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Abstract. We find conditions on a real function f : [a, b] → R equivalent to being
Lebesgue equivalent to an n-times differentiable function (n ≥ 2); a simple solution in the
case n = 2 appeared in an earlier paper. For that purpose, we introduce the notions of
CBV G1/n and SBV G1/n functions, which play analogous rôles for the nth order differen-
tiability to the classical notion of a V BG∗ function for the first order differentiability, and
the classes CBV1/n and SBV1/n (introduced by Preiss and Laczkovich) for Cn smooth-
ness. As a consequence, we deduce that Lebesgue equivalence to an n-times differentiable
function is the same as Lebesgue equivalence to a function f which is (n−1)-times differen-
tiable with f (n−1)(·) pointwise Lipschitz. We also characterize functions that are Lebesgue
equivalent to n-times differentiable functions with a.e. nonzero derivatives. As a corollary,
we establish a generalization of Zahorski’s Lemma for higher order differentiability.

1. Introduction. Let f : [a, b] → R. We say that f is Lebesgue equiva-
lent to g : [a, b] → R provided there exists a homeomorphism h of [a, b] onto
itself such that g = f◦h. This terminology is taken from [3]. Zahorski [15] and
Choquet [4] (see also Tolstov [14]) characterized paths f : [a, b] → Rn that
allow a differentiable parametrization (resp. a differentiable parametrization
with almost everywhere nonzero derivative) as those paths that have the
V BG∗ property (resp. which are also not constant on any interval). Fleissner
and Foran [9] reproved this later (for real functions only and not consider-
ing the case of a.e. nonzero derivatives) using a different result of Tolstov.
The definition of V BG∗ is classical; see e.g. [13]. The above mentioned re-
sults were generalized by L. Zajíček and the author [6] to paths with values
in Banach spaces (and also metric spaces using the metric derivative in-
stead of the usual one). Laczkovich and Preiss [11] and Lebedev [12] studied
(among other things) the case of Cn-parametrizations of real-valued func-
tions (n ≥ 2). Lebedev proved that a continuous function f : [a, b] → R is
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Lebesgue equivalent to a Cn function provided

λ(f(Kf )) = 0 and
∑
α∈A

(ωf
α)1/n < ∞,

where Kf is the set of point of varying monotonicity of f (see the definition
below) and ωf

α is the oscillation of f on Iα, where (Iα)α∈A are all the intervals
contiguous to Kf in [a, b]. Laczkovich and Preiss showed that the same is
true for a continuous f provided

(1.1) V1/n(f, Kf ) < ∞
or

(1.2) SV1/n(f, Kf ) = 0.

(See Definition 2.3 in Section 2). They define CBV1/n (resp. SBV1/n) as
the class of continuous function which satisfy (1.1) (resp. (1.2)). Moreover,
in [11] and [12] also the case of Cn,α (0 < α ≤ 1) parametrizations is settled
(where Cn,α is the class of functions such that f (n) is α-Hölder).

Differentiability via a homeomorphic change of variable was studied by
other authors (see e.g. [2], [1]). For a nice survey of differentiability of
real-valued functions via homeomorphisms, see [10]. L. Zajíček and the au-
thor [7, 8] characterized Banach space-valued paths (for Banach spaces with
a C1 norm) admitting a C2-parametrization or a parametrization with finite
convexity. In the corresponding situations, also the case of the first derivative
being almost everywhere nonzero is treated in [7, 8].

In [5], we characterized functions f : [a, b] → R Lebesgue equivalent to
twice differentiable functions. We introduced the notion of V BG1/2 functions
for that purpose. We also established that for a real function f defined on a
closed interval, being Lebesgue equivalent to a twice differentiable function
is equivalent to being Lebesgue equivalent to a differentiable function whose
derivative is pointwise Lipschitz.

In the present article, we characterize functions Lebesgue equivalent to
n-times differentiable functions for n ≥ 3 (our present approach gives a
certain condition also in case n = 2, which can be seen to be equivalent
to the one proved in [5], but the general proof is much more complicated
than the arguments of [5] in that interesting special case). We introduce
two new classes of functions: CBV G1/n and SBV G1/n, analogous to the
classes CBV1/n and SBV1/n introduced by Preiss and Laczkovich in [11]
to characterize functions Lebesgue equivalent to Cn functions. In the main
Theorem 4.1, we prove that f is Lebesgue equivalent to an n-times differ-
entiable function if and only if f is CBV G1/n (resp. f is SBV G1/n). As
a corollary, we deduce that the classes CBV G1/n and SBV G1/n coincide
(which seems to be difficult to establish directly). Our approach also shows
that f is Lebesgue equivalent to an n-times differentiable function if and only
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if f is Lebesgue equivalent to an (n− 1)-times differentiable function g such
that g(n−1)(·) is pointwise Lipschitz (see Theorem 4.1). This corresponds to
the analogous situation for n = 2 in [5], and is similar to the phenomenon
that f : [a, b] → R is Lebesgue equivalent to a Cn function if and only if f is
Lebesgue equivalent to a C(n−1),1 function or a function which has bounded
nth derivative (see [11, Remark 3.7]), which is proved in [11]. We also present
an example (see Example 4.3) which shows that for each n ≥ 2 there exists
a continuous function which is CBV G1/n, but not Lebesgue equivalent to
any Cn function. In Theorem 4.4, we characterize Lebesgue equivalence to
an n-times differentiable function whose first derivative is a.e. nonzero.

The classical Zahorski Lemma (see e.g. [15] or [10, p. 27]) states that
if M ⊂ [a, b] has Lebesgue measure zero, then there exists a (boundedly)
differentiable homeomorphism h from [a, b] onto itself such that h−1(M) ⊂
{x ∈ [a, b] : h′(x) = 0}. If M is closed, then h can be taken C1. In Theo-
rem 5.1, we show a higher order analogue of this fact: a closed set M ⊂ [a, b]
is the image of an n-times differentiable homeomorphism of [a, b] such that
h(i)(x) = 0 for all x ∈ h−1(M) and i = 1, . . . , n if and only if there ex-
ists a decomposition of M such that certain variational conditions closely
related to the definition of the class CBV G1/n (respectively, SBV G1/n) are
satisfied. See Theorem 5.1 for details.

The current paper is structured as follows. Section 2 contains basic facts
and definitions. Section 3 contains facts about the generalized variation
GV1/n (and related notions) and classes CBV G1/n, resp. SBV G1/n; there
is also the definition of an auxiliary class SBV G1/n. Section 4 contains the
main Theorems 4.1 and 4.4. In Section 5 we prove Theorem 5.1, which is an
analogue of Zahorski’s Lemma for higher order differentiability.

In the proofs, we need many auxiliary results. Let us point out that the
main ingredients for our results are the estimate of Lemma 3.8, and the
method of construction of a suitable variation in Lemmata 3.10 and 3.11.

2. Preliminaries. By C (resp. Cx, . . . ) we will denote an absolute con-
stant (resp. constant depending on x, . . . ) that can change from line to line.
By n we always denote a positive integer. By λ we denote the Lebesgue mea-
sure on R. For x, r ∈ R with r > 0 we denote by B(x, r) := {y ∈ R : |x− y|
< r} the open ball with centre x and radius r. Let K ⊂ [a, b] be closed and
such that {a, b} ⊂ K. We say that the interval (c, d) ⊂ [a, b] is contiguous
to K (in [a, b]) provided c, d ∈ K and (c, d) ∩ K = ∅ (i.e. it is a maximal
open component of [a, b] \ K in [a, b]). Let f : [a, b] → R. By Kf we will
denote the set of points of varying monotonicity of f , i.e. of x ∈ [a, b] such
that there is no open neighbourhood U of x such that f |U is either constant
or strictly monotone (see e.g. [11]). Obviously, Kf is closed and {a, b} ⊂ Kf .
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We will also frequently use the simple fact that if h is a homeomorphism of
[a, b] onto itself, and g = f ◦ h, then Kg = h−1(Kf ).

Let f : [a, b] → R. We say that f is pointwise Lipschitz at x ∈ [a, b]
provided

lim sup
t→0

x+t∈[a,b]

|f(x + t)− f(x)|
|t|

< ∞.

We say that f is pointwise Lipschitz provided it is pointwise Lipschitz at
each x ∈ [a, b]. We define the derivative f ′(x) of f at x ∈ [a, b] and the
nth derivative f (n)(x), n ≥ 0, as usual; at the endpoints we consider the
corresponding unilateral derivatives. We say that f is Cn for n ≥ 1 provided
f (n) exists and is continuous in [a, b]. We will often use the following easy
fact: if f is C1 and x ∈ Kf ∩ (a, b), then f ′(x) = 0.

The following version of Sard’s theorem is proved e.g. in [6, Lemma 2.2].

Lemma 2.1. If f : R → R, then λ(f({x ∈ R : f ′(x) = 0})) = 0.

The following simple lemma is proved in [5, Lemma 9].

Lemma 2.2. Let hm : [a, b] → [cm, dm] (m ∈ M ⊂ N) be continuous
increasing functions such that

∑
m∈M hm(x) ∈ R for all x ∈ [a, b]. Let

K ⊂ [a, b] be closed and such that λ(hm(K)) = 0 for all m ∈ M. Then
h : [a, b] → [c, d], defined as h(x) :=

∑
m∈M hm(x), is a continuous and

increasing function (for some c, d ∈ R) such that λ(h(K)) = 0.

