f) ⊂ ω(f,D).

Proof. Write g for J◦GalQ (so that f = g). The graphs of Gal
Q

and GalQ

only differ by the (finite) set of points {(x, x) : x critical for Q}. As already
noted in the proof of the proposition above, no critical point x of Q can lie
in D◦. Using the fact that f(D) ⊂ D◦ we deduce that ω+(f,D) = ω+(g,D).
Similarly, ω−(f,D) = ω−(g,D). Hence Ω(f,D) = Ω(g,D). But Ω(g,D) is
the union of the bidirectional orbits of g passing through D ∩ J(D). Since
Q has degree at least three, except at the (finitely many) branch points, we
deduce that these orbits are identical (as sets) to grand orbits of f , and ∆
is a transversal to them, by Theorem 6 and Corollary 7 (in Subsection 5.1).

We next show that if f is a holomorphic correspondence then Ω(f,D) is
contained in the regular set Ω(f) (as defined in Section 3). It is clear that
if U ⊂ D◦ ∩ J(D◦) then f∗ ∩ (U × U) ⊂ id ∪ J , whence U ⊂ Ω(f). Any
boundary point p of D ∩ J(D) which is not a critical point of Q is easily
dealt with by modifying D to put p inside D◦. This just leaves the problem
of critical points of Q on the boundary of D. The set U = Q−1Q(D∩J(D))
is a neighbourhood of each such critical point. But U is made up of a finite
number of “translates” of D ∩ J(D) and hence f ∗ ∩ (U × U) is a union of
finitely many f e∩(U×U), in other words U has only finitely many “distinct
returns”. This, together with complete invariance of Ω(f), establishes that
Ω(f,D) ⊂ Ω(f).

Finally, the inequalities in the chain of limit sets are proved as follows:

• Λ(f) ⊂ ω(f,D): from Ω(f,D) ⊂ Ω(f);
• J (f) ⊂ Λ(f): from Theorem 5 (Subsection 3.2);
• ∂ω(f,D) ⊂ J (f): Proposition 8 (Subsection 4.1).

5.4. Polynomial-like behaviour on limit sets. If f = J ◦ Gal
Q

has a
transversal directionality D which is a topological disc, then the image f(D)
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(= (J(D))c) is also a disc. The single-valued branch of f−1 mapping f(D)
(⊂ D) onto D will not be continuous in general, but its restriction to f(D◦)
will be. If f is holomorphic and f(D◦) is a topological disc then this restric-
tion is a polynomial-like mapping in the sense of [12]. It then follows from the
Douady–Hubbard Straightening Theorem [12] that ω+(f,D) is homeomor-
phic to the filled Julia set KP of a polynomial map P , via a homeomorphism
which is conformal on the interior of ω+(f,D) and which extends to a qua-
siconformal conjugacy from f−1 on a neighbourhood of ω+(f,D) to P on a
neighbourhood of KP .

Example. Let Q be any cubic rational map and J be an involution.
Then f = J ◦Gal

Q
is given by z 7→ w where

Q(J(w))−Q(z)
J(w)− z = 0.

If Q has exactly one cubic critical point then (by conjugating f by an ap-
propriate Möbius transformation) we can assume Q is of the form z3 − 3z
so that f is given by the equation

(J(w))2 + zJ(w) + z2 = 3

and does not split. If there exists a tranversal directionality D then Theo-
rem 7 guarantees that f acts properly discontinuously on the complement
of ω+(f,D) ∪ ω−(f,D). If D is a topological disc, the sets ω+(f,D) and
ω−(f,D) are homeomorphic to filled Julia sets of quadratics (as explained
above), and if ω+(f,D) and ω−(f,D) contain singular points of f they are
copies of connected filled quadratic Julia sets (see [6]).

Figure 2b illustrates an example of the regular and limit set of a 2 : 2 re-
versible off-separable holomorphic correspondence f on the Riemann sphere,
for which ω+(f,D) and ω−(f,D) are homeomorphic to filled quadratic Julia
sets.

