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Extension theory of infinite symmetric products
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Jerzy Dydak (Knoxville, TN)

Abstract. We present an approach to cohomological dimension theory based on in-
finite symmetric products and on the general theory of dimension called the extension di-
mension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dran-
ishnikov [9] in the context of compact spaces and CW complexes. This paper investigates
extension types of infinite symmetric products SP(L). One of the main ideas of the paper
is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension
theory instead of dimG(X) ≤ n. In a subsequent paper [18] we show how properties of
infinite symmetric products lead naturally to a calculus of graded groups which implies
most of the classical results on the cohomological dimension. The basic notion in [18] is
that of homological dimension of a graded group which allows for simultaneous treatment
of cohomological dimension of compacta and extension properties of CW complexes.

We introduce cohomology of X with respect to L (defined as homotopy groups of
the function space SP(L)X). As an application of our results we characterize all countable
groups G so that the Moore space M(G,n) is of the same extension type as the Eilenberg–
MacLane space K(G,n). Another application is a characterization of infinite symmetric
products of the same extension type as a compact (or finite-dimensional and countable)
CW complex.
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1. Introduction

Notation 1.1. Throughout the paper K, L, and M are reserved for CW
complexes. X and Y are general topological spaces (quite often compact
or compact metrizable). We will frequently omit coefficients in the case of
integral homology and cohomology. Thus, Hn(K;Z) will be shortened to
Hn(K), and Hn(X;Z) to Hn(X).

Recall that K is an absolute extensor of X (denoted by K ∈ AE(X)) if
any map f : A→ K, A closed in X, extends over X. That concept creates a
partial order on the class of CW complexes. Namely, K ≤ L if K ∈ AE(X)
implies L ∈ AE(X) for every compact space X. The partial order induces
an equivalence relation on the class of all CW complexes. The equivalence
class [K] of K is called its extension type.

Definition 1.2. A CW complex K is called the extension dimension of
a compact space X (notation: K = ext-dim(X)) if K is a minimum of the
class {L | L ∈ AE(X)}.

Theorem 1.3 (Dranishnikov Duality Theorem [9]). Extension dimen-
sion of compact spaces exists and for each CW complex K there exists a
compact space X such that K = ext-dim(X).

The concept of extension dimension generalizes both the covering dimen-
sion dim(X) and the cohomological dimension dimG(X) with respect to an
Abelian group G. Indeed, dim(X) ≤ n is equivalent to ext-dim(X) ≤ Sn,
and dimG(X) ≤ n is equivalent to ext-dim(X) ≤ K(G,n).

The theory of extension dimension is mostly geometric in nature (see
Section 2). We introduce algebra to it following the basic idea of [1], where
algebraic topology is outlined via properties of infinite symmetric products
SP(K). Thus, in this paper we show that the relation SP(K) ≤ SP(L) is
of purely algebraic nature. We analyze it by generalizing the connectiv-
ity index of Shchepin [28] to the concept of homological dimension of CW
complexes. To analyze the relation ext-dim(X) ≤ SP(L) we introduce the
concept of cohomology groups H∗(X;L) of X with coefficients in a CW
complex L (see Section 4). Those cohomology groups have natural formu-
lae facilitating proofs and applications. We show in Section 6 that the class
{SP(L) | ext-dim(X) ≤ SP(L)} has a minimum which should be interpreted
as the coefficient-free cohomological dimension of X.

In Section 8 we dualize the connectivity index and use it to derive alge-
braic implications of ext-dim(X) = ext-dim(Y ).

In a subsequent paper [18] we will explain that Bockstein theory plays
the role of homological algebra in algebraic topology. In the present paper we
use Bockstein theory to give necessary and sufficient conditions for SP(L) to
have the same extension type as an Eilenberg–MacLane space K(G,n) (see
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Section 7). Later on (Section 9) we characterize extension types [SP(L)] con-
taining compact (respectively, countable and finite-dimensional) CW com-
plexes. That characterization generalizes all the previously known results
about different extension types.

The last part of the paper (Section 9) is devoted to comparison of ex-
tensional properties of M(G,n) and K(G,n).

Definition 1.4. Suppose G is an Abelian group and n ≥ 1 is an integer.
By M(G,n) we will denote a Moore space, i.e. a CW complex K so that
H̃n(K;Z) = G and H̃m(K;Z) = 0 for m 6= n.

More precisely, Moore spaces discussed in this paper are constructed as
follows. Choose a short exact sequence 0→ F1 → F → G→ 0 so that F is
free Abelian. Let L be the wedge of n-spheres enumerated by generators of F .
Attach (n+ 1)-cells to L enumerated by generators of F1 via characteristic
maps corresponding to F1 → F . In particular, such Moore spaces are finite-
dimensional and one has a map M(πn(K), n)) → K (provided π1(K) is
Abelian if n = 1) inducing isomorphism of nth homotopy groups for any
space K.

We will use the following generalization of the relation K ≤ L (see [11]):

Definition 1.5. Suppose K and L are CW complexes and C is a class
of spaces. K ≤C L means that if X ∈ C and K ∈ AE(X), then L ∈ AE(X).
In particular K ≤X L means K ≤{X} L.

The author would like to thank Akira Koyama for discussions on the
subject of the paper, and E. Shchepin for giving a series of excellent talks
(in Russian) during the workshop “Algebraic ideas in dimension theory” held
in Warsaw (Fall 1998). Those talks were the starting point to the author’s
understanding of paper [28] which eventually led to the ideas developed in
this paper. Also, the author would like to thank the referee for excellent
work in detecting numerous typos and simplifying several proofs.

Some of the results of this paper were circulated in unpublished notes [17].

2. Geometry of extension theory. The purpose of this section is to
list results of extension theory which involve no algebraic computations.

Proposition 2.1 (see [11], [5]). Suppose K is a CW complex and X is
metrizable. If K ∈ AE(X), then every map f : X → Σ(K) from X to the
suspension of K is null-homotopic.

Theorem 2.2 (see [8]). If X =
⋃∞
n=1Xn, Xn is a closed subset of X

and K ∈ AE(Xn) for all n, then K ∈ AE(X) provided X is normal and K
is an absolute neighborhood extensor of X (K ∈ ANE(X)).
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Theorem 2.3 (see [31] and [28]). Suppose K is a CW complex. If K ∈
AE(X), then K ∈ AE(Y ) for every Y ⊂ X if X is metrizable.

Theorem 2.4 (see [14]). If X = A ∪ B is metrizable, and K ∈ AE(A)
and L ∈ AE(B) are CW complexes, then K ∗ L ∈ AE(X).

Theorem 2.5 (see [8]). Suppose K and L are countable CW complexes.
If K ∗L ∈ AE(X) and X is a compactum, then there is a Gδ-subset A of X
such that K ∈ AE(A) and L ∈ AE(X − A).