The following definition is taken from [11].

Definition 2.3. Let f : [a, b] → R be continuous. For α ∈ (0, 1], δ > 0,
and K ⊂ [a, b], we define V δ

α (f, K) as the supremum of the sums

(2.1)
N∑

i=1

|f(di)− f(ci)|α,

where ([ci, di])N
i=1 is any sequence of nonoverlapping intervals in [a, b] such

that ci, di ∈ K and di − ci ≤ δ for all i = 1, . . . , N . We define V (f, [a, b]) :=
V b−a

1 (f, [a, b]), Vα(f, K) := V b−a
α (f, K), and

SVα(f, K) := lim
δ→0+

V δ
α (f, K).

See the paper [11] for basic properties of these fractional variations. Note
that [11, Lemma 3.13] implies that if K ⊂ [a, b] is closed and V δ

α (f, K) < ∞,
then the function g(x) = V δ

α (f, K ∩ [a, x]) is continuous on K.
We have the following simple lemma.

Lemma 2.4. Suppose that H ⊂ R is bounded , f : H → R is uni-
formly continuous and V δ

α (f, H) < ∞ for some α ∈ (0, 1) and δ > 0. Then
λ(f(H)) = 0.
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Proof. Let ε > 0 and put

η :=
(

ε

V δ
α (f, H) + 1

)1/(1−α)

.

Choose 0 < ζ < δ such that for all x, y ∈ H with |x − y| < ζ we have
|f(x)−f(y)| < η. Let ([ai, bi])N

i=1 be nonoverlapping intervals with ai, bi ∈ H
and bi − ai < ζ. Then

N∑
i=1

|f(bi)− f(ai)| ≤ η1−αV δ
α (f, H) < ε.

Thus we have SV1(f, H) = 0; [11, Theorem 2.9] implies λ(f(H)) = 0.

We shall need the following lemma. For a proof, see e.g. [6, Lemma 2.7].

Lemma 2.5. Let {a, b} ⊂ B ⊂ [a, b] be closed , and f : [a, b] → R be
continuous. If λ(f(B)) = 0, then V (f, [a, b]) =

∑
i∈I V (f, [ci, di]), where

Ii = (ci, di) (i ∈ I ⊂ N) are all intervals contiguous to B in [a, b].

Lemma 2.6. Let f : [a, b] → R be continuous, and {a, b} ⊂ K ⊂ [a, b]
be closed such that V δ

α (f, K) < ∞ for some α ∈ (0, 1) and δ > 0, and
V (f, [c, d]) = |f(d) − f(c)| whenever (c, d) is an interval contiguous to K
in [a, b]. Then V (f, [a, b]) < ∞.

Proof. Let (up, vp) (p ∈ P ⊂ N) be all the intervals contiguous to K in
[a, b]. By Lemma 2.4, we have λ(f(K)) = 0, and thus by Lemma 2.5 and the
assumptions, we obtain

V (f, [a, b]) =
∑
p∈P

V (f, [up, vp]) =
∑
p∈P

|f(vp)−f(up)| ≤ 2NM+V δ
α (f, K) < ∞,

where N is the number of p ∈ P such that either |f(vp) − f(up)| > 1 or
vp − up ≥ δ (which is finite since V δ

α (f, K) < ∞ and b − a < ∞), and
M := maxx∈[a,b] |f(x)|.

Lemma 2.7. Let f : [a, b] → R be continuous, {a, b} ⊂ K ⊂ [a, b] closed ,
V δ

α (f, K) < ∞ for some α ∈ (0, 1) and δ > 0, and V (f, [u, v]) = |f(v)−f(u)|
whenever (u, v) is an interval contiguous to K. Let g(x) := V δ

α (f, K ∩ [a, x]).
Then λ(g(K)) = 0.

Proof. Lemma 2.4 shows that λ(f(K)) = 0, and by Lemma 2.6 it follows
that V (f, [a, b]) < ∞. Let g̃(x) = g(x) for x ∈ K. Now, [11, Lemma 3.13]
shows that g is continuous on K. Extend g̃ to [a, b] in such a way that g̃
is affine and continuous on [u, v] whenever (u, v) is an interval contiguous
to K. Since g(K) = g̃(K), it is enough to prove that λ(g̃(K)) = 0. Let ε > 0
and ([ci, di])N

i=1 be nonoverlapping intervals with ci, di ∈ K, di − ci ≤ δ for
each i = 1, . . . , N , and V δ

α (f, K) ≤
∑N

i=1 |f(di) − f(ci)|α + ε/2. For each
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i = 1, . . . , N , by Lemma 2.5 find intervals ([ci
j , d

i
j ])

Ji
j=1 contiguous to K in

[ci, di] and such that

|f(di)− f(ci)| ≤ V (f, [ci, di]) ≤
Ji∑

j=1

|f(di
j)− f(ci

j)|+
(

ε

2N

)1/α

.

Thus

g̃(b)−g̃(a) = V δ
α (f, K) ≤

N∑
i=1

Ji∑
j=1

|f(di
j)−f(ci

j)|α+ε ≤
∑
p∈P

|f(vp)−f(up)|α+ε,

where (up, vp) (p ∈ P ⊂ N) are all the intervals contiguous to K in [a, b].
Now, send ε → 0+ to conclude that g̃(d) − g̃(c) ≤

∑
p∈P(g̃(vp) − g̃(up)).

Since g̃(K) ∩ g̃(
⋃

p∈P(up, vp)) is countable, we obtain

λ(g̃(K)) = (g̃(b)− g̃(a))−
∑
p∈P

(g̃(vp)− g̃(up)) = 0.

Remark 2.8. Lemmata 2.2 and 2.7 together with the methods from [11]
can be used to prove the following: Suppose that f : [a, b] → R is continuous,
and n ≥ 2. Then the following are equivalent:

(i) f is Lebesgue equivalent to a Cn function g such that g′(x) 6= 0 for
almost all x ∈ [a, b];

(ii) V1/n(f, Kf ) < ∞ and f is not constant on any interval;
(iii) SV1/n(f, Kf ) = 0 and f is not constant on any interval.

See Definition 2.3 for the definitions of the fractional variations. In (i), we
can actually replace “Cn” with “Cs”, where s > 1 (we did not define this
class) if we replace 1/n by 1/s in the variations in (ii) and (iii). See [11,
Definition 3.1] for the definition of this class.

Let K ⊂ R be closed. As usual, we denote by K ′ the set of all accumula-
tion points of K. It is easy to see that K ′ is closed and K \K ′ is countable.

We have the following easy consequence of the classical Rolle theorem.

Lemma 2.9. Let f : [a, b] → R be m-times differentiable for some m ≥ 1,
and suppose that there are m distinct points (xi)m

i=1 in [a, b] such that f ′(xi)
= 0 for i = 1, . . . ,m. Then there exists y ∈ [min1≤i≤m xi, max1≤i≤m xi] such
that f (m)(y) = 0.

The following lemma shows that the derivatives are zero at all accumu-
lation points of a given set.

Lemma 2.10. Let f : [a, b] → R be (n− 1)-times differentiable for some
n ≥ 2, and let K ⊂ {x ∈ [a, b] : f ′(x) = 0} be a closed set. Then f (i)(x) = 0
whenever x ∈ K ′∩ (a, b) and i ∈ {1, . . . , n−1}. If x ∈ K ′∩ (a, b) and f (n)(x)
exists, then f (n)(x) = 0.
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Proof. By assumptions, we have f ′(x) = 0 for all x ∈ K. Let i ∈
{2, . . . , n− 1}. Without any loss of generality, assume that x is a right-hand
accumulation point of K. Fix k ∈ N. There are x < z1 < · · · < zi−1 < x+1/k
with zj ∈ K. By Lemma 2.9 (with m = i − 1) there exists wk ∈ [z1, zi−1]
with f (i−1)(wk) = 0, and thus (by induction) we have

f (i)(x) = lim
k→∞

f (i−1)(wk)
wk − x

= 0 for i = 2, . . . , n− 1.

If f (n)(x) exists, then the argument above implies that it is equal to 0.

The next lemma will allow us to construct suitable extensions of func-
tions.

Lemma 2.11. Let α, β, A,B ∈ R with α < β, A < B, n ∈ N, n ≥ 2. Then
there exists an n-times differentiable homeomorphism H : [α, β] → [A, B]
such that

(i) H(i)(α) = H(i)(β) = 0 for i = 1, . . . , n, H ′(x) > 0 for all x ∈ (α, β),
(ii) H(α) = A, H(β) = B,
(iii) |H(n−1)(t)| ≤ C · |B−A|

(β−α)n ·min(t−α, β−t) for t ∈ (α, β), where C > 0
is an absolute constant.

Proof. As in [11, p. 420], denote

w(x) = c

x\

0

exp(−t−2 − (1− t)−2) dt (x ∈ [0, 1]),

where the positive constant c is chosen such that w(1) = 1. Then w ∈
C∞([0, 1]), w(0) = 0, w is strictly increasing on [0, 1], w′(x) 6= 0 for all
x ∈ (0, 1), and w(i)(0) = w(i)(1) = 0 for i = 1, 2, . . . . For x ∈ [α, β] define

H(x) = A + (B −A) · w
(

x− α

β − α

)
.

