Nonnormality points of $\beta X \setminus X$

by

William Fleissner (Lawrence, KS) and Lynne Yengulalp (Dayton, OH)

Abstract. Let X be a crowded metric space of weight κ that is either κ^{ω}-like or locally compact. Let $y \in \beta X \setminus X$ and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of $(\beta X \setminus X) \setminus \{y\}$ with y as the unique limit point. If, in addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal, and hence $(\beta X \setminus X) \setminus \{y\}$ is not normal.

1. Introduction. An important theorem about the structure of $\beta X \setminus X$ when X is discrete is due to Bešlagić and van Douwen [1].

Theorem 1.1 (Bešlagić and van Douwen [1]). Assume GCH. Let κ be an infinite cardinal, and let X be the discrete space of cardinality κ. Let y be any point of $\beta X \setminus X$. Then the space of nonuniform ultrafilters on κ^+ embeds in $(\beta X \setminus X) \setminus \{y\}$ as a closed subset. Hence neither $(\beta X \setminus X) \setminus \{y\}$ nor $\beta X \setminus \{y\}$ is normal.

Recent research has extended nonnormality point results to nondiscrete spaces. For example:

Theorem 1.2 (Logunov [9] and Terasawa [12], independently). If X is a crowded metrizable space space, then $\beta X \setminus \{y\}$ is not normal for all $y \in \beta X \setminus X$.

Theorem 1.3 (Logunov [10]). If X is a crowded realcompact locally compact metrizable space space, and y is not a P-point, then $(\beta X \setminus X) \setminus \{y\}$ is not normal for all $y \in \beta X \setminus X$.

Logunov and Terasawa prove their results without extra axioms of set theory. They prove that $\beta X \setminus \{y\}$ or $(\beta X \setminus X) \setminus \{y\}$ is not normal, but do not embed closed subspaces of nonuniform ultrafilters. Our results are closer to those of Bešlagić and van Douwen.

2010 Mathematics Subject Classification: Primary 54D80; Secondary 03E45.
Key words and phrases: nonnormality point, butterfly point, regular z-ultrafilter.
Theorem 1.4. Let X be a metric space of weight κ without isolated points that is either κ^ω-like or locally compact. Let $y \in \beta X \setminus X$. Assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of $(\beta X \setminus X) \setminus \{y\}$ with y as the unique limit point. If y is a regular ω-ultrafilter, then neither $(\beta X \setminus X) \setminus \{y\}$ nor $\beta X \setminus \{y\}$ is normal.

2. Topological spaces. All spaces X are Tihkonov, and hence have a Stone–Čech compactification βX. We consider a point of βX to be a ω-ultrafilter on X. We identify a point x of X with the ω-ultrafilter \tilde{x}, the collection of all zero sets of X of which x is an element, so that X is embedded as a subspace of βX. When f is a bounded, continuous function from X to \mathbb{R}, we denote the unique extension of f by βf.

A space is called crowded if it has no isolated points. The topology, weight, and Lindelöf number of a space X are denoted $\tau(X)$, $w(X)$, and $L(X)$. We use the letters κ, λ, θ, etc. to denote infinite cardinals and the discrete spaces of that cardinality. We say that a space X is κ^ω-like if X is metrizable, nowhere locally compact, and every nonempty open subset of X has weight κ.

Lemma 2.1. Let X be a κ^ω-like metrizable space and let Z be a subset of X with $w(Z) = \lambda < \kappa$. There is a λ^ω-like closed subset Y of X containing Z.

Proof. Set $Z_1 = Z$. Given Z_n with $L(Z_n) = \lambda$, choose $\mathcal{V}_n \in [\tau(X)]^\lambda$ such that $Z_n \subseteq \bigcup \mathcal{V}_n$ and $\text{diam} \, V < 1/n$ for all $V \in \mathcal{V}$. Choose Z_{n+1} such that $Z_n \subseteq Z_{n+1}$, $|Z_{n+1} \setminus Z_n| \leq \lambda$ (hence $L(Z_{n+1}) = \lambda$), and for all $V \in \mathcal{V}_n$ there is $E \in [V \cap Z_{n+1}]^\lambda$ which is closed discrete (hence $w(V \cap Z_{n+1}) = \lambda$). Set $Y_0 = \bigcup_{n \in \mathbb{N}} Z_n$; note that $w(Y) \leq \lambda$ because $\{V \cap Y_0 : (\exists n) \, V \in \mathcal{V}_n\}$ is a base for Y_0.

Let $y \in W$ be open in Y_0. There are $n \in \mathbb{N}$ and $V \in \mathcal{V}_n$ such that $y \in V \cap Z_{n+1} \subseteq W$. Then $w(W) \geq w(V \cap Z_{n+1}) = \lambda$. Finally, set $Y = \text{cl} \, Y_0$. ~

3. Regular ω-ultrafilters. The next result tells us for which cardinals θ the space of nonuniform ultrafilters is not normal.

Lemma 3.1. Let $\text{NU}(\theta)$ denote the subspace of $\beta \theta$ of nonuniform ultrafilters. That is, $\text{NU}(\theta) = \{y \in \beta \theta : (\exists Z \in \theta) \, |Z| < \theta\}$.

1. (\text{III}) If θ is regular and not a strong limit cardinal (in particular, if $\theta = \kappa^+$), then $\text{NU}(\theta)$ is not normal.

2. (\text{III}) If θ is singular, then $\text{NU}(\theta)$ is not normal.

3. (\text{III}) The space $\text{NU}(\theta)$ is normal if and only if θ is weakly compact.

In the proof of Theorem 1.1, the reaping number $\tau(\kappa)$ of κ is defined, and the space $\text{NU}(\tau(\kappa))$ is embedded in $(\beta \kappa \setminus \kappa) \setminus \{y\}$. The inequalities

\[\tau(\kappa) \leq \omega^\omega \leq \text{cof}(\omega^\omega) \leq \text{cf}(\omega^\omega) = \omega_1 \leq 2^{\text{cf}(\omega^\omega)} = 2^{\omega_1} \leq 2^{\text{cof}(\omega^\omega)} \leq 2^{\text{cf}(\omega^\omega)} = 2^{\omega_1} \leq 2^{2^{\omega_1}} = 2^{2^{\omega_1}}.\]
\(\kappa < \tau(\kappa) \leq 2^\kappa \) hold in ZFC, so GCH gives \(\tau(\kappa) = \kappa^+ \), and the embedded space is not normal.

In the proof of Theorem 1.4 we consider a point \(y \) of \(\beta X \setminus X \). The analog of \(\tau(\kappa) \) is \(\theta_y \), a cardinal which depends on the point \(y \) (not just the space \(X \)). The upper bound \(\theta_y \leq 2^\kappa \) is proved as in [1], but the lower bound \(\kappa < \theta_y \) requires assuming that \(y \) is a regular \(z \)-ultrafilter.

Definition 3.2. Let \(y \) be a \(z \)-ultrafilter on a space \(X \). We say that \(y \) is \(\kappa \)-regular if there is a subset \(Z \) of \(y \) such that \(Z \) is locally finite and \(|Z| = \kappa \). We say that \(y \) is regular if \(y \) is \(\omega(X) \)-regular.

If \(X \) is a discrete space of cardinality \(\kappa \), then any ultrafilter on \(X \) is a \(z \)-ultrafilter (because every subset of \(X \) is an open set, a closed set, and a \(z \)-set). In this case, a \(\kappa \)-regular ultrafilter is exactly an \((\omega, \kappa) \)-regular ultrafilter as defined in [2]. The notion of regular ultrafilter appears implicitly in papers from the mid-1950’s, for example [5].