Theorem 2.6 (see [27]). Suppose K is a countable CW complex. If K ∈
AE(X) and X is a subset of a metric separable space X ′, then there is a
Gδ-subset A of X ′ containing X such that K ∈ AE(A).

Theorem 2.7 (see [11]). Suppose X is compact or metrizable and K is
a pointed connected CW complex. The following conditions are equivalent :

(1) K ∈ AE(X × I).
(2) Ω(K) ∈ AE(X), where Ω(K) is the loop space of K.
(3) [X/A,K] = 0 for all closed subsets A 6= ∅ of X.
(4) K ∈ AE(Σ(X)).

Theorem 2.8 (see [7]). Suppose K is a CW complex. If X is finite-
dimensional and

∏∞
i=1K(πi(K), i) ∈ AE(X), then K ∈ AE(X).

3. Transition to algebra in extension theory. Given a space X
and k > 0, the kth symmetric product SPk(X) of X is the space of orbits
of the action of the symmetric group Sk on Xk. Points of SPk(X) can be
written in the form

∑k
i=1 xi. The set SPk(X) is equipped with the quotient

topology given by the natural map π : Xk → SPk(X). If X is metrizable,
then π : Xk → SPk(X) is both open and closed (see p. 255 of [4]), so SPk(X)
is also metrizable (use 4.4.18 of [21]).

If X has a base point a, then SPk(X) has
∑k

i=1 a as its base point. Notice
that there is a natural inclusion i : SPn(X) → SPk(X) for all n < k. It is
given by the formula

i
( n∑

i=1

xi

)
=

n∑

i=1

xi + (k − n)a.

In this way, points of the form
∑n

i=1 xi, n < k, can be considered as belong-
ing to SPk(X).

The direct limit of SP2(X)→ · · · → SPn(X)→ · · · is denoted by SP(X)
and called the infinite symmetric product (see [4] or [1, p. 168]).

The main property of the infinite symmetric product is expressed in the
following result.
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Theorem 3.1 (Dold–Thom Theorem [4]). If K is a pointed CW com-
plex , then the natural inclusion i : K → SP(K) induces an isomorphism
H̃i(K)→ πi(SP(K)).

The meaning of the Dold–Thom Theorem is that one can define singu-
lar homology groups geometrically, without the apparatus of homological
algebra, as homotopy groups of infinite symmetric products (see [1]).

Of major importance to us is the following result of Dranishnikov:

Theorem 3.2 (see [9]). Suppose K is a CW complex. If X is compact
and K ∈ AE(X), then SP(K) ∈ AE(X).

Since SP(K) is homotopy equivalent to the weak product of Eilenberg–
MacLane spaces K(H̃i(K), i) (see [1, Corollary 6.4.17 on p. 223]) one has
the following:

Theorem 3.3 (see [9]). Suppose K is a CW complex. If X is compact ,
then SP(K) ∈ AE(X) is equivalent to K(H̃i(K), i) ∈ AE(X) for all i ≥ 0.

The following result of Dranishnikov uses a high level of algebraic argu-
ments and can be viewed as an analog of the Hurewicz Theorem in extension
theory.

Theorem 3.4 (see [9]). Suppose K is a CW complex. If X is compact
finite-dimensional , K is simply connected , and SP(K) ∈ AE(X), then K ∈
AE(X).

Let us move to algebraic concepts associated with extension theory by
employing the connectivity index introduced by E. Shchepin [28].

Definition 3.5 ([28, p. 985]). Suppose K is a CW complex. Its connec-
tivity index cin(K) is either∞ or a non-negative integer. cin(K) =∞ means
that all reduced integral homology groups ofK are trivial. cin(K) = nmeans
that H̃n(K;Z) 6= 0 and H̃k(K;Z) = 0 for all k < n.

Proposition 3.6. Suppose K is a simply connected CW complex. The
following numbers are equal :

(1) cin(K),
(2) the supremum of all n ≥ 0 so that K ∈ AE(Sn),
(3) the supremum of all n ≥ 0 so that K is homotopy k-connected for all

k < n.

Proof. If K ∈ AE(Sn), then any map Sj → K, j < n, extends over Sn

and must be null-homotopic. Hence Hj(K) = 0 for j < n. If Hj(K) = 0 for
j < n, then πj(K) = 0 for j < n and any map f : A → K, with A closed
in Sn, can be extended over Sn as follows: first extend it over a polyhedral
neighborhood N of A, then keep extending over simplices which are not
contained in N using induction on the dimension of the simplices.
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Proposition 3.7. Suppose K and L are pointed CW complexes. If
K is countable and K ≤X L for all finite-dimensional compacta X, then
cin(K ∧M) ≤ cin(L ∧M) for every CW complex M .

Proof.

Case 1: M is countable. Since suspending a CW complex pushes its
connectivity index up by 1, it suffices to prove 3.7 for M = Σ2M ′, in which
case K ∧M and L ∧M are simply connected and we may use 3.6. Notice
that cin(K ∧M) = cin(K ∗M)− 1, where K ∗M is the join of K and M .
Suppose K ∗ M ∈ AE(Sm). Express Sm as A ∪ B so that K ∈ AE(A),
M ∈ AE(B), and A is Fσ (see 2.5). Now, L ∈ AE(A) (see 2.2), which
implies L ∗M ∈ AE(Sm) by 2.4.

Case 2: M is arbitrary. Suppose m = cin(K ∧M) > cin(L ∧M) = n.
There is an integral cycle c in Hn(L∧M)−{0}. That cycle lies in L∧M1 for
some finite subcomplex M1 of M . Given a countable subcomplex Mi of M ,
construct a countable subcomplex Mi+1 ⊃Mi of M so that Hk(K ∧Mi)→
Hk(K ∧ Mi+1) is trivial for k < m. Let M ′ be the union of all Mi. By
Case 1, m ≤ cin(K ∧M ′) ≤ cin(L ∧M ′), which means that c becomes 0 in
Hn(L ∧M ′), a contradiction.

4. Cohomology with coefficients in a complex. With the hindsight
of homological algebra one has the pairing

H∗(K) ∧H∗(L)→ π∗(SP(K ∧ L))

for any two pointed CW complexes K and L. It corresponds to the well
known Künneth formula for homology and we will give it a slightly non-
traditional form.

Theorem 4.1. If K and L are pointed CW complexes, then

Hn(K ∧ L) ≡
⊕

i+j=n

Hi(K;Hj(L)).

Remark 4.2. Theorem 4.1 is a direct consequence of the Universal Co-
efficient Theorem (see [29, p. 222] and the classical Künneth Theorem (see
[29, p. 235]).