It is easy to see that the conditions (i) and (ii) hold. Condition (iii) fol-
lows from the fact that w is C∞ and thus H(n−1)(·) is C|B −A|/(β − α)n-
Lipschitz on [α, β].

3. Generalized fractional variation. We need the following general-
ized fractional variation.

Definition 3.1. Let f : [a, b] → R. Let ∅ 6= A ⊂ K be closed sets. We
define the generalized 1/n-variation GV1/n(f, A,K) (resp. GV

δ
1/n(f, A,K)

for δ > 0) as the supremum of the sums

(3.1)
N∑

i=1

(V1/(n−1)(f, K ∩ [xi, yi]))(n−1)/n
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over all collections ([xi, yi])N
i=1 of nonoverlapping intervals in [a, b] with xi, yi

∈ A for all i = 1, . . . , N (resp. over all collections ([xi, yi])N
i=1 of nonoverlap-

ping intervals in [a, b] such that yi − xi ≤ δ, xi, yi ∈ K, and {xi, yi} ∩A 6= ∅
for all i = 1, . . . , N).

We put GV1/n(f, ∅, K) = GV
δ
1/n(f, ∅, K) = 0. Similarly, we also define

the auxiliary variation rGV δ
1/n(f, A,K) (resp. lGV δ

1/n(f, A,K)) as the supre-

mum of the sums in (3.1) for GV
δ
1/n, but requiring that xi ∈ A (resp. yi ∈ A)

for all i = 1, . . . , N whenever ([xi, yi])N
i=1 is a sequence of admissible intervals

for GV
δ
1/n in (3.1).

In all cases, when there is no admissible sequence ([xi, yi])N
i=1, we define

the corresponding variation to be zero.

If A ⊂ K ⊂ [a, b] are closed sets and rGV δ
1/n(f, A,K) < ∞ (respectively,

lGV δ
1/n(f, A,K) < ∞), and x ∈ A, then rGV δ

1/n (resp. lGV δ
1/n) is “additive

at x”, i.e.

(3.2) rGV δ
1/n(f, A,K)

= rGV δ
n (f, A ∩ [a, x], K ∩ [a, x]) + rGV δ

n (f, A ∩ [x, b], K ∩ [x, b])

(and similarly for lGV δ
n ). This is easily seen from the definition. Also,

(3.3) max
(
lGV δ

1/n(f, A,K), rGV δ
1/n(f, A,K)

)
≤ min

(
GV

δ
1/n(f, A,K), GV1/n(f, A ∪ {a, b}, K ∪ {a, b})

)
.

Further, if 0 < δ < γ, then GV
δ
1/n(f, A,K) ≤ GV

γ
1/n(f, A,K).

We will need some properties of the “unilateral” variations.

Lemma 3.2. Let ∅ 6= A ⊂ K ⊂ [a, b] be closed sets with {a, b} ⊂ K,
and f : [a, b] → R continuous and such that GV

δ
1/n(f, A,K) < ∞ for some

δ > 0 and n ≥ 2. Then v(x) := rGV δ
1/n(f, A ∩ [a, x], K ∩ [a, x]) and ṽ(x) :=

lGV δ
1/n(f, A ∩ [x, b], K ∩ [x, b]) are continuous functions on K such that v is

increasing , ṽ is decreasing , and

(3.4) max(v(b)− v(a), ṽ(a)− ṽ(b)) ≤ GV
δ
1/n(f, A,K).

Proof. Clearly, v is increasing and ṽ is decreasing on K. Also, we easily
see that (3.4) holds. We will only establish the continuity of v on K, as the
case of ṽ is similar. Suppose that x ∈ K is not a left-hand accumulation
point of A. If [x− δ, x)∩A = ∅, then v is constant on [x− δ, x]. We will show
that if [x− δ, x) ∩A 6= ∅, then

(3.5) v(t) = v(r) + (V1/(n−1)(f, K ∩ [r, t]))(n−1)/n
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for all t ∈ [r, x], where r := max([a, x) ∩ A) provided [a, x) ∩ A 6= ∅ (the
case when [a, x)∩A = ∅ is trivial). The ≥ inequality in (3.5) is obvious. The
other inequality follows easily from the definition of the fractional variation
together with the fact that [x − δ, x) ∩ A = ∅. The unilateral continuity of
v at x in this case follows from [11, Lemma 3.13]. We have shown that v is
continuous from the left at all x ∈ K which are not left-hand accumulation
points of A.

If x ∈ K is not a right-hand accumulation point of A, then either (x −
δ, x] ∩ A = ∅, in which case v is constant on [x, x + η] for some η > 0, or
(x− δ, x]∩A 6= ∅, and then (3.5) holds and the continuity of v at x from the
right follows again from [11, Lemma 3.13].

Now suppose that x ∈ A is a left-hand accumulation point of A. Fix
ε > 0. Choose ([xi, yi])N

i=1 as in (3.1) for rGV δ
1/n(f, A∩ [a, x], K ∩ [a, x]) and

([ci
j , d

i
j ])

Ji
j=1 from (2.1) for V1/(n−1)(f, [xi, yi] ∩K) so that

(3.6)
N∑

i=1

( Ji∑
j=1

|f(ci
j)− f(di

j)|1/(n−1)
)(n−1)/n

> v(x)− ε.

We can assume that ([xi, yi]) and ([ci
j , d

i
j ]) are ordered in the natural sense

(i.e. yi < xi′ whenever i < i′; similarly for ci
j , d

i
j). We can suppose that

dN
Ji

< x, because if dN
Ji

= x, then by continuity of f and since x is a left-hand
accumulation point of A, we can make dN

Ji
slightly smaller (and adjust yN )

without violating (3.6). Then we have v(z) > v(x)− ε for every dN
Ji

< z < x
and hence v is continuous from the left at x.

Now suppose that x ∈ A is a a right-hand accumulation point of A, and
fix ε > 0. Choose ([xi, yi])N

i=1 and ([ci
j , d

i
j ])

Ji
j=1 from (3.1) for rGV δ

1/n(f, A ∩
[x, b]) = v(b)− v(x) (the equality holds because x ∈ A) so that

(3.7)
N∑

i=1

( Ji∑
j=1

|f(ci
j)− f(di

j)|1/(n−1)
)(n−1)/n

> v(b)− v(x)− ε.

As before, we can assume that ([xi, yi]) and ([ci
j , d

i
j ]) are ordered in the

natural sense (see the remark after (3.6)) and that c1
1 > x (with x1 > x). Let

y ∈ (x, x1)∩K. Take any ([x̃i, ỹi])Ñ
i=1 as in (3.1) for rGV δ

n (f, A∩[a, y]) = v(y).
We have to prove that

(3.8)
Ñ∑

i=1

(V1/(n−1)(f, [x̃i, ỹi] ∩K))(n−1)/n ≤ v(x) + ε.

For i = 1, . . . , Ñ take ([c̃i
j , d̃

i
j ])

J̃i
j=1 as in (2.1) for V1/(n−1)(f, [x̃i, ỹi] ∩ K).
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Since a ≤ x̃1 < · · · < x̃N ≤ x1 < · · · < xN ≤ b, we have

(3.9)
Ñ∑

i=1

( J̃i∑
j=1

|f(c̃i
j)− f(d̃i

j)|1/(n−1)
)(n−1)/n

+
N∑

i=1

( Ji∑
j=1

|f(ci
j)− f(di

j)|1/(n−1)
)(n−1)/n

≤ v(b).

The left-hand side of (3.9) is by (3.7) greater than

Ñ∑
i=1

( J̃i∑
j=1

|f(c̃i
j)− f(d̃i

j)|1/(n−1)
)(n−1)/n

+ v(b)− v(x)− ε,

and this easily implies (3.8). This concludes the proof of the continuity of v
on K since it is clearly an increasing function.

Now we are ready to define our classes of functions. The following class
plays a similar rôle for n-times differentiability as the class CBV1/n from [11]
in the case of continuous derivatives.

Definition 3.3. We say that a continuous f : [a, b] → R is CBV G1/n

for n ≥ 2 provided V1/(n−1)(f, Kf ) < ∞ and there exist closed Am ⊂ Kf

(m ∈ M ⊂ N) such that Kf =
⋃

m∈MAm, and GV1/n(f, Am, Kf ) < ∞ for
all m ∈M.

It is easy to see that if f is a CBV G1/n function for some n ≥ 2, then
f has bounded variation. If n = 2, then it is not difficult to prove that the
class CBV G1/2 coincides with the class V BG1/2 from [5].

The analogue of the class SBV1/n from [11] in the case of continuous
derivatives is given by the following definition for the case of n-times differ-
entiable functions.

Definition 3.4. We say that a continuous f : [a, b] → R is SBV G1/n

for n ≥ 2 provided V1/(n−1)(f, Kf ) < ∞ and there exist closed sets Am ⊂ Kf

and numbers δm > 0 (m ∈ N) such that Kf =
⋃

m∈N Am and

(i) limm→∞ δm = 0,
(ii) Am ⊂ Am+1 for each m ∈ N,
(iii) limm→∞GV

δm

1/n(f, Am, Kf ) = 0.

