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Measurable ardinals and fundamental groupsof ompat spaesbyAdam Prze¹dzieki (Warszawa)
Abstrat. We prove that all groups an be realized as fundamental groups of ompatspaes if and only if no measurable ardinals exist. If the ardinality of a group G isnonmeasurable then the ompat spae K suh that G = π1K may be hosen so that itis path onneted.We onstrut a group whose ardinality equals the least measurable ar-dinal and whih annot be realized as the fundamental group of a ompatHausdor� spae (Theorem 4.2). Sine Keesling and Rudyak proved [6℄ thatevery group of smaller ardinality is the fundamental group of some ompatspae, we see that the negation of the large ardinal axiom about existeneof measurable ardinals is equivalent to the statement that all groups an beobtained as fundamental groups of ompat spaes. The last setion givesan a�rmative answer to the question, asked in [6℄, whether eah group ofnonmeasurable ardinality is the fundamental group of a path onnetedompat spae.All spaes onsidered below are ompletely regular, I is the losed interval

[0, 1] and S1 is a irle. If X is a spae then we denote its Stone��eh om-pati�ation by βX and its Hewitt realompati�ation by υX. If f : X → Yis a map then f denotes the indued map between the ompati�ations:
βX → βY or υX → υY .A ardinal κ is measurable if it admits a ountably omplete ultra�lterwhih is not �xed [4℄. The least measurable ardinal is denoted by m and thesame symbol is used to denote the least ordinal and the disrete spae ofardinality m. Note that m is also the least measurable ardinal in the morerestritive sense [5, after 2.7℄ of admitting an m-omplete ultra�lter.
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88 A. Prze¹dziekiRemark 0.1. The set υm \ m is nonempty.1. m-limits. In this setion we introdue λ-limits ([3, �42℄, [7℄) and proveProposition 1.2 whih states that if G is the fundamental group of a om-pat spae then G admits m-limits. Additionally suh limits ommute withhomomorphisms indued by maps between ompat spaes.Lemma 1.1. If Y is a loally ompat , realompat spae of nonmeasur-able ardinality , then υ(Y × X) = Y × υX for all X.Proof. See [1, Corollary 2.2℄.In this paper, Lemma 1.1 is applied for Y ompat.Let λ be an ordinal number. We say that a λ-limit is de�ned on a group
G if to eah λ-sequene (aτ ) in G there is assigned an element a ∈ G,denoted by

a = lim aτ ,subjet to the following postulates:(i) lim(aτ · bτ ) = lim aτ · lim bτ ,(ii) lim aτ = a if aτ = a for all τ < λ,(iii) lim aτ = lim bτ if aτ = bτ for τ > τ0 with some �xed τ0 < λ.Note that every λ-limit is a group homomorphism lim : Gλ → G. Ourde�nition of a λ-limit is a diret generalization to nonabelian groups of thede�nition found in [3, �42℄ and [7℄.Proposition 1.2. For every point s ∈ υm \ m there is an m-limit limsde�ned on fundamental groups of ompat spaes.Proof. Let K be a ompat spae. Given an m-sequene (aτ ) in π1K wehoose representatives S1 × {τ} = S1 → K of aτ for τ < m and obtain amap a : S1 × m → K. It indues a map υ(S1 × m) → K whih, by Lemma1.1, is a map S1 × υm → K. We restrit it to obtain a map
α : S1 = S1 × {s} → Kwhih represents an element of π1K. Two di�erent representatives of theelements aτ are onneted by based homotopies, that is, maps S1×I/{∗}×I

→ K. Again by Lemma 1.1 and ompatness of S1 × I/{∗} × I, these mapsprodue a based homotopy between the respetive α's. Hene we have awell de�ned map lims whih sends a sequene (aτ ) to an element of π1Krepresented by α.Veri�ation of properties (i)�(iii) is straightforward.Remark 1.3. The limits desribed in Proposition 1.2 ommute withhomomorphisms indued by ontinuous maps, that is, if f : K → L is a map
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lim

s
f#(aτ ) = f#(lim

s
aτ )for eah m-sequene (aτ ) in π1K.2. Equal m-limits. In this setion we prove (Proposition 2.2) that thefundamental group of a ompat spae whih has a measurable ardinalityadmits nontrivial instanes of equal m-limits.Lemma 2.1. Let D be a disrete spae. For any point s0 ∈ υD \D thereis a disrete spae X and funtions a, b : X → D and an s ∈ υX \ X suhthat a(x) 6= b(x) for eah x ∈ X but a(s) = b(s) = s0.Proof. Let ∆ = {(d, d) | d ∈ D} and X = D × D \ ∆. Sine the losureof {d} × (D \ {d}) in υD × υD is {d} × (υD \ {d}) we see that the losureof X is υD × υD \ ∆, in partiular for eah s0 ∈ υD \ D the point (s0, s0)is in the losure of X. We an de�ne the funtions a and b as the inlusion