In the limiting case when the directionality D degenerates into a “con-
tact directionality”, so that instead of their being disjoint ω+(f,D) meets
ω−(f,D) at a single point, the correspondence f becomes a “mating of a
quadratic map with the modular group PSL(2,Z)” [6], in that Ω(f,D) is
homeomorphic to the upper half-plane via a conformal bijection which con-
jugates the action of f to that of PSL(2,Z).

Note that the Ω(f,D) need not be the whole of the regular set Ω(f) as
defined in Section 3. If the corresponding quadratic maps qc : z 7→ z2 + c
have parabolic or attracting (but not superattracting) periodic orbits, then
the interior of ω(f,D) (less the grand orbit of the non-repelling periodic
orbit itself) also forms part of the regular set Ω(f).

If Q has two cubic critical points then, by conjugating f by a suitable
Möbius transformation, we can assume that Q is of the form Q(z) = z3 so
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Fig. 2b. Computer plot of a 2 : 2 reversible off-separable correspondence f on the Riemann
sphere, defined by f : z 7→ w where

z2 + z

(
pw − a
w − p

)
+
(
pw − a
w − p

)2
= 3 with p = 3, a = 5.2.

A transversal directionalityD and associated “tiling” are plotted. In this example ω+(f,D)
and ω−(f,D) are each connected sets and Ω(f,D) is the complement of their union. The
restriction of f to ω+(f,D) is conjugate to the inverse q−1

c : z 7→ √z − c of a quadratic
map qc : z 7→ z2 + c acting on the filled Julia set K(qc) of qc, as is the restriction of f−1

to ω−(f,D). In the example plotted c is small (though non-zero) so K(qc) is a topological
disc.

that f is given by the equation

(J(w))2 + zJ(w) + z2 = 0

and f splits into the pair of maps z 7→ J(e±2πi/3z). These maps generate a
representation of C3 ∗C2. The condition that f has a transversal direction-
ality D is the same as the condition that the cyclic subgroups 〈z 7→ e2πi/3z〉
and 〈z 7→ J(z)〉 have boundary-overlapping fundamental domains whose
union is the whole Riemann sphere, and hence guarantees, by Klein’s “Com-
bination Theorem”, that these subgroups freely generate a discrete faithful
representation G of C3 ∗C2, and moreover that ω+(f,D)∪ω−(f,D) (which
in this case is a Cantor set) is the limit set of the Kleinian group G.

Remark. For examples like that in Figure 2b, and for matings of non-
parabolic quadratic maps with the modular group [6], or more generally,
whenever there exists a D′, not necessarily connected, satisfying the hy-
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potheses of Theorem 7 and such that Ω(f,D′) = Ω(f), it follows from
Theorem 7 that ∂Λ(f) ⊂ J(f), confirming, in these cases, the conjecture at
the end of Section 3.

6. “Fundamental domains” for global iteration of separable cor-
respondences. For general correspondences, the global orbit of a point
cannot be made out of finitely many “bidirectional” orbits O±. However,
we may be able to recover the whole global orbit by a process of “global
iteration” which amounts to iterating a new correspondence whose “bidi-
rectional” orbits are multi-directional orbits of the original correspondence.

The global orbit of a point z0 is made up of paths which are one-sided
sequences z0, z1, . . . where, for each i, either (zi, zi+1) ∈ f or (zi+1, zi) ∈ f . It
is also convenient to consider paths which do not “back-track” so we exclude
the possibility that zi = zi+2 where a change of direction of iteration has
occurred at zi+1.