We will need the following auxiliary class:

Definition 3.5. We say that a continuous f : [a, b] → R is SBV G1/n

for n ≥ 2 provided V1/(n−1)(f, Kf ) < ∞ and there exist closed sets Ak
m ⊂ Kf

and numbers δk
m > 0 (k, m ∈ N) such that Kf =

⋃
k,m Ak

m and for each k ∈ N
we have
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(i) limm→∞ δk
m = 0,

(ii) Ak
m ⊂ Ak

m+1 for each m ∈ N,

(iii) limm→∞GV
δk
m

1/n(f, Ak
m, Kf ) = 0.

Since every continuous function on a compact interval is uniformly con-
tinuous, it is easy to see that if f is SBV G1/n, SBV G1/n or CBV G1/n and g
is Lebesgue equivalent to f , then g is in the same class.

We need the following observation:

Lemma 3.6. Let f : [a, b] → R. Then f is SBV G1/n if and only if f is
SBV G1/n.

Proof. Suppose that f is SBV G1/n. Let Am and δm (m ∈ N) be as in
Definition 3.4. We define A1

m := Am and Ak
m := ∅ for k > 1. Similarly,

δ1
m := δm and δk

m := 1/m for k > 1. Then it is easy to see that (Ak
m) and

(δk
m) are as in Definition 3.5.
Now, suppose that f is SBV G1/n, and let Ak

m and δk
m be as in Defini-

tion 3.5. By relabelling, we can assume that Ak
m 6= ∅ for all m, k ∈ N (since

the case when there exists k0 ∈ N such that
⋃

m Ak
m = ∅ for all k ≥ k0 is

simple to handle using (3.10)). By a standard diagonalization argument (us-
ing (ii) of Definition 3.5), we can also assume that GV

δk
m

1/n(f, Ak
m, Kf ) ↓ 0 as

m →∞ for all k ∈ N. Define A1 := A1
1, δ1 := δ1

1 , and N1 := 1. By induction,
we will construct closed sets Ap ⊂ Kf , δp > 0, and Np ∈ N. Suppose that
A1, . . . , Ap−1 (together with δi and Ni for i < p) have been constructed.
Note that for closed B1, . . . , Bl ⊂ Kf , and ξ > 0, we have

(3.10) GV
ξ
1/n

(
f,

l⋃
j=1

Bj , Kf

)
≤

l∑
j=1

GV
ξ
1/n(f, Bj , Kf ).

For i = 1, . . . , p, find li > Np−1 such that GV
δi
li (f, Ai

li
, Kf ) ≤ p−2, put

Ap :=
⋃p

i=1 Ai
li
, δp := min(p−1, mini=1,...,p δi

li
), and using (3.10) conclude

that

(3.11) GV
δp

1/n(f, Ap, Kf ) ≤ p−1.

Finally, put Np := 1 + maxi=1,...,p li, and proceed by induction. Since Kf =⋃
k,m Ak

m, we obtain Kf =
⋃

p Ap. By construction, it is easy to see that
Ap ⊂ Ap+1 and δp → 0. Finally, (3.11) shows that

lim
p→∞

GV
δp

1/n(f, Ap, Kf ) = 0.

We will also need the following property.

Lemma 3.7. Let f : [a, b] → R be a function which is either CBV G1/n,
SBV G1/n, or SBV G1/n. Then λ(f(Kf )) = 0.
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Proof. If f is in one of the three classes, then V1/(n−1)(f, Kf ) < ∞, and
thus Lemma 2.4 implies the conclusion.

The next lemma contains our basic estimate.

Lemma 3.8. Let n ≥ 2, let f : [a, b] → R be (n − 1)-times differentiable
with f (n−1)(·) pointwise Lipschitz , let K ⊂ {x ∈ [a, b] : f ′(x) = 0} be closed
with a, b ∈ K and |f(c)−f(d)| = V (f, [c, d]) for all intervals (c, d) contiguous
to K in [a, b], let

A ⊂ {x ∈ K ′ : |f (n−1)(y)| ≤ k|y − x| for all y ∈ B(x, 1/m)}
be a closed set , where k,m ∈ N, and let x, x′ ∈ K be such that a ≤ x < x′ ≤ b,
{x, x′} ∩A 6= ∅ and 0 < x′ − x < 1/m. Then

(3.12) (V1/(n−1)(f, K ∩ [x, x′]))(n−1)/n

≤ Ckn(x′ − x)1/n
( ∑

p∈P
(vp − up)

)(n−1)/n
,

where (up, vp) (p ∈ P ⊂ N) are all the intervals contiguous to K in [x, x′],
and Ckn = k1/n(2n)(n−1)/n.

Proof. Without any loss of generality, assume that x ∈ A (if x′ ∈ A, then
work with f(−·) instead). By Lemma 2.10 we have

(3.13) f (i)(x) = 0 for all i = 1, . . . , n− 1.

Let

(3.14) ([cj , dj ])J
j=1 be nonoverlapping intervals

with cj , dj ∈ K ∩ [x, x′] for all j ∈ {1, . . . , J}.
Assume first that #(K ∩ [x, x′]) < 2n + 1. Then

|f(cj)− f(dj)| ≤
dj\

cj

|f ′(s)| ds ≤
dj\

cj

|f (n−1)(ξn−1)|(x′ − x)n−2 ds

≤ k(x′ − x)n,

where ξi = ξi(s) is chosen inductively (using (3.13)) such that ξ1 = s, and

|f (i−1)(ξi−1)| = |f (i−1)(ξi−1)− f (i−1)(x)| = |f (i)(ξi)| |ξi−1 − x|
for i = 2, . . . , n−1. We obtain |f(cj)−f(dj)|1/(n−1) ≤ k1/(n−1)(x′−x)n/(n−1),
and it follows that

J∑
j=1

|f(cj)− f(dj)|1/(n−1) ≤ k1/(n−1)
J∑

j=1

(x′ − x)n/(n−1)

≤ k1/(n−1)(x′ − x)1/(n−1)(2n)
( ∑

p∈P
(vp − up)

)
,



Generalized α-variation and differentiable functions 203

where we used that x′−x =
∑

p∈P(vp−up) and J ≤ 2n since #(K∩[x, x′]) <
2n + 1. Thus( J∑

j=1

|f(cj)− f(dj)|1/(n−1)
)(n−1)/n

≤ k1/n(2n)(n−1)/n(x′ − x)1/n
( ∑

p∈P
(vp − up)

)(n−1)/n
,

and (3.12) holds in this case.
Now assume that #(K∩ [x, x′]) ≥ 2n+1. Let ([cj , dj ])J

j=1 be as in (3.14).
Since λ(f(K)) = 0 by Lemma 2.1, Lemma 2.5 implies that

|f(dj)− f(cj)| ≤ V (f, [cj , dj ]) =
∑
p∈Pj

V (f, [γj
p, δ

j
p])(3.15)

=
∑
p∈Pj

|f(δj
p)− f(γj

p)|,

where we used the assumptions in the last equality, and where (γj
p, δ

j
p)

(p ∈ Pj ⊂ N) are all the intervals contiguous to K ∩ [cj , dj ] in [cj , dj ]. By
adding (3.15) for j = 1, . . . , J , and using the subadditivity of g(t) = t1/(n−1)

for t ≥ 0, we obtain

(3.16)
J∑

j=1

|f(cj)− f(dj)|1/(n−1) ≤
∑
p∈P

|f(vp)− f(up)|1/(n−1);

thus the conclusion of the lemma will follow once we establish

(3.17)
( ∑

p∈P
|f(vp)− f(up)|1/(n−1)

)(n−1)/n

≤ Ckn(x′ − x)1/n
( ∑

p∈P
(vp − up)

)(n−1)/n
.

To prove (3.17), we need the following definition. If (α, β) is an interval
contiguous to K ∩ [x, x′] in [x, x′], then put r1(β) := β, and

ri(β) := inf{t ∈ [ri−1(β), x′] : #(K ∩ [β, t]) ≥ i or t = x′}

for i = 2, . . . , n− 2. Similarly, define l1(α) := α, and

li(α) := sup{t ∈ [x, li−1(α)] : #(K ∩ [t, α]) ≥ i or t = x}

for i = 2, . . . , n− 2. We will prove the following:

(∗) for each interval (α, β) contiguous to K ∩ [x, x′] in [x, x′] and each
i∈{1, . . . , n−2} there exists wi∈ [li(α), ri(β)] such that f (i)(wi)=0.
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If i = 1, then take w1 = α. Suppose that 1 < i < n− 1. If [li(α), ri(β)] ∩K ′

6= ∅, then (∗) follows by Lemma 2.10; otherwise #([li(α), ri(β)]∩K) ≥ i + 1
by the choice of li(α), ri(β), and (∗) follows from Lemma 2.9.

Fix p ∈ P and let s ∈ [up, vp]. Then |f ′(s)| = |f ′(s)− f ′(up)| = |f ′′(ξ1)| ·
|s−up|, and by induction for k = 2, . . . , n− 2, choose ξk ∈ [lk(up), rk(vp)] so
that

(3.18) |f (k)(ξk−1)| = |f (k)(ξk−1)− f (k)(wk)| = |f (k+1)(ξk)| · |ξk−1 − wk|,
where wk is chosen by applying (∗) to (up, vp). Using (3.18), we obtain

|f ′(s)| ≤ |f (n−1)(ξn−2)|
n−2∏
l=1

(rl(vp)− ll(up)).

Thus we obtain

|f(up)− f(vp)| ≤
vp\

up

|f ′(s)| ds ≤
vp\

up

|f (n−1)(ξn−2)|
n−2∏
l=1

(rl(vp)− ll(up)) ds

≤ k(vp − x)(rn−2(vp)− ln−2(up))n−2(vp − up).