X → D × D omposed with the standard projetions.Proposition 2.2. If K is a ompat spae and the ardinality of G =
π1K is measurable then there exist m-sequenes (aτ ) and (bτ ) in G and an
s ∈ υm \ m suh that aτ 6= bτ for all τ < m but lims aτ = lims bτ .Additionally we may �x any two distint elements c and d in G andrequire that for eah τ < m the sets {aτ , bτ} and {c, d} are disjoint.Proof. Let D ⊆ G be a subset of ardinality m, disjoint from {c, d}. Werepresent the elements of D by a map S1 ×D → K where D is treated as adisrete spae. This leads to the following sequene of maps:
(2.3) S1 × υm → S1 × υ(D×D) → S1 × υD × υD → S1 ×S1 × υD × υD

= υ(S1 × D) × υ(S1 × D) → K × K.The �rst map is the identity on S1 times the Hewitt realompati�ationapplied to the map in Lemma 2.1 with X = m. The seond map is induedby a realompati�ation of the inlusion D × D → υD × υD, and thethird one by the diagonal S1 → S1 × S1. The equality is indued by thehomeomorphism desribed in Lemma 1.1. The last map is the produt oftwo opies of the realompati�ation of the map S1 × D → K.We hoose an s ∈ υm \ m as in Lemma 2.1. The omposition (2.3) re-strited to S1 × {τ} represents a pair (aτ , bτ ) for some distint aτ and bτin G. Restrition of (2.3) to S1 × {s} represents (lims aτ , lims bτ ). Sine theimage of s in υD × υD is (s0, s0) we see that lims aτ = lims bτ .3. Examples. In this setion we onstrut groups of measurable ardi-nality whih annot be realized as fundamental groups of ompat spaes.



90 A. Prze¹dziekiProposition 3.2 desribes the abelian ase while Proposition 3.1 gives a some-what stronger result in the nonabelian ase.Let V = F2[m] be an F2 vetor spae whose basis is m. Let G(V ) bethe subgroup of the automorphism group of V generated by automorphismsindued by those permutations of m whih �x all but �nitely many elementsof m. Let G be a semidiret produt V ⋊ G(V ). Note that the ardinality of
G is m.Proposition 3.1. If K is a ompat spae then G is not isomorphi toa subgroup of π1K.Proof. Suppose to the ontrary that we have G ⊆ π1K, up to isomor-phism. We �x two onstant m-sequenes (c) and (d) in m suh that c 6= d.By Proposition 2.2 we have two m-sequenes (aτ ) and (bτ ) in m and an
s ∈ υm \ m suh that for eah τ < m the elements aτ , bτ , c and d arepairwise distint but lims aτ = lims bτ . Let gτ ∈ G(V ) ⊆ G be those ele-ments whih indue by onjugation a yli permutation of (aτ , bτ , c, d). If
g = lims gτ then properties (i) and (ii) of lims imply that g indues a ylipermutation of (lims aτ , lims bτ , c, d). Sine lims aτ = lims bτ this is possibleonly when all the elements of this quadruple are equal. Sine c 6= d we havea ontradition.The group G in Proposition 3.1 annot be abelian sine any abelian groupan be embedded in a produt of opies of Q and Q/Z. Sine the ardinalitiesof Q and Q/Z are nonmeasurable Corollary 4 in [6℄ implies that they are thefundamental groups of some ompat spaes, hene so are their produts.Still, we have the following.Proposition 3.2. There exists an abelian group A whih is not isomor-phi to π1K for any ompat K.Proof. Proposition 3.1 in [8℄ says that there exists an abelian group on-taining a subgroup A whih is m-pure but not m

+-pure (m+ denotes thesuessor ardinal of m).Suppose that A = π1K for some ompat spae K. By Proposition 1.2we have an m-limit de�ned on A. Proposition 5.4 in [8℄ says that if A admits
m-limits then A is m

+-pure in any group ontaining it as an m-pure subgroup.We have obtained a ontradition.As an immediate orollary of Proposition 3.1 or Proposition 3.2 we ob-tain:Theorem 3.3. The following statements are equivalent :(i) There exists a measurable ardinal.(ii) There exists a group whih annot be realized as the fundamentalgroup of a ompat spae.



