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Measurable cardinals and fundamental groups
of compact spaces

by

Adam Przezdziecki (Warszawa)

Abstract. We prove that all groups can be realized as fundamental groups of compact
spaces if and only if no measurable cardinals exist. If the cardinality of a group G is
nonmeasurable then the compact space K such that G = 71 K may be chosen so that it
is path connected.

We construct a group whose cardinality equals the least measurable car-
dinal and which cannot be realized as the fundamental group of a compact
Hausdorff space (Theorem 4.2). Since Keesling and Rudyak proved [6] that
every group of smaller cardinality is the fundamental group of some compact
space, we see that the negation of the large cardinal axiom about existence
of measurable cardinals is equivalent to the statement that all groups can be
obtained as fundamental groups of compact spaces. The last section gives
an affirmative answer to the question, asked in [6], whether each group of
nonmeasurable cardinality is the fundamental group of a path connected
compact space.

All spaces considered below are completely regular, I is the closed interval
[0,1] and S! is a circle. If X is a space then we denote its Stone—Cech com-
pactification by X and its Hewitt realcompactification by v X. If f : X — YV
is a map then f denotes the induced map between the compactifications:
86X — BY or vX — vY.

A cardinal k is measurable if it admits a countably complete ultrafilter
which is not fixed [4]. The least measurable cardinal is denoted by m and the
same symbol is used to denote the least ordinal and the discrete space of
cardinality m. Note that m is also the least measurable cardinal in the more
restrictive sense [5, after 2.7] of admitting an m-complete ultrafilter.
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REMARK 0.1. The set vm \ m is nonempty.

1. m-limits. In this section we introduce A-limits (|3, §42|, [7]) and prove
Proposition 1.2 which states that if G is the fundamental group of a com-
pact space then G admits m-limits. Additionally such limits commute with
homomorphisms induced by maps between compact spaces.

LEMMA 1.1. If Y is a locally compact, realcompact space of nonmeasur-

able cardinality, then v(Y x X) =Y x vX for all X.
Proof. See [1, Corollary 2.2]. =

In this paper, Lemma 1.1 is applied for Y compact.
Let A be an ordinal number. We say that a A-limit is defined on a group
G if to each A-sequence (a,) in G there is assigned an element a € G,
denoted by
a=limar,
subject to the following postulates:

(i) lim(a, - b;) = lima; - limb,,
(ii) lima; = a if a; = a for all 7 < A,
(iii) lima, = limb; if a; = b; for 7 > 79 with some fixed 79 < A.

Note that every A-limit is a group homomorphism lim : G* — G. Our
definition of a A-limit is a direct generalization to nonabelian groups of the
definition found in [3, §42] and [7].

PROPOSITION 1.2. For every point s € vm \ m there is an m-limit limg
defined on fundamental groups of compact spaces.

Proof. Let K be a compact space. Given an m-sequence (a,) in m K we
choose representatives S' x {7} = S! — K of a, for 7 < m and obtain a
map a : S! x m — K. It induces a map v(S! x m) — K which, by Lemma
1.1, is a map S' x vm — K. We restrict it to obtain a map

a:S'=8"x{s} - K

which represents an element of w1 K. Two different representatives of the
elements a, are connected by based homotopies, that is, maps S' x I /{*} x T
— K. Again by Lemma 1.1 and compactness of S' x I'/{*} x I, these maps
produce a based homotopy between the respective a’s. Hence we have a
well defined map limg which sends a sequence (a;) to an element of m K
represented by «.

Verification of properties (i)-(iii) is straightforward. =

REMARK 1.3. The limits described in Proposition 1.2 commute with
homomorphisms induced by continuous maps, that is, if f : K — L is a map
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between compact spaces then
hsm fular) = f#(lign ar)

for each m-sequence (a;) in m K.

2. Equal m-limits. In this section we prove (Proposition 2.2) that the
fundamental group of a compact space which has a measurable cardinality
admits nontrivial instances of equal m-limits.

LEMMA 2.1. Let D be a discrete space. For any point so € vD \ D there

is a discrete space X and functions a,b: X — D and an s € vX \ X such
that a(x) # b(x) for each v € X but a(s) = b(s) = so.