In the case when f is separable we can further restrict to paths which
do not admit two reversals of direction of iteration in immediate succession.
This is because (for f separable)

(zi, zi+1), (zi+2, zi+1), (zi+2, zi+3) ∈ f ⇒ (zi, zi+3) ∈ f ;

(zi+1, zi), (zi+1, zi+2), (zi+3, zi+2) ∈ f ⇒ (zi+3, zi) ∈ f.
In effect, we are considering orbits generated by applications of words in f
and f−1 which do not contain either of the subwords f, f−1, f or f−1, f, f−1.
Such words can be uniquely “bracketed”, that is, replaced by words in f ,
f−1, (f−1, f) and (f, f−1) such that every occurrence of f−1, f has been
replaced by (f−1, f) and every occurrence of f, f−1 has been replaced by
(f, f−1). We can now incorporate the original “no back-tracking” restriction
by replacing (f−1, f) and (f, f−1) by the “Galois” correspondences

Gal(f)
+ : z 7→ z′ ⇔ (∃w)((z, w), (z′, w) ∈ f, z 6= z′),

Gal(f)
− : w 7→ w′ ⇔ (∃z)((z, w), (z, w′) ∈ f, w 6= w′).

Thus we are considering orbits which are generated by applications of
certain “allowed” words in f , f−1, Gal(f)

+ , Gal(f)
− . The process of iteration

by such words is best described by keeping track of which “mode” of iteration
we are in. These are “forward mode” {+} and “backward mode” {−}, and
can be incorporated into the dynamics by means of a double cover Z± =
Z+ ∪ Z− of the dynamic space Z.

Global iteration (for a separable correspondence f) is thus equivalent to
iteration of a new correspondence DIR + GAL, acting on Z±, defined by

DIR : (z,+) 7→ (w,+)⇔ f : z 7→ w,

DIR : (z,−) 7→ (w,−)⇔ f−1 : z 7→ w,
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GAL : (z,+) 7→ (w,−)⇔ Gal(f)
+ : z 7→ w,

GAL : (z,−) 7→ (w,+)⇔ Gal(f)
− : z 7→ w.

The global orbit (for separable f) of a point z0 will then be given by the
union of the Z-projections of the forward images under DIR + GAL of the
two points (z0,+) and (z0,−). (For f not separable the above union will
only give a subset of the global orbit of z0.)

6.1. Bi-injective directionality. Here we assume that f is a closed relation
on a compact Hausdorff space Z.

Definition. S defines a bi-injective directionality for f (not necessarily
separable) if f(S) ⊂ S◦, f restricted to a neighbourhood of S is injective
and f−1 restricted to a neighbourhood of Sc is injective.

Lemma 10. If S is a bi-injective directionality for f then the image of
S under the closure of Gal(f)

+ is disjoint from S. Similarly , the image of Sc

under the closure of Gal(f)
− is disjoint from Sc.

Proof. The graph of Gal(f)
+ is the set of pairs (z, z′) with z 6= z′ such

that there exists w with both (z, w) and (z′, w) in the graph of f . Note that
the closure of Gal(f)

+ may contain points on the diagonal (corresponding to

“fixed points” of Gal(f)
+ ). Consider a point (z, z′) with z, z′ ∈ S. This has a

neighbourhood U ×U ′ which, by the injectivity of f , intersects the graph of
f−1 ◦ f only in the diagonal and hence intersects Gal(f)

+ nowhere. Similarly
we obtain for any two points w,w′ in Sc respective neighbourhoods V ,V ′

satisfying (V × V ′) ∩ f ◦ f−1 ⊂ id.

Proposition 15. If S defines a bi-injective directionality for f then
(S × {+}) ∪ (Sc × {−}) defines a directionality for DIR + GAL

(f)
.

Proof. To say that (S × {+}) ∪ (Sc × {−}) is a directionality is to say

that DIR + GAL
(f)

has no transitions from (S × {+}) ∪ (Sc × {−}) to
(Sc × {+}) ∪ (S × {−}). This follows because

(S × Sc) ∩ f = ∅, (Sc × S) ∩ f−1 = ∅,
(S × S) ∩Gal

(f)
+ = ∅, (Sc × Sc) ∩Gal

(f)
− = ∅.

6.2. Bi-injective directionality for separable correspondences

Proposition 16. If f is a separable correspondence on a compact Haus-
dorff space Z, with graph given by {(z, w) : Q+(z) = Q−(w)} where Q+ and
Q− are continuous maps onto a Hausdorff “separating” space Y , then f has
a bi-injective directionality if and only if there exist sets F and B with the
properties that
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(i) F ◦ and B◦ have union the whole dynamical space,
(ii) Q+|F , Q−|B are injective, and

(iii) Q+(F ) and Q−(B) form a partition of Y .