Notice that ⊕

i+j=n

Hi(K;Hj(L)) ≡
⊕

i+j=n

Hi(L;Hj(K))

as both groups are isomorphic to Hn(K ∧L). A natural question to ask is if
⊕

i

H i(K;Hn−i(L)) or
⊕

i

Hi(L;Hn−i(K))

have similar geometrical interpretation, and if they are isomorphic. Knowing
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that the smash product K ∧ L is adjoint to the function space functor one
can speculate that:

Idea 4.3. There ought to be a dual pairing

H∗(X) ∧H∗(L) ≡ π∗(SP(L)X).

The above pairing should correspond to the Künneth formula for coho-
mology. It turns out that such a pairing exists for pointed compact spaces.

Our first idea is to introduce cohomology of a pointed space X via ho-
motopy groups of function spaces SP(K)X .

Definition 4.4. SupposeK is a pointed CW complex andX is a pointed
space. The cohomology Hn(X;K) of X with coefficients in K is defined as
follows:

Hn(X;K) =
{

[X,SP(Σn(K))] if n ≥ 0,

[Σ−nX,SP(K)] if n ≤ 0.

Proposition 4.5. If K = M(G,n) is a Moore space, then Hk(X;K) =
Hn+k(X;G).

Proof. Notice that Σr(K) = M(G,n + r) and SP(M(G, r)) = K(G, r)
for r ≥ 1 (see 3.1). As Hm(X;G) = [X,K(G,m)] one gets 4.5 immediately
from the definition of Hm(X;K).

It is shown in [4] that SP(K) is homotopy equivalent to the union⋃∞
m=1

∏m
n=1K(Hn(K), n) for every connected CW complex K (see also [1,

Corollary 6.4.17 on p. 223]). We will need a more general result.

Proposition 4.6. Suppose K is a pointed CW complex and X is a
pointed k-space. There is a weak homotopy equivalence

i :
∞⋃

m=1

m∏

n=1

K(πn(SP(K)X), n)→ SP(K)X .

Proof. Notice any map f : L → SP(K)X extends to F : SP(L) →
SP(K)X if L is a CW complex. Indeed, one can define F as follows:

F
( n∑

i=1

ai

)
(x) =

n∑

i=1

f(ai)(x) for
n∑

i=1

ai ∈ SP(L) and x ∈ X.

Let L be the wedge of M(πn(SP(K)X), n), n ≥ 1. There is a map f : L →
SP(K)X so that πn(f |M(πn(SP(K)X), n)) is an isomorphism for each n
(see the discussion after 1.4). In particular, Hk(L) → πk(SP(K)X) is an
isomorphism for all k ≥ 1. Pick an extension F : SP(L) → SP(K)X of f .
Since Hk(L)→ πk(SP(L)) and Hk(L)→ πk(SP(K)X) are isomorphisms for
all k ≥ 1, it follows that F is a weak homotopy equivalence. As shown in [4],
SP(L) is homotopy equivalent to

⋃∞
m=1

∏m
n=1K(Hn(L), n), which is exactly

the space
⋃∞
m=1

∏m
n=1K(πn(SP(K)X), n).
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Corollary 4.7. Suppose K is a pointed connected CW complex and
X is a pointed k-space. Then SP(K) and the spaces Ωr(SP(Σr(K))) are
homotopy equivalent for r ≥ 1. In particular , Hn(X,Σr(K)) ≡ Hn+r(X;K)
for all n ∈ Z and all r ≥ 1.

Proof. Notice that

πk(Ωr(SP(Σr(K)))) = πk+r(SP(Σr(K))) = Hk+r(Σr(K)) = Hk(K)

for each k ≥ 0. By 4.6 (applied to X = Sr) there is a weak homotopy equiva-
lence

⋃∞
m=1

∏m
n=1K(Hn(K), n)→ Ωr(SP(Σr(K))). This map is a homotopy

equivalence as both spaces are homotopy equivalent to CW complexes. As
in [4],

⋃∞
m=1

∏m
n=1K(Hn(K), n) is homotopically equivalent to SP(K).

If n ≥ 0, then

Hn(X;Σr(K)) = [X,SP(Σn+r(K))] = Hn+r(X;K).

If n < 0, then Hn(X;Σr(K)) = [Σ−n(X),SP(Σr(K))]. If n+ r ≥ 0, then

[Σ−n(X),SP(Σr(K))] = [X,Ω−n(SP(Σr(K)))]

= [X,SP(Σn+r(K))] = Hn+r(X;K).

If n+ r < 0, then

[Σ−n(X),SP(Σr(K))] = [Σ−n−r(X), Ωr(SP(Σr(K)))]

= [Σ−n−r(X),SP(K)] = Hn+r(X;K).

The purpose of the next result is to generalize the well known theorem
of Cohen [3].

Theorem 4.8. Suppose K is a pointed CW complex and X is compact
or metrizable. The following conditions are equivalent :

(1) SP(K) ∈ AE(X).
(2) Hn(X/A;K) = 0 for all n > 0 and all closed subsets A of X.
(3) H1(X/A;K) = 0 for all closed subsets A of X.

Proof. Hn(X/A;K) was defined as [X/A,SP(Σn(K))] for n ≥ 1 (see
4.4). Now 2.7 says that [X/A,SP(Σ(K))] = 0 for all closed subsets A of X
if and only if Ω(SP(Σ(K))) ∈ AE(X). By 4.7, Ω(SP(Σ(K))) is homotopy
equivalent to SP(K), which proves (1)⇔(3).

Clearly, (2) is stronger than (3).
Suppose (3) and (1) hold. If n > 1, then (see 2.7) SP(Σn(K)) ∈ AE(X)

and H1(X/A;Σn−1(K)) = 0 for all closed subsets A of X (as (1) is equiv-
alent to (3) for all CW complexes K). Now, 4.7 says that Hn(X/A;K) =
H1(X/A;Σn−1(K)), which proves that (2) holds.

Notice that in 4.4 the homotopy groups of SP(K)X correspond to nega-
tive cohomology groups of X with coefficients in K. This seems unnatural
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but we chose it that way in order to adhere to common practice. However,
it is time to break with tradition and achieve a better theory.

Definition 4.9. Suppose h∗ is a cohomology theory. By rh∗ we will
denote the reversed cohomology defined via rhm(X) = h−m(X).

The following result shows that using reversed cohomology one can
achieve similarity between homology and cohomology (compare 4.10 with 4.1).

Theorem 4.10. If K is a pointed CW complex and X is a pointed com-
pact space, then

rHn(X;K) ≡
⊕

i

rH i(X;Hn−i(K)),

rHn(X;K) ≡
⊕

i

Hi(K; rHn−i(X)).