Hence |f(up) − f(vp)|1/(n−1) ≤ (k(vp − x))1/(n−1)(rn−2(vp) − ln−2(up)) for
each p ∈ P, and thus( ∑

p∈P
|f(up)− f(vp)|1/(n−1)

)(n−1)/n

≤ k1/n(x′ − x)1/n
( ∑

p∈P
(rn−2(vp)− ln−2(up))

)(n−1)/n
.

As
∑

p∈P(rn−2(vp)− ln−2(up)) ≤ 2n
∑

p∈P(vp − up), we obtain( ∑
p∈P

|f(vp)− f(up)|1/(n−1)
)(n−1)/n

≤ k1/n(2n)(n−1)/n(x′ − x)1/n
( ∑

p∈P
(vp − up)

)(n−1)/n
.

Thus, (3.17) and also (3.12) follow.

The following lemma contains a sufficient condition for a function to
belong to the classes SBV G1/n and CBV G1/n.

Lemma 3.9. Suppose that f : [a, b] → R is (n − 1)-times differentiable
(for n ≥ 2) so that f (n−1)(·) is pointwise Lipschitz. Then f is both SBV G1/n

and CBV G1/n.

Proof. Note that V1/(n−1)(f, Kf ) < ∞ by [11, Remark 3.6] since f is
Cn−1 by assumption. Since Kf ⊂ {x ∈ [a, b] : f ′(x) = 0}, we have f (n−1)(x)
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= 0 for x ∈ K ′
f by Lemma 2.10. Denote

Bk
m :=

{
x ∈ K ′

f : |f (n−1)(y)| ≤ k|y − x| for all y ∈ B(x, 1/m)
}
.

It is easy to see that each Bk
m is closed,

⋃
k,m Bk

m = K ′
f , and Bk

m ⊂ Bk
m+1.

Let δk
m := 1/2m.

First, we will show that limm→∞GV
δk
m

1/n(f, Bk
m, Kf ) = 0. Fix k,m ∈ N

with Bk
m 6= ∅. Let ([xi, yi])N

i=1 be as in (3.1) for A = Bk
m, K = Kf and δ = δk

m

in the definition of GV
δk
m

1/n(f, Bk
m, Kf ). Let

(3.19) Pi := {p ∈ P : (up, vp) ⊂ [xi, yi]},
where (up, vp) (p ∈ P ⊂ N) are all the intervals contiguous to Kf in [a, b].
Applying Lemma 3.8 to [x, x′] = [xi, yi] for a fixed i = 1, . . . , N , summing
over i ∈ {1, . . . , N}, and using Hölder’s inequality (with exponents p = n
and p′ = n/(n− 1)), we obtain

(3.20)
N∑

i=1

(V1/(n−1)(f, Kf ∩ [xi, yi]))(n−1)/n

≤ Ckn

N∑
i=1

(yi − xi)1/n ·
( ∑

p∈Pi

(vp − up)
)(n−1)/n

≤ Ckn(b− a)1/n
( N∑

i=1

∑
p∈Pi

(vp − up)
)(n−1)/n

≤ Ckn(b− a)1/n
( ∑

vp−up≤δk
m

(vp − up)
)(n−1)/n

,

and since limm→∞ δk
m = 0 for a fixed k ∈ N, by (3.20) we obtain

(3.21) lim
m→∞

GV
δk
m

1/n(f, Bk
m, Kf ) = 0

for each k ∈ N.
Enumerate Kf \K ′

f as {xj}j∈J , where J ⊂ N and each j ∈ J is even.
Set A2k+1

m := B2k+1
m and δ̃2k+1

m := δ2k+1
m . For k ∈ J define Ak

m := {xk} for all
m ∈ N. For each k ∈ J find γk > 0 such that B(xk, γk) \ {xk} ∩Kf = ∅ and
put δ̃k

m := min(γk, 1/m). For k ∈ N \J even, put Ak
m := ∅ for all m ∈ N and

δ̃k
m := 1/m. Using (3.21), it is easy to see that the conditions of Definition 3.5
are satisfied with Ak

m and δ̃k
m.

To show that f is CBV G1/n, write each Bk
m as Bk

m =
⋃

l B
k
ml, where each

Bk
ml is closed and diam(Bk

ml) < 1/m. Fix k,m, l ∈ N such that Bk
ml 6= ∅. Let

([xi, yi])N
i=1, xi, yi ∈ Bk

ml, be as in (3.1) for f , A = Bk
ml, K = Kf and the

definition of GV1/n(f, Bk
ml, Kf ). If i ∈ {1, . . . , N}, then Lemma 3.8 applied
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to [x, x′] = [xi, yi] shows that

(3.22) (V1/(n−1)(f, [xi, yi] ∩Kf ))(n−1)/n

≤ Ckn(yi − xi)1/n
( ∑

i∈Pi

(vp − up)
)(n−1)/n

≤ Ckn(yi − xi),

where Pi is defined in (3.19). By summing over i ∈ {1, . . . , N} in (3.22), we
obtain

N∑
i=1

(V1/(n−1)(f, [xi, yi] ∩Kf ))(n−1)/n ≤ Ckn

N∑
i=1

(yi − xi)(3.23)

≤ Ckn(b− a) < ∞.

We have proved that GV1/n(f, Bk
ml, Kf ) < ∞ (for each k, m, l ∈ N). If we

reorder the sequence (Bk
ml)k,m,l together with the sequence ({x})x∈Kf\K′

f

into a single sequence which we call Am (omitting the empty sets), where
m ∈M ⊂ N, by (3.23) we see that f is CBV G1/n.

The following lemma will allow us to construct certain variations which
play a key rôle in establishing differentiability.

Lemma 3.10. Let f : [a, b] → R be continuous, ∅ 6= A ⊂ K ⊂ [a, b] be
closed sets, {a, b} ⊂ K, and δ > 0. Suppose that GV

δ
1/n(f, A,K) < ∞. Then

there exists a continuous increasing function v on [a, b] with v(a) = 0, v(b) ≤
GV

δ
1/n(f, A), and such that for x ∈ A and y, z ∈ K with x ≤ y < z < x + δ

we have

(3.24) |f(y)− f(z)| ≤ nn−1(v(z)− v(y))n−1(v(z)− v(x)).

If f has bounded variation, and V (f, [α, β]) = |f(β)− f(α)| whenever (α, β)
is an interval contiguous to K, then λ(v(K)) = 0.

Proof. Define v(x) := rGV δ
n (f, A ∩ [a, x], K ∩ [a, x]) for x ∈ K. The

continuity of v on K follows from Lemma 3.2. Now, extend v to a continuous
function on [a, b] such that v is continuous and affine on [α, β] whenever (α, β)
is an interval contiguous to K in [a, b].

To prove (3.24), let x ≤ y < z < x + δ where x ∈ A and y, z ∈ K. By
continuity, there is no loss of generality in assuming that x < y. Fix ε0 > 0.
Choose ([xi, yi])N

i=1 (see (3.1)) and ([ci
j , d

i
j ])

Ji
j=1 with ci

j , d
i
j ∈ K ∩ [xi, yi] such

that

v(y) = v(x) +
N∑

i=1

( Ji∑
j=1

|f(di
j)− f(ci

j)|1/(n−1)
)(n−1)/n

+ ε,

where 0 ≤ ε < ε0. This can be done because x ∈ A (see (3.2)). We can also
assume that ([xi, yi]) and ([ci

j , d
i
j ]) are ordered in the natural sense (see the
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remark after (3.6)). Then

v(z) ≥ v(x) +
N−1∑
i=1

( Ji∑
j=1

|f(di
j)− f(ci

j)|1/(n−1)
)(n−1)/n

+
( JN∑

j=1

|f(dN
j )− f(cN

j )|1/(n−1) + |f(y)− f(z)|1/(n−1)
)(n−1)/n

.

To simplify the notation, put b :=
∑JN

j=1 |f(dN
j ) − f(cN

j )|1/(n−1) and a :=
b + |f(y)− f(z)|1/(n−1). Because of the algebraic identity

u(n−1)/n − w(n−1)/n = (u− w) ·
∑n−2

i=0 ui/nw(n−2−i)/n∑n−1
i=0 ui/nw(n−1−i)/n

,

which is easily seen to be valid for all u, w ≥ 0 with u + w > 0, we obtain

v(z)− v(y) ≥ a(n−1)/n − b(n−1)/n − ε = (a− b) ·
∑n−2

i=0 ai/nb(n−2−i)/n∑n−1
i=0 ai/nb(n−1−i)/n

− ε.

Because a ≥ b, we obtain
∑n−1

i=0 ai/nb(n−1−i)/n ≤ na(n−1)/n, and this together
with the inequality v(z)− v(x) ≥ a(n−1)/n implies

v(z)− v(y) ≥ |f(y)− f(z)|1/(n−1) · a(n−2)/n

na(n−1)/n
− ε

=
|f(y)− f(z)|1/(n−1)

na1/n
− ε ≥ |f(y)− f(z)|1/(n−1)

n(v(z)− v(x))1/(n−1)
− ε.