Proof. Let A ={(d,d) |d € D} and X = D x D\ A. Since the closure
of {d} x (D\ {d}) in vD x vD is {d} x (vD \ {d}) we see that the closure
of X is vD x vD \ A4, in particular for each sy € vD \ D the point (s, sp)
is in the closure of X. We can define the functions a and b as the inclusion
X — D x D composed with the standard projections. =

ProposITION 2.2. If K is a compact space and the cardinality of G =
m1 K is measurable then there exist m-sequences (ar) and (by) in G and an
s € vm\ m such that a; # by for all T < m but limg a; = limg b,.

Additionally we may fix any two distinct elements ¢ and d in G and
require that for each T < m the sets {a,,b;} and {c,d} are disjoint.

Proof. Let D C G be a subset of cardinality m, disjoint from {c, d}. We
represent the elements of D by a map S! x D — K where D is treated as a
discrete space. This leads to the following sequence of maps:

(2.3) S'xuvm — S'xv(Dx D) — S'xvD xvD — S'x S' xvD xvD
= v(S' x D) x v(S* x D) - K x K.

The first map is the identity on S' times the Hewitt realcompactification
applied to the map in Lemma 2.1 with X = m. The second map is induced
by a realcompactification of the inclusion D x D — vD x vD, and the
third one by the diagonal S' — S x S!. The equality is induced by the
homeomorphism described in Lemma 1.1. The last map is the product of
two copies of the realcompactification of the map S' x D — K.

We choose an s € vm \ m as in Lemma 2.1. The composition (2.3) re-
stricted to S x {7} represents a pair (a,,b,) for some distinct a, and b,
in G. Restriction of (2.3) to S! x {s} represents (limy a.,lim b;). Since the
image of s in vD x vD is (sg, S9) we see that limga, = limgb,. m

3. Examples. In this section we construct groups of measurable cardi-
nality which cannot be realized as fundamental groups of compact spaces.
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Proposition 3.2 describes the abelian case while Proposition 3.1 gives a some-
what stronger result in the nonabelian case.

Let V' = F3[m] be an Fy vector space whose basis is m. Let G(V') be
the subgroup of the automorphism group of V' generated by automorphisms
induced by those permutations of m which fix all but finitely many elements
of m. Let G be a semidirect product V' x G(V'). Note that the cardinality of
G is m.

ProprosITION 3.1. If K is a compact space then G is not isomorphic to
a subgroup of m K.

Proof. Suppose to the contrary that we have G C 7 K, up to isomor-
phism. We fix two constant m-sequences (¢) and (d) in m such that ¢ # d.
By Proposition 2.2 we have two m-sequences (a;) and (b;) in m and an
s € vm \ m such that for each 7 < m the elements a,, b;, ¢ and d are
pairwise distinct but limsa; = limgb;. Let g, € G(V) C G be those ele-
ments which induce by conjugation a cyclic permutation of (a,,b;,c,d). If
g = limg g, then properties (i) and (ii) of limy imply that g induces a cyclic
permutation of (limg a,,limgb;, ¢, d). Since limg a, = limg b, this is possible
only when all the elements of this quadruple are equal. Since ¢ # d we have
a contradiction. m

The group G in Proposition 3.1 cannot be abelian since any abelian group
can be embedded in a product of copies of Q and Q/Z. Since the cardinalities
of Q and Q/Z are nonmeasurable Corollary 4 in [6] implies that they are the
fundamental groups of some compact spaces, hence so are their products.
Still, we have the following.

PROPOSITION 3.2. There ezists an abelian group A which is not isomor-
phic to m1 K for any compact K.

Proof. Proposition 3.1 in [8] says that there exists an abelian group con-
taining a subgroup A which is m-pure but not m™-pure (m* denotes the
successor cardinal of m).

Suppose that A = m K for some compact space K. By Proposition 1.2
we have an m-limit defined on A. Proposition 5.4 in [8] says that if A admits
m-limits then A is m™-pure in any group containing it as an m-pure subgroup.
We have obtained a contradiction. =

As an immediate corollary of Proposition 3.1 or Proposition 3.2 we ob-
tain:

THEOREM 3.3. The following statements are equivalent:

(i) There exists a measurable cardinal.