Theorem 3.3 ([7, Section 12.7]). Let \(\kappa \) be an infinite cardinal. There is a maximal ideal \(M \) in \(C(\kappa) \) such that \(|C(\kappa)/M| > \kappa \). In fact, no set of power at most \(\kappa \) is cofinal in the ordered field \(C(\kappa)/M \). If \(2^\kappa = \kappa^+ \), then \(\text{cf}(C(\kappa)/M) = |C(\kappa)/M| = 2^\kappa \).

Proof. Because \(\kappa \) is infinite, there is a bijection \(\alpha \mapsto s_\alpha \) from \(\kappa \) to \([\kappa]^{<\omega}\). For each \(\alpha \in \kappa \), set \(Z_\alpha = \{ \gamma \in \kappa : \alpha \in s_\gamma \} \). By construction, \(\{Z_\alpha : \alpha \in \kappa \} \) has the finite intersection property: if \(s = s_\gamma \in [\kappa]^{<\omega} \), then \(\gamma \in \bigcap\{Z_\alpha : \alpha \in s\} \). Extend \(\{Z_\alpha : \alpha \in \kappa \} \) to a \(z \)-ultrafilter \(y \), and set \(M = \{ f \in C(\kappa) : f^{-1}\{0\} \subseteq y \} \).

Given \(B = \{g_\alpha : \alpha < \kappa \} \subseteq C(\kappa) \), define

\[
 f(\gamma) = 1 + \max\{g_\alpha(\gamma) : \alpha \in s_\gamma \}.
\]

The maximum exists because \(s_\gamma \) is finite, and \(f \) is continuous because \(\kappa \) is discrete. Let \(g_\alpha \in B \) be arbitrary. For every \(\gamma \in Z_\alpha \),

\[
 g_\alpha(\gamma) \leq \max\{g_{\alpha'} : \alpha' \in s_\gamma \} < f(\gamma). \tag*{■}
\]

We can generalize the previous theorem to show that if \(X \) is a paracompact space, and \(y \) is a regular \(z \)-ultrafilter on \(X \), then \(C(X)/M_y \) has cofinality greater than \(\kappa \), where \(M_y \) is the maximal ideal of functions \(f \) such that \(\{x \in X : f(x) = 0\} \subseteq y \). We have also generalized the notion of “\(\kappa^+ \)-good” to \(z \)-ultrafilters and proved the analogous theorem. If \(y \) is a \(\kappa^+ \)-good \(z \)-ultrafilter on a paracompact space \(X \), then \(C(X)/M_y \) is an \(\eta_\alpha \)-set, where \(\kappa^+ = \aleph_\alpha \).

Definition 3.4. Let \(\text{UR}(\kappa) \) be the assertion that every uniform ultrafilter on a set of cardinality \(\kappa \) is \(\kappa \)-regular. Let \(\text{UR} \) assert that \(\text{UR}(\kappa) \) holds for every infinite \(\kappa \). Informally, we read \(\text{UR} \) as “every uniform ultrafilter is regular”.
The most familiar example of a nonregular ultrafilter is a countably complete free ultrafilter on a measurable cardinal. Hence UR implies that there are no measurable cardinals. Like the assumption that there are no measurable cardinals, UR is safe. The assumption of Theorem 1.4, GCH + UR, is a consequence of V = L. Hence UR does not imply that ZFC is consistent. On the other hand, it has been shown that \(\neg \text{UR} \) does imply that ZFC is consistent. In fact, it is plausible to conjecture that \(\neg \text{UR} \) is equiconsistent with “there exists a measurable cardinal”. See [3].

Lemma 3.5. Assume UR(\(\kappa \)). That is, every uniform ultrafilter \(p \) on a set of cardinality \(\kappa \) is \(\kappa \)-regular. Let \(X \) be a metrizable space of weight \(\kappa \) which is locally compact. Then every uniform z-ultrafilter \(y \) on \(X \) is \(\kappa \)-regular.

Proof. Let \(C \) be the collection of open subsets of \(X \) that have compact closure. Because \(X \) is locally compact, \(C \) covers \(X \). Let \(R \) be a locally finite open refinement of \(C \).

We claim that \(|R| = \kappa \). Since \(y \) is free, \(X \) is not compact and therefore \(R \) cannot be finite. Hence if \(\kappa = \omega \) then \(|R| = \kappa = \omega \). Suppose that \(\kappa > \omega \). Let \(B \) be a base for \(X \) of cardinality \(\kappa \). Because \(R \) is locally finite, \(|R| \leq |B| = \kappa \).

In the other direction, if \(R \in \mathcal{R} \), then \(L(R) = \omega \). Hence \(\kappa = L(\bigcup \mathcal{R}) \leq |\mathcal{R}| \cdot \omega \).

For each \(Z \in y \), set \(U(Z) = \{ U \in R : U \cap Z \neq \emptyset \} \). Observe that \(p^0 = \{ U(Z) : Z \in y \} \cup \{ X \setminus S : S \in [\mathcal{R}]^{<\kappa} \} \) has the finite intersection property, and extend it to a uniform ultrafilter \(p \) on \(\mathcal{R} \).

Because \(p \) is \(\kappa \)-regular, there is a point finite collection \(\{ U_\alpha : \alpha \in \kappa \} \subset p \). For each \(\alpha \), set \(Z_\alpha = \text{cl}\bigcup U_\alpha \). We now show that \(Z_\alpha \in y \). Let \(Z \in y \) be arbitrary. The collections \(U_\alpha \) and \(U(Z) \) are both members of \(p \), so \(U_\alpha \cap U(Z) \neq \emptyset \). Let \(U \in U_\alpha \cap U(Z) \). Then \(U \cap Z \neq \emptyset \) and therefore \(\bigcup U_\alpha \cap Z \neq \emptyset \). Hence \(Z_\alpha \cap Z \neq \emptyset \), so \(Z_\alpha \in y \).

We have shown that \(\{ Z_\alpha : \alpha \in \kappa \} \) is a subset of \(y \); we must show that it is locally finite. Because \(\mathcal{R} \) is locally finite, for each \(x \in X \) there is an open set \(V \) such that \(x \in V \) and \(\{ U \in \mathcal{R} : V \cap U \neq \emptyset \} \) is finite. Then \(\{ \alpha \in \kappa : (\exists U \in U_\alpha) \ V \cap U \neq \emptyset \} \) is finite, and we are done.

In the result above, the hypothesis “\(X \) is locally compact” can be replaced with the cumbersome “Let \(X \) have a cover \(C \) of open sets of weight less than \(\lambda \), for some regular cardinal \(\lambda \) less than or equal to \(\kappa \)”.

4. Pi-bases. In our constructions we will use locally finite pairwise disjoint collections \(\xi \) of open sets. The collections will come from an appropriate \(\pi \)-base. Following Terasawa we use \(\xi^* \) to denote \(\bigcup \xi \). Observe that such a collection \(\xi \) is locally finite and maximal disjoint if and only if \(\xi^* \) is dense in \(X \).
Proposition 4.1 (Terasawa). Let X be a crowded metrizable space. Then X has a π-base

$$\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$$

such that

1. \mathcal{B}_n is a locally finite, maximal disjoint family of nonempty open sets;
2. \mathcal{B}_n refines \mathcal{B}_{n-1};
3. for each $B \in \mathcal{B}_{n-1}$, there are three sets $B^{(i)} \in \mathcal{B}_n$, $i = 0, 1, 2$, such that $\text{cl} B^{(i)} \subset B$ and $\text{cl} B^{(i)} \cap \text{cl} B^{(j)} = \emptyset$ for $i \neq j$;
4. every open cover of X is refined by a locally finite, maximal disjoint subfamily of \mathcal{B}.