To finish the proof of (3.24), let ε0 → 0.
Now, suppose f has bounded variation and V (f, [α, β]) = |f(β) − f(α)|

whenever (α, β) is an interval contiguous to K. We will show that λ(v(K))
= 0. Let (cp, dp) (p ∈ P ⊂ N) be all the intervals contiguous to K in [a, b].
First, we will prove that

(3.25) v(b)− v(a) ≤
∑
p∈P

(v(dp)− v(cp)).

Fix ε0 > 0, and let ([xi, yi])N
i=1 be nonoverlapping intervals as in Defini-

tion 3.1 for rGV δ
1/n(f, A,K) such that

v(b)− v(a) =
N∑

i=1

(V1/(n−1)(f, K ∩ [xi, yi]))(n−1)/n + ε,

for some 0 ≤ ε < ε0/3. Now for each i = 1, . . . , N , find nonoverlapping
intervals ([ci

j , d
i
j ])

Ji
j=1 in [xi, yi] such that ci

j , d
i
j ∈ K ∩ [xi, yi] and

(3.26) V1/(n−1)(f, K ∩ [xi, yi]) ≤
Ji∑

j=1

|f(di
j)− f(ci

j)|1/(n−1) +
(

ε0

3N

)n/(n−1)

.
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For i ∈ {1, . . . , N}, we can assume that di
j ≤ ci

j+1 for j = 1, . . . , J i − 1. For
the moment, fix i ∈ {1, . . . , N}. By splitting and regrouping the intervals
([ci

j , d
i
j ])

Ji
j=1, we can assume that there is a sequence of finite families of

intervals Ai
k, k = 1, . . . ,Ki, and points ai

k ∈ A∩ [xi, yi] such that if (α, β) ∈
Ai

k, then α, β ∈ K ∩ [xi, yi], if (σ, τ) ∈ Ai
l where k < l, then α < β ≤ ai

l ≤
σ < τ ,

(3.27)
Ji∑

j=1

|f(di
j)− f(ci

j)|1/(n−1) ≤
Ki∑
k=1

∑
(α,β)∈Ai

k

|f(β)− f(α)|1/(n−1),

and
(ci

j , d
i
j) ⊂

⋃
{(α, β) : (α, β) ∈ Ai

k, k = 1, . . . ,Ki}.

By Lemma 2.5 applied to f on [a, b] = [α, β] for (α, β) ∈ Ai
k, and B =

(A ∪ {α, β}) ∩ [α, β] (note that λ(f(A)) = 0 since λ(f(K)) = 0, and thus
λ(f(B)) = 0), let (αα,β

l , βα,β
l ) (l ∈ {1, . . . , Li

k}) be a finite collection of
intervals contiguous to (A ∪ {α, β}) ∩ [α, β] in [α, β] such that

(3.28) |f(β)−f(α)| ≤ V (f, [α, β]) ≤
Lik∑
l=1

V (f, [αα,β
l , βα,β

l ])+
(

ε0

3NKi|Ai
k|

)n

.

On the set {(αα,β
l , βα,β

l ) : l = 1, . . . , Lik, k = 1, . . . ,Ki, (α, β) ∈ Ai
k}

define an equivalence relation ∼ in the following way: I ∼ J whenever
(max I, min J)∩A = ∅ and (max J, min I)∩A = ∅ (note that one of the con-
ditions always holds). Denote by Bi

q (q = 1, . . . , Qi) the equivalence classes
of ∼. We have

(3.29)
Ki∑
k=1

∑
(α,β)∈Ai

k

|f(β)− f(α)|1/(n−1)

≤
Ki∑
k=1

∑
(α,β)∈Ai

k

Lik∑
l=1

(V (f, [αα,β
l , βα,β

l ]))1/(n−1) +
(

ε0

3N

)n/(n−1)

≤
Qi∑
q=1

∑
(η,θ)∈Bi

q

(V (f, [η, θ]))1/(n−1) +
(

ε0

3N

)n/(n−1)

.

By Lemma 2.5 and the assumptions, we obtain∑
(η,θ)∈Bi

q

(V (f, [η, θ]))1/(n−1) ≤
∑
ξ∈Ξi

q

|f(ωξ)− f(Ωξ)|1/(n−1)(3.30)

≤ V1/(n−1)(f, [τ i
q, T

i
q ]),

where (ωξ, Ωξ) (for ξ ∈ Ξi
q ⊂ N) are all the intervals contiguous to K∩[τ i

q, T
i
q ]
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for τ i
q = infx∈I∈Bi

q
x and T i

q = supx∈I∈Bi
q
x. By combining the inequali-

ties (3.26)–(3.30), we obtain

v(b)− v(a) ≤
N∑

i=1

( Ji∑
j=1

|f(di
j)− f(ci

j)|1/(n−1)
)(n−1)/n

+
2ε0

3
(3.31)

≤
N∑

i=1

( Ki∑
k=1

∑
(α,β)∈Ai

k

|f(β)− f(α)|1/(n−1)
)(n−1)/n

+
2ε0

3

≤
N∑

i=1

Qi∑
q=1

( ∑
(η,θ)∈Bi

q

(V (f, [η, θ]))1/(n−1)
)(n−1)/n

+ ε0

≤
N∑

i=1

Qi∑
q=1

(V1/(n−1)(f, [τ i
q, T

i
q ] ∩K))(n−1)/n + ε0.

Since (τ i
q, T

i
q) ∩A = ∅, for x ∈ [τ i

q, T
i
q ] ∩K we have

(3.32) v(x) = v(z) + (V1/(n−1)(f, K ∩ [z, x]))(n−1)/n,

where z = max(A ∩ [a, τ i
q]), Lemma 2.7 shows that λ(v([τ i

q, T
i
q ] ∩ K)) = 0.

Now, Lemma 2.5 applied to ζ(x) (where ζ(x)=(V1/(n−1)(f, K∩[z, x]))(n−1)/n

for x ∈ [τ i
q, T

i
q ] ∩K, and ζ is continuous and affine on intervals contiguous

to [τ i
q, T

i
q ] ∩K) implies that

(V1/(n−1)(f, [τ i
q, T

i
q ] ∩K))(n−1)/n = v(T i

q)− v(τ i
q) ≤

∑
p∈Pi

q

(v(dp)− v(cp)),

where P i
q = {p ∈ P : (cp, dp) ⊂ [τ i

q, T
i
q ]}. Combining this inequality

with (3.31), we get v(b) − v(a) ≤
∑

p∈P(v(dp) − v(cp)) + ε0, and by let-
ting ε0 → 0 it follows that (3.25) holds. Since v(K) ∩ v(

⋃
p∈P(cp, dp)) is

countable, we have λ(v(K)) = v(b)− v(a)− λ(
⋃

p∈P(cp, dp)) = 0.

By a symmetric argument (this time defining ṽ(x) := lGV δ
n (f, A∩[x, b])),

we obtain the following:

Lemma 3.11. Let f : [a, b] → R be continuous, ∅ 6= A ⊂ K ⊂ [a, b]
be closed sets, {a, b} ⊂ K, and δ > 0. Suppose that GV

δ
1/n(f, A,K) < ∞.

Then there exists a continuous decreasing function ṽ on [a, b] with ṽ(b) = 0,
ṽ(a) ≤ GV

δ
1/n(f, A,K), and such that for x ∈ A and y, z ∈ K with x− δ <

z < y ≤ x we have

(3.33) |f(y)− f(z)| ≤ nn−1(ṽ(z)− ṽ(y))n−1(ṽ(z)− ṽ(x)).

If {a, b} ⊂ K, f has bounded variation, and V (f, [α, β]) = |f(β) − f(α)|
whenever (α, β) is an interval contiguous to K, then λ(ṽ(K)) = 0.
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We have the following proposition.
Proposition 3.12. Let f : [a, b] → R be an SBV G1/n function. Then

f is Lebesgue equivalent to an n-times differentiable function ϕ such that
ϕ(i)(x) = 0 whenever i ∈ {1, . . . , n} and x ∈ Kϕ. Also, ϕ′(x) 6= 0 whenever
x ∈ [a, b] \Kϕ. If f is not constant on any interval , then λ(Kϕ) = 0.

Proof. For the moment, assume that f is not constant in any interval.
Lemma 2.6 shows that V (f, [a, b]) < ∞. Then put g := f ◦ v−1

f : [0, `] → R
(where ` := vf (b)). Since λ(f(Kf )) = 0 from Lemma 2.4, and vf (Kf ) = Kg,
from Lemma 2.5 we have

` = V (f, [a, b]) =
∑
p∈P

V (g, [up, vp]) =
∑
p∈P

(vp − up),

where (up, vp) (p ∈ P ⊂ N) are all the intervals contiguous to Kg in [0, `],
and thus λ(Kg) = `− λ(

⋃
p∈P(up, vp)) = 0. Putting G(t) = g

(
`

b−a · (t− a)
)
,

t ∈ [a, b], we can assume that f satisfies λ(Kf ) = 0 (since f is clearly
Lebesgue equivalent to G) provided f is not constant in any interval.

Let (Am)m and (δm)m ⊂ R+ \ {0} be the sequences from Definition 3.4
for f . Find a monotone sequence (mj)j∈N ⊂ N such that limj→∞mj = ∞,
and

(3.34)
∑

j

j ·GV
δmj

1/n (f, Amj , Kf ) < ∞.

