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Measurable 
ardinals and fundamental groupsof 
ompa
t spa
esbyAdam Prze¹dzie
ki (Warszawa)
Abstra
t. We prove that all groups 
an be realized as fundamental groups of 
ompa
tspa
es if and only if no measurable 
ardinals exist. If the 
ardinality of a group G isnonmeasurable then the 
ompa
t spa
e K su
h that G = π1K may be 
hosen so that itis path 
onne
ted.We 
onstru
t a group whose 
ardinality equals the least measurable 
ar-dinal and whi
h 
annot be realized as the fundamental group of a 
ompa
tHausdor� spa
e (Theorem 4.2). Sin
e Keesling and Rudyak proved [6℄ thatevery group of smaller 
ardinality is the fundamental group of some 
ompa
tspa
e, we see that the negation of the large 
ardinal axiom about existen
eof measurable 
ardinals is equivalent to the statement that all groups 
an beobtained as fundamental groups of 
ompa
t spa
es. The last se
tion givesan a�rmative answer to the question, asked in [6℄, whether ea
h group ofnonmeasurable 
ardinality is the fundamental group of a path 
onne
ted
ompa
t spa
e.All spa
es 
onsidered below are 
ompletely regular, I is the 
losed interval

[0, 1] and S1 is a 
ir
le. If X is a spa
e then we denote its Stone��e
h 
om-pa
ti�
ation by βX and its Hewitt real
ompa
ti�
ation by υX. If f : X → Yis a map then f denotes the indu
ed map between the 
ompa
ti�
ations:
βX → βY or υX → υY .A 
ardinal κ is measurable if it admits a 
ountably 
omplete ultra�lterwhi
h is not �xed [4℄. The least measurable 
ardinal is denoted by m and thesame symbol is used to denote the least ordinal and the dis
rete spa
e of
ardinality m. Note that m is also the least measurable 
ardinal in the morerestri
tive sense [5, after 2.7℄ of admitting an m-
omplete ultra�lter.
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88 A. Prze¹dzie
kiRemark 0.1. The set υm \ m is nonempty.1. m-limits. In this se
tion we introdu
e λ-limits ([3, �42℄, [7℄) and proveProposition 1.2 whi
h states that if G is the fundamental group of a 
om-pa
t spa
e then G admits m-limits. Additionally su
h limits 
ommute withhomomorphisms indu
ed by maps between 
ompa
t spa
es.Lemma 1.1. If Y is a lo
ally 
ompa
t , real
ompa
t spa
e of nonmeasur-able 
ardinality , then υ(Y × X) = Y × υX for all X.Proof. See [1, Corollary 2.2℄.In this paper, Lemma 1.1 is applied for Y 
ompa
t.Let λ be an ordinal number. We say that a λ-limit is de�ned on a group
G if to ea
h λ-sequen
e (aτ ) in G there is assigned an element a ∈ G,denoted by

a = lim aτ ,subje
t to the following postulates:(i) lim(aτ · bτ ) = lim aτ · lim bτ ,(ii) lim aτ = a if aτ = a for all τ < λ,(iii) lim aτ = lim bτ if aτ = bτ for τ > τ0 with some �xed τ0 < λ.Note that every λ-limit is a group homomorphism lim : Gλ → G. Ourde�nition of a λ-limit is a dire
t generalization to nonabelian groups of thede�nition found in [3, �42℄ and [7℄.Proposition 1.2. For every point s ∈ υm \ m there is an m-limit limsde�ned on fundamental groups of 
ompa
t spa
es.Proof. Let K be a 
ompa
t spa
e. Given an m-sequen
e (aτ ) in π1K we
hoose representatives S1 × {τ} = S1 → K of aτ for τ < m and obtain amap a : S1 × m → K. It indu
es a map υ(S1 × m) → K whi
h, by Lemma1.1, is a map S1 × υm → K. We restri
t it to obtain a map
α : S1 = S1 × {s} → Kwhi
h represents an element of π1K. Two di�erent representatives of theelements aτ are 
onne
ted by based homotopies, that is, maps S1×I/{∗}×I

→ K. Again by Lemma 1.1 and 
ompa
tness of S1 × I/{∗} × I, these mapsprodu
e a based homotopy between the respe
tive α's. Hen
e we have awell de�ned map lims whi
h sends a sequen
e (aτ ) to an element of π1Krepresented by α.Veri�
ation of properties (i)�(iii) is straightforward.Remark 1.3. The limits des
ribed in Proposition 1.2 
ommute withhomomorphisms indu
ed by 
ontinuous maps, that is, if f : K → L is a map
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ompa
t spa
es then
lim

s
f#(aτ ) = f#(lim

s
aτ )for ea
h m-sequen
e (aτ ) in π1K.2. Equal m-limits. In this se
tion we prove (Proposition 2.2) that thefundamental group of a 
ompa
t spa
e whi
h has a measurable 
ardinalityadmits nontrivial instan
es of equal m-limits.Lemma 2.1. Let D be a dis
rete spa
e. For any point s0 ∈ υD \D thereis a dis
rete spa
e X and fun
tions a, b : X → D and an s ∈ υX \ X su
hthat a(x) 6= b(x) for ea
h x ∈ X but a(s) = b(s) = s0.Proof. Let ∆ = {(d, d) | d ∈ D} and X = D × D \ ∆. Sin
e the 
losureof {d} × (D \ {d}) in υD × υD is {d} × (υD \ {d}) we see that the 
losureof X is υD × υD \ ∆, in parti
ular for ea
h s0 ∈ υD \ D the point (s0, s0)is in the 
losure of X. We 
an de�ne the fun
tions a and b as the in
lusion