(ii) There exists a group which cannot be realized as the fundamental
group of a compact space.



Measurable cardinals and fundamental groups 91

The following class of groups has been communicated to the author by
Eda [2]. Let G = (I | R) be a group with generators I and relations R. Each
element of R is a finite word on letters ¢ and i~! where i € I. Suppose that

(%) For each i € I the cardinality of the subset
R;={R€E€R|iori!appearsin R}
is nonmeasurable.

PrOPOSITION 3.4. FEach group G as above is the fundamental group of
a compact space.

Proof. Let ~ be the least equivalence relation on I such that i ~ k if
there is a word R € R which contains i or i~! and k or k~!. Condition (x)
implies that the equivalence classes of ~ are nonmeasurable hence G is a
free product of nonmeasurable groups G; where j runs through the set J of
equivalence classes of relation ~.

By Corollary 4 in [6] there are compact spaces K; such that G; = m1 K.
Fix a cardinal x and embeddings f; : K; — I" such that each f; takes
the base point to the constant sequence (1/2) and its range is contained in
[1/2,1]%. Let J®* = JU{oo} be the one-point compactification of J considered
as a discrete space. The subspace of I® x J*/{(0)} x J® which is the union
of I" x {oco} and the images of the maps f; and the intervals [(0), (1/2)] is
compact and its fundamental group is a free product of the groups G, hence
is isomorphic to G. =

4. Path connected compact spaces

LeEMMA 4.1. If X is a path connected paracompact space of nonmeasur-
able cardinality then the path components of X are of the form X and {x}
forxz e fX \ X.

Proof. Theorem 3 in [6] states that X is a path component of 53X, hence
if a path o : I — (X is such that a(0) € 5X \ X then the whole image of «
is contained in X \ X. By Theorem 2 in [6] this path has to be constant. m

THEOREM 4.2. Any group G of nonmeasurable cardinality is the funda-
mental group of a path connected compact space Z.

Proof. Let K be a CW-complex of nonmeasurable cardinality whose fun-
damental group is G. Let Ky = SK and fy: D — Ky be a map from a dis-
crete space D to K such that for each path component P of K there is ex-
actly one d € D with fo(d) € P. Let C(fo) be the mapping cone of fy. We de-
fine K1 = BC(fo). We repeat this process inductively and obtain a sequence
K,,n=0,1,2,..., of compact spaces and inclusions i,, : K, — K, 1.

By Lemma 4.1 we see that G = m Ky and G = 71C(fp). Since K is a
compact C*-embedded subspace of C(fy) we see that SC(fy)/Ko is homeo-
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morphic to 3(C(fo)/Ko). Since C(fp)/Kp is a path connected paracompact
space Lemma 4.1 implies that for each z € K; \ C(fp) the path component
of z in K is {z}, hence m K1 = mC(fy). By repeating the above argument
for each n = 0,1,2,... we see that the inclusions i, : K, — K,4+1 induce
isomorphisms of the fundamental groups and i, (k) is contained in a path
component of K.

Let T" be the telescope of the chain of maps i,, that is, the space

(1T Ko % 1)/, 1) ~ (inf).0)
n=0

where z,, runs over points in K,,. The telescope T is path connected and
its fundamental group is the colimit of 7 K,,, which is G. Since T is locally
compact we can take its one-point compactification 7* = T U {occ}. Let
i : T < T* be the inclusion. Let p : T — [0,00) be a map which sends
(p,t) € K x T ton+t. Let g: T — I be defined as g(x) = sin? p(z). Let

T be the closure of the image of the map ¢ x g : T' — T x I. Since for any
positive integer n the space p~1([0,n]) is compact we see that T has exactly
two path connected components: p~1([0,00)) which is homeomorphic to T
and the interval at infinity {oco} x I. The mapping cone of h : {0,1} — T
which sends 0 to 1" and 1 to the interval at infinity is compact and path
connected, and has the fundamental group isomorphic to G. u
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