Proof. Given sets F and B satisfying the above we can endow f with a
bi-injective directionality merely by choosing the set S to satisfy

Bc ⊂ S◦ ⊂ S ⊂ F ◦

and observing that injectivity of f is equivalent to that of Q+ (and likewise
injectivity of f−1 is equivalent to that of Q−).

Conversely, given S, a bi-injective directionality for the correspondence
z 7→ w, Q+(z) = Q−(w), we get Q+(S) disjoint from Q−(Sc). Choose a
subset D of the “separating” space Y which satisfies

(1) D is a neighbourhood (in image (Q+)) of Q+(S);
(2) Dc is a neighbourhood (in image (Q−)) of Q−(Sc).

It follows that Q−1
+ (D) is a neighbourhood of S and that Q−1

− (Dc) is a
neighbourhood of Sc. Since Q+ is injective wherever f is, it is possible to
choose a branch of the inverse of Q+ which is defined on D and whose image
F contains a neighbourhood of S. Likewise, since Q− is injective wherever
f−1 is, one can choose a branch of the inverse of Q− which is defined on Dc

and whose image B contains a neighbourhood of Sc.

Figure 3a illustrates the graph of a 2 : 2 separable correspondence on the
real unit interval, and sets F and B satisfying the hypotheses of Proposi-
tion 16.
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Fig. 3a. Graph of a 2 : 2 separable correspondence f on the real interval [0, 1]
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Consider Q(f) : X = Z+ ∪ Z− → Y defined by

Q(f)(x) =
{
Q+(z) if x = (z,+),
Q−(w) if x = (w,−).

The fundamental observation is that DIR + GAL(f) is none other than
id± ◦ GalQ

(f)
, where id± is the involution of X which exchanges (z,+)

with (z,−). Furthermore, the above proposition shows that a bi-injective
directionality for f gives rise to a transversal for Q(f) which is also a (set-
theoretic) directionality for id± ◦GalQ

(f)
.

Theorem 8. If S is a bi-injective directionality for a separable corre-
spondence f satisfying the hypotheses of Proposition 16 then the directional-
ity (S×{+})∪(Sc×{−}) for DIR+GAL

(f)
is itself bi-injective. Furthermore,

the sets F and B of the proposition intersect in a fundamental domain F∩B
for the global action of f on the complement Ω(f, S) of the “global attrac-
tor” ω(f, S) which is the projection of the attractor (or repeller) associated
with the directionality on Z × {+,−}.

If Z is a Riemann surface and f is holomorphic then Ω(f, S) is contained
in the regular set Ω(f) of f , and the various limit sets satisfy

∂ω(f, S) ⊂ J (f) ⊂ Λ(f) ⊂ ω(f, S).

Proof. By the preceding observation, the sets F and B constructed above
form a set T := F+ ∪ B− (where F+ denotes F × {+} and B− denotes
B × {−}), transversal to Q(f), and since

T ◦ ∪ id±(T ◦) = (F+ ∪B−)◦ ∪ (B+ ∪ F−)◦ = (F ◦ ∪B◦)± = Z±

the set T satisfies the conditions of Lemma 9 (Subsection 4.2) for the corre-
spondence F = id±◦GalQ

(f)
. Hence the conclusion follows that T ∩id±(T ) is

a bidirectional fundamental set for the complement of ω+(F , T )∪ω−(F , T )
where ω+(F , T ) =

⋂
n→∞Fn(T ) and ω−(F , T ) =

⋂
n→∞F−n(id±(T )). The

global orbit under f of a point z is given by the union of Z-projections of
the orbits O(F)

+ (z,+) and O(F)
+ (z,−) (and hence by the Z-projection of the

orbit O(F)
± (z,+)) under F = DIR + GAL(f). By Proposition 10 (Subsec-

tion 4.2), O(F)
± (z,+) has a unique point in the “bidirectional fundamental

set”

