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Abstract. We show that Conway’s field of surreal numbers with its natural exponen-
tial function has the same elementary properties as the exponential field of real numbers.
We obtain ordinal bounds on the length of products, reciprocals, exponentials and loga-
rithms of surreal numbers in terms of the lengths of their inputs. It follows that the set of
surreal numbers of length less than a given ordinal is a subfield of the field of all surreal
numbers if and only if this ordinal is an ε-number. In that case, this field is even closed
under surreal exponentiation, and is an elementary extension of the real exponential field.

Introduction. Conway [1] introduced the ordered field No of surreal
numbers, which extends the field R of real numbers. (See Section 1 for a
brief account of No.) Gonshor ([6], Ch. 10) followed suggestions by Kruskal
and defined an exponential function exp : No→ No such that exp(x) = ex

for x ∈ R. In Section 2 below we show that No with exp is an elementary
extension of the real exponential field: elementary statements true in the real
exponential field remain true in the exponential field of surreal numbers. (See
Wilkie [10], and Macintyre and Wilkie [9] for information on the elementary
theory of the real exponential field.)

This result relating real and surreal exponentiation was also noticed by
A. Macintyre, by M. H. Mourgues, and by J. Lurie [8], and answers a ques-
tion of the first author in [2], p. 8. The proof below consists in equipping
No with even further structure, by extending the restricted analytic func-
tions from the real field to No, and verifying that the axioms in [3] for the
model-complete theory Tan,exp are satisfied by the thus expanded No.

The original content of the paper lies almost entirely in Sections 3–5,
which contain the following results. Let No(λ) be the set of surreals of

2000 Mathematics Subject Classification: Primary 03C64, 03C65, 03H05, 12J15,
20F60; Secondary 04A10, 06F.

Key words and phrases: surreal numbers, exponential fields.
Research supported by the National Science Foundation.

[173]



174 L. van den Dries and P. Ehrlich

length less than the ordinal λ (see below for “length”). Then R ⊆ No(λ)
for λ > ω. The ordinals λ such that No(λ) is closed under the various
operations of No can be characterized as follows:

(1) No(λ) is an additive subgroup of No iff λ = ωα for some ordinal α.
(2) No(λ) is a subring of No iff λ = ωω

α

for some ordinal α.
(3) No(λ) is a subfield of No iff ωλ = λ. Moreover, if No(λ) is a subfield

of No, then it is also closed under exp, and is an elementary substructure
of the exponential field No.

Here we used the customary notation for ordinal exponentiation with
base ω. Ordinals λ such that ωλ = λ are called ε-numbers. The smallest
ε-number is the countable ordinal

ε0 := sup{ω, ωω, ωωω , . . .}.

These results will be deduced from bounds on the length of P (a1, . . . , an) in
terms of the lengths of surreals a1, . . . , an, for various surreal operations P .
The bulk of the work goes into establishing these bounds, which we consider
of independent interest.

1. Background on surreal numbers. We define here No and point
out some of its remarkable and distinctive features. We also take the op-
portunity to fix notations and terminology, which vary slightly across the
literature [1, 4, 6].

As in [6] a surreal number is by definition a function a : λ → {−,+}
where λ is an ordinal. For such a we put l(a) := λ, the length of a as in [6],
which equals the tree-rank of a in the canonical binary tree underlying No
as treated in [4]. Thus the totality of surreal numbers, the “universe” of No,
is not a set, but a proper class. To formalize this notion of “proper class” we
use NBG (von Neumann–Bernays–Gödel set theory with Global Choice) as
our underlying set theory (which is conservative over ZFC). Although truth
is not in general definable in NBG for structures whose universe is a proper
class, one can develop enough basic algebra and model theory in NBG to
justify the considerations below. For details on these foundational matters
we refer the reader to [5].

The class No carries a canonical linear ordering: a < b iff a is lexico-
graphically less than b, where we set a(µ) := 0 for each surreal a and ordinal
µ ≥ l(a) and linearly order {−, 0,+} by − < 0 < +. As in [4] we define the
canonical partial ordering <s on No by: a <s b (“a is simpler than b”) iff
a is a proper initial segment of b. A set S ⊆ No is said to be initial if for
all x, y ∈ No, x <s y ∈ S implies x ∈ S. (Thus No(λ) is an initial subset of
No for each ordinal λ.)
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Key fact. For any subsets L and R of No with L < R there is a
(unique) simplest a ∈ No with L < a < R, notation: a = {L |R}. (NB:
this would fail if we had allowed L and R to be subclasses, and also if No
were replaced by any subset. Thus the distinction between sets and classes
is essential in this context.)

Often we use expressions like a = {aL | aR} to mean a = {L |R}, it
being understood that aL ranges over L and aR over R. For surreal a we let
Ls(a) := {x ∈ No : x <s a, x < a} and Rs(a) := {x ∈ No : x <s a, x > a};
then a = {Ls(a) |Rs(a)}.

The key fact above allows us to introduce operations on No by recursion
(similar to transfinite recursion and recursive definitions of functions on N)
and supports proofs by induction. For example, requiring translation invari-
ance of < for a binary operation of addition on No suggests that we define
addition by the recursion a+b = {aL+b, a+bL | aR+b, a+bR} with aL, bL,
aR, bR ranging over Ls(a), Ls(b), Rs(a), and Rs(b) respectively. Along these
lines we are also led to the recursive definition of multiplication. Remark-
ably, this gives much more than we gambled for: No is an ordered real closed
field with respect to < and these operations of addition and multiplication.
Moreover, there is a characterization of No up to unique isomorphism as
an “ordered field with <s”, which is reminiscent of the familiar characteri-
zation of the ordered field of real numbers as the up to isomorphism unique
complete ordered field. See [4] for more on this.

Ordinals are considered as surreal numbers by identifying each ordinal
λ with the surreal number of length λ having only plus signs. The ordinals
0 and 1 are just the additive zero and multiplicative unit of the field No.
The ordering, addition and multiplication of No restricted to the class On
of ordinals coincide with the usual ordering of On, and with the natural sum
and natural product (see [7], pp. 80–81). We also have occasion to use the
ordinal sum and ordinal product , writing these as α +̇ β and α ×̇ β to avoid
confusion. (Throughout, α, β, λ, µ, ν are ordinals.)

The surreals of length < ω are exactly the dyadic rationals of the ordered
field No. Throughout we identify the real field R with the unique initial
subfield of No that is isomorphic to R. Hence l(r) ≤ ω for r ∈ R. For more
details on these identifications, see [1, 4, 6].

Another striking surreal feature is that ordinal exponentiation with
base ω extends to an operation x 7→ ωx : No → No in such a way that
every surreal number can be written uniquely as a generalized power series
in ω with real coefficients and surreal exponents. We make heavy use of this
representation in what follows. More precisely, for any ordinal β, any strictly
decreasing family (yα)α<β of surreals, and any family (rα)α<β of non-zero
real numbers, the expression

∑
α<β ω

yα .rα denotes a surreal number a, and
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is called the normal form of a in [1] and [6]. Following [4] we shall call it
the Conway name of a. Each surreal number has a unique Conway name,
and the Conway name of an ordinal is just its Cantor normal form (see [4],
Theorems 22 and 23).

2. The elementary theory of No as exponential field. This sec-
tion is primarily an extended observation. It involves describing No as a
canonical directed union of copies of Hahn fields. This description is also
used in later sections.

For any ordered abelian (additively written) group Γ the ordered Hahn
field R((tΓ )) is expanded in [3], p. 188 to an Lan-structure denoted there by
R((tΓ ))an. If Γ is divisible, then R((tΓ ))an is an elementary extension of Ran,
the field of reals with restricted analytic functions as defined in [3].

Here and later in this paper Γ and other groups indicated by capital
Greek letters are assumed to have as their universe a set , as opposed to a
proper class.

For each additive subgroup Γ of No we have a canonical embedding
∑

γ∈Γ
sγt

γ 7→
∑

γ∈Γ
sγω

−γ : R((tΓ ))→ No

of ordered fields. Here the infinite sum on the right denotes the surreal num-
ber with Conway name

∑
α<β ω

yα .rα where (yα)α<β is a strictly decreasing
enumeration of the set {−γ : sγ 6= 0} and rα = sγ whenever yα = −γ.

Let τ := ω−1, so that the embedding above takes the form
∑

γ∈Γ
sγt

γ 7→
∑

γ∈Γ
sγτ

γ .

We denote the image of this embedding by R((τΓ )).
For use in later sections we transfer the notion of “support” from power

series to surreal numbers. The support of a surreal number a =
∑
γ∈Γ sγτ

γ ∈
R((τΓ )) is the well-ordered subset supp(a) := {γ ∈ Γ : sγ 6= 0} of Γ .

We expand the ordered subfield R((τΓ )) of No to an Lan-structure
R((τΓ ))an in such a way that the above map is an isomorphism from R((tΓ ))an

onto R((τΓ ))an. It is routine to verify that if ∆ is a second additive subgroup
of No containing Γ , then

R((τΓ ))an ⊆ R((τ∆))an,

where we use “⊆” to indicate the substructure relation. Since the additive
group of No is the directed union of its additive subgroups Γ (with a set as
their universe!), and each surreal number belongs to some R((τΓ )), it follows
that the ordered field No can be expanded uniquely to an Lan-structure
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Noan such that for each such Γ ,

R((τΓ ))an ⊆ Noan.

For divisible Γ we even have by [3] an elementary substructure:

R((τΓ ))an � Noan.

In particular, Noan is an elementary extension of Ran, and thus a model
of its complete theory Tan. We shall refer to Noan as “the field of surreal
numbers with restricted analytic functions”.

By [3] the elementary theory of the expansion of Ran by its exponential
function ex is completely axiomatized by Tan, together with the “Ressayre
axioms” which express that the exponential function is an order preserving
isomorphism from the additive group of the underlying ordered field onto
its positive multiplicative group such that

(1) the exponential of any x > n2 is greater than xn (for n = 1, 2, . . .);
(2) the exponential of any x with −1 ≤ x ≤ 1 equals E(x) where E is

the function symbol of Lan corresponding to the exponential power series∑
(1/n!)Xn ∈ R[[X]].

Moreover, this elementary theory is model-complete and has other good
properties such as o-minimality. (See [3] for these particular facts, and [2]
for a general account of o-minimality.) It so happens that [6] (parts A and
B of Ch. 10) establishes the “Ressayre axioms” for the exponential function
on No, except those listed under (1) above (which are easy to verify). Thus
we may conclude:

Theorem 2.1. The field of surreal numbers equipped with restricted an-
alytic functions and with exp is an elementary extension of the field of real
numbers with restricted analytic functions and real exponentiation.

Corollary 2.2. The exponential field of surreal numbers is an elemen-
tary extension of the exponential field of real numbers.

Perhaps future research will clarify whether these results have natural
analogues for other o-minimal expansions of the real field.

Another question comes up: when is a fragment No(λ) of No the under-
lying set of an elementary substructure of No with respect to the various
natural operations on No? This leads to the material in the next sections,
and fits in with Gonshor’s suggestion ([6], p. 103) to pay special attention
to the field of surreals of countable length, that is, to No(ω1).

3. Bounds on lengths of sums and products. We consider here
some inequalities for surreal numbers a and b:

l(a+ b) ≤ l(a) + l(b) and l(ab) ≤ l(a)l(b).
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They are respectively a result [6], p. 95, and a conjecture [6], p. 96. We
first record an easy consequence of the first inequality. Next we establish
the second inequality for a and b of the form ωx.r with surreal x and real r.
(This case suffices for our purpose in the next section where we determine
the subrings and subfields of No of the form No(λ).)

Corollary 3.1. No(λ) is an additive subgroup of No if and only if
λ = ωα for some α.

Proof. Combine the first inequality with the well known fact that the
ordinals ωα are exactly the ordinals λ > 0 for which µ + ν < λ whenever
µ, ν < λ.

The ordinals of the form ωα are often said to be additively indecomposable
but for the sake of brevity we shall just call them additive. The ordinals of
the form λ = ωω

α

are exactly the ordinals λ > 1 such that µν < λ whenever
µ, ν < λ. They are frequently called multiplicatively indecomposable, and we
shall refer to them as multiplicative.

We now begin a sequence of lemmas leading to a proof of l(ab) ≤ l(a)l(b)
in the special case mentioned earlier.

Lemma 3.2. Let a > 0 be a dyadic rational. Then l(a) = l([a])+l(a−[a]),
where [a] is the largest integer ≤ a.

Proof. This is clear if a ∈ N. Let a 6∈ N, and write a = [a] + i/2m

where 0 < m ∈ N, 0 < i < 2m and i is odd. Then l(a) = [a] + m + 1 =
l([a]) + l(i/2m).

Lemma 3.3. Let a, b ∈ R. Then l(ab) ≤ l(a)l(b).

Proof. Since l(x) = l(−x) ≤ ω for all x ∈ R, we may reduce to the case
that a, b > 0 and l(a), l(b) < ω. So a, b are dyadic rationals. Write a = [a]+u
and b = [b] + v. Then

ab = [a][b] + [a]v + [b]u+ uv.

Note that l(uv) ≤ l(u)l(v): this is clear for u = 0 or v = 0; otherwise
u = i/2m and v = j/2n with 0 < m,n ∈ N and odd i, j with 0 < i < 2m and
0 < j < 2n, so uv = ij/2m+n, hence l(uv) = m+n+1 ≤ (m+1)+(n+1) =
l(u)l(v). In combination with the inequality l(x+ y) ≤ l(x) + l(y) (which in
particular implies l(nx) ≤ nl(x) for n ∈ N) this gives

l(ab) ≤ l([a][b]) + l([a]v) + l([b]u) + l(uv)

≤ [a][b] + [a]l(v) + [b]l(u) + l(u)l(v)

= ([a] + l(u))([b] + l(v)) = l(a)l(b),

where the last equality uses the previous lemma.
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As in [6] we let x+ denote the ordinal number of plus signs in the surreal
number x, that is, x+ is the ordinal obtained by deleting all minus signs
in x. We also let r′ be the real number obtained from a positive real number
r by deleting the initial plus sign of the sign sequence that constitutes r.
With these notations we have:

Lemma 3.4. Let x, y ∈ No and 0 < r ∈ R. Then

(1) (x+ y)+ ≤ x+ + y+,
(2) l(ωx) = ωx

+
α for some ordinal α > 0 (hence l(ωx) ≥ ωx+

),
(3) l(ωx.r) = l(ωx) +̇ (ωx

+
l(r′)) (ordinal sum),

(4) if r is a dyadic rational , then l(ωx.r) = l(ωx) + ωx
+
l(r′),

(5) if r is not a dyadic rational , then l(ωx.r) = l(ωx) +ωx
+

(ω−m) with
m ∈ ω the coefficient of ωx

+
in the Cantor normal form of l(ωx).

Proof. Item (1) follows by an obvious inductive argument from x+ y =
{xL+y, x+yL | xR+y, x+yR} where xL, yL, xR, yR range over elements
of Ls(x), Ls(y), Rs(x), and Rs(y), respectively. Item (2) follows by induction
on l(x) using [6], Th. 5.11(a). Item (3) follows from [6], Th. 5.12(a). By (2),
only powers ωβ with β ≥ x+ can occur with a non-zero coefficient in the
Cantor normal form of l(ωx), and together with (3) this gives (4). In the
same way we obtain (5).

Lemma 3.5. Let x, y be surreals such that l(ωxωy) ≤ l(ωx)l(ωy). Then

l((ωx.r)(ωy.s)) ≤ l(ωx.r)l(ωy.s)
for all real numbers r and s.

Proof. We may assume that r and s are positive real numbers. There
are four cases.

Case 1: r and s are dyadic rationals. Then Lemma 3.3 and parts (1),
(2) and (4) of Lemma 3.4 lead to the following chain of equalities and in-
equalities:

l(ωx.r)l(ωy.s) = (l(ωx) + ωx
+
l(r′))(l(ωy) + ωy

+
l(s′))

= l(ωx)l(ωy) + l(ωx)ωy
+
l(s′)

+ ωx
+
l(ωy)l(r′) + ωx

+
ωy

+
l(r′)l(s′)

≥ l(ωx)l(ωy) + ωx
+
ωy

+
l(s′)

+ ωx
+
ωy

+
l(r′) + ωx

+
ωy

+
l(r′)l(s′)

= l(ωx)l(ωy) + ωx
+
ωy

+
(l(s′) + l(r′) + l(r′)l(s′))

≥ l(ωx+y) + ω(x+y)+
l((rs)′) = l(ωx+y.rs) = l((ωx.r)(ωy.s)).
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Case 2: neither r nor s is a dyadic rational. Then by Lemma 3.4(5),

l(ωx.r) = l(ωx) + ωx
+

(ω −m) and l(ωy.s) = l(ωy) + ωy
+

(ω − n)

for certain m,n ∈ ω. Similar inequalities to those in Case 1 lead to

l(ωx.r)l(ωy.s) ≥ l(ωx+y) + ω(x+y)+
(ω2 + pω + q)

for certain p, q ∈ Z. Now use the fact that ω2 + pω + q > ω ≥ l((rs)′).
Case 3: r is a dyadic rational, r 6= 1, and s is not a dyadic rational.

Let n be the coefficient of ωy
+

in the Cantor normal form of l(ωy), so
l(ωy.s) = l(ωy) + ωy

+
(ω − n) by Lemma 3.4(5). In the same way as before

we obtain

l(ωx.r)l(ωy.s) ≥ l(ωx+y) + ω(x+y)+
(ω − n+ l(r′) + l(r′)(ω − n)).

From r 6= 1 we get l(r′) > 0, hence ω−n+ l(r′)+ l(r′)(ω−n) > ω ≥ l((rs)′),
and we are done by Lemma 3.4(3).

Case 4: r = 1 and s is not a dyadic rational. Let sL range over the
surreals simpler and less than s, and sR over the surreals simpler and greater
than s. So the sL’s are dyadic rationals cofinal in {s − ε : 0 < ε ∈ R}, and
the sR’s are dyadic rationals coinitial in {s + ε : 0 < ε ∈ R}. Then by [6],
Lemma 5.2, and [4], Th. 1(iii),

ωxωy.s = ωx+y.s = {ωx+y.sL | ωx+y.sR}.
By Case 1 and Lemma 3.4 we have l(ωx+y.sL)≤ l(ωx)l(ωy.sL)<l(ωx)l(ωy.s),
and similarly, l(ωx+y.sR) < l(ωx)l(ωy.s). Thus l(ωx+y.s) ≤ l(ωx)l(ωy.s), by
[6], Th. 2.3.

Proposition 3.6. If a = ωx.r and b = ωy.s, x, y ∈ No, r, s ∈ R, then
l(ab) ≤ l(a)l(b).

Proof. By the previous lemma it suffices to prove l(ωx+y) ≤ l(ωx)l(ωy),
and for this we proceed by induction on l(x) and l(y). The inequality clearly
holds if l(x) = 0 or l(y) = 0. Let l(x), l(y) > 0, and let xL, yL, xR, yR and n
range over elements of Ls(x), Ls(y), Rs(x), Rs(y) and ω \ {0} respectively.
Then x+ y = {xL + y, x+ yL | xR + y, x+ yR}, hence by [4], Th. 12,

ωx+y = {0, ωxL+y.n, ωx+yL .n | ωxR+y.2−n, ωx+yR .2−n}
= {0, (ωxL .n)ωy, ωx(ωy

L

.n) | (ωxR .2−n)ωy, ωx(ωy
R

.2−n)}.

Assume inductively that l(ωx
L

ωy) ≤ l(ωx
L

)l(ωy). Then by the last lemma
we have l((ωx

L

.n)ωy) ≤ l(ωx
L

.n)l(ωy). The first sign of x after its initial
segment xL is a plus, hence ωx

L

.n <s ω
x by [6], Th. 5.11, so l(ωx

L

.n) <
l(ωx), and thus l((ωx

L

.n)ωy) < l(ωx)l(ωy). Similar inductive assumptions
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imply that the other products listed in the representation of ωx+y above
all have length less than l(ωx)l(ωy). Therefore l(ωx+y) ≤ l(ωx)l(ωy) by [6],
Th. 2.3.

4. Bounds on lengths of infinite sums. In this section we prove that
No(λ) is a subring of No if and only if λ is multiplicative, and No(λ) is a
subfield of No if and only if λ is an ε-number. We also study the structure of
these fields No(λ). Several bounds on lengths that we need in this connection
are improvements of bounds in [6], Ch. 6.

Lemma 4.1. Each surreal a satisfies l(a) ≤ l(ωa) ≤ ωl(a).

Proof. Let L := Ls(a) and R := Rs(a), so that a = {L |R}. We as-
sume inductively that the lemma holds for the surreals in L ∪ R. From
ωa = {0, ωL.n |ωR.2−n} (with n ranging over N = ω) and [6], Th. 2.3, we
obtain

l(ωa) ≤ least ordinal λ > 0 such that

nωα < λ for all α ∈ l(L ∪R), n ∈ ω.
For α ∈ l(L ∪ R) we have α < l(a), and hence nωα < ωl(a) for all n. Thus
l(ωa) ≤ ωl(a). The other inequality follows from [4], Th. 12.

Remark. Both inequalities become equalities when l(a) is an ε-number.
By Lemma 4.8 below l(ωa) < ωl(a) if a = −α for an ordinal α > 1 that is
not an ε-number.

Lemma 4.2. Let the surreal number a have Conway name
∑
α<β ω

yα .rα.
Then

(1) β ≤ l(a),
(2) l(ωyα .rα) ≤ l(a) for α < β,
(3) if ν is such that l(ωyα .rα) ≤ ν for all α < β, then l(a) ≤ βν.

Proof. Inequality (1) is shown in [6], p. 63. The proof of [6], Lemma 6.3,
gives inequality (2). For an upperbound ν as in (3) one shows by transfinite
induction on ordinals µ ≤ β that l(

∑
α<µ ω

yα .rα) ≤ µν. (For a limit ordinal
µ one can appeal to [6], Th. 2.3.)

Corollary 4.3. For any surreals a and b we have l(ab) ≤ ωl(a)2l(b)2.

Proof. Let a, b, and ab have Conway names
∑
α<λ ω

xα .rα,
∑
β<µ ω

yβ .sβ ,
and

∑
γ<ν ω

zγ .tγ . Since supp(ab) ⊆ supp(a) + supp(b), the order type of
supp(ab) is at most λµ. Also, λ ≤ l(a) and µ ≤ l(b) by part (1) of the last
lemma. Hence ν ≤ λµ ≤ l(a)l(b). Moreover, each term ωzγ .tγ is a finite sum
of products of the form (ωxα .rα)(ωyβ .sβ). Each of these products has length
at most l(ωxα .rαωyβ .sβ) ≤ l(a)l(b), by Lemma 4.2(2) and Proposition 3.6.
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Thus l(ωzγ .tγ) ≤ ωl(a)l(b). Now use ν ≤ l(a)l(b) and part (3) of the last
lemma to reach the desired conclusion.

Remark. The proof shows that for b of the form ωy.s (y ∈ No, s ∈ R)
we can improve the inequality to l(ab) ≤ l(a)2l(b).

Corollary 4.4. No(λ) is a subring of No if and only if λ is multi-
plicative.

Next we have a quantitative version of a well known lemma of B. H. Neu-
mann:

Lemma 4.5. Let Γ be an ordered abelian group and S a set of positive
elements of Γ . Suppose S is well ordered of order type µ. Then the additive
monoid [S] generated by S in Γ is well ordered of order type at most ωµ.

Proof. By an easy induction on µ, using the fact that if A,B ⊆ Γ are
well ordered of order types α, β, then A+B is well ordered of order type at
most αβ (natural product of ordinals).

Remark. Here is an analogue for semirings, which we shall not use: Let
K be an ordered field and let S ⊆ K>0 be well ordered of order type µ. Then
the semiring generated by S in K (the smallest subset containing 0, 1 and S
and closed under addition and multiplication) is well ordered of order type
at most ωω

µ

.

Lemma 4.6. Let Γ be an additive subgroup of No, λ an ε-number , and
put

R((τΓ ))λ := {a ∈ R((τΓ )) : supp(a) has order type < λ}.
Then R((τΓ ))λ is a subfield of No, and is closed under the restricted analytic
functions of No. If Γ is also divisible, then R((τΓ ))λ is real closed.

Proof. Let a, b∈R((τΓ ))λ, so supp(a) and supp(b) have order types α<λ
and β < λ. Then supp(a+b) has order type at most α+β < λ, and supp(ab)
has order type at most αβ < λ. Suppose that a 6= 0. Write a = rωy(1 − ε)
with r ∈ R\{0} and ε infinitesimal. Clearly, the well ordered subset supp(ε)
of Γ>0 has order type at most α. From a−1 = r−1ω−y(1 + ε + ε2 + . . .) it
follows that

supp(a−1) = −y + supp(1 + ε+ ε2 + . . .) ⊆ −y + [supp(ε)]

where [. . .] denotes the additive monoid generated by . . . , as in the last
lemma. This lemma then tells us that supp(a−1) has order type at most
ωα < λ. Assume that in addition a > 0 and d is a positive integer. Then
r > 0 and a1/d = r1/dωy/d

∑∞
n=0(−1)n

( 1/d
n

)
εn. A similar argument to that

for a−1 shows that the support of a1/d has order type at most ωα < λ, and
thus a1/d ∈ R((τΓ ))λ if Γ is divisible.
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Finally, let F (X1, . . . ,Xn) ∈ R[[X1, . . . ,Xn]] be a formal power series
in the indeterminates X1, . . . ,Xn with real coefficients. Let ε1, . . . , εn be
infinitesimals in R((τΓ ))λ. Since F is not assumed to be a convergent power
series, we actually prove more than closure under restricted analytic func-
tions by showing that F (ε1, . . . , εn) ∈ R((τΓ ))λ. Put

S := supp(ε1) ∪ . . . ∪ supp(εn),

so S ⊆ Γ>0 is well ordered of order type σ < λ. Since supp(F (ε1, . . . , εn))
⊆ [S], the last lemma implies that supp(F (ε1, . . . , εn)) has order type at
most ωσ < λ.

Remark. Among the ε-numbers are all uncountable cardinals, where as
usual we identify the cardinal ℵα with the initial ordinal ωα.

These lemmas lead to a revealing picture of No(λ) for ε-numbers λ.

Proposition 4.7. Let λ be an ε-number. Then

(1) No(λ) =
⋃
µ R((τNo(µ)))λ, where µ ranges over the additive ordinals

< λ (equivalently , µ ranges over the multiplicative ordinals < λ),
(2) No(λ) is a real closed subfield of No, and is closed under the re-

stricted analytic functions of No,
(3) No(λ) = R((τNo(λ)))λ if and only if λ is a regular cardinal.

Proof. Let a be a surreal number with Conway name
∑
α<β ω

yα .rα. By
Lemmas 4.2 and 4.1 we have β ≤ l(a) and l(yα) ≤ l(ωyα) ≤ l(a) for all α < β.
Thus if a ∈ No(λ), then β < λ and there is an additive (even multiplicative)
µ < λ with yα ∈ No(µ) for all α < β. Conversely, if β < λ, and there exists
an additive ordinal µ < λ such that all yα belong to No(µ), then a ∈ No(λ)
by Lemma 4.2(2). This proves (1). Then (2) follows from Lemma 4.6. As to
(3), suppose λ is not a regular cardinal. This means we can take a strictly
increasing sequence (µα)α<β of ordinals < λ that is cofinal in λ with β < λ.
Then

∑
α<β ω

−µα ∈ R((τNo(λ)))λ \No(λ) by part (1). Suppose next that λ
is a regular cardinal, and let a ∈ R((τNo(λ)))λ. It remains to show that then
a ∈ No(λ). Let a have Conway name

∑
α<β ω

yα .rα. Then β < λ, hence the
subset {l(yα) : α < β} of λ is not cofinal in λ, and therefore a ∈ R((τNo(µ)))λ,
for some additive µ < λ.

Remarks. Let λ be an ε-number.

(1) Here is an alternative phrasing of part (1) of the proposition: A
surreal number a with Conway name

∑
α<β ω

yα .rα belongs to No(λ) if and
only if β < λ and there is an ordinal µ < λ such that l(yα) < µ for all
α < β.

(2) By Lemma 4.1 we deduce that for all surreal y, y ∈ No(λ) if and
only if ωy ∈ No(λ).
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(3) By part (1) of the proposition No(λ) is a subfield of R((τNo(λ))), and
has the latter as maximal immediate extension with respect to the natural
valuation on both fields. (The natural valuation on an ordered field extension
of R has as its valuation ring the convex hull of R in that field.) However,
No(λ) is not dense in R((τNo(λ))): the element

∑
0<α<λ ω

1/α of R((τNo(λ)))
is clearly at distance > 1 from every element of No(λ).

We now proceed to a converse of the proposition.

Lemma 4.8. Suppose α > 1 is not an ε-number. Then l(ω−α) < ωα.

Proof. The surreal number −α of length α is a sequence consisting en-
tirely of minuses. Hence by [6], p. 94, the surreal number ω−α is a sequence
consisting of a plus followed by ω ×̇ α minuses. Thus l(ω−α) = ω ×̇ α < ωα,
where the inequality uses the fact that α is not an ε-number.

Corollary 4.9. No(λ) is a subfield of No if and only if λ is an ε-
number.

Proof. Suppose No(λ) is a subfield of No. Then λ = ωα for some α > 0
by Corollary 3.1. The last lemma implies that then α is an ε-number, and
thus λ = α is an ε-number.

The other direction is part of the last proposition.

The next two results throw further light on the structure of the fields
No(λ) where λ is an ε-number. The first one is also used in the next section
in showing that these fields are closed under exponentiation and taking
logarithms.

Lemma 4.10. Let F (X1, . . . ,Xn) ∈ R[[X1, . . . ,Xn]]. Let ε1, . . . , εn be
infinitesimal surreal numbers, and let the ordinal µ ≥ ω be an upper bound
on l(ε1), . . . , l(εn). Then l(F (ε1, . . . , εn)) ≤ ω(ω+n)µ.

Proof. Put S := supp(ε1) ∪ . . . ∪ supp(εn), so S is a well ordered set of
positive surreals, and by Lemma 4.2(1) its order type is at most nµ. Hence,
by Lemma 4.5, the additive monoid [S] generated by S in No is well ordered
of order type at most ωnµ. The support of F (ε1, . . . , εn) is contained in [S],
so this support has order type at most ωnµ.

Consider a term ωy.r in the Conway name of F (ε1, . . . , εn). Then ωy.r is
a finite sum of products of the form r0(ωy1 .r1 · · ·ωyN .rN ) where r0 ∈ R and
each factor ωyj .rj is a term in the Conway name of some εi. By Lemma 4.2(2)
and Proposition 3.6 such a product has length at most ωµN . Using the
Cantor normal form of µ one verifies easily that nωµN < ωωµ for all n ∈ N.
Hence l(ωy.r) ≤ ωωµ. Now Lemma 4.2(3) implies

l(F (ε1, . . . , εn)) ≤ ωnµωωµ = ω(ω+n)µ.
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Proposition 4.11. Let a be a non-zero surreal number. Then

l(a−1) ≤ ωω3l(a)+3
.

If moreover a > 0 and d is a positive integer , then also

l(a1/d) ≤ ωω3l(a)+3
.

Proof. Write a = rωy(1− ε) with r ∈ R \ {0} and ε infinitesimal. Then
ε = 1−ar−1ω−y. Now l(ω−y) ≤ ωl(−y) ≤ ωl(a) since l(−y) = l(y) ≤ l(ωy) ≤
l(a). Hence by the Remark following Corollary 4.3 we have

l(ε) = l(1− ar−1ω−y) ≤ 1 + l(a)2l(r−1ω−y) ≤ 1 + ω1+3l(a),

where we also used l(a) ≤ ωl(a). Let F (X) := 1 +X +X2 + . . . =
∑
Xn ∈

R[[X]]. Then by the previous lemma

l(F (ε)) ≤ ω(ω+1)(1+ω1+3l(a)).

From a−1 = r−1ω−yF (ε) we then obtain

l(a−1) ≤ ωωl(a)ω(ω+1)(1+ω1+3l(a)) ≤ ωω3l(a)+3
.

Now assume a > 0, so r > 0. Put G(X) :=
∑∞
n=0(−1)n

( 1/d
n

)
Xn ∈ R[[X]].

Then a1/d = r1/dωy/dG(ε), so

l(a1/d) ≤ l(r1/d)ωl(y/d)l(G(ε))2 (by Remark following Corollary 4.3)

≤ ωωωl(y)ω(2ω+2)(1+ω1+3l(a)) ≤ ωω3l(a)+3
,

where we used l(y) ≤ l(a) ≤ ωl(a).

Remark. This double ω-exponential bound for l(a−1) cannot be re-
placed by a polynomial bound like l(a−1) ≤ ω2l(a)3: for a = ω−6 we have
l(a) = ω.6 by the proof of Lemma 4.8, so l(a−1) = ω6 > ω2l(a)3. We leave
open the possibility that the double ω-exponential bound can be replaced
by a single ω-exponential bound.

5. Bounds on lengths of exponentials and logarithms. Next we
come to bounds involving Gonshor’s exponential function exp. We shall use
the results in [6], Ch. 10, parts C and D, which relate exponentiation to ω-
exponentiation via the order preserving bijection g : No>0 → No given by

exp(ωa) = ωω
g(a)

for a > 0.

Lemma 5.1. For surreal a > 0 we have l(g(a)) ≤ l(a) + 1.

Proof. By [6], Th. 10.11, we have g(a) = {c, g(a′) | g(a′′)} where c is such
that a and ωc have the same archimedean class, a′ ranges over the positive
surreals simpler and less than a, and a′′ ranges over the positive surreals
simpler and greater than a. Assume inductively that l(g(a′)) ≤ l(a′) + 1
and l(g(a′′)) ≤ l(a′′) + 1 for those a′ and a′′. Thus l(g(a′)) < l(a) + 1 and
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l(g(a′′)) < l(a) + 1 for those a′ and a′′. Also, l(c) ≤ l(ωc) ≤ l(a) < l(a) + 1.
The desired result now follows from [6], Th. 2.3.

The bound in this lemma is optimal, since g(a) = a + 1 when a is an
ε-number; see [6], Th. 10.14.

Lemma 5.2. For each surreal number a we have

l(exp(a)) ≤ ωω2l(a)+3
.

Proof. Write a = b + r + ε where b, the “purely infinite” part of a,
has Conway name b =

∑
α<β ω

yα .rα with all exponents yα > 0, r ∈ R,
and infinitesimal ε. Let E(X) :=

∑∞
n=0(1/n!)Xn ∈ R[[X]]. Then exp(a) =

ωcerE(ε) where c =
∑
α<β ω

g(yα).rα according to [6], Th. 10.13. First we
determine a bound on l(c). Using the last lemma we have

l(ωg(yα).rα) ≤ ωωl(g(yα)) ≤ ωl(yα)+2.

An earlier lemma gives

l(yα) ≤ l(ωyα) ≤ l(ωyα .rα) ≤ l(a).

As also β ≤ l(a) ≤ ωl(a), we obtain

l(c) ≤ βωl(yα)+2 ≤ l(a)ωl(a)+2 ≤ ω2l(a)+2.

Since ε = a− (b+ r) and b+ r ≤s a by [4], Th. 15(i), we have l(ε) ≤ 2l(a),
so that by Lemma 4.10,

l(E(ε)) ≤ ω(ω+1)2l(a) ≤ ωωl(a)+2

and thus by the Remark following Corollary 4.3,

l(exp(a)) ≤ l(ωc)l(er)l(E(ε))2 ≤ ωω2l(a)+2+1+2ωl(a)+2 ≤ ωω2l(a)+3
.

Let log denote the inverse of exp. There is an inductive definition of
ln(x) for surreal x of the form ωy in [6], p. 161, and [6], Th. 10.8 shows that
log(x) = ln(x) for such x.

Lemma 5.3. For each surreal number y we have l(log(ωy)) ≤ ω4ωl(y)2
.

Proof. This is clearly true for y = 0. Since log(ω) = ω1/ω (see [6], p.
161), the desired inequality follows for y = 1 by using l(1/ω) = ω and
Lemma 4.1. For y = −1 the inequality follows from the case y = 1 since
log(ω−1) = − log(ω1). Suppose next that l(y) > 1 and that the lemma
holds for smaller values of l(y). Then the desired inequality follows from the
inductive definition of ln(ωy) in [6], p. 161, in combination with Lemma 4.1,
the remark following Corollary 4.3, and [6], Th. 2.3.

Lemma 5.4. For each surreal number a > 0 we have

l(log(a)) ≤ ωω3l(a)+3
.
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Proof. Write a = rωy(1 − ε) with 0 < r ∈ R and ε infinitesimal. Let
H(X) := −∑∞n=1(1/n)Xn ∈ R[[X]]. Then log(a) = log(r)+log(ωy)+H(ε).
As in the proof of Proposition 4.11 we have

l(H(ε)) ≤ ω(ω+1)(1+ω1+3l(a)).

The desired inequality now follows easily from the last lemma.

The bounds in this section, together with the results in [3] and Proposi-
tion 4.7, imply the following.

Corollary 5.5. Let λ be an ε-number. Then the field No(λ) is closed
under exponentiation, and under taking logarithms of positive elements. The
field No(λ) equipped with the restricted analytic functions and exponenti-
ation induced by No is an elementary substructure of (Noan, exp) and an
elementary extension of (Ran, e

x).

6. Some other initial subfields of No. Let Γ be an initial additive
subgroup of No. (Recall that “initial” means that if y ∈ Γ and x <s y,
then x ∈ Γ . In particular, No(λ) is an initial additive subgroup of No for
additive λ.) As in [4] we let On(Γ ) denote the set of ordinals in Γ . Note
that On(Γ ) is cofinal in Γ , and is itself an (additive) ordinal; in fact, it is
the smallest ordinal > Γ .

These properties carry over to R((τΓ )) as follows.

Proposition 6.1. R((τΓ )) is an initial subfield of No, and On(R((τΓ )))
= ωOn(Γ ).

Proof. The proof of [4], Th. 18, shows that R((τΓ )) is an initial subfield
of No. The elements ωy with y ∈ Γ are cofinal in R((τΓ )), and hence the
ordinals ωα with α ∈ On(Γ ) are cofinal in R((τΓ )). Since On(Γ ) is additive
it follows that On(R((τΓ ))) = ωOn(Γ ).

In particular, if λ is an ε-number, then R((τNo(λ))) is an initial subfield
of No, and the ordinals in it are exactly the ordinals < λ.
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