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Abstract. We construct in ZFC a cosmic space that, despite being the union of
countably many metrizable subspaces, has covering dimension equal to 1 and inductive
dimensions equal to 2.

1. Introduction. On the class of separable metrizable spaces, the three
main topological dimension functions, i.e., covering dimension, dim, small
inductive dimension, ind, and large inductive dimension, Ind, coincide and
exhibit all the properties that intuition requires of the concept of dimension.
A regular space is called cosmic if it has a countable network or, equivalently,
if it is the continuous image of a separable metrizable space. Cosmic spaces
exhibit many desirable properties. Cosmicity is a hereditary and countably
productive property, and a cosmic space is Lindelöf and perfectly normal
and therefore satisfies the Urysohn inequality, the subset theorem and the
countable sum theorem for both dim and Ind, as well as the inequality
dim ≤ ind and the equality ind = Ind. One would naturally want to know
whether the equality dim = ind = Ind extends from metric separable to
cosmic spaces. This question was first raised by A. V. Arkhangel’skĭı [1].
Let us note that the equality dim = Ind is known to hold on the class of
µ-spaces, i.e., those spaces that can be embedded in a countable product of
paracompact Fσ-metrizable spaces [7, 9]. A paracompact, perfectly normal
space that can be expressed as the union of finitely many metric spaces is a
µ-space [9], and S. Oka [8] raised the question of the equality dim = Ind for
paracompact, perfectly normal spaces that can be expressed as the union of
countably many metric spaces. The space of the abstract provides an answer
to both questions just mentioned.
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A cosmic space that is the union of countably many metrizable sub-
spaces and has dim = 1 and Ind > 1 was first announced, assuming the
continuum hypothesis, by Delistathis and Watson in [3], leaving open the
question of the precise value of Ind. The seminal idea is to exploit an ex-
ample due to Kuratowski [6] of a function on the Cantor set whose graph
has positive dimension. Their space is the limit of an inverse sequence of
length ω1 of spaces constructed by the method of resolutions so as to in-
corporate sufficiently many graphs of Kuratowski functions. However, the
lemmas (Lemmas 2.2 and 2.3 of [3]) necessary for their use of resolutions
are incorrect, and the need for an appropriate modification of their lengthy
constructions has been acknowledged as early as October 2001. It is not,
however, clear that there is a straightforward repair that corresponds to
what the authors had in mind.

In this paper, the natural numbers, the closed interval [0, 1] and the
real numbers, all with their usual topology, are denoted by N, I, and R,
respectively. A rational circle means a circle in R2 whose radius as well as
both coordinates of its centre are rational numbers. P denotes the union
of all rational circles, and Q the countable set of all points that lie in the
intersection of two distinct rational circles. A will denote a fixed subset of
R2 whose complement in R2 is a countable dense set disjoint from P. Unless
explicitly stated, the rest of our notation agrees with that of Engelking’s
books [4, 5], where the reader is referred to for all topological facts quoted
in this paper without proof.

Delistathis and Watson announce in the introduction of [3] that at each
step of their inductive construction they refine the topology of I2, taking
care not to disturb the topology of a fixed countable collection of subspaces
whose union is I2. Theorem 1 below sets up a framework for doing this in
a manner that suffices for our purpose. The detailed proof that we give is
long but elementary. Let {Kα : α < |2N|} be an enumeration of the proper
continua in R2. For each α < |2N|, Theorem 1 provides a refinement τα of
the euclidean topology of R2 such that τα on R2\P and S\Q is euclidean for
each rational circle S and, for α 6= β, the supremum of τα and τβ restricted
to A∩Kα contains the graph of a Kuratowski-like function. The supremum
of all τα on A will give the space of the abstract. The details are given in
Sections 3 and 4.

2. The necessary lemmas. In what follows, Γ (f) denotes the graph of
a function f and |A| the cardinality of a set A. When considering a product
of a number of spaces, we use πi to denote the projection onto the ith factor.