Suppose $y \in \beta X \setminus X$. Terasawa remarks that the π-base in Proposition 4.1 can be easily modified so that

$$y \notin \text{cl}_{\beta X} B \quad \text{for all } B \in \mathcal{B}.$$ \(\#\)

This property of \mathcal{B} was not, however, necessary in his proof that $\beta X \setminus \{y\}$ is not normal; the butterfly sets did not need to be subsets of $\beta X \setminus X$. To show that $(\beta X \setminus X) \setminus \{y\}$ is not normal, our construction will require closed subsets of $\beta X \setminus X$. The following propositions define a π-base \mathcal{B} for two types of metric spaces. For X locally compact, $(\#)$ is true for \mathcal{B} for any $y \in \beta X \setminus X$. For X $\kappa\omega$-like, given $y \in \beta X \setminus X$, we construct \mathcal{B} so that $(\#)$ is satisfied.

We say that a π-base \mathcal{B} for a crowded metric space is nice if it satisfies (1), (2) and (4) in Proposition 4.1. In Section 5 we use the properties of a nice π-base to construct locally finite collections. In the sections after 5 we use a nice π-base with the additional properties (3) and $(\#)$.

The proofs of the next two results are omitted because they follow easily from Proposition 4.1.

Proposition 4.2. Let X be a locally compact crowded metrizable space. Then X has a π-base

$$\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$$

such that

1. \mathcal{B}_n is a locally finite, maximal disjoint family such that $\text{cl}_X B$ is compact for each $B \in \mathcal{B}$;
2. \mathcal{B}_{n+1} refines \mathcal{B}_n and $|\{B' \in \mathcal{B}_{n+1} : B' \subset B\}| = 4$ for all $B \in \mathcal{B}_n$;
3. for $B \in \mathcal{B}_n$ there are $B^0, B^1 \in \mathcal{B}_{n+1}$ such that $\text{cl} B^0 \cap \text{cl} B^1 = \emptyset$ and $\text{cl} B^0, \text{cl} B^1 \subset B$;
4. every open cover of X is refined by a locally finite, maximal disjoint subfamily of \mathcal{B}. \(\Box\)
Proposition 4.3. Let κ be an infinite cardinal and let X be a κ^ω-like metric space. Let y be a free z-ultrafilter on X. Then X has a π-base

$$B = \bigcup_{n \in \omega} B_n$$

such that

1. B_n is a locally finite, maximal disjoint family of nonempty open sets;
2. B_n refines B_{n-1};
3. $|B_0| = \kappa$ and for each $B \in B_{n-1}$, there are sets $B^{(\eta)} \in B_n$, $\eta \in \kappa$, such that $\text{cl } B^{(\eta)} \subseteq B$ and $\text{cl } B^{(\eta)} \cap \text{cl } B^{(\eta')} = \emptyset$ for $\eta \neq \eta'$;
4. every open cover of X is refined by a locally finite, maximal disjoint subfamily of B;
5. $\text{cl } B \notin y$ for all $B \in B$.

5. Locally finite collections and cofinalities. Let X be a crowded metrizable space with a nice π-base \mathcal{B}. Let Ξ be the collection of maximal pairwise disjoint, locally finite collections $\xi \subset B$.

Remark 1. For each $B, B' \in B$, if $B \cap B' \neq \emptyset$ then either $B = B'$, $B \subset B'$ or $B' \subset B$.

Remark 2. If $\xi, \eta \in \Xi$ and $B \in \xi$, then since both ξ^* and η^* are dense in X, because of Remark 1, there is $B' \in \eta$ such that either $B = B'$, $B \subset B'$ or $B' \subset B$.

Fix a free z-ultrafilter y on X and let τ_y be the collection of open neighborhoods of y in βX. Let $\mathcal{N}_y = \{X \cap O : y \in O, O \in \tau(\beta X)\}$. The collection \mathcal{N}_y is a free open filter on X. We write \mathcal{N}_y^* for the collection of open subsets U of X that are dense in some $N \in \mathcal{N}_y$, that is, $N \subset \text{cl } U$. Using \mathcal{N}_y^*, we define a strict partial order $<_y$ on Ξ. For $\xi, \eta \in \Xi$ let $L(\xi, \eta) = \{B \in \xi : B' \subset B \text{ for some } B' \in \eta\}$. Define $\xi <_y \eta$ if $L(\xi, \eta)^* \subset \mathcal{N}_y^*$.

The lemma below is analogous to Theorem 3.3.

Lemma 5.1. Let $\kappa = w(X)$. Suppose $y \in \beta X \setminus X$ is a regular z-ultrafilter. Any subset $\{\xi_\gamma : \gamma \in \lambda\}$ of Ξ where $\lambda \leq \kappa$ is bounded.

Proof. Let $\{\xi_\gamma : \gamma \in \kappa\} \subset \Xi$. We construct $\xi \in \Xi$ such that $\xi_\gamma <_y \xi$ for all $\gamma \in \kappa$. Let $\{Z_\gamma : \gamma \in \kappa\} \subset y$ be a locally finite subcollection of y. Since X is paracompact, there is a locally finite collection $\mathcal{W} = \{W_\gamma : \gamma \in \kappa\}$ of open subsets of X such that $Z_\gamma \subset W_\gamma$ for all $\alpha \in \kappa$ (see [4] Remark 5.1.19]). Note that $W_\gamma \in \mathcal{N}_y$. For each $x \in X$ let $F_x = \{\gamma : x \in \text{cl } W_\gamma\}$ and set $U_0^x = X \setminus \bigcup\{\text{cl } W_\gamma : \gamma \notin F_x\} = X \setminus \text{cl}(\bigcup\{W_\gamma : \gamma \notin F_x\})$. For $\gamma \in F_x$ let $C(x, \gamma) = \{B \in \xi_\gamma : x \in \text{cl } B\}$ and set $C_x = \bigcup\{C(x, \gamma) : \gamma \in F_x\}$. Define $U_x = U_0^x \setminus \bigcup\{\text{cl } B : B \in \xi_\gamma \setminus C_x, \gamma \in F_x\}$. Since ξ_γ is locally finite, U_x is an open neighborhood of x. Choose a finite set $E_x \subset X \setminus \{x\}$ such
that \(|E_x \cap B| \geq 1\) for each \(B \in \mathcal{C}_x\). Let \(V_x = U_x \setminus E_x\). For \(B, B' \in \mathcal{B}\), observe that if \(B \subseteq V_x\), \(\gamma \in F_x\), \(B' \in \xi\), and \(B \cap B' = \emptyset\) then \(B \subseteq B'\).

The collection \(\mathcal{V} = \{V_x : x \in X\}\) is an open cover of \(X\). Let \(\xi \in \Xi\) be a maximal locally finite collection refining \(\mathcal{V}\). Suppose \(\gamma \in \kappa\). We will show that \(L(\xi, \xi)^*\) contains \(W_\gamma \cap \xi^* \cap \xi_{\gamma^*}\), and is therefore dense in \(W_\gamma\), and hence \(\xi \triangleleft y \xi\).

Let \(x' \in W_\gamma \cap \xi^* \cap \xi_{\gamma^*}\). So, there are \(x \in X\), \(B \in \xi\), and \(B' \in \xi\) such that \(B \subseteq V_x\) and \(x' \in B \cap B'\). Since \(V_x \cap W_\gamma = \emptyset\) it must be that \(\gamma \in F_x\). Following a previous observation, \(B \subseteq B'\). Hence \(x' \in L(\xi, \xi)^*\).