X → D × D 
omposed with the standard proje
tions.Proposition 2.2. If K is a 
ompa
t spa
e and the 
ardinality of G =
π1K is measurable then there exist m-sequen
es (aτ ) and (bτ ) in G and an
s ∈ υm \ m su
h that aτ 6= bτ for all τ < m but lims aτ = lims bτ .Additionally we may �x any two distin
t elements c and d in G andrequire that for ea
h τ < m the sets {aτ , bτ} and {c, d} are disjoint.Proof. Let D ⊆ G be a subset of 
ardinality m, disjoint from {c, d}. Werepresent the elements of D by a map S1 ×D → K where D is treated as adis
rete spa
e. This leads to the following sequen
e of maps:
(2.3) S1 × υm → S1 × υ(D×D) → S1 × υD × υD → S1 ×S1 × υD × υD

= υ(S1 × D) × υ(S1 × D) → K × K.The �rst map is the identity on S1 times the Hewitt real
ompa
ti�
ationapplied to the map in Lemma 2.1 with X = m. The se
ond map is indu
edby a real
ompa
ti�
ation of the in
lusion D × D → υD × υD, and thethird one by the diagonal S1 → S1 × S1. The equality is indu
ed by thehomeomorphism des
ribed in Lemma 1.1. The last map is the produ
t oftwo 
opies of the real
ompa
ti�
ation of the map S1 × D → K.We 
hoose an s ∈ υm \ m as in Lemma 2.1. The 
omposition (2.3) re-stri
ted to S1 × {τ} represents a pair (aτ , bτ ) for some distin
t aτ and bτin G. Restri
tion of (2.3) to S1 × {s} represents (lims aτ , lims bτ ). Sin
e theimage of s in υD × υD is (s0, s0) we see that lims aτ = lims bτ .3. Examples. In this se
tion we 
onstru
t groups of measurable 
ardi-nality whi
h 
annot be realized as fundamental groups of 
ompa
t spa
es.



90 A. Prze¹dzie
kiProposition 3.2 des
ribes the abelian 
ase while Proposition 3.1 gives a some-what stronger result in the nonabelian 
ase.Let V = F2[m] be an F2 ve
tor spa
e whose basis is m. Let G(V ) bethe subgroup of the automorphism group of V generated by automorphismsindu
ed by those permutations of m whi
h �x all but �nitely many elementsof m. Let G be a semidire
t produ
t V ⋊ G(V ). Note that the 
ardinality of
G is m.Proposition 3.1. If K is a 
ompa
t spa
e then G is not isomorphi
 toa subgroup of π1K.Proof. Suppose to the 
ontrary that we have G ⊆ π1K, up to isomor-phism. We �x two 
onstant m-sequen
es (c) and (d) in m su
h that c 6= d.By Proposition 2.2 we have two m-sequen
es (aτ ) and (bτ ) in m and an
s ∈ υm \ m su
h that for ea
h τ < m the elements aτ , bτ , c and d arepairwise distin
t but lims aτ = lims bτ . Let gτ ∈ G(V ) ⊆ G be those ele-ments whi
h indu
e by 
onjugation a 
y
li
 permutation of (aτ , bτ , c, d). If
g = lims gτ then properties (i) and (ii) of lims imply that g indu
es a 
y
li
permutation of (lims aτ , lims bτ , c, d). Sin
e lims aτ = lims bτ this is possibleonly when all the elements of this quadruple are equal. Sin
e c 6= d we havea 
ontradi
tion.The group G in Proposition 3.1 
annot be abelian sin
e any abelian group
an be embedded in a produ
t of 
opies of Q and Q/Z. Sin
e the 
ardinalitiesof Q and Q/Z are nonmeasurable Corollary 4 in [6℄ implies that they are thefundamental groups of some 
ompa
t spa
es, hen
e so are their produ
ts.Still, we have the following.Proposition 3.2. There exists an abelian group A whi
h is not isomor-phi
 to π1K for any 
ompa
t K.Proof. Proposition 3.1 in [8℄ says that there exists an abelian group 
on-taining a subgroup A whi
h is m-pure but not m

+-pure (m+ denotes thesu

essor 
ardinal of m).Suppose that A = π1K for some 
ompa
t spa
e K. By Proposition 1.2we have an m-limit de�ned on A. Proposition 5.4 in [8℄ says that if A admits
m-limits then A is m

+-pure in any group 
ontaining it as an m-pure subgroup.We have obtained a 
ontradi
tion.As an immediate 
orollary of Proposition 3.1 or Proposition 3.2 we ob-tain:Theorem 3.3. The following statements are equivalent :(i) There exists a measurable 
ardinal.(ii) There exists a group whi
h 
annot be realized as the fundamentalgroup of a 
ompa
t spa
e.