Lemma 1. Let X, Y be metrizable spaces, A a countable subset of X and

f : X → Y a function which is continuous at every point of X \ A. Then
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Γ (f) is a Gδ-subset of X × Y . Hence Γ (f) is Čech-complete whenever X
and Y are Čech-complete.

Proof. Consider a point (x, y) of X×Y \Γ (f) with x /∈ A. Then y 6= f(x)
and there are disjoint open sets V1, V2 of Y with f(x) ∈ V1 and y ∈ V2. By
continuity of f at x, there is an open set U of X with x ∈ U ⊂ f−1(V1).
Consequently, (x, y) ∈ U × V2 and U × V2 ∩ Γ (f) = ∅. Thus, Γ (f) \ Γ (f) ⊂
π−1

1 (A), where π1 : X × Y → X denotes the canonical projection. Hence

Γ (f) = Γ (f) \
⋃

a∈A

{a} × (Y \ {f(a)}).

As singletons and other closed subsets of metrizable spaces are Gδ-sets and
A is countable, one readily sees that Γ (f) is a Gδ-set in X × Y .

Lemma 2. Let X, Y be topological spaces, K a closed subset of X and A
a subset of K. Let f : X → Y be a function such that f |X\A is continuous

and f |K is continuous at each point of K \A. Then f is continuous at each

point of X \ A.

Proof. Consider a point x ∈ X\A and an open neighbourhood H of f(x).
If x /∈ K, then f−1(H) \ K is an open neighbourhood of x in X inside
f−1(H). If x ∈ K \A, then x has open neighbourhoods U, V in X such that
U \A ⊂ f−1(H) and V ∩K ⊂ f−1(H). Then U∩V is an open neighbourhood
of x in X inside f−1(H).

Lemma 3. Let X, Y be topological spaces with Y compact. Let f : X → Y
be a function and x0 a point of X such that π−1

1 (x0) ∩ Γ (f) is a singleton.

Then f is continuous at x0.

Proof. Consider an open neighbourhood V of f(x0). Then ({x0} ×
(Y \ V )) ∩ Γ (f) = ∅ and, by compactness of Y \ V , there are open neigh-
bourhoods U of x0 and W of Y \ V such that (U × W ) ∩ Γ (f) = ∅. This
implies f(U) ⊂ V .

Lemma 4. Let d be a metric inducing a Čech-complete topology on a set X.

Let F be a closed subset of X × I such that A = {a ∈ X : |π−1
1 (a) ∩ F | > 1}

is countable. Let E be a subset of π1(F ) that contains A and f : E → I a

function with Γ (f) ⊂ F . Then there is a metric ̺ ≥ d inducing a Čech-

complete topology on X and such that E with the topology induced by ̺ is

homeomorphic to Γ (f), and if S ⊂ (F \ π−1
1 (A)) ∪ Γ (f) and |π2(S)| = 1,

then ̺ = d on π1(S). Furthermore, every ̺-neighbourhood of a point x /∈ A
is also a d-neighbourhood of x.

Proof. Evidently, f can be uniquely extended to π1(F ) so that Γ (f) ⊂ F ,
and we will assume henceforth that f is defined on the whole of π1(F ).
For x ∈ π1(F ) \ A, π−1

1 (x) ∩ Γ (f) is a singleton and, by Lemma 3, f is
continuous at x. As X \ A is a normal space and π1(F ) is a closed subset
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of X, by Tietze’s extension theorem, there is an extension g : X → I of f
such that g|X\A is continuous. By Lemma 2, g is continuous at each point

of X \ A and, by Lemma 1, Γ (g) is Čech-complete. To complete the proof,
we simply identify a point x of X with the point (x, g(x)) of Γ (g), thereby
identifying Y ⊂ X with Γ (g|Y ), and we let ̺ denote the restriction of the
product metric to Γ (g).