If we assume that \(2^\kappa = \kappa^+\), we may write \(\Xi\) as \(\{\xi_\gamma : \gamma \in \kappa^+\}\). We define \(\{\xi_\gamma : \gamma \in \kappa^+\}\) by induction, using Lemma 5.1 to define \(\xi_\gamma\) greater than \(\{\xi_\alpha : \alpha < \gamma\} \cup \{\xi_\gamma\}\). The result is a \(<_y\)-increasing sequence \(\{\xi_\gamma : \gamma \in \kappa^+\}\) cofinal in \(\Xi\).

If \(y\) is a remote point, then the partial order \((\Xi, <_y)\) is a total order. We can show, without using axioms beyond ZFC, that if \(y\) is a remote point, then the cofinality of \((\Xi, <_y)\) is equal to the cofinality of \(C(X)/M_y\).

6. \(H\)'s and \(L\)'s. Suppose \(y\) is a \(z\)-ultrafilter on a crowded metric space \(X\) with weight \(\kappa\). Following Logunov [9] and Terasawa [12], in this section we use a cofinal sequence from \(\Xi\) to define a sequence of closed sets intersecting to \(y\).

Suppose \(\{\xi_\gamma : \gamma \in \theta_y\}\) is a cofinal \(<_y\)-increasing sequence in \(\Xi\). We note now that \(\theta_y \leq 2^\kappa\) and make extra assumptions on \(\theta_y\) later. Without loss of generality we may assume that \(\xi_0 \cap B_0 = \emptyset\). If \(\xi_0 \cap B_0 = \emptyset\), replace \(\xi_0\) with \((\xi_0 \setminus B_0) \cup \{B \in B_1 : (\exists B' \in \xi_0 \cap B_0) B \subseteq B'\}\). Let \(\mathcal{N}_\gamma = \{U \subseteq \xi_\gamma : U^* \in \mathcal{N}_y\}\) and let

\[
H_\gamma = \bigcap \{\text{cl}_X U^* : U \in \mathcal{N}_\gamma\}.
\]

Claim. For each \(\gamma \in \theta_y\), \(y \in H_\gamma\).

Proof. If \(U^*\) and \(V^*\) are dense in \(N\) and \(N'\) from \(\mathcal{N}_y\), then \(U^* \cap V^*\) is dense in \(N \cap N'\), which is also in \(\mathcal{N}_y\). Hence, \(\mathcal{N}_\gamma\) is a filter on \(\xi_\gamma\). Every \(U \in \mathcal{N}_y\) is dense in some \(N \in \mathcal{N}_y\), the trace of a neighborhood of \(y\) on \(X\). Therefore, \(y \in \text{cl}_X U\) for all \(U \in \mathcal{N}_y\).

Claim. For each \(\gamma \in \theta_y\), \(H_\gamma \subseteq \beta X \setminus X\).

Proof. By Proposition 4.3(5), for any \(B \in \xi_\gamma\), since \(y \notin \text{cl}_X B\) it must be that \(\xi_\gamma \setminus \{B\} \in \mathcal{N}_\gamma\). Fix \(x \in X\). Since \(\xi_\gamma\) is locally finite, \(\mathcal{U} = \{B \in \xi_\gamma : x \in \text{cl}_X B\}\) is finite and hence \(\xi_\gamma \setminus \mathcal{U} \in \mathcal{N}_\gamma\). Also, \(x \notin \text{cl}_X (\xi_\gamma \setminus \mathcal{U})^*\) and therefore \(x \notin H_\gamma\).

Claim. If \(\gamma' < \gamma\) then \(H_\gamma \subseteq H_{\gamma'}\).
Proof. Let $\gamma' < \gamma$ and let $U \in \mathcal{N}_{\gamma'}$. We will show that $H_\gamma \subset \text{cl}_B U^*$. Since $\gamma' < \gamma$, $\xi_{\gamma'} <_y \xi_\gamma$ and therefore $L(\xi_{\gamma'}, \xi_\gamma) \in \mathcal{N}_{\gamma'}$. Hence $U \cap L(\xi_{\gamma'}, \xi_\gamma) \in \mathcal{N}_{\gamma'}$. Since U, $L(\xi_{\gamma'}, \xi_\gamma) \subset \xi_{\gamma'}$ we find that $U^* \cap L(\xi_{\gamma'}, \xi_\gamma)^* = (U \cap L(\xi_{\gamma'}, \xi_\gamma))^*$. Let $W = U \cap L(\xi_{\gamma'}, \xi_\gamma)$ and $V = \{V \in \xi_\gamma : V \cap U \neq \emptyset \text{ for some } U \in W\}$. Since $\xi_{\gamma'}$ is dense in X, $\text{cl}_X V^* \supset W^*$. Furthermore, $V \in \xi_\gamma$, $U \in L(\xi_{\gamma'}, \xi_\gamma)$ and $V \cap U \neq \emptyset$ imply that $V \subset U$. Therefore $V^* \subset W^*$ and hence $\text{cl}_X V^* = \text{cl}_X W^* \subset \text{cl}_B U^*$.

Claim. $\bigcap\{H_\gamma : \gamma \in \theta_y\} = \{y\}$.

Proof. We have seen that $y \in \bigcap\{H_\gamma : \gamma \in \theta_y\}$. Let $O' \in \tau_y$. We will find $\gamma \in \theta_y$ such that $H_\gamma \subset O'$. Let $W', U' \in \tau_y$ be such that

$$\text{cl}_B W' \subset W' \subset \text{cl}_B U' \subset O'.\
Let O = O' \cap X, U = U' \cap X and W = W' \cap X. So, \text{cl}_X W \subset U \subset \text{cl}_X U \subset O.\
Let V = X \setminus \text{cl}_X W. Then \{U, V\} is an open cover of X. By Proposition 4.2 there is $\xi \in \mathcal{Z}$ that refines $\{U, V\}$. Let $\gamma \in \theta_y$ be such that $\xi <_y \xi_{\gamma'}$. Note that $W \in \mathcal{N}_y$. Since $\xi <_y \xi_{\gamma'}$ we have $L(\xi, \xi_{\gamma'})^* \in \mathcal{N}_y$ and $W \cap L(\xi, \xi_{\gamma'})^* \in \mathcal{N}_y$. Let $\hat{W} = W \cap L(\xi, \xi_{\gamma'})^*$ and let $V = \{B \in \xi_\gamma : B \cap \hat{W} \neq \emptyset\}$. Since $\xi_{\gamma'}^*$ is dense in X and \hat{W} is open, $\text{cl}_X V^* \supset \hat{W}$. Hence $V^* \in \mathcal{N}_y$. On the other hand, if $B \in V$ then $B \cap L(\xi, \xi_{\gamma'})^* \neq \emptyset$ and therefore $B \subset B'$ for some $B' \in \xi$. Since ξ refines $\{U, V\}$, either $B \subset B' \subset U$ or $B \subset B' \subset V$. Since $B \cap W \neq \emptyset$, it cannot be the case that $B \subset V$. Therefore $B \subset U$ and hence $V^* \subset U$ and $\text{cl}_X V^* \subset \text{cl}_X U \subset O$. Then, since X is normal, $\text{cl}_X V^* \subset O'$. Since $V \in \xi_\gamma$ and $V^* \in \mathcal{N}_y$ we have $H_\gamma \subset \text{cl}_X V^* \subset O'$ as desired.