T ∩ id±(T ) = (F+ ∪B−) ∩ (F− ∪B+) = (F ∩B)±

provided that (z,+) does not lie in either the attractor ω+(F , T ) or the
repeller ω−(F , T ) (= id±(ω+(F , T ))). Thus the global orbit of z under f
has a unique point in F ∩B unless z lies in the global attractor which is the
Z-projection of ω+(F , T ) (or of ω−(F , T )).
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Since F(T ) = Z± \ id±(T ) = (Bc)+ ∪ (F c)− the construction in the
preceding proposition gives us

F(T ) ⊂ Σ◦ ⊂ Σ ⊂ T ◦

where Σ = S+∪(Sc)− is the directionality of DIR+GAL
(f)

= F provided by
Proposition 15. This directionality is itself bi-injective because T is mapped

injectively by Q(f) and hence by id± ◦ Gal
Q(f)

= F and we deduce that
ω+(F , T ) equals the attractor ω+(F , Σ) and similarly for the repeller. When
f is a branched-covering correspondence then T is a transversal directionality

for id± ◦Gal
Q(f)

(in the sense of Subsection 5.2, by Proposition 14). When f
is holomorphic we conclude (by Theorem 7, Subsection 5.3) that the global
attractor denoted by ω(f, S) satisfies the desired series of inclusions.

Proposition 17. If f is a separable correspondence with a bi-injective
directionality S then contained in the global attractor ω(f, S) are two disjoint
completely invariant sets, one generated by the attractor ω+(f, S), and the
other generated by the repeller ω−(f, S).

Proof. It will suffice to show that forward iterating F = DIR + GAL(f)

from any point z+ = (z,+) or z− = (z,−), where z ∈ ω−(f, S), yields an
orbit which fails to intersect (ω+(f, S))+ or (ω+(f, S))−.

The forward completeness under f of ω−(f, S) (⊂ Z \ F ) produces from
z+ a path of forward iteration under F entirely contained in (ω−(f, S))+ ⊂
Z+ \ F+ = Z+ \ T . Thus we have a non-terminating “diverging” path from
z+ under F ; in other words, z+ lies in the repeller ω−(F , S+ ∪ (Sc)−) for
F . In our case the non-terminating “diverging” path from z+ proceeds via
a branch of DIR at every stage.

Consider a forward path under F starting from z+ which enters F(T ).
Then, by uniqueness of “diverging” paths, we know that the last point of
our path to lie outside F(T ) must lie in (ω−(f, S))+ ⊂ Z+ \ T and hence
(without loss of generality) we may now write z+ for this point. The next
point of the path is either a point w′+ with w′ ∈ Gal(f)

− (w) or a point z′−

with z′ ∈ f−1{w}, where in both cases w ∈ f{z} is the unique point of f{z}
such that w+ lies outside F(T ) (in other words, w+ is the next point after
z+ on the “diverging” path described above).

Now w− ∈ B− ⊂ T \ (ω+(f, S))+. But both w′+ and z′− lie in F{w−},
so they both lie in F(T \ (ω+(f, S))+). If we can show that

(∗) F(T \ (ω+(f, S))+) ⊂ T \ (ω+(f, S))+

it will follow that the forward orbit of z+ under F cannot reach (ω+(f, S))+.
But

F(T \ (ω+(f, S))+) = F(T ) \ (ω+(f, S))+
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because F restricted to T is injective (T being transversal to Q(f)) and
because ω+(f, S) is backward complete under f . Since

F(T ) \ (ω+(f, S))+ ⊂ T \ (ω+(f, S))+

we are done.

Fig. 3b. Computer plot of a 2 : 2 separable (but not reversible) f on the Riemann sphere,
defined by f : z 7→ w where

z(z + a) =
w2

w + b/a
+ abd with a = 0.8, b = −0.15, d = 0.5.