Proof. If Y is a pointed compact space and L is a pointed CW com-
plex, then [Y,SP(L)] is the direct sum

⊕
i [Y,K(Hi(L), i)]. Indeed, SP(L)

is homotopically equivalent to
⋃∞
m=1

∏m
n=0K(Hn(L), n) (see [4]) and any

map from Y (or any homotopy from Y × I) to
⋃∞
m=1

∏m
n=0K(Hn(L), n) has

image contained in
∏m
n=0K(Hn(L), n) for some m.

If n ≥ 0, then
rH−n(X;K) = [X,SP(Σn(K)] =

⊕

i

[X,K(Hi−n(K), i)]

=
⊕

i

rH−i(X;Hi−n(K)).

If n < 0, then rH−n(X;K) = [Σ−nX,SP(K)] is
⊕

i[Σ
−n(X),K(Hi(K), i)],

which is the same as
⊕

iH
i(X;Hi−n(K)) =

⊕
i
rH−i(X;Hi−n(K)).

By the Universal Coefficient Theorem for homology (see [29, Theorem
14, p. 226],

⊕
iHi(K; rHn−i(X)) is isomorphic to

G1 =
⊕

i

(Hi(K)⊗ rHn−i(X)⊕Hi−1(K) ∗ rHn−i(X))

(G ∗ G′ is the torsion product of G and G′). By the Universal Coefficient
Theorem for cohomology (see [22, Statement 5 on p. 4],

⊕
i
rH i(X;Hn−i(K))

is isomorphic to

G2 =
⊕

i

(Hn−i(K)⊗ rH i(X)⊕Hn−i(K) ∗ rH i−1(X)).

Notice that G1 is isomorphic to G2 (change i to n− i in the first summand
of G1 and change i− 1 to n− i in the second summand of G1).

As a simple consequence of the fact that KY is homotopy equivalent to a
CW complex if K is a CW complex and Y is compact, we get the following
version of the Künneth formula.
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Theorem 4.11. Suppose K is a pointed CW complex. If X and Y are
pointed compact spaces, then

rHn(X ∧ Y ;K) ≡
⊕

i

rH i(X; rHn−i(Y ;K)).

Proof. Suppose n ≥ 0. We have rHn(X∧Y ;K) = [Σn(X∧Y ),SP(K)] =
[Σn(X),SP(K)Y ]. Since SP(K)Y is homotopy equivalent to a CW complex,
4.6 says that it is homotopy equivalent to

⋃∞
m=1

∏m
i=0K(rH i(Y ;K), i). Thus,

rHn(X ∧ Y ;K) =
⊕

i

H i(Σn(X); rH i(Y ;K))

=
⊕

i

H i−n(X; rH i(Y ;K)) =
⊕

i

rHn−i(X; rH i(Y ;K)).

The case n < 0 reduces to the case n = 0 by observing that rHn(Z;K) =
rH0(Z;Σ−n(K)) for every pointed k-space Z (see 4.7).

Corollary 4.12. If K is a pointed CW complex and X is a pointed
compact space, then the following conditions are equivalent (m is an integer):

(1) Hn(X;K) = 0 for all n ≥ m.
(2) Hi(K;Hn(X)) = 0 for all i ≤ n−m.
(3) H i(X;Hn(K)) = 0 for all i ≥ n+m.

Proof. Notice that Hn(X;K) = rH−n(X;K) ≡ ⊕iHi(K; rH−n−i(X))
(see 4.10), which is the same as

⊕
iHi(K;Hn+i(X)). That means Hn(X;K)

= 0 for all n ≥ m is equivalent to Hi(K;Hn+i(X)) = 0 for all n ≥ m, which
is the same as saying that Hi(K;Hn(X)) = 0 for all i ≤ n −m. Similarly,
Hn(X;K) = rH−n(X;K) is isomorphic to

⊕
i
rH i(X;H−n−i(K)) (see 4.10),

which is the same as
⊕

iH
−i(X;H−n−i(K)). That means Hn(X;K) = 0 for

all n ≥ m is equivalent to H−i(X;H−n−i(K)) = 0 for all n ≥ m, which is
the same as saying H i(X;Hn(K)) = 0 for all i ≥ n+m.

Corollary 4.13. Suppose K is a pointed CW complex and X is a com-
pact space. The following conditions are equivalent :

(1) SP(K) ∈ AE(X).
(2) Hi(K;Hn(X;A)) = 0 for all i < n and all closed subsets A of X.
(3) H i(X/A;Hn(K)) = 0 for all n < i and all closed subsets A of X.

Proof. By 4.8, SP(K) ∈ AE(X) if and only if Hn(X/A;K) = 0 for all
n ≥ 1 and all closed subsets A of X. Using 4.12 one finds that SP(K) ∈
AE(X) if and only if Hi(K;Hn(X,A)) = 0 for all i ≤ n − 1. That proves
(1)⇔(2); and (2)⇔(3) follows from 4.12 applied to m = 1.

5. Homological dimension of CW complexes. 4.13 suggests that
K ≤ L should have some algebraic implications. The next result specifies
the nature of those implications.
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Theorem 5.1. Suppose n > 0, G is an Abelian group, K,L are CW
complexes, and C is a class of spaces containing all finite-dimensional com-
pacta. If K is countable, K ≤C L, and H̃i(K;G) = 0 for all i ≤ n, then
H̃i(L;G) = 0 for all i ≤ n.

Proof. Make K and L pointed CW complexes and switch from the re-
duced homology to ordinary homology of pointed CW complexes. By 4.1,
Hi(A ∧ M(G, 1)) = Hi−1(A;G) for any pointed CW complex A, where
M(G, 1) is the Moore space. Thus cin(K ∧ M(G, 1)) ≥ n + 2. By 3.7,
cin(L∧M(G, 1)) ≥ n+ 2, which is the same as H̃i(L;G) = 0 for all i ≤ n.

Theorem 5.1 suggests a new concept of homological dimension dimG(K)
of a pointed CW complex.

Definition 5.2. Suppose K is a pointed CW complex and G is an Abe-
lian group. Then dimG(K) = n <∞ means that Hi(K;G) = 0 for all i < n
and Hn(K;G) 6= 0; and dimG(K) =∞ means that Hi(K;G) = 0 for all i.

Remark 5.3. Notice that the above concept generalizes the concept of
connectivity index. Indeed, cin(K) = dimZ(K) for all pointed CW com-
plexes K.

Definition 5.2 suggests a new partial order on the class of CW complexes:

Definition 5.4. Suppose K and L are CW complexes and G is an
Abelian group. Then K ≤G L means dimG(K) ≤ dimG(L).

If G is a class of Abelian groups, then K ≤G L means that K ≤G L for
all G ∈ G; and K ∼G L means that K ≤G L and L ≤G K.

K ≤Gr L means that K ≤G L for all Abelian groups G; and K ∼Gr L
means that K ≤Gr L and L ≤Gr K.

Corollary 5.5. K ∼Gr SP(K) for each pointed CW complex K.