Next, we will use the cofinal sequence to inductively define a pair of locally finite collections, \mathcal{L}_0 and \mathcal{L}_1, from \mathcal{B} such that $\text{cl}(\mathcal{L}_0)^* \cap \text{cl}(\mathcal{L}_1)^* = \emptyset$. In this induction, we must do θ_y many tasks, and each step of the induction can have at most κ predecessors. Therefore, we assume $2^\kappa = \kappa^+$ to get $\theta_y \leq \kappa^+$. The constructions of the \mathcal{L}’s for the two types of spaces are not the same. However, in either case, the pairs will be used for the same purpose: to “split” the H_γ’s.

6.1. X is locally compact. We are able to arrange the cofinal sequence of collections $\{\xi_\gamma : \gamma \in \theta_y\}$ as “step functions”, which makes the definition of the \mathcal{L}’s easier than in the κ^ω-like case. List $\mathcal{B}_0 = \{B_{\alpha, \emptyset} : \alpha \in \kappa\}$ and $\mathcal{B}_i = \{B_{\alpha, \sigma} : \alpha \in \kappa, \sigma \in 4^i\}$ in such a way that $B_{\alpha, \sigma} \subset B_{\alpha, \sigma'}$ if σ extends σ'. We may assume that for $\alpha \in \kappa$ and $\sigma \in 4^i$, $\text{cl}_X B_{\alpha, \sigma \cap 0} \cap \text{cl}_X B_{\alpha, \sigma \cap 1} = \emptyset$ and $\text{cl}_X B_{\alpha, \sigma \cap 0} \cap \text{cl}_X B_{\alpha, \sigma \cap 1} \subset B_{\alpha, \sigma}$. Notice that the collections ξ from \mathcal{Z} that have the property that $B_{\alpha, \sigma}, B_{\alpha, \sigma'} \in \xi$ implies $|\sigma| = |\sigma'|$ form an unbounded set in \mathcal{Z}. To see this, let $\xi' \in \mathcal{Z}$ and let $n(\alpha) = \max\{|\sigma| : B_{\alpha, \sigma} \in \xi'\} + 1$.

W. Fleissner and L. Yengulalp
Then the collection $\xi = \{B_{\alpha,\sigma} : \alpha \in \kappa, \sigma \in n(\alpha)4\}$ has the property that $\xi >_y \xi'$ since $L(\xi', \xi) = \xi'$.

Therefore, we may assume that $\{\xi_\gamma : \gamma \in \theta_y\}$ is a sequence of collections that have the property that for each $\gamma \in \theta_y$ and $\alpha \in \kappa$ if $B_{\alpha,\sigma}, B_{\alpha,\sigma'} \in \xi_\gamma$ then $|\sigma| = |\sigma'|$. For each $\gamma \in \theta_y$ define the function $L(\gamma, \cdot) : \kappa \to \omega$ such that $\xi_\gamma = \{B_{\alpha,\sigma} : \alpha \in \kappa, \sigma \in n(\gamma,\alpha)4\}$. Notice that for any $\gamma' < \gamma < \theta_y$ the set $L(\xi_\gamma, \xi_{\gamma'})^*$ is dense in $\{B_{\alpha} : \alpha \in S\}^*$ for any nonempty set $S \subset \kappa$.

Defining the L^{ω}_γ's. For $\gamma \in \theta_y$ and $i = 0, 1$ define $L^{\omega}_\gamma = \{B_{\alpha,\sigma^i} : \alpha \in \kappa, \sigma \in n(\gamma,\alpha)4\}$.

Claim. For all $\gamma \in \theta_y$, $cl_{\beta X}(\bigcup L^{0}_\gamma) \cap cl_{\beta X}(\bigcup L^{1}_\gamma) = \emptyset$.

Proof. For each $\alpha \in \kappa$ and $\sigma \in i4$, $cl_X(B_{\alpha,\sigma^0} \cap cl_X B_{\alpha,\sigma^1} = \emptyset$. Also, $B_{\alpha,\sigma} \cap B_{\alpha,\beta} = \emptyset$ for $\sigma \neq \beta \in n(\gamma,\alpha)4$, and for $i = 0, 1$ we have $cl_X B_{\alpha,\sigma^i} \subset B_{\alpha,\sigma}$ and $cl_X B_{\alpha,\beta^i} \subset B_{\alpha,\beta}$. Therefore $cl_X B_{\alpha,\sigma^i} \cap cl_X B_{\alpha,\beta^j} = \emptyset$ for $i, j = 0, 1$. So,

$$\bigcup \{cl_X B_{\alpha,\sigma^0} : \sigma \in n(\gamma,\alpha)4\} \cap \bigcup \{cl_X B_{\alpha,\sigma^0} : \sigma \in n(\gamma,\alpha)4\} = \emptyset.$$

Now, since $\{B_{\alpha,\emptyset} : \alpha \in \kappa\}$ is a locally finite family and since $cl_X B_{\alpha,\sigma^i} \subset B_{\alpha,\emptyset}$ for each $\sigma \in \bigcup_n \omega \cdot 4$ and $i = 0, 1$, we have

$$cl_X \left(\bigcup L^{0}_\gamma\right) \cap cl_X \left(\bigcup L^{1}_\gamma\right) = \bigcup \{cl_X B_{\alpha,\sigma^0} : \sigma \in n(\gamma,\alpha)4, \alpha \in \kappa\}$$

$$\cap \bigcup \{cl_X B_{\alpha,\sigma^1} : \sigma \in n(\gamma,\alpha)4, \alpha \in \kappa\} = \emptyset.$$

Finally, since $cl_X(\bigcup L^{0}_\gamma) \cap cl_X(\bigcup L^{1}_\gamma) = \emptyset$ we conclude that $cl_{\beta X}(\bigcup L^{0}_\gamma) \cap cl_{\beta X}(\bigcup L^{1}_\gamma) = \emptyset$.

Since $cl_{\beta X}(\bigcup L^{0}_\gamma) \cap cl_{\beta X}(\bigcup L^{1}_\gamma) = \emptyset, y$ can be in at most one of $cl_{\beta X}(\bigcup L^{0}_\gamma)$ or $cl_{\beta X}(\bigcup L^{1}_\gamma)$. Without loss of generality, assume $y \notin cl_{\beta X}(\bigcup L^{0}_\gamma)$ for each $\gamma \in \theta_y$.

Consider a finite collection $\{\xi_{\gamma_i} : i \in m\} \subset \{\xi_\gamma : \gamma \in \theta_y\}$ such that $\gamma_i < \gamma_j$ for $i < j \leq m$ and let $U(i, j) = L(\xi_{\gamma_i}, \xi_{\gamma_j})$. It is the case that $U(i, j)^* \in \mathcal{N}_y$ for each $i < j$ and hence $U = \bigcap \{U(i, j)^* : i < j \leq m\} \in \mathcal{N}_y$. For any $B \in \xi_{\gamma_0}$ such that $B \cap U \neq \emptyset$ we observe that $\{B' \in \gamma_i : B' \subset B\}$ refines $\{B' \in \gamma_j : B' \subset B\}$ whenever $0 < j < i \leq m$.

A special case of the following claim, in particular when Φ is constant, is proven in [12, Lemma 3] and in [9, Proposition 6].