Note that for x /∈ A and any open rectangle G×H containing (x, g(x)),
as g is continuous at x, there is a d-neighbourhood U of x inside G∩g−1(H).
Then Γ (g|U ) ⊂ G×H, and this establishes the last assertion of the lemma.

3. Topologies on R2. With regard to the sets P, Q and A defined in the
introduction, note that P ⊂ A, dim A = 1 and dim(R2 \ P) = 0. A rational

arc will mean a non-empty open arc of a rational circle. Observe that Q∩S
is dense in any rational arc S. Also, a point x of P \ Q belongs to a unique
rational circle, which we denote by Sx. For x ∈ Q, we set Sx = {x}.

When considering subsets of R2, A denotes the Euclidean closure of A,
while A

τ
denotes closure with respect to some topology τ on R2. Also, Aτ

denotes A with the relative topology induced by τ and, when no subscript
appears, it will be understood that A carries the euclidean topology. Other
similar conventions will be clear from the context.

We investigate the class GT of all topologies τ on R2 that satisfy the
following conditions.

(1) τ is finer than the euclidean topology on R2.
(2) τ is metrizable and Čech-complete.
(3) Apart from a countable number of exceptional points belonging to

P, the neighbourhoods of all other points are euclidean.
(4) For x ∈ P, a τ -neighbourhood of x in Sx is also a euclidean neigh-

bourhood.

Every member of GT is clearly a separable topology.

Proposition 1. Let τn∈GT for each n∈N. Then τ = supn∈N τn∈GT.

Proof. R2
τ is metrizable and Čech-complete because it is homeomorphic

to the diagonal of the product
∏

n∈N
R2

τn
. The rest follows from the obser-

vation that the sets of the form G1 ∩ · · · ∩ Gn, where Gi ∈ τi, constitute a
base for τ .

Proposition 2. Let τ be the supremum of a set of members of GT.

Then R2
τ is a cosmic space that is the union of countably many subspaces

of R2. Furthermore, Ind Aτ ≤ 2.

Proof. Let {Sn : n ∈ N} be an enumeration of all rational circles. Prop-
erty (4) ensures that each Sn \Q has the euclidean topology with respect to
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any member of GT and, therefore, with respect to τ . Observe that the di-
mension in every sense of these sets is zero. Property (3) shows that (R2\P)τ

has the euclidean topology and hence Ind(R2 \ P)τ = 0. It is now clear that
R2

τ is the union of countably many euclidean subspaces of R2 and thus it
is a cosmic space. Recall that a countable set is zero-dimensional in ev-
ery respect and apply the Urysohn inequality to obtain Ind (Sn)τ ≤ 1 for
each n ∈ N. By the countable sum theorem, Ind Pτ ≤ 1. By the Urysohn
inequality Ind R2

τ ≤ 2. Finally, the subset theorem gives Ind Aτ ≤ 2.

Remark 1. Let K be a proper continuum and consider a point x ∈ K
and an annulus A with centre x that leaves a point of K outside it. Then
K ∩ Z 6= ∅ for any circle Z inside A. Hence K ∩ P is dense in K.

Suppose additionally that x ∈ P and K contains no rational arc. Then
A ∩ Sx is either empty or consists of one or two rational arcs, and there is
an annulus B with centre x inside A such that B∩Sx ⊂ Sx \K. Hence some
rational circle Z inside B contains a point of A ∩ K ∩ P \ Sx.

Let A(z0; r, R) denote the annulus {z ∈ R2 : r < |z − z0| < R}, where
0 < r < R < ∞. A system of annuli for x will mean a sequence {Ax,n}n∈N

of annuli, where Ax,n = A(x; rn, Rn), Rn+1 ≤ rn < Rn and limn→∞ rn = 0.

Remark 2. Let K be a proper continuum that contains no rational
arc (resp. some rational arc S). Let {Ax,n}n∈N be a system of annuli for a
point x of K ∩ P (resp. S ∩ Q). Let Dx be an open disc with centre x. For
some m = m(x) ∈ N, Ax,m lies inside Dx but does not contain the whole
of K (resp. S). By Remark 1, for each n ∈ N, we can pick a point xn in
K ∩ P ∩Ax,m+n \ Sx (resp. in S ∩ Q ∩Ax,m+n \ Sx). Pick an open disc Dxn

with centre xn and Dxn ⊂ Ax,m+n \ Sx. Note that any sequence {zn} with
zn ∈ Dxn converges to x, diamDxn < 1

2 diam Dx and, moreover, we have
the freedom of choosing diamDxn as small as we wish.

If t=(t1, . . . , tn) is an n-tuple, t∧s denotes the (n+1)-tuple (t1, . . . , tn, s).
It is convenient to treat ∅ as a 0-tuple and to identify ∅∧n with n.

Theorem 1. Let A consist of a system of annuli {Ax,n}n∈N for each

point x of a proper continuum K in R2. Then there is a countable subset

D = D(K,A) of K ∩ P and a topology σ = σ(K,A) ∈ GT such that

(i) D is the set of exceptional points of σ.

(ii) For each x ∈ D, there is a fixed sequence {xn}n∈N in D and some

m = m(x) ∈ N with xn ∈ Ax,m+n.

(iii) E = D is a subset K ∩ A homeomorphic to the Cantor set.

(iv) For each x ∈ D, convergence to x in R2 \
⋃

n∈N
Ax,n is equivalent

to σ-convergence to x.

(v) Whenever τ is a perfectly normal topology on R2 refining its usual

topology and such that (α) for each x ∈ D, the fixed sequence {xn}
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converges to x with respect to τ and (β) every countable closed subset

of τ has an isolated point , then IndEσ∨τ > 0.

Proof. Start with a point d = d∅ ∈ K ∩ P and an open disc Dd with
centre d and radius < 1. If K contains some rational arc, fix one such arc S
and pick d in S∩Q. Remark 2 supplies for each i-tuple t of natural numbers
a point dt ∈ K ∩ P and an open disc Dt = Ddt

with centre dt through the
formula ds∧n = (ds)n. We let D = {dt : t an i-tuple of natural numbers}.

According to Remark 2, for each x ∈ D and some integer m = m(x),
Dxn ⊂ Ax,m+n \Sx, and any sequence {zn} with zn ∈ Dxn converges to x. It
can be seen that Dt∧n ⊂ Dt, diamDt < 2−|t|, Dt1 ⊂ Dt2 iff t1 is an extension
of t2, and if neither of t1, t2 is an extension of the other, then Dt1 ∩Dt2 = ∅.
We can further assume that the first |t| points of R2 \ A do not lie in Dt.

For each t ∈ {0, 1}i, i ∈ N, we define a compact subset Et of R2 as
follows:

E0 = {d∅} ∪
∞
⋃

n=2

Dn, E1 = {d1} ∪
∞
⋃

n=1

D(1,n)

and if Et = {ds} ∪
⋃∞

n=m Dds∧n
, then

Et∧0 = {ds} ∪
∞
⋃

n=m+1

Dds∧n
and Et∧1 = {ds∧m} ∪

∞
⋃

n=1

Dds∧m∧n
.

Let E =
⋂

k∈N

⋃

(Et : t ∈ {0, 1}k). From the properties of the discs Dt,
Et1 ⊂ Et2 iff t1 is an extension of t2, and if neither of t1, t2 is an extension
of the other, then Et1 ∩ Et2 = ∅. Note that for the s = s(t) that occurs in
the definition of Et, Et ⊂ Ds(t) and |s(t)| is the number of 1’s in t. Thus,
if t contains n 1’s, then diamEt < 2−n and Et misses the first n points of
R2 \ A. One readily sees that for each (i1, i2, . . .) ∈ {0, 1}N,

⋂

k∈N
E(i1,...,ik)

is a singleton {x}. In fact, x ∈ D ∩ A \ D if (i1, i2, . . .) contains infinitely
many 1’s, otherwise, x ∈ D. Clearly, E = D and E is a subspace of K ∩ A

homeomorphic to the Cantor set.
Starting with Id = I = [0, 1], we define a closed interval Ix = [lx, rx] for

each x ∈ D by

Ixn =

{

[

lx, 1
2(lx + rx)

]

for n odd,
[

1
2(lx + rx), rx

]

for n even.

We next define T to be the closure in R2 × I of
⋃

x∈D{x} × Ix. Because the
first coordinate projection π1 is closed and continuous and π1(T ) contains
D, we must have π1(T ) = D = E.

Let y ∈ E \D. Then there is a unique sequence {nk} of natural numbers
such that {y} =

⋂

k∈N
D(n1,...,nk) =

⋂

k∈N
D(n1,...,nk). Clearly,

⋂

k∈N
Id(n1,...,nk)

consists of a single point f(y), and π−1
1 (y)∩T = {(y, f(y))}. Letting f(x) be
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the mid-point of Ix for x ∈ D, we have a function f : E → I. By Lemma 3,
f is continuous at each point of E \ D.

For x in D, fix an open disc Ox with centre x such that Ox ⊂ Dx, and
define Fx = Ox \

⋃

n∈N
Dxn and

F =
⋃

x∈D

(Fx × {f(x)}) ∪ ({x} × Ix) ∪ Γ (f) =
⋃

x∈D

(Fx × {f(x)}) ∪ T.

Observe that {Fx : x ∈ D} consists of mutually disjoint closed sets and
Fx ∩ E = {x}. Hence {z ∈ R2 : |π−1

1 (z) ∩ F | > 1} = D. Note also that if
z ∈ Dx and (z, s) ∈ F \ T , then either z ∈ Fx or z ∈ Dxn for some n ∈ N,
and hence s ∈ Ix.

To prove that F is a closed subset of R2×I, consider a sequence {(zn, sn)}
of distinct points of F \ T that converges in R2 × I to a point (z, s). The
following three cases may arise.

1. For some x ∈ D, Fx × {f(x)} contains infinitely many terms of the
sequence, in which case it also contains (z, s).

2. For some x ∈ D, there are strictly increasing sequences {mk} and
{nk} of positive integers such that zmk ∈ Dxnk

. In this case, z = x,
smk ∈ Ixnk

⊂ Ix, and hence s ∈ Ix.
3. There are sequences {mk} and {nk} of positive integers such that

{mk} is strictly increasing and zmk ∈ Dd(n1,...,nk)
. In this case, z =

limk→∞ d(n1,...,nk) ∈ E \D. Also, smk ∈ Id(n1,...,nk)
and s is the unique

point in the intersection of these segments, i.e., f(z). Thus, (z, s) ∈
Γ (f).

In any case, (z, s) ∈ F , and therefore F is a closed subset of R2 × I.
Now we apply Lemma 4, taking X to be R2, d its usual metric and

A = D. The metric ̺ supplied by Lemma 4 induces a topology σ on R2 that is
Čech-complete and finer than the usual one, and every σ-neighbourhood of a
point outside D is euclidean. For x ∈ D, observe that ̺ = d on Ox\

⋃

n∈N
Dxn

and recall that Dxn ⊂ Ax,m+n \Sx for some integer m. Therefore in Sx every
σ-neighbourhood of x is a euclidean neighbourhood, and convergence to x
with respect to σ in R2\

⋃

n∈N
Ax,n is equivalent to convergence with respect

to d. Thus, σ = σ(K,A) ∈ GT and items (i)–(iv) of Theorem 1 are satisfied.
Let τ be a topology on R2 satisfying the conditions of (v). By Lemma 4,

Eσ is homeomorphic to Γ (f) as a subspace of R2 × I and, because τ is finer
than the euclidean topology on R2, Eσ∨τ is homeomorphic to Γ (f) as a
subspace of R2