Here F and B are discs (not shown), intersecting in an annulus. The forward limit set
ω+(f, S) is a (Cantor) “worm”, the backward limit set ω−(f, S) is a “heart”, and the
global limit set ω(f, S) is the closure of a union of copies of these (see [7] for further
pictures).
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Next observe that the forward orbit of z+ under F is also disjoint from
(ω+(f, S))−, since the latter is disjoint from T and the unique forward path
from z+ which remains outside T stays in (ω−(f, S))+, which is disjoint
from (ω+(f, S))−. Finally we turn our attention to the forward orbit under
F of z−, where z is still any point in ω−(f, S). Such a point z− lies in
B− ⊂ T \ (ω+(f, S))+, so (∗) shows that the forward orbit of z− is disjoint
from (ω+(f, S))+. It is also disjoint from (ω+(f, S))− since the latter does
not meet T .

Figure 3b illustrates the global orbits of ω+(f, S) and of ω−(f, S) for an
example of a 2 : 2 correspondence equipped with a bi-injective directionality.
In this example ω+(f, S) is a single “heart”, ω−(f, S) is a single (Cantor)
“worm” and ω(f, S) is the closure of the union of all the hearts and worms.
Similar examples can be constructed with any specified pair of “quadratic-
like” filled Julia sets for ω±(f, S) (see [28]).

Note. The closures of the global orbits of ω+(f, S) and of ω−(f, S) need
not be disjoint, nor need the union of their closures be the whole of ω(f, S),
even for 2 : 2 separable correspondences (“maps of pairs”) of the Riemann
sphere. However, in the 2 : 2 case, with the additional condition that S is a
topological disc with boundary a Jordan curve, more can be said (see [28]).
In the general case, with no such condition, the best we can hope for is:

Conjecture (see [28]). For separable holomorphic correspondences f
with a bi-injective directionality S of any Markov type, the closure of the
union f∗(∂ω−(f, S)) ∪ f∗(∂ω+(f, S)) equals ∂ω(f, S).

6.3. Bi-injective directionality for reversible separable correspondences.
We conclude with an examination of a special class of separable correspon-
dences f where the “DIR + GAL” construction can be adapted to define
a new reversible off-separable correspondence F on the dynamical space Z
itself, instead of requiring a double cover.

We say that a correspondence f is J-reversible if J is an involution on
Z such that f−1 = J ◦ f ◦ J . If moreover f is separable, say f = Q−1

− Q+,
then using the fact that J conjugates GalQ+ to GalQ− it is a straightforward
algebraic exercise to see that J passes to an involution J on the separating
space Y , well defined by J(y) = Q−JQ−1

+ (y) = Q+JQ
−1
− (y). Let qJ denote

the quotient map Y → Y/J . The pair (D,J(D)) of sets is called a transversal
(bi-injective) directionality for f if

(i) D◦ ∪ J(D◦) = Z (the dynamical space),
(ii) D is a transversal for qJ ◦Q+.

These conditions imply that (D,J(D)) is a bi-injective directionality in the
sense of Subsections 6.1 and 6.2, with F = D and B = J(D) satisfying
(i)–(iii) of Proposition 16.
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Remark. As in the case of a transversal directionality, equivalent def-
initions can be given at different levels. The above is the “sub-basement”
definition, which we shall call “Definition 0”. We give “basement”, “ground
floor” and “upstairs” definitions for the special case of f a branched-covering
2 : 2 correspondence:

Definition I. (D,J(D)) with D◦∪J(D◦) = Z (the dynamical space) is
a transversal bi-injective directionality if Q+ is injective on D, and Q+(D)
is the complement of Q−(J(D)) in the separating space, modulo fixed points
of J .

Definition II. (D,J(D)) with D◦ ∪ J(D◦) = Z is a transversal bi-
injective directionality if J(D) is a transversal for the action of I− on the
complement of f(D), modulo points x ∈ D such that J(x) ∈ f(x). (In par-
ticular, this implies that Z is the disjoint union of f(D), J(D) and I−J(D),
modulo a finite set of points.)