Claim 6.1. For any $\rho < \theta_y$ and $\Phi : D \subset [\rho, \theta_y) \to 2$, the collection $\{H_\rho\} \cup \{cl_{\beta X}(\bigcup L^{\Phi(\gamma)}_\gamma) : \gamma \in D\}$ has nonempty intersection.
Proof. Let $\rho < \theta_y$ and $\Phi : D \to 2$ for some $D \subseteq [\rho, \theta_y)$. We will show that $\{cl_{iX} U^* : U \in \mathcal{N}_\rho\} \cup \{cl_{iX}(\bigcup L_{\gamma}^{\Phi(\gamma)} : \gamma \geq \rho\}$ has the finite intersection property. Let $U_1, \ldots, U_n \in \mathcal{N}_\rho$ and let $\gamma_1, \ldots, \gamma_m \in \gamma$ be such that $\gamma_m \geq \cdots \geq \gamma_1 \geq \rho$. Since \mathcal{N}_ρ is a filter, $\mathcal{U} = \bigcap \{U_i : 1 \leq i \leq n\} \in \mathcal{N}_\rho$ and therefore $V = U^* \in \mathcal{N}_\rho$. For $i < j \leq m$, let $U(i, j)^* = L(\xi_{\gamma_i}, \xi_{\gamma_j})$ and notice that $U = \bigcap \{U(i, j)^* : i < j \leq m\} \subseteq \mathcal{N}_\rho$. Let $B_{\alpha, \sigma} \in \mathcal{V}$ be such that $B_{\alpha, \sigma} \subset V$ and $B_{\alpha, \sigma} \cap U \neq \emptyset$. As noted before, $\{B \in \gamma_i : B \subset B_{\alpha, \sigma}\}$ refines $\{B \in \gamma_j : B \subset B_{\alpha, \sigma}\}$ whenever $0 < j < i \leq m$. Define $\sigma' \in n(\gamma_m, \alpha)+1$ as follows: $\sigma'|_{n(\rho, \alpha)} = \sigma$, $\sigma'(n(\gamma_i, \alpha) + 1) = \Phi(\gamma_i)$ for each $1 \leq i \leq m$ and $\sigma'(k) = 0$ otherwise. Then $B_{\alpha, \sigma'} \subset B_{\alpha, \sigma} \cap U \neq \emptyset$. Furthermore, $B_{\alpha, \sigma'} \subset \bigcup L_{\gamma_i}^{\Phi(\gamma_i)}$ since σ' extends σ' and hence $B_{\alpha, \sigma'} \subset \mathcal{U}$. If $B_{\alpha, \sigma'} \subset \bigcup L_{\gamma_i}^{\Phi(\gamma_i)}$ then σ' extends σ' and hence $B_{\alpha, \sigma'} \subset \mathcal{U}$. If $B_{\alpha, \sigma'} \subset \bigcup L_{\gamma_i}^{\Phi(\gamma_i)}$ then σ' extends σ' and hence $B_{\alpha, \sigma'} \subset \mathcal{U}$.

6.2. X is κ^ω-like. Consider a finite collection $\{\xi_{\gamma_i} : i \in \mathbb{N}\} \subseteq \{\xi_{\gamma} : \gamma \in \theta_y\}$ such that $\gamma_i < \gamma_j$ for $i < j \leq n$ and let $U(i, j) = L(\xi_{\gamma_i}, \xi_{\gamma_j})$. It is the case that $U(i, j)^* \in \mathcal{N}_\rho$ for each $i < j$ and hence $U = \bigcap \{U(i, j)^* : i < j \leq n\} \subseteq \mathcal{N}_\rho$. It is tempting to assume that, as in the locally compact case, $\{B \in \xi_{\gamma_0} : B \subset cl U\} \neq \emptyset$. However, there may not exist $B \in \xi_{\gamma_0}$ such that $\{B' \in \gamma_i : B' \subset B\}$ refines $\{B' \in \gamma_i : B' \subset B\}$ whenever $0 < j < i \leq n$.

Defining the L_i's. We define $\{L_i : \gamma \in \theta_y\}$ by induction on $\gamma \in \theta_y$.

Let $P = \{p : dom(p) \in [\theta_y]^{<\omega}, ran(p) \subseteq 2\}$. Let $\gamma_p = \max(dom(p))$ and $n(p) = |p|$. Define $p|_i$ to be the function p restricted to the first i elements of $dom(p)$. We say $B \in \mathcal{B}$ and $p \in \mathcal{P}$ are aligned if for each $\gamma \in dom(p)$ and $B' \in \xi_{\gamma}$ such that $B' \cap B \neq \emptyset$, we have $B' \subseteq B$. We will define $L(B, p)$ for each B and p and set

$$L_\gamma = \bigcup \{L(B, p) : \gamma = \gamma \text{ and } p(\gamma) = i\}.$$

If B and p are not aligned, set $L(B, p) = \emptyset$.

Stage $\gamma = 0$. There are two $p \in P$ with $dom(p) = \{0\}$, namely $p^0 = \{(0, 0)\}$ and $p^1 = \{(0, 1)\}$. Notice that $B \in \mathcal{B}$ is aligned with p^0 or p^1 if there exists $B' \in \xi_0$ such that $B' \subseteq B$, and that there are κ such B. List as $\{(B_\nu, p_\nu) : \nu \in \kappa\}$ all pairs (B, p) such that $p = p^0$ or $p = p^1$ and B is aligned with p, so that each (B, p) appears in the list κ times. We will define a sequence $\{L(\nu) : \nu \in \kappa\}$ and for each p and B aligned with p, we will set $L(B, p) = \{L(\nu) : (B, p) = (B_\nu, p_\nu)\}$.

Suppose we have defined $L(\mu) \in \mathcal{B}$ for each $\mu < \nu$ such that $L(\mu) \cap V_\mu \subseteq B_\mu$ where V_μ is some element of ξ_0. Also assume that if $L(\mu), L(\mu') \subseteq V \in \xi_0$, then $\mu = \mu'$. We now define $L(\nu)$. For each $\nu \in \xi_0$ such that $V \cap B_\nu \neq \emptyset$ there is $\eta \in \kappa$ such that $V \subseteq B_\eta$. Furthermore, since ξ_0^* is dense in X, for each $\eta \in \kappa$ there is $V \in \xi_0$ such that $V \subseteq B_\eta$. For each $\mu < \nu$,
$L(\mu)$ is contained in an element V of ξ_0 and $|\nu| < \kappa$. Therefore, there are κ many $\eta \in \kappa$ such that for all $\mu < \nu$, $B_\mu^\nu \cap L(\mu) = \emptyset$. So, let η_0 be one such η and choose $L(\nu) \in B$ so that $L(\nu) \subset V_\nu \subset B_\nu^\nu \subset B_\nu$ for some $V_\nu \in \xi_0$.

For $p = p^0$ or p^1 and each B aligned with p, set

$$\mathcal{L}(B, p) = \{L(\nu) : (B, p) = (B_\nu, p_\nu)\}.$$

Let

$$\mathcal{L}_i^0 = \bigcup \{\mathcal{L}(B, p) : p = p^i \text{ and } B \text{ is aligned with } p\}.$$

Notice that if $L(\nu), L(\mu) \subset B^i \in \xi_0$ then $\nu = \mu$. So, since ξ_0 is locally finite, $\text{cl}(\bigcup \mathcal{L}_0^i)$ is disjoint from $\text{cl}(\bigcup \mathcal{L}_1^i)$. Since each (B, p) is listed κ times, $|\{\nu : L(B_\nu, p_\nu) \subset B\}| = \kappa$. Consequently, $|\{\eta \in \kappa : \text{there is } L \in \mathcal{L}(B, p), \text{ } L \subset B_\eta^\eta\}| = \kappa$.

Induction Hypothesis. Let B and p be aligned such that $\gamma_p \leq \gamma$ and $n(p) > 1$. Then, for κ many $\eta \in \kappa$, there is a sequence $\{L_i : 0 \leq i < n(p), L_i \in \mathcal{L}(B, p|i)\}$ such that

$$L_{n(p) - 1} \subset L_{n(p) - 2} \subset \cdots \subset L_0 \subset B^n \subset B.$$

Also, for each $\gamma' < \gamma$, $\text{cl}(\bigcup \mathcal{L}_0^\gamma')$ is disjoint from $\text{cl}(\bigcup \mathcal{L}_\gamma^1)$.

Stage γ. Consider all (B, p) such that $\gamma_p = \gamma$ and B is aligned with p. We have assumed $2^\kappa = \kappa^+$. So, $\gamma < \kappa^+$ and hence there are $\leq \kappa$ many p with $\gamma_p = \gamma$. Therefore, we can list the collection of such (B, p) as $\{(B_\nu, p_\nu) : \nu \in \kappa\}$ in such a way that each (B, p) appears κ times. Assume we have defined $L(\mu) \in B$ for each $\mu < \nu$ so that $L(\mu) \subset V_\mu \subset B_\mu$ where V_μ is some element of ξ_γ. Also assume that if $L(\mu), L(\mu') \subset V \in \xi_\gamma$, then $\mu = \mu'$. Let $\eta \in \kappa$ be such that there is $\{L_i : 0 \leq i < n(\nu), L_i \in \mathcal{L}(B_\nu, p_\nu|i)\}$ with $L_{n(\nu) - 1} \subset L_{n(\nu) - 2} \subset \cdots \subset L_0 \subset B^n_\nu \subset B_\nu$. Since we have defined $L(\mu)$ for $|\nu| < \kappa$ many μ, by the inductive hypothesis we may also assume that η satisfies $B_\eta \cap L(\mu) = \emptyset$ for all $\mu < \nu$.

Let $V \in \xi_\gamma$ be such that $L_{n(\nu) - 1} \cap V = \emptyset$. Let $L(\nu)$ be an element of B such that

$$L(\nu) \subset (V \cap L_{n(\nu) - 1}) \subset L_{n(\nu) - 2} \subset \cdots \subset L_0 \subset B^n_\nu \subset B_\nu.$$

Set $\mathcal{L}(B, p) = \{L(\nu) : (B_\nu, p_\nu) = (B, p)\}$ and observe that

$$\left(\bigcup \mathcal{L}(B, p)\right) \cap \bigcap \{\bigcup \mathcal{L}(B, p|i) : i < n(p)\} \neq \emptyset.$$

Now, set $\mathcal{L}_\gamma^i = \bigcup \mathcal{L}(B, p) : \gamma_p = \gamma$ and $p(\gamma) = i\}$. This concludes stage γ.

For each p and B aligned with p, we have

$$\left(\bigcup \mathcal{L}(B, p)\right) \cap \bigcap \{\bigcup \mathcal{L}(B, p|i) : i < n(p)\} \neq \emptyset.$$

Therefore, if $\text{dom}(p) \setminus \{\gamma_p\} = \{\gamma_i : 1 \leq i < n(p)\}$, we deduce that $\bigcap \{\mathcal{L}_{\gamma_i}^{p(\gamma_i)} : i < n(p)\} \cap B \neq \emptyset$.

Nonnormality points of $\beta X \setminus X
Claim 6.2. For any \(\rho < \theta_y \) and \(\Phi : D \subset [\rho, \theta_y) \rightarrow 2 \), the collection
\(\{H_\rho\} \cup \{cl_{\beta X}(\bigcup L^\phi(\gamma)) : \gamma \in D\} \) has nonempty intersection.

Proof. Let \(\rho < \theta_y \) and \(\Phi : D \rightarrow 2 \) for some \(D \subset [\rho, \theta_y) \). We will show
that \(\{cl_{\beta X} U^* : U \in \mathcal{N}_\rho\} \cup \{cl_{\beta X}(\bigcup L^\phi(\gamma)) : \gamma \geq \rho\} \) has the finite intersection property. Let \(U_1, \ldots, U_n \in \mathcal{N}_\rho \) and let \(\gamma_1, \ldots, \gamma_m \in D \) be such that \(\gamma_m > \cdots > \gamma_1 > \rho \). For each \(i \leq m \), \(L(\xi_\rho, \xi_{\gamma_i}) \in \mathcal{N}_\rho \) since \(\xi_{\gamma_i} > \xi_\rho \). Hence, \(U = \bigcap\{U_i : 1 \leq i \leq n\} \cap \bigcap\{L(\xi_\rho, \xi_{\gamma_i}) : 1 \leq i \leq m\} \in \mathcal{N}_\rho \). Let \(p \) be the function \(\Phi \) restricted to \(\{\gamma_i : 1 \leq i \leq m\} \). Note that if \(B \in \mathcal{U} \) then \(B \) is aligned with \(p \). From the previous construction we conclude that \(\bigcap\{\bigcup L^\phi_{\gamma_i} : i \leq m\} \cap B \neq \emptyset \). \(\blacksquare \)

7. Theorems

Theorem 7.1. Let \(X \) be a crowded metrizable space of weight \(\kappa \) that is
either \(\kappa^\omega \)-like
or locally compact. Let \(y \in \beta X \setminus X \). Suppose that \(2^\kappa = \kappa^+ \)
and \(\theta_y^{\theta_y} = \theta_y \). Then there is a closed copy of \(NU(\theta_y) \) in \((\beta X \setminus X) \setminus \{y\} \).

Proof. We follow the argument found in [1] to embed \(NU(\theta_y) \) into
(\(\beta X \setminus X \) \setminus \{y\}), using the \(\mathcal{L}_\gamma \)'s to play the role of the reaping sets.

The induction. Denote by \(\theta_y \) the discrete space of size \(\theta_y \). We define a 1-1 function \(g \) from \(\theta_y \) into a compact subset of \(\beta X \setminus X \) such that
\((1) \ y \in cl_{\beta X} g[A] \) if and only if \(|A| = \theta_y \).
\((2) \) If \(A, B \in \theta_y, A \cap B = \emptyset \) then \(cl_{\beta X} g[A] \cap cl_{\beta X} g[B] = \emptyset \).

By assumption, we have \(\theta_y^{\theta_y} = \theta_y \). List \(\theta_y \cup \{(A, B) : A, B \in \theta_y, A \cap B = \emptyset \} \) as \(\{T_\eta : \eta \in \theta_y\} \) in such a way that if \(T_\eta = (A, B) \), then
\(\eta \geq \sup(A \cup B) \), and if \(T_\eta \in \theta_y \), then \(\eta \geq T_\eta \). For \(\rho \in \theta_y \) let \(D_\rho = \{\eta : T_\eta = (A, B) \) and \(\rho \in A \cup B \} \cup \{\eta : \rho \in T_\eta\} \). Note that \(D_\rho \subset [\rho, \theta_y) \).

For each \(\rho \in \theta_y \) we define \(\Phi_\rho : D_\rho \rightarrow 2 \) and choose \(g(\rho) \) to be any element
of \(K_\rho := \bigcap\{\{H_\rho\} \cup \{cl_{\beta X}(\bigcup L^\phi_{\gamma_i}) : \gamma \in D_\rho\}\} \). We define \(\Phi_\rho \) by induction.

Let \(\eta \in \theta_y \) and assume we have defined \(\Phi_{\eta \cap D_\rho} \). If \(T_\eta \in \theta_y \), let \(\Phi_{\beta}(\eta) = 0 \)
for all \(\beta < T_\eta \). If \(T_\eta = (A, B) \), let \(\Phi_{\beta}(\eta) = 0 \) for all \(\beta \in A \) and let \(\Phi_{\beta}(\eta) = 1 \)
for all \(\beta \in B \). By Claims 6.1 and 6.2, \(K_\rho \neq \emptyset \) for each \(\rho \in \theta_y \), so we may
choose \(g(\rho) \in K_\rho \).

To show (1), let \(A \subset \theta_y \) be such that \(|A| < \theta_y \). There is \(\gamma \in \theta_y \) with \(A \subset [0, \gamma) \). Let \(\eta \) satisfy \(T_\eta = \gamma \). Note that \(\eta \geq \gamma \). For any \(\rho < \gamma = T_\eta \), \(\Phi_\rho(\eta) = 0 \).
So, for \(\rho \in A, K_\rho \subset \mathcal{L}_\eta^0 \). But \(y \notin cl_{\beta X}(\bigcup \mathcal{L}_\eta^0) \). Hence, \(y \notin cl_{\beta X} g[A] \). For the other direction, let \(A \subset \theta_y \) be such that \(|A| = \theta_y \). Since \(\theta_y \) is regular, \(A \) is
unbounded in \(\theta_y \). Let \(U \in \mathcal{N} \). There is \(\gamma \in \theta_y \) such that \(H_\gamma \subset U \). For \(\rho \geq \gamma \),
g(\rho) \in H_\rho \subset H_\gamma \subset U \). Hence \(y \in cl_{\beta X} g[A] \).

To show (2), let \(A, B \in \theta_y \subset \theta_y \) be such that \(A \cap B = \emptyset \). Let \(\eta \) be such that
\(T_\eta = (A, B) \). Then, for each \(\rho \in A, \Phi_\rho(\eta) = 0 \), and for each \(\rho \in B, \Phi_\rho(\eta) = 1 \).
Nonnormality points of $\beta X \setminus X$

Hence $g(\rho) \in K_\rho \subset \text{cl}_{\beta X} \left(\bigcup L^0_\eta \right)$ for $\rho \in A$ and $g(\rho) \in K_\rho \subset \text{cl}_{\beta X} \left(\bigcup L^1_\eta \right)$ for $\rho \in B$. But $\text{cl}_{\beta X} \left(\bigcup L^0_\eta \right) \cap \text{cl}_{\beta X} \left(\bigcup L^1_\eta \right) = \emptyset$. Hence $\text{cl}_{\beta X} g[A] \cap \text{cl}_{\beta X} g[B] = \emptyset$. Note (2) implies g is one-to-one.

Since θ_y is discrete, g is continuous. Extend g to $\beta g : \beta \theta_y \to \beta X \setminus X$. It follows from Bešlagić and van Douwen’s [1, Lemma 2.2] that the image of βg is a closed subset of $(\beta X \setminus X) \setminus \{y\}$ which is homeomorphic to $\text{NU}(\theta_y)$. ■

Theorem 7.2. $(2^\kappa = \kappa^+)$ Let X be a metric space of weight κ that is either crowded locally compact or κ^ω-like. Any regular z-ultrafilter is a nonnormality point of $\beta X \setminus X$.

Proof. Since y is regular, by Lemma 5.1 $\theta_y > \kappa$. By the hypothesis, $\theta_y = \kappa^+ = 2^\kappa$ and hence θ_y is regular and not a strong limit. By Lemma 3.1 $\text{NU}(\theta_y)$ is not normal. Hence, by Theorem 7.1, y is a nonnormality point of $\beta X \setminus X$. ■

Corollary 7.3. Suppose GCH+UR. Let X be a crowded locally compact metric space. Then each $y \in \beta X \setminus X$ is a nonnormality point of $\beta X \setminus X$.

Proof. We have seen that if $y \in \beta X \setminus X$ is uniform then it is a nonnormality point of $\beta X \setminus X$. Suppose that $y \in \beta X \setminus X$ is not uniform. That is, there exists $Z \in y$ for which $w(Z) < w(X)$. Let $Z \in y$ be such that $\lambda = w(Z)$ is minimum. Then y is a uniform z-ultrafilter on the set Z, and by UR, it is regular. However, it may be the case that Z has isolated points. We aim to find a crowded locally compact closed subset Y of X with weight λ such that $Z \subset Y$. There is a cover of Z consisting of sets $\text{cl} B$ from a subcollection Z of B_0 of size λ. Let $Y = \bigcup \{ \text{cl} B : B \in Z \}$. Since B_0 is locally finite, Y is closed. Each $B \in Z$ is crowded and has compact closure, so Y is crowded locally compact.

So, $y \in \text{cl}_{\beta X} Y$. Since X is normal and Y is closed, Y is C^*-embedded in X. Therefore, $\beta Y = \text{cl}_{\beta X} Y$ and $y|_Y$ is uniform on Y. So, by the theorem, y is a nonnormality point of the set $\left(\text{cl}_{\beta X} Y \right) \setminus Y$ and hence a nonnormality point of $\beta X \setminus X$. ■

8. Questions. Gillman’s question [6], which started research in this area, is still not completely answered.

Problem 8.1. Let X be \mathbb{N}. Let y be any point of $\beta X \setminus X$. Without extra axioms of set theory, is $(\beta X \setminus X) \setminus \{y\}$ not normal? If yes, what if X is any discrete space? If yes, what if X is any metrizable space?

There are many ways that our work can be extended. For example

Problem 8.2. Assume GCH. For every crowded metrizable space X and every $y \in \beta X \setminus X$, is $(\beta X \setminus X) \setminus \{y\}$ not normal?
Katětov (see [4, 5.5.10]) showed that if there is a nonrealcompact metrizable (more generally, paracompact) space, then there is a measurable cardinal. In other words, if there is a countably complete free z-ultrafilter on a metrizable (more generally, paracompact) space, then there is a countably complete free ultrafilter on a set. Is there an analogue for nonregular ultrafilters?

Problem 8.3. If there is a nonregular ultrafilter on a metrizable (more generally, paracompact) space, is there a nonregular ultrafilter on a set?

Problem 8.4. What can be proved about θ_y and the normality of $(\beta X \setminus X) \setminus \{y\}$ when y is a nonregular z-ultrafilter?

We do not know whether it is possible that θ_y is an uncountable weakly compact cardinal. It is possible that $\theta_y = \omega$. For example, let q be a κ-complete ultrafilter on a measurable cardinal κ. Let X be $\kappa \times \mathbb{R}$. Then X is crowded, locally compact, metrizable. (If a nowhere locally compact example is wanted, we can use \mathbb{Q} in place of \mathbb{R}.) For $r \in \mathbb{R}$ let $e_r : \kappa \to X$ be defined by $e_r(\alpha) = (\alpha, r)$, and let $\beta e_r : \beta \kappa \to \beta X$ be the extension. Let y be $\beta e_0(q)$. Then $\theta_y = \omega$. In fact, $\{\beta e_{1/n}(q) : n \in \mathbb{N}\}$ is a sequence converging to y. We can show that $(\beta X \setminus X) \setminus \{y\}$ is not normal. Observe that neither Theorem 1.3 (X is not realcompact) nor Theorem 1.4 (y is nonregular) applies here.

References

Nonnormality points of $\beta X \setminus X$

William Fleissner
Department of Mathematics
University of Kansas
Lawrence, KS 66045, U.S.A.
E-mail: fleissne@math.ku.edu

Lynne Yengulalp
Department of Mathematics
University of Dayton
Dayton, OH 45469, U.S.A.
E-mail: yengullc@notes.udayton.edu

Received 22 August 2010;
in revised form 30 April 2011