Relabel (Amj )j as (Am)m, and (δmj )j as (δm)m. Then by (3.34) we have∑
m m ·GV

δm

1/n(f, Am, Kf ) < ∞. For x ∈ [a, b] define

v(x) := x +
∑
m

m(vm(x)− ṽm(x)),

where vm(x) (resp. ṽm(x)) are the functions v (resp. ṽ) obtained by applying
Lemma 3.10 (resp. Lemma 3.11) to f , K = Kf , A = Am, and δ = δm. Note
that v : Kf → [c, d] is a continuous strictly increasing function, which maps
onto [c, d], where c = v(a), d = v(b).

If f is not constant on any interval, by Lemmata 3.10 and 3.11, we have
λ(vm(Kf )) = 0 and λ(ṽm(Kf )) = 0 for each m ∈ N. Also, λ(Kf ) = 0, and
thus Lemma 2.2 shows that
(3.35) λ(v(Kf )) = 0.

For x ∈ Kf , we will show that for each ε > 0 there exists δ > 0 such that
if x ≤ y < z < x + δ or x− δ < z < y ≤ x, and y, z ∈ Kf , then
(3.36) |f(y)− f(z)| ≤ ε|v(z)− v(y)|n−1|v(z)− v(x)|.
Fix x ∈ Kf and ε > 0. Find m0 ∈ N such that x ∈ Am0 (and thus x ∈ Am

for all m≥m0), and pick m > m0 such that nn−1/mn < ε. Define δ := δm.
Let y, z ∈ Kf be such that x < y < z < x + δ. Then (3.24) implies that
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|f(y)− f(z)| ≤ nn−1(vm(z)− vm(y))n−1(vm(z)− vm(x)). But since we have
m(vm(τ)− vm(σ)) ≤ v(τ)− v(σ) for all a ≤ σ < τ ≤ b, we obtain

mn|f(y)− f(z)| ≤ nn−1(v(z)− v(y))n−1(v(z)− v(x)).

By the choice of m we have |f(y)− f(z)| ≤ ε(v(z)− v(y))n−1(v(z)− v(x)).
By continuity, the above argument shows that (3.36) also holds for y, z ∈ Kf

such that x = y < z < x + δ. Finally, by using (3.33) (instead of (3.24))
in the previous argument, we obtain (3.36) for x − δ < z < y ≤ x with
y, z ∈ Kf .

We define F : [c, d] → R as

(3.37) F (x) :=
{

f ◦ v−1(x) for x ∈ v(Kf ),
Hα,β(x) for x ∈ (α, β),

whenever (α, β) is an interval contiguous to v(Kf ) in [c, d], and H = Hα,β

is chosen by applying Lemma 2.11 to α, β, A = f ◦ v−1(α), B = f ◦ v−1(β).
It follows that F is Lebesgue equivalent to f , and F is n-times differentiable
at all x ∈ [c, d] \ v(Kf ) (by Lemma 2.11). To prove that F is n-times differ-
entiable, it remains to show that F (i)(x) = 0 for all x ∈ v(Kf ), i = 1, . . . , n.

Now, (3.36) implies that for each x ∈ v(Kf ) and for each ε > 0 there
exists δ > 0 such that

(3.38) |F (y)− F (z)| ≤ ε|y − z|n−1|x− z|

whenever x ≤ y < z < x + δ or x − δ < z < y ≤ x, and y, z ∈ v(Kf ). Fix
x ∈ v(Kf ). First, we will show that for each x ∈ v(Kf ) we have

(3.39) for each ε > 0 there exists δ > 0 such that
|F (n−1)(t)| ≤ ε|t− x| for all t ∈ [c, d] \ v(Kf ) with |x− t| < δ.

If x is not a right-hand accumulation point of v(Kf ), then (3.39) follows
from (3.37) and the fact that H

(n)
α,β(x) = 0 (where x = α, and (α, β) is the

corresponding interval contiguous to v(Kf )). If x is a right-hand accumula-
tion point of v(Kf ), let ε > 0 be given, and choose δ > 0 such that (3.38)
holds and x + δ ∈ v(Kf ). Let (α, β) be an interval contiguous to v(Kf ) in
[c, d] with (α, β) ⊂ [x, x + δ], and let t ∈ (α, β) (the case t < x being sym-
metric). Let l1(x) := ξ(x − α) for x ∈ [α, (α + β)/2], and l2(x) := ξ(β − x)
for x ∈ [(α + β)/2, β], where ξ = C · |f ◦ v−1(β)− f ◦ v−1(α)|/(β − α)n,
and C = Cα,β comes from condition (iii) of Lemma 2.11 applied on [α, β].
By (3.38), we have

li

(
α + β

2

)
= C · |f ◦ v−1(β)− f ◦ v−1(α)|

(β − α)n
· β − α

2

=
C

2
· |f ◦ v−1(β)− f ◦ v−1(α)|

(β − α)n−1
≤ C · ε ·

(
α + β

2
− α

)
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for i = 1, 2, and this inequality together with the equalities l1(α) = l2(β) = 0,
and condition (iii) from Lemma 2.11, implies that |F (n−1)(t)| = |H(n−1)

α,β (t)|
≤ min(l1(t), l2(t)) ≤ Cε(t − x) for all t ∈ (α, β). To see this, we use the
fact that if two continuous affine functions a1, a2 : [a, b] → R satisfy a1(a) ≤
a2(a), and a1(b) ≤ a2(b), then a1(t) ≤ a2(t) for all t ∈ [a, b]. We apply
this fact to a1(t) = l1(t) for t ∈ [α, (α + β)/2] (resp. a1(t) = l2(t) for t ∈
[(α + β)/2, β]), and a2(x) = Cε(t− x). Similarly for (α, β) ⊂ [x− δ, x].

Let ε > 0, and let δ > 0 be as in (3.39). We will show by induction
(using (3.39)) that

(3.40) |F (i)(t)| ≤ Cε|t− x| for t ∈ (x, x + δ) \ v(Kf ), i = 1, . . . , n− 1.

Let t′ := max(v(Kf )∩ [x, t]). Then (using the Mean Value Theorem and the
fact that on [t′, t], F = Hα,β for some α, β) we obtain

|F (i)(t)| = |F (i)(t)− F
(i)
+ (t′)| ≤ |F (i+1)(ξi+1)| · |t− t′|

≤ · · · ≤ |F (n−1)(ξn−1)| · |t− t′|n−1−i,

where ξj ∈ [t′, t], and (3.40) easily follows.
Using (3.38), (3.40), and the fact that F

(i)
+ (α) = H

(i)
α,β(α) = 0 for i =

1, . . . , n, by induction we will obtain

(3.41) F (i)(x) = 0 for all x ∈ v(Kf ) and i = 1, . . . , n− 1.

The case i = 1 follows directly from (3.38). For i = 2, F ′(t) − F ′(x) = 0
provided t ∈ v(KF ), and given ε > 0, for t ∈ (x− δ, x + δ) \ v(Kf ) (where δ
is chosen so that (3.38) and (3.40) hold) we have |F ′(t)−F ′(x)| = |F ′(t)| ≤
Cε|t− x|, and thus F ′′(x) = 0. Similarly for higher i’s.

To finish the proof of differentiability of F , it suffices to show that
F (n)(x) = 0 for each x ∈ v(Kf ). Since F (n−1)(w) = 0 for all w ∈ v(Kf ),
(3.39) together with (3.41) easily implies this assertion.

If f is not constant on any interval, then (3.35) implies that λ(KF ) =
λ(v(Kf )) = 0.

By (3.37) and (i) of Lemma 2.11, F ′(x) 6= 0 for all x ∈ [c, d] \ KF . It
follows that there exists a linear homeomorphism η : [a, b] → [c, d] which is
onto. Now, it clearly suffices to put ϕ := F ◦ η.

Proposition 3.13. Let f : [a, b] → R be a CBV G1/n function. Then f
is Lebesgue equivalent to an (n− 1)-times differentiable function φ such that
φ(n−1)(·) is pointwise Lipschitz , φ(i)(x) = 0 for all x ∈ Kφ, i = 1, . . . , n− 1,
and φ′(x) 6= 0 whenever x ∈ [a, b] \Kφ. If f is not constant on any interval ,
then λ(Kφ) = 0.

Proof. It is similar to the proof of Proposition 3.12, so we will only sketch
it. If f is not constant on any interval, then as in the proof of Proposition 3.12
we can assume that λ(Kf ) = 0.
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Let (Am)m∈M be the sets from Definition 3.3. If M is finite, then use
Ãm = Kf and M̃ = N instead of Am and M (it is easy to see that in this
case GV1/n(f, Kf , Kf ) < ∞). Find a sequence am > 0 such that∑

m∈M
am ·GV1/n(f, Am ∪ {a, b}, Kf ) < ∞.

For x ∈ [a, b] ∩ Kf define v(x) = x +
∑

m∈M am · (vm(x) − ṽm(x)), where
vm (resp. ṽm) come from Lemma 3.10 (resp. Lemma 3.11) applied to f and
δ = b−a (since it is easy to see that GV

(b−a)
1/n (f, Am, Kf ) ≤ 2 GV1/n(f, Am∪

{a, b}, Kf ); see also (3.3)). As in the proof of Proposition 3.12, v is a con-
tinuous strictly increasing function. Moreover, for each x ∈ Kf there exists
m ∈M such that

(3.42) |f(y)− f(z)| ≤ Cm|v(z)− v(y)|n−1|v(z)− v(x)|

for all y, z ∈ Kf with x ≤ y < z or z < y ≤ x. This follows from (3.24)
and (3.33) just as (3.36) in the proof of Proposition 3.12.