Definition III. (D,J(D)) with D◦ ∪ J(D◦) = Z is a transversal bi-
injective directionality if and only if D = Q̃−(∆) for a transversal ∆ of the
action of the dihedral group 〈Ĩ+, Ĩ−, J̃〉 of order 8 on the graph of f , where
J̃ : (z, w) 7→ (Jw, Jz).

Figure 4a illustrates a transversal (bi-injective) directionality for a 2 : 2
correspondence on the real unit interval.
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Fig. 4a. Graph of a 2 : 2 reversible separable f on the real interval [0, 1]. The involution
J maps z to 1 − z. A (bi-injective) transversal directionality D is shown. Note that it is
the projection of a fundamental domain for the action of the dihedral group of order 8 on
the graph.
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When f is a J-reversible separable correspondence on Z, say f = Q−1
− ◦

Q+ (with Q+ = JQ−J), the “DIR + GAL” construction gives us a new
correspondence F on X, defined by F = f ∪ (J ◦Gal

Q+). If f is n : n, then
F is (2n− 1) : (2n− 1).

Figure 4b illustrates the 3 : 3 correspondence F associated to the re-
versible separable correspondence f illustrated in Figure 4a.
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Fig. 4b. Graph of the 3 : 3 reversible off-separable correspondence F associated with the
2 : 2 reversible separable correspondence f of Figure 4a. Open circles represent “missing
arrows”.

Proposition 18. If f is a J-reversible and separable branched-covering
correspondence with J ∩ f finite, then F is a J-off-separable branched-
covering correspondence. If (D,J(D)) is a transversal bi-injective direction-
ality (in the sense defined above) for f , then D is a transversal directionality
(in the sense of Section 5) for the reversible off-separable correspondence F .

Proof. We have

F = f ∪ (J ◦Gal
Q+) = (J ◦Q−1

+ JQ+) ∪ (J ◦Gal
Q+)

= J ◦ (Q−1
+ JQ+ ∪Gal

Q+) = J ◦Gal
qJQ+

The assertion that D is a transversal directionality for F is now just a
re-interpretation of the definition of a transversal bi-injective directionality
for f .

Assuming that Q+ is a branched-covering map of degree at least 2 and
that J is the covering involution of a branched-covering map (both of which
are the case when f is an n : n holomorphic correspondence with n ≥ 2),
we can now apply Theorem 7 and deduce the following corollary:
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Fig. 4c. Computer plot of a 2 : 2 reversible separable f on the Riemann sphere, defined
by f : z 7→ w where

z(z + a) =
w2

w + b/a
with a = 0.8, b = −0.15.

Now ω+(f,D) and ω−(f,D) are both “hearts”, and ω(f,D) = ω(F ,D) is the closure of
a countable union of copies of them.

Corollary 8. Modulo (the finite set of ) points z such that Jz ∈ f±1(z),
the intersection D∩J(D) is a transversal for the (global) action of f on the
complement Ω(f,D) of the “global attractor” ω(f,D).

Proof. The “DIR + GAL” construction of F gives us the following rela-
tionship between global orbits:

F∗{z} = f∗{z} ∪ f∗{Jz},
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but any transversal for the action of J on D ∩ J(D) is a transversal for
the global action of F (since D is a transversal directionality for the J-off-
separable correspondence F). Hence, modulo the finite set stated, D∩J(D)
is a transversal for the global action of f on Ω(f,D).

Figure 4c illustrates a particular example. Here Ω(f,D) is the comple-
ment of the closure ω(f,D) of the union of the (filled-in) “hearts”.

See [9] for the generalization of the corollary above to “contact direction-
alities”, in the context of correspondence perturbations of circle-packing
Kleinian groups.

Final comment. Since every correspondence f = Q̃+ ◦ Q̃−1
− is semi-

conjugate to a separable correspondence, namely the lift of f which is the
graph correspondence Q̃−1

− ◦ Q̃+, in principle the methods of Section 6 are
applicable to the analysis of correspondences in general. However, in prac-
tice it is comparatively rare for a graph correspondence to have a bi-injective
directionality, and the best way to proceed may be to apply a combination
theorem suited to the particular class of correspondences under considera-
tion.
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