τ × I, which henceforth we denote by Γ . Note that, because τ
is perfectly normal, R2

τ × I is perfectly normal.
Suppose IndΓ ≤ 0. Then there exist two disjoint open sets U, V of R2

τ ×I

such that (d, f(d)) ∈ U , (d, 1) ∈ V and Γ ⊂ U ∪ V . Let A = T \ U ∪ V .
Consider the set B consisting of all points y ∈ D such that one of the
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points (y, ly), (y, ry) belongs to the member of {U, V } that does not contain
(y, f(y)). Evidently, d ∈ B ⊂ π1(A) ⊂ D, and π1(A) is a countable closed
subset of R2

τ . Property (β) of τ implies that B
τ

and hence B contains an
isolated point b.

Let G be a τ -neighbourhood of b. We may suppose without loss of gen-
erality that (b, f(b)) ∈ U and (b, rb) ∈ V . Observe that Ib2n

= [lb2n
, rb2n

] =
[f(b), rb] and, by property (α), the sequence {b2n} τ -converges to b. Hence
{(b2n, lb2n

)} and {(b2n, rb2n
)} converge respectively to (b, f(b)) and (b, rb) in

R2
τ × I. Hence, for some m ∈ N, (b2m, lb2m

) ∈ U ∩ π−1
1 (G) and (b2m, rb2m

) ∈
V ∩ π−1

1 (G). As the point (b2m, f(b2m)) of Γ belongs to one of U, V , it is
clear that b2m ∈ G ∩ B, contradicting the fact that b is an isolated point
of B. It follows that IndΓ > 0, which concludes the proof of Theorem 1.

The proof of dimΓ > 0 is essentially due to Kuratowski (cf. [6], Problem
1.2.E of [5] and Proposition 2.1 of [3]).

4. A cosmic space with dim < ind. The set N has a family of almost
disjoint infinite subsets of cardinality |2N|. Let {Nα : α < |2N|} be such a
family and write Nα = {α1, α2, . . .}, where αi < αi+1. For each x ∈ R2, n ∈
N and α < |2N|, let Aα

x,n = {z ∈ R2 : 1/(αn + 1) < |z − x| < 1/αn}. The
important property of the annuli just defined is that

(∗) for all α 6= β, there is some integer k = k(α, β) such that Aα
x,m ∩

Aβ
x,n = ∅ for m > k and all n.

Let {Kα : α < |2N|} be an enumeration of the proper continua in R2. For
each α < |2N|, let Aα consist of the system of annuli {Aα

x,n} for each point x
of Kα. Taking K = Kα and A = Aα in Theorem 1, we obtain subsets
Dα = D(Kα,Aα) of Kα ∩ P and Eα = Dα of Kα ∩ A and a topology
σα = σ(Kα,Aα) ∈ GT. We define τ = sup{σα : α < |2N|} and τα =
sup{σβ : β 6= α}.

By Proposition 2, τ and each τα, as well as any restriction of them to a
subset of R2, is the union of a countable number of euclidean subspaces of
R2 and is therefore cosmic. Now τ is Lindelöf and every open set of it is the
countable union of members of topologies of the form σα1 ∨· · ·∨σαk

. Hence,
given a countable number of open sets Gi and a countable number of closed
sets Fi of τ , there are α1, α2, . . . < |2N| such that each Gi is open and each
Fi is closed in sup{σαi

}, which, by Proposition 1, as a member of GT is
separable metrizable and Čech-complete. One consequence of this is that R2

τ

is a Baire space and, therefore, any countable closed subset of it contains an
isolated point. Another consequence is that the euclidean interior, intG, of
a τ -open subset G of R2 is obtained from G by subtracting only a countable
number of points. Evidently, each R2

τα
has similar properties.
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Lemma 5. IndEα
τ > 0.