Define F : [a, b] → R as

(3.43) F (x) :=
{

f ◦ v−1(x) for x ∈ v(Kf ),
Hα,β(x) for x ∈ (α, β),

whenever (α, β) is an interval contiguous to v(Kf ) in [c, d], and H = Hα,β is
is chosen by applying Lemma 2.11 to α, β, A = f ◦ v−1(α), B = f ◦ v−1(β).
Then F is n-times differentiable at all x ∈ [c, d] \ v(Kf ). It remains to show
that F (i)(x) = 0 for all x ∈ v(Kf ), i = 1, . . . , n − 1, and that F (n−1) is
pointwise Lipschitz at all points of v(Kf ).

From (3.42), for each x ∈ v(Kf ) there exists Cx > 0 such that

(3.44) |F (y)− F (z)| ≤ Cx|z − y|n−1|z − x|

for y, z ∈ v(Kf ) with z < y ≤ x or x ≤ y < z. This yields

(3.45) |F (n−1)(t)| ≤ C ′
x|t− x|

for all t ∈ [c, d] \ v(Kf ). By induction, F (i)(x) = 0 for all i = 1, . . . , n − 1
(since (3.44) together with (3.45) implies that F ′(x) = 0, and then (3.45)
easily implies that F (i)(x) = 0 for i = 2, . . . , n − 1). Now (3.45) (together
with the fact that F (n−1)(x) = 0 for each x ∈ v(Kf )) easily implies that
F (n−1) is pointwise Lipschitz at all points of v(Kf ).

If f is not constant on any interval, then as in Proposition 3.12, we
establish that λ(KF ) = λ(v(Kf )) = 0.

By (3.43) and (i) of Lemma 2.11, F ′(x) 6= 0 for all x ∈ [c, d] \ KF . It
follows that there exists a linear homeomorphism η : [a, b] → [c, d] which is
onto. Now, it clearly suffices to put φ := F ◦ η.
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4. Main result. The case n = 2 is handled in [5]. The following main
theorem gives a slightly different characterization in that case (see Introduc-
tion).

Theorem 4.1. Let f : [a, b] → R be continuous and n ∈ N, n ≥ 2. Then
the following are equivalent :

(i) f is Lebesgue equivalent to a function g which is n-times differen-
tiable.

(ii) f is Lebesgue equivalent to a function g which is n-times differen-
tiable and such that g(i)(x) = 0 whenever i ∈ {1, . . . , n} and x ∈ Kg,
and g′(x) 6= 0 whenever x ∈ [a, b] \Kg.

(iii) f is Lebesgue equivalent to a function g which is (n − 1)-times dif-
ferentiable and such that g(n−1)(·) is pointwise Lipschitz.

(iv) f is SBV G1/n.
(v) f is CBV G1/n.
(vi) f is SBV G1/n.

Proof. The implications (ii)⇒(i) and (i)⇒(iii) are trivial. The impli-
cations (iii)⇒(iv) and (iii)⇒(v) follow from Lemma 3.9. The implication
(vi)⇒(ii) follows from Proposition 3.12, and (v)⇒(iii) from Proposition 3.13.
Finally, (i)⇒(vi) follows from Lemmata 3.9 and 3.6; and (iv)⇒(vi) from
Lemma 3.6.

We have the following corollary:

Corollary 4.2. Let f : [a, b] → R, n ≥ 2, n ∈ N. Then f is CBV G1/n

if and only if f is SBV G1/n.

The following example shows that for each n ≥ 2 there exists a continuous
function f : [0, 1] → R that is CBV G1/n (and thus is Lebesgue equivalent
to an n-times differentiable function by Theorem 4.1), but V1/n(f, Kf ) = ∞
(and thus f is not Lebesgue equivalent to any Cn function by the results
of [11]). It is a simplified version of [11, Example 8.3].

Example 4.3. Let n ≥ 2 be an integer. Let am ⊂ (0, 1) be such that
am ↓ 0. Define f(a2m) = m−n and f(2m−1) = 0 for all m = 1, 2, . . . ,
f(0) = f(1) = 0, and extend f onto [0, 1] so that it is continuous and affine
on each interval contiguous to K = {0, 1} ∪ {am : m ∈ N}. Then Kf = K,
f is CBV G1/n, but V1/n(f, Kf ) = ∞.

Proof. Obviously, f is continuous, has bounded variation, and we have
V1/(n−1)(f, Kf ) < ∞. Also, it is easy to see that f is CBV G1/n (using
A1 = {0, 1} and Am = {a2m−2, a2m−3} for m = 2, 3, . . . ). On the other
hand,

V1/n(f, Kf ) ≥
∑
m∈N

|f(a2m)− f(a2m−1)|1/n =
∑
m

1
m

= +∞.
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The following theorem characterizes the situation when we require the
first derivative to be nonzero almost everywhere.

Theorem 4.4. Let f : [a, b] → R be continuous and n ∈ N, n ≥ 2. Then
the following are equivalent :

(i) f is Lebesgue equivalent to a function g which is n-times differen-
tiable and such that g′(x) 6= 0 for a.e. x ∈ [a, b].

(ii) f is Lebesgue equivalent to a function g which is n-times differen-
tiable and such that g(i)(x) = 0 whenever i ∈ {1, . . . , n} and x ∈ Kg,
g′(x) 6= 0 whenever x ∈ [a, b] \Kg, and λ(Kg) = 0.

(iii) f is Lebesgue equivalent to a function g which is (n−1)-times differ-
entiable and such that g(n−1)(·) is pointwise Lipschitz , and g′(x) 6= 0
for a.e. x ∈ [a, b].

(iv) f is SBV G1/n and f is not constant on any interval.
(v) f is CBV G1/n and f is not constant on any interval.
(vi) f is SBV G1/n and f is not constant on any interval.

Proof. The proof is similar to the proof of Theorem 4.1 while we also
use the fact that g′(x) 6= 0 for a.e. x ∈ [a, b] implies that g is not constant
on any interval, the fact that being nonconstant on any interval is invariant
with respect to the Lebesgue equivalence, and the corresponding assertions
in Propositions 3.12 and 3.13.

5. Generalized Zahorski Lemma. Our methods yield the following
theorem, which can be viewed as a generalization of Zahorski’s Lemma; see
e.g. [15] or [10, p. 27].

Theorem 5.1. Let K ⊂ [a, b] be a closed set and n ∈ N, n ≥ 2. Then
the following are equivalent :

(i) There exists an n-times differentiable homeomorphism h of [a, b] onto
itself such that

K = h({x ∈ [a, b] : h(i)(x) = 0 ∀i = 1, . . . , n}).

(ii) V1/(n−1)(id, K) < ∞ and there exist closed sets Am ⊂ [a, b] (m ∈
M ⊂ N) such that K =

⋃
m Am and GV1/n(id, Am, K) < ∞ for all

m ∈M.
(iii) V1/(n−1)(id, K) < ∞ and there exist closed sets Am ⊂ [a, b] and

numbers δm > 0 (m ∈ N) such that K =
⋃

m Am, Am ⊂ Am+1 for
all m ∈ N, and limm→∞GV

δm

1/n(id, Am, K) = 0.

Proof. Since the proof is similar to the considerations above, we will
only sketch it. Without any loss of generality, we can assume that {a, b}
⊂ K. The proof of (i)⇒(ii) is similar to the proof that every (n − 1)-times
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differentiable function f such that f (n−1) is pointwise Lipschitz, is CBV G1/n

(see Lemma 3.9).
To prove that (ii)⇒(iii), note that an argument similar to the proof of

Proposition 3.13 shows that there exists a homeomorphism ϕ of [a, b] onto
itself which is (n− 1)-times differentiable with ϕ(n−1) being pointwise Lips-
chitz, and such that

K = ϕ({x ∈ [a, b] : ϕ(i)(x) = 0 for all i = 1, . . . , n− 1}).
By the argument of the proof of Lemma 3.9, we find a decomposition Ãk

m

with some δ̃k
m > 0 for ϕ−1(K) such that Ãk

m ⊂ Ãk
m+1 for all m, k ∈ N and

lim
m→∞

GV
δ̃k
m

1/n(id, Ãk
m, ϕ−1(K)) = 0

for each k, and then using the diagonal argument from Lemma 3.6, we find
Ãm and δ̃m such that ϕ−1(K) =

⋃
m Ãm and

lim
m→∞

GV
δ̃m

1/n(id, Ãm, ϕ−1(K)) = 0.

Now, we put Am := ϕ(Ãm), and find suitable δm > 0 using the uniform
continuity of ϕ−1. This shows that (iii) holds.

Finally, to show that (iii)⇒(i), one can use a construction similar to the
one in the proof of Proposition 3.12.

Remark 5.2. It is also not very difficult to see that in the previous
theorem, we can replace (i) with

(i′) There exists an n-times differentiable homeomorphism h of [a, b] onto
itself such that h−1 is absolutely continuous, h−1(K) = 0, and

K = h({x ∈ [a, b] : h(i)(x) = 0 ∀i = 1, . . . , n}).
The proof uses ideas from the proof of Theorem 4.4. Let us only remark that
it is well known that h−1 can be taken absolutely continuous in the classical
Zahorski Lemma; see e.g. [1].
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