Measurable ardinals and fundamental groups 91The following lass of groups has been ommuniated to the author byEda [2℄. Let G = 〈I | R〉 be a group with generators I and relations R. Eahelement of R is a �nite word on letters i and i−1 where i ∈ I. Suppose that
(∗) For eah i ∈ I the ardinality of the subset

Ri = {R ∈ R | i or i−1 appears in R}is nonmeasurable.Proposition 3.4. Eah group G as above is the fundamental group ofa ompat spae.Proof. Let ∼ be the least equivalene relation on I suh that i ∼ k ifthere is a word R ∈ R whih ontains i or i−1 and k or k−1. Condition (∗)implies that the equivalene lasses of ∼ are nonmeasurable hene G is afree produt of nonmeasurable groups Gj where j runs through the set J ofequivalene lasses of relation ∼.By Corollary 4 in [6℄ there are ompat spaes Kj suh that Gj = π1Kj .Fix a ardinal κ and embeddings fj : Kj → Iκ suh that eah fj takesthe base point to the onstant sequene (1/2) and its range is ontained in
[1/2, 1]κ. Let J• = J∪{∞} be the one-point ompati�ation of J onsideredas a disrete spae. The subspae of Iκ × J•/{(0)} × J• whih is the unionof Iκ × {∞} and the images of the maps fj and the intervals [(0), (1/2)] isompat and its fundamental group is a free produt of the groups Gj , heneis isomorphi to G.4. Path onneted ompat spaesLemma 4.1. If X is a path onneted paraompat spae of nonmeasur-able ardinality then the path omponents of βX are of the form X and {x}for x ∈ βX \ X.Proof. Theorem 3 in [6℄ states that X is a path omponent of βX, heneif a path α : I → βX is suh that α(0) ∈ βX \X then the whole image of αis ontained in βX \X. By Theorem 2 in [6℄ this path has to be onstant.Theorem 4.2. Any group G of nonmeasurable ardinality is the funda-mental group of a path onneted ompat spae Z.Proof. Let K be a CW-omplex of nonmeasurable ardinality whose fun-damental group is G. Let K0 = βK and f0 : D → K0 be a map from a dis-rete spae D to K0 suh that for eah path omponent P of K0 there is ex-atly one d ∈ D with f0(d) ∈ P . Let C(f0) be the mapping one of f0. We de-�ne K1 = βC(f0). We repeat this proess indutively and obtain a sequene
Kn, n = 0, 1, 2, . . . , of ompat spaes and inlusions in : Kn →֒ Kn+1.By Lemma 4.1 we see that G = π1K0 and G = π1C(f0). Sine K0 is aompat C∗-embedded subspae of C(f0) we see that βC(f0)/K0 is homeo-



92 A. Prze¹dziekimorphi to β(C(f0)/K0). Sine C(f0)/K0 is a path onneted paraompatspae Lemma 4.1 implies that for eah x ∈ K1 \ C(f0) the path omponentof x in K1 is {x}, hene π1K1 = π1C(f0). By repeating the above argumentfor eah n = 0, 1, 2, . . . we see that the inlusions in : Kn → Kn+1 indueisomorphisms of the fundamental groups and in(Kn) is ontained in a pathomponent of Kn+1.Let T be the telesope of the hain of maps in, that is, the spae
(

∞
∐

n=0

Kn × I
)

/(xn, 1) ∼ (in(xn), 0)where xn runs over points in Kn. The telesope T is path onneted andits fundamental group is the olimit of π1Kn, whih is G. Sine T is loallyompat we an take its one-point ompati�ation T • = T ∪ {∞}. Let
i : T →֒ T • be the inlusion. Let p : T → [0,∞) be a map whih sends
(xn, t) ∈ Kn × I to n + t. Let g : T → I be de�ned as g(x) = sin2 p(x). Let
T be the losure of the image of the map i × g : T → T • × I. Sine for anypositive integer n the spae p−1([0, n]) is ompat we see that T has exatlytwo path onneted omponents: p−1([0,∞)) whih is homeomorphi to Tand the interval at in�nity {∞} × I. The mapping one of h : {0, 1} → Twhih sends 0 to T and 1 to the interval at in�nity is ompat and pathonneted, and has the fundamental group isomorphi to G.Referenes[1℄ W. W. Comfort, On the Hewitt realompati�ation of a produt spae, Trans. Amer.Math. So. 131 (1968), 107�118.[2℄ K. Eda, private ommuniation, 2003 and 2006.[3℄ L. Fuhs, In�nite Abelian Groups, Pure and Appl. Math. 36-I/II, Aademi Press,New York�London, 1970/73.[4℄ L. Gillman and M. Jerison, Rings of Continuous Funtions, Springer, 1960.[5℄ A. Kanamori, The Higher In�nite, Springer, 1997.[6℄ J. E. Keesling and Y. B. Rudyak, On fundamental groups of ompat Hausdor�spaes, Pro. Amer. Math. So., to appear.[7℄ J. �o±, Generalized limits in algebraially ompat groups, Bull. Aad. Polon. Si. 7(1959), 19�21.[8℄ C. Megibben, Generalized pure injetivity, in: Symposia Math. 13, Aademi Press,London, 1974, 257�271.Institute of MathematisWarsaw UniversityBanaha 202-097 Warszawa, PolandE-mail: adamp�mimuw.edu.plReeived 13 February 2006;in revised form 20 Marh 2006