Measurable 
ardinals and fundamental groups 91The following 
lass of groups has been 
ommuni
ated to the author byEda [2℄. Let G = 〈I | R〉 be a group with generators I and relations R. Ea
helement of R is a �nite word on letters i and i−1 where i ∈ I. Suppose that
(∗) For ea
h i ∈ I the 
ardinality of the subset

Ri = {R ∈ R | i or i−1 appears in R}is nonmeasurable.Proposition 3.4. Ea
h group G as above is the fundamental group ofa 
ompa
t spa
e.Proof. Let ∼ be the least equivalen
e relation on I su
h that i ∼ k ifthere is a word R ∈ R whi
h 
ontains i or i−1 and k or k−1. Condition (∗)implies that the equivalen
e 
lasses of ∼ are nonmeasurable hen
e G is afree produ
t of nonmeasurable groups Gj where j runs through the set J ofequivalen
e 
lasses of relation ∼.By Corollary 4 in [6℄ there are 
ompa
t spa
es Kj su
h that Gj = π1Kj .Fix a 
ardinal κ and embeddings fj : Kj → Iκ su
h that ea
h fj takesthe base point to the 
onstant sequen
e (1/2) and its range is 
ontained in
[1/2, 1]κ. Let J• = J∪{∞} be the one-point 
ompa
ti�
ation of J 
onsideredas a dis
rete spa
e. The subspa
e of Iκ × J•/{(0)} × J• whi
h is the unionof Iκ × {∞} and the images of the maps fj and the intervals [(0), (1/2)] is
ompa
t and its fundamental group is a free produ
t of the groups Gj , hen
eis isomorphi
 to G.4. Path 
onne
ted 
ompa
t spa
esLemma 4.1. If X is a path 
onne
ted para
ompa
t spa
e of nonmeasur-able 
ardinality then the path 
omponents of βX are of the form X and {x}for x ∈ βX \ X.Proof. Theorem 3 in [6℄ states that X is a path 
omponent of βX, hen
eif a path α : I → βX is su
h that α(0) ∈ βX \X then the whole image of αis 
ontained in βX \X. By Theorem 2 in [6℄ this path has to be 
onstant.Theorem 4.2. Any group G of nonmeasurable 
ardinality is the funda-mental group of a path 
onne
ted 
ompa
t spa
e Z.Proof. Let K be a CW-
omplex of nonmeasurable 
ardinality whose fun-damental group is G. Let K0 = βK and f0 : D → K0 be a map from a dis-
rete spa
e D to K0 su
h that for ea
h path 
omponent P of K0 there is ex-a
tly one d ∈ D with f0(d) ∈ P . Let C(f0) be the mapping 
one of f0. We de-�ne K1 = βC(f0). We repeat this pro
ess indu
tively and obtain a sequen
e
Kn, n = 0, 1, 2, . . . , of 
ompa
t spa
es and in
lusions in : Kn →֒ Kn+1.By Lemma 4.1 we see that G = π1K0 and G = π1C(f0). Sin
e K0 is a
ompa
t C∗-embedded subspa
e of C(f0) we see that βC(f0)/K0 is homeo-
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kimorphi
 to β(C(f0)/K0). Sin
e C(f0)/K0 is a path 
onne
ted para
ompa
tspa
e Lemma 4.1 implies that for ea
h x ∈ K1 \ C(f0) the path 
omponentof x in K1 is {x}, hen
e π1K1 = π1C(f0). By repeating the above argumentfor ea
h n = 0, 1, 2, . . . we see that the in
lusions in : Kn → Kn+1 indu
eisomorphisms of the fundamental groups and in(Kn) is 
ontained in a path
omponent of Kn+1.Let T be the teles
ope of the 
hain of maps in, that is, the spa
e
(

∞
∐

n=0

Kn × I
)

/(xn, 1) ∼ (in(xn), 0)where xn runs over points in Kn. The teles
ope T is path 
onne
ted andits fundamental group is the 
olimit of π1Kn, whi
h is G. Sin
e T is lo
ally
ompa
t we 
an take its one-point 
ompa
ti�
ation T • = T ∪ {∞}. Let
i : T →֒ T • be the in
lusion. Let p : T → [0,∞) be a map whi
h sends
(xn, t) ∈ Kn × I to n + t. Let g : T → I be de�ned as g(x) = sin2 p(x). Let
T be the 
losure of the image of the map i × g : T → T • × I. Sin
e for anypositive integer n the spa
e p−1([0, n]) is 
ompa
t we see that T has exa
tlytwo path 
onne
ted 
omponents: p−1([0,∞)) whi
h is homeomorphi
 to Tand the interval at in�nity {∞} × I. The mapping 
one of h : {0, 1} → Twhi
h sends 0 to T and 1 to the interval at in�nity is 
ompa
t and path
onne
ted, and has the fundamental group isomorphi
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