Proof. Notice that Hn(K) is a direct summand of Hn(SP(K)) for each n.
Indeed, SP(K) is homotopy equivalent to

⋃∞
m=1

∏m
n=1K(Hn(K), n) and

each K(Hn(K), n) (whose nth homology group is Hn(K)) is a retract of
SP(K). IfHk(SP(K);G) = 0 for k < n, then it amounts toHk(SP(K))⊗G =
Hk−1(SP(K)) ∗G = 0 for k < n (in view of the Universal Coefficient Theo-
rem). Therefore Hk(K)⊗G = Hk−1(K)∗G = 0 for k < n and Hk(K;G) = 0
for k < n. This proves SP(K) ≤Gr K.

To proveK ≤Gr SP(K) notice that, forK countable, this follows from 5.1
and 3.2. Suppose Hk(K;G) = 0 for k ≤ n and there is c ∈ Hn(SP(K);G)−
{0}. Find a finite subcomplex K1 of K and a countable subgroup G1 of G
such that c belongs to the image of Hn(SP(K1);G1) → Hn(SP(K);G). By
induction find countable subcomplexes K1 ⊂ K2 ⊂ · · · of K and countable
subgroups G1 ⊂ G2 ⊂ · · · of G so that Hk(Ki;Gi) → Hk(Ki+1;Gi+1) is
trivial for all i and all k ≤ n. Let K ′ be the union of all Ki and let G′
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be the union of all Gi. Notice that Hk(K ′;G′) = 0 for k ≤ n. Therefore
Hn(SP(K ′);G′) = 0, contradicting c 6= 0.

Theorem 5.6. Suppose K and L are connected CW complexes and K
is countable. Consider the following conditions:

(1) K ≤Gr L.
(2) SP(K) ≤X SP(L) for all compact X.
(3) cin(K ∧M) ≤ cin(L ∧M) for each complex M .
(4) K ≤X L for all finite-dimensional compacta X.

Condition (4) implies (1). Conditions (1)–(3) are equivalent. If L is sim-
ply connected , then (1)–(4) are equivalent.

Proof. (4)⇒(1) follows from 5.1.
(3)⇒(1). Suppose Hk(K;G) = 0 for k < n. Use M = M(G, 1) and 4.1

to conclude that Hk(K ∧M) = 0 for k ≤ n. Therefore Hk(L ∧M) = 0 for
k ≤ n, which means Hk(L;G) = 0 for k < n.

(1)⇒(3). Suppose Hk(K ∧ M) = 0 for k < n. That means (see 4.1)
Hi(K;Hj(M)) = 0 if i + j < n. Since K ≤Gr L, Hi(L;Hj(M)) = 0 if
i+ j < n, i.e. Hk(L ∧M) = 0 for k < n.

(2)⇒(1) follows from 5.1 and 5.5.
(1)⇒(2). Suppose SP(K) ∈ AE(X). 4.13 says that Hn(K;Hp(X;A))

= 0 for all n < p and all closed subsets A of X. Thus, Hn(L;Hp(X;A)) = 0
for all n < p and all closed subsets A of X. Applying 4.13 again we get
SP(L) ∈ AE(X).

If L is simply connected, then (2) implies (4) by 3.4.

Corollary 5.7. If K and L are countable, pointed , connected CW com-
plexes, then the following conditions are equivalent :

(1) dimG(K) = dimG(L) for all Abelian groups G.
(2) dimZ(K ∧M) = dimZ(L ∧M) for all pointed CW complexes M .

Proof. In view of 5.5, (1) is equivalent to SP(K) ∼Gr SP(L), and that is
equivalent (see 5.6) to (2).

Remark 5.8. 5.7 is dual to the well known characterization of dimG(X)
= dimG(Y ) for all Abelian groups G (X and Y are compact). Namely,
dimG(X) = dimG(Y ) is equivalent to dimZ(X × T ) = dimZ(Y × T ) for all
compact spaces T (see [22]).

6. Cohomological dimension of compact spaces. The purpose of
this section is to show that, given a compact space X, the class {SP(L) |
ext-dim(X) ≤ SP(L)} has a minimum which we call the cohomological di-
mension of X. To do so we will need the basics of Bockstein theory (see [2]
or [22]).
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Definition 6.1 (Bockstein groups). The set BG of Bockstein groups is

{Q} ∪
⋃

p prime

{Z/p,Z/p∞,Z(p)},

where Z/p∞ is the p-torsion of Q/Z, and Z(p) are the rationals whose de-
nominator is not divisible by p.

Definition 6.2 (Bockstein basis). Given an abelian group G its Bock-
stein basis σ(G) is the subset of BG defined as follows:

(1) Q ∈ σ(G) iff Q⊗G 6= 0,
(2) Z/p ∈ σ(G) iff (Z/p)⊗G 6= 0,
(3) Z(p) ∈ σ(G) iff (Z/p∞)⊗G 6= 0,
(4) Z/p∞ ∈ σ(G) iff (Z/p∞) ∗G 6= 0 (here H ∗G is the torsion product

of groups H and G) or (Z/p)⊗G 6= 0.

Remark 6.3. Our definition of Bockstein basis is slightly different from
the standard ones (see [22] or [10]). Namely, if Z(p) ∈ σ(G) (respectively,
Z/p ∈ σ(G)), then Z/p ∈ σ(G) (respectively, Z/p∞ ∈ σ(G)). In traditional
definitions of Bockstein basis only one group among {Z(p),Z/p,Z/p∞} is
admitted for any p. Since our only application of Bockstein basis is 6.4,
the change of the definition will not cause any problems as dimZ(p)(X) ≥
dimZ/p(X) ≥ dimZ/p∞(X) for all primes p (see [22]).

Theorem 6.4 (First Bockstein Theorem). If X is compact , then

dimG(X) = max{dimH(X) | H ∈ σ(G)}.
Here is the existence of cohomological dimension:

Theorem 6.5. If X is compact , then there is a countable CW complex
KX such that SP(KX) ∈ AE(X) and SP(KX) ≤ SP(L) for every CW com-
plex L satisfying SP(L) ∈ AE(X).

Proof. Consider the set BX of all Bockstein groupsH such that dimH(X)
<∞. Put KX =

∨
H∈BX K(H,dimH(X)). Notice that KX ∈ AE(X), hence

SP(KX) ∈ AE(X) (see 3.2). Suppose SP(L) ∈ AE(X) for some CW complex
L and SP(KX) ∈ AE(Y ) for some compact space Y . We need to show that
SP(L) ∈ AE(Y ).