Proof. For x ∈ Dα, Theorem 1 supplies a fixed sequence of points xα
n

of Dα and an integer m such that xα
n ∈ Aα

x,m+n. Now by (∗), for β 6= α,

a tail of the sequence {xα
n} lies outside

⋃

n∈N
Aβ

x,n. By Theorem 1(iv), this
implies that {xα

n} converges to x with respect to σβ, and hence with respect
to τα = sup{σβ : β 6= α}. Now the result follows from Theorem 1(v), since
τ = σα ∨ τα.

Proposition 3. Ind Aτ = 2.

Proof. Let Br denote the open disc with centre 0 and radius r. Suppose
Ind Aτ ≤ 1. Then there are disjoint τ -open sets U1, U2 of A such that A ∩
B2 ⊂ U1, A \ B3 ⊂ U2 and IndLτ ≤ 0, where L = A \ U1 ∪ U2. Let
M = R2 \ intV1∪ intV2, where Vi is the largest τ -open set of R2 whose trace
on the dense set A is Ui. Then M \L is countable and, by the countable sum
theorem, Ind(M ∩ A)τ ≤ 0. Also, B2 ⊂ V1, R2 \ B3 ⊂ V2 and V1 ∩ V2 = ∅.
Thus, the compact set M is a partition in R2 between B1 and R2 \ B4.
Hence dimM > 0, M contains a proper continuum and, for some α < |2N|,
Kα ⊂ M . But then Eα is a τ -closed subset of Kα ∩ A and, in view of
Lemma 5, M ∩ A has positive inductive dimension with respect to τ . This
shows that Ind Aτ > 1. Finally, by Proposition 2, Ind Aτ = 2.

Lemma 6. Let σ = σα1 ∨ · · · ∨ σαk
. Then dim Aσ ≤ 1.

Proof. Let D = Dα1 ∪ · · · ∪ Dαk and E = Eα1 ∪ · · · ∪ Eαk . As D is
countable, dimD ≤ 0. As (Eαi \ D)σ is a subspace of the Cantor set Eαi ,
it has dim ≤ 0. By the Urysohn inequality, dim (Eαi)σ ≤ 1. Observe that
(A \E)σ = A \E can be written as a countable union of closed subsets of A

with dim ≤ dimA ≤ 1. Finally, by the countable sum theorem, dim Aσ ≤ 1.

Proposition 4. dim Aτ = 1.

Proof. The sets of the form G1 ∩ · · · ∩ Gn, where Gi ∈ σαi
, constitute

a base for τ . It follows that the Lindelöf space Aτ is the limit space of the
inverse limit system over the set of finite subsets of 2N, directed by inclu-
sion, whose bonding maps are the identity functions Aσα1∨···∨σαm∨···∨σαn

→
Aσα1∨···∨σαm

. By Lemma 6, each Aσα1∨···∨σαm
has dim ≤ 1. Now the inverse

limit theorem for dim, which holds when the limit space is Lindelöf (see e.g.
Proposition 1 in [2]), gives dim Aτ ≤ 1. As dim ≤ 0 implies Ind ≤ 0, in view
of Proposition 3, we must have dim Aτ = 1.

Acknowledgements. The first version of the present paper, which was
submitted to Fundamenta Mathematicae on 1 October 2005, assumed CH.
This version went through a number of revisions in order to correct minor
mistakes and improve presentation, and we are grateful for the referee’s
patience and remarks. The first version without CH was sent to the Editors
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on 18 February 2006, following our observation that the use of CH, which in
the original version was restricted to the construction of annuli with property
(∗), could be trivially avoided.

The reader should note that, independently, A. Dow and K. P. Hart have
described under the assumption of Martin’s Axiom a cosmic space X with
dimX = 1 < 2 ≤ IndX; this was unknown to us before submission. Two
versions of their preprint Cosmic dimensions, dated 5 Sep 2005 and 15 Nov
2005, respectively, appear at http://arxiv.org/abs/math/0509097.
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