Since SP(KX) ∈ AE(Y ) is equivalent to Hi(KX ;Hn(Y,A)) = 0 for all
i < n and all closed subsets A of Y (see 4.13), one has

Hi(K(H,dimH(X));Hn(Y,A)) = 0 for all i < n

and all closed subsets A of Y . This, in turn, implies K(H,dimH(X)) ∈
AE(Y ) (see 5.5 and 4.13) for all H ∈ BX . Thus dimH(Y ) ≤ dimH(X) for all
Bockstein groups H and, in view of 6.4, dimG(Y ) ≤ dimG(X) for all Abelian
groups G. Since, for any compact space T , SP(L) ∈ AE(T ) is equivalent to



66 J. Dydak

dimHi(L)(T ) ≤ i for all i, one has dimHi(L)(Y ) ≤ dimHi(L)(X) ≤ i for all i,
i.e. SP(L) ∈ AE(Y ).

7. Extension types of Eilenberg–MacLane spaces. The following
problem was posed in [11].

Problem 7.1. Find necessary and sufficient conditions for two CW com-
plexes K and L to be of the same extension type.

In this section we consider 7.1 for K being the infinite symmetric product
and L being an Eilenberg–MacLane space. Our characterization of infinite
symmetric products having extension type of an Eilenberg–MacLane space
involves an enlargement of Bockstein basis.

Definition 7.2. Let G be an abelian group. Then τ(G) is the subset
of Bockstein groups containing σ(G) and satisfying the following conditions
for each prime p:

(1) Z/p ∈ τ(G) iff Z/p∞ ∈ σ(G),
(2) Z(p) ∈ τ(G) iff Z/p∞ ∈ σ(G) and Q ∈ σ(G).

Lemma 7.3. Suppose G and F are non-trivial Abelian groups and m ≥ 1.
If σ(F )\τ(G) 6= ∅, then there is a compact space X such that dimG(X) = m
and dimF (X) =∞.

Proof. Define α : BG → N (natural numbers plus infinity) as follows:
α(H) = ∞ iff H ∈ BG \ τ(G), α(H) = m + 1 iff H ∈ τ(G) \ σ(G), and
α(H) = m iff H ∈ σ(G).

Let us show that α is a Bockstein function, i.e. the following inequalities
hold for all primes p:

(1) α(Z/p∞) ≤ α(Z/p) ≤ α(Z/p∞) + 1,
(2) α(Z/p) ≤ α(Z(p)),
(3) α(Q) ≤ α(Z(p)),
(4) α(Z(p)) ≤ max(α(Q), α(Z/p∞) + 1),
(5) α(Z/p∞) ≤ max(α(Q), α(Z(p))− 1).

Inequalities (1) can fail only if Z/p ∈ τ(G) and Z/p∞ ∈ σ(G). In that
case α(Z/p∞) = m and m ≤ α(Z/p) ≤ m + 1, so inequalities (1) hold. In-
equality (2) can fail only if Z(p) ∈ τ(G). In that case, however, Z/p∞ ∈ σ(G),
implying Z/p ∈ τ(G). Since Z(p) ∈ σ(G) implies Z/p ∈ σ(G), inequality (2)
holds. Inequality (3) can fail only if Z(p) ∈ τ(G). In that case, however, Q ∈
σ(G), so inequality (3) holds. Inequality (4) can fail only if Z/p∞ ∈ τ(G)
and Q ∈ τ(G). That however implies Z/p∞ ∈ σ(G) and Q ∈ σ(G). Conse-
quently, Z(p) ∈ τ(G) and α(Z(p)) ≤ m+ 1 ≤ max(α(Q), α(Z/p∞) + 1), i.e.
(4) holds. Inequality (5) can fail only if Z(p) ∈ τ(G). Therefore Z/p∞ ∈ σ(G)
and Q ∈ σ(G). Hence α(Z/p∞) = m ≤ max(α(Q), α(Z(p))− 1).
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By Dranishnikov’s Realization Theorem (see [5] or [10]) there is a com-
pactum X such that dimH(X) = α(H) for all H ∈ BG . It is clear, in view
of Bockstein’s First Theorem 6.4, that X satisfies the desired conditions.

Lemma 7.4. Suppose G and F are non-trivial Abelian groups and m ≥ 1.
If σ(F ) ⊂ τ(G) and σ(F ) \σ(G) 6= ∅, then there is a compact space X such
that dimF (X) = dim(X) = m+ 1 and dimG(X) = m.

Proof. There is a prime q such that Z(q) ∈ σ(F ) \ σ(G) (Z/q ∈ σ(F ) \
σ(G), respectively). Define α : BG → N by sending Z(q) to m + 1 (respec-
tively, Z/q and Z(q) to m+1), and sending all the other groups to m. Notice
that α is a Bockstein function. By Dranishnikov’s Realization Theorem (see
[5] or [10]) there is a compactum X such that dimH(X) = α(H) for all
H ∈ BG and dim(X) = max(α). It is clear, in view of Bockstein’s First
Theorem, that X satisfies the desired conditions.

Theorem 7.5. Suppose L is a pointed countable CW complex , G is an
Abelian group, and n ≥ 1. The space SP(L) is of the same extension type
as K(G,n) if and only if the following conditions are satisfied :

(a) Hi(L) = 0 for i < n.
(b) σ(Hn(L)) = σ(G).
(c) σ(Hi(L)) ⊂ τ(G) for all i ≥ n.

Proof. We can reduce the general case to that of K(G,n) being a count-
able CW complex. Indeed, 6.4 implies that any K(G,n) has the extension
type of K(G′, n) such that G′ is countable and σ(G) = σ(G′).

Assume SP(L) is of the same extension type as K(G,n). Since L ∼Gr
K(G,n) (see 5.5 and 5.6), (a) follows. Pick i ≥ n and denote Hi(L) by F .
Suppose σ(F ) \ τ(G) 6= ∅. By 7.3 there is a compactum X such that
dimG(X) = n and dimF (X) = ∞. Since SP(L) is of the same extension
type as K(G,n), dimG(X) = n implies SP(L) ∈ AE(X). Consequently,
dimF (X) = dimHi(L)(X) ≤ i (see 3.3), a contradiction. Thus (c) holds.

Denote Hn(L) by F . Thus σ(F ) ⊂ τ(G). Suppose σ(F ) \ σ(G) 6= ∅. By
7.4 there is a compact space X such that dimG(X) = dim(X) = n + 1
and dimF (X) = n. Since dim(X) = n + 1, dimHi(L)(X) ≤ i for all i ≥ n.
Consequently (see 3.3), SP(L) ∈ AE(X), which implies K(G,n) ∈ AE(X),
contradicting dimG(X) = n+ 1. That proves σ(F ) ⊂ σ(G).

Suppose σ(G) \ σ(F ) 6= ∅. By 7.4 there is a compact space X such
that dimF (X) = dim(X) = n + 1 and dimG(X) = n. Since SP(L) is of
the same extension type as K(G,n), dimG(X) = n implies SP(L) ∈ AE(X).
Consequently, dimF (X) = dimHn(L)(X) ≤ n (see 3.3), a contradiction. That
proves (b).

Suppose (a), (b), and (c) hold. If K(G,n) ∈ AE(X) (i.e., dimG(X) ≤ n),
then dimF (X) ≤ n+ 1 for all F ∈ τ(G) in view of Bockstein’s Inequalities.
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Hence, dimHi(L)(X) ≤ i for all i ≥ n, which implies SP(L) ∈ AE(X) (see
3.3). That shows K(G,n) ≤ SP(L).

If SP(L) ∈ AE(X), then K(Hn(L), n) ∈ AE(X) (see 3.3), which is equiv-
alent to K(G,n) ∈ AE(X) in view of σ(G) = σ(Hn(L)) and the First Bock-
stein Theorem.

8. Dimension types and the connectivity index. Shchepin’s con-
nectivity index is of homological nature. Similarly, one can introduce the
homotopy connectivity index hcin(K).

Definition 8.1. Suppose X is a pointed space. Then hcin(X) is a non-
negative integer defined as follows:

(a) hcin(X) = 0 means that X is not path-connected.
(b) If 0<r<∞, then hcin(X) = r means that πr(X) 6= 0 and πk(X) = 0

for all 0 ≤ k < r.
(c) hcin(X) =∞ means that πk(X) = 0 for all 0 ≤ k <∞.

Homotopy connectivity index can be easily dualized. Following G. White-
head [33, pp. 421–423] we introduce the anticonnectivity index acin(X) as
follows.

Definition 8.2. Suppose X is a pointed space. Then acin(X) is an in-
teger greater than or equal to −1, or infinity, defined as follows:

(a) acin(X) = −1 means that X is path-connected and all its homotopy
groups are trivial.

(b) If 0≤ r<∞, then acin(X) = r means that πr(X) 6= 0 and πk(X) = 0
for all k > r.

(c) acin(X) =∞ means that infinitely many homotopy groups of X are
non-trivial.

We start with the concept of the total function space which is related to
Shchepin’s [28] concept of the total cohomology of a space.

Definition 8.3. Suppose X is a pointed compact space and P is a
pointed CW complex. The total function space Tot(PX) is the wedge of
all function spaces PX/A, where A is a closed subspace of X.

Using the homotopy connectivity index and the concept of the total
function space one can introduce a new relation on the class of compact
spaces: X ∼ Y iff hcin(Tot(PX)) = hcin(Tot(P Y )) for all pointed CW
complexes P . It turns out that this relation means exactly that ΣX and
ΣY are of the same extension dimension. The first part of this section is
devoted to that fact and culminates in 8.7.

In the case of pointed CW complexes one can define a relation K ∼ L
to mean that cin(K ∧M) = cin(L ∧M) for all M . We saw in 5.6 and 5.7
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that, in the case of countable CW complexes, that relation is identical with
equality of extension types of SP(K) and SP(L). Dualizing that relation
leads to K ∼ L iff acin(PK) = acin(PL) for all P . In the last part of this
section we investigate how extension types are connected to that relation.

Lemma 8.4. Let X be a compact connected space. If P is a pointed CW
complex , then

hcin(Tot(ΩP )X) ≥ hcin(Tot(P )X)− 1.

Moreover , if hcin(Tot(P )X) ≥ 1, then

hcin(Tot(ΩP )X) = hcin(Tot(P )X)− 1.

Proof. If hcin(Tot(P )X) = 0, then the inequality obviously holds, so
assume hcin(Tot(P )X) is at least 1. Now, 8.4 follows from the equality
[Sn−1, (ΩP )X/A] = [Sn, PX/A] for all non-empty closed subsets A of X and
all n ≥ 1.

Remark 8.5. If hcin(Tot(P )X) = 0, then hcin(Tot(ΩP )X) may be ar-
bitrarily high. For example, if P = X = S1, then Tot(ΩP )X is contractible
but Tot(P )X is not path-connected.

Lemma 8.6. Let X be a compact connected space and k > 0. If P is a
pointed CW complex , then the following conditions are equivalent :

(a) hcin(Tot(P )X) ≥ k.
(b) Ωk(P ) ∈ AE(X).

Proof. Notice that both hcin(Tot(P )X) and Ωk(P ) depend only on the
component of the base point of P , so we may reduce 8.6 to the case of P
being connected.

Special Case: k = 1. Notice that hcin(Tot(PX)) ≥ 1 is equivalent to
[X/A,P ] = ∗ for all non-empty closed subsets A of X. That statement, in
view of 2.7, is equivalent to ΩP ∈ AE(X).

If k > 1, then hcin(Tot(PX)) ≥ k is equivalent (in view of 8.4) to

hcin(Tot((Ωk−1P )X)) ≥ 1,

which is equivalent, by the Special Case, to Ωk(P ) ∈ AE(X).

Theorem 8.7. If X and Y are non-empty connected compact spaces,
the following conditions are equivalent :

(a) ΣX and ΣY are of the same extension dimension.
(b) Ω(P ) ∈ AE(X) is equivalent to Ω(P ) ∈ AE(Y ) for all pointed CW

complexes P .
(c) hcin(Tot(PX)) = hcin(Tot(P Y )) for all pointed CW complexes P .

Proof. (a)⇒(b). Suppose ΩP ∈ AE(X) for some pointed CW com-
plex P . Since ΩP = ΩP0, where P0 is the component of the base point
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of P , we may assume P is connected. By 2.7, P ∈ AE(ΣX), which implies
P ∈ AE(ΣY ), as ΣY is of the same extension dimension as ΣX. Again, by
2.7, ΩP ∈ AE(X). The same argument shows that ΩP ∈ AE(Y ) implies
ΩP ∈ AE(X) for any pointed CW complex P .

(b)⇒(c). Suppose hcin(Tot(PX)) ≥ k. It suffices to show (by symmetry)
that hcin(Tot(P Y )) ≥ k. If k = 0 this is obviously true, so assume k ≥ 1.
However, in that case, hcin(Tot(P T )) ≥ k is equivalent (see 8.6) to Ωk(P ) ∈
AE(T ) for any compact connected space T , so (b)⇒(c) follows from 8.6 as
Ωk(P ) ∈ AE(X) is equivalent to Ωk(P ) ∈ AE(Y ).

(c)⇒(a). Suppose P ∈ AE(ΣX). It suffices to show P ∈ AE(ΣY ). Since
ΣX is connected and contains at least two points, P must be connected
(otherwise we pick x1 6= x2 ∈ ΣX, map them to two different components
of P , and that map cannot be extended over ΣX), so (see 2.7) P ∈ AE(ΣX)
is equivalent to ΩP ∈ AE(X). Hence ΩP ∈ AE(X) and, by 2.7, P ∈
AE(ΣY ).

8.7 implies that if two compacta X and Y are of the same extension
dimension, then the total function spaces Tot(PX) and Tot(P Y ) have the
same homotopy connectivity index. The rest of this section is devoted to the
dual result: if two countable complexes K and L are of the same extension
type, then the function spaces PK and PL have the same anticonnectivity
index for certain P .

Since some of the techniques of this section are well known (see [20]
and [10]), we will only outline how one translates known results in terms of
truncated cohomology to results in terms of function spaces.

The following result corresponds to the Combinatorial Vietoris–Begle
Theorem of [20] (see Lemma 2 there or Lemma 5.9 in [10]) and the proof is
similar.

Proposition 8.8. Suppose P is a CW complex and f : K → L is a
combinatorial map from a CW complex K to a finite simplicial complex L.
If P f

−1(∆) is weakly contractible for each simplex ∆ of L, then f ∗ : PL → PK

is a weak homotopy equivalence.

The next two results isolate essential parts of Lemma 3 in [20] with proofs
being similar.

Lemma 8.9. Suppose P is a CW complex. The following conditions are
equivalent :

(1) [Sk, P ] is finite for each k ≥ 0 (unpointed spheres).
(2) [K,P ] is finite for each finite CW complex K.
(3) For each pair (K,L) of finite CW complexes and each map f : L→ P ,

the set of all homotopy classes rel. L of maps g : K → P such that
g|L = f , is finite.
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Lemma 8.10. Suppose P is a CW complex such that [Sk, P ] is finite
for each k ≥ 0 (unpointed spheres). If K is a countable CW complex and
f : K → P is a map such that f |L ∼ 0 for each finite subcomplex L of K,
then f ∼ const.

Theorem 8.11. Suppose P is a CW complex and K is a countable CW
complex such that PK is weakly contractible. Suppose L is a countable com-
plex and f : L → P is a homotopically non-trivial map. There is a com-
pactum X and a map g : X → L so that f ◦ g is homotopically non-trivial
and K ∈ AE(X) if one of the following conditions is satisfied :

(1) K is compact and L is finitely dominated ,
(2) [Sk, P ] is finite for each k ≥ 0 (unpointed spheres).

Proof. In the case of (2), one follows the same technique as described
in [10] (see 5.5–5.7 there). We will outline how to use that technique for
both K and L being compact. The inductive step consists in constructing
a homotopically non-trivial map f ′ : L′ → P and a map h′ : L0 → K,
where L′ is a compact simplicial complex and L0 is a subcomplex of L′. As
in Lemma 5.6 of [10] one constructs a combinatorial map π : L′′ → L′ so
that π−1(∆) is either contractible or homotopy equivalent to K for each
simplex ∆ of L′. Moreover, the composition π−1(L0) → L0 → K extends
over L′′. The construction in [15] produces L′′ as a subcomplex of L′ ×K,
while [10] constructs L′′ as the pull-back of a certain diagram. 8.8 says that
the composition L′′ → L′ → P is homotopically non-trivial. Starting with
f : L→ P one can construct inductively finite simplicial complexes Ln and
maps fn : Ln+1 → Ln so that the inverse limit X of the sequence · · · →
Ln+1 → Ln → · · · satisfies K ∈ AE(X), L1 is homotopically equivalent to L,
and the composition Ln → · · · → L1 → P is homotopically non-trivial for
all n (see [10, 5.5 and 5.9] for details).

If L is finitely dominated, we pick L′ finite and maps u : L → L′,
d : L′ → L so that d ◦ u ≈ idL. Let f ′ = f ◦ d : L′ → P . Notice that f ′

is homotopically non-trivial. By the previous case, there is a compactum X
and a map g′ : X → L′ so that K ∈ AE(X) and f ′ ◦ g′ is homotopically
non-trivial. Let g = d◦g′. Since f◦g = f ′◦g′, it is homotopically non-trivial.

Corollary 8.12. Suppose K≤L are countable pointed complexes. Sup-
pose P is a pointed CW complex so that πi(PK) = 0 for all i ≥ r, where
r ≥ 1. Then the homotopy groups πi(PL) are trivial for all i ≥ r if one of
the following conditions hold :

(1) πi(P ) is finite for all i ≥ r,
(2) K is compact and L is finitely dominated ,
(3) both K and L are finitely dominated and r ≥ 2.
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Proof. Suppose πm(PL) 6= 0 for some m ≥ r. Put L′ = Σ(L) in cases
(1) and (2), and L′ = Σ2(L) in case (3). Put P ′ = Ωm−1(P ) in cases (1) and
(2), and P ′ = Ωm−2(P ) in case (3). Put K ′ = K in cases (1) and (2), and
K ′ = Σ(K) in case (3). Notice that K ′ and L′ are homotopically equivalent
to compact CW complexes in cases (2) and (3) (see [32]). In all cases there is
a homotopically non-trivial map f : L′ → P ′, so there is a map g : X → L′

such that K ′ ∈ AE(X) and f ◦g is homotopically non-trivial (see 8.11). This
contradicts 2.1. Indeed, K ≤ L implies Σ(K) ≤ Σ(L) (see [11]). That means
K ′ ∈ AE(X) implies that any map X → L′ is null-homotopic by 2.1.

Corollary 8.13. Suppose K ≤ L are countable pointed complexes and
p is a prime. If H∗(K;Z/p) = 0, then H∗(L;Z/p) = 0.

Proof. Suppose H∗(K;Z/p) = 0 and Hn(L;Z/p) 6= 0 for some n ≥ 0. If
n = 0, then L must be disconnected and K is connected. Hence K ∈ AE(S1)
and L 6∈ AE(S1), a contradiction. Thus, n ≥ 1. Put P = K(Z/p, n + 1).
Notice that π1(PL) = Hn(L;Z/p) 6= 0 and πi(PK) = Hn+1−i(K;Z/p) = 0
for all i ≥ 1, a contradiction in view of 8.12.

Theorem 8.14. Suppose L is a countable, finite-dimensional CW com-
plex and p is a prime number. If Hn(L;Z/p) 6= 0 for some n ≥ 1, then
there is a non-trivial map f : X → Σn+2(L) from a compactum X so that
dimZ[1/p]X = 1 = dimZ/pX.

Proof. Let
M = M(Z/p, 1), L′ = Σn+2(L).

In particular, H2n+2(L′;Z/p) 6= 0. Since K(Z, 2n+3)M is a K(Z/p, 2n+2),
there is a non-trivial map g : L′ → K(Z, 2n+ 3)M . Its adjoint g′ : L′ ∧M →
K(Z, 2n+3) is non-trivial and we may assume that its image is contained in a
finite subcomplex A of K(Z, 2n+3) which is (2n+2)-connected. Notice that
P = AM is simply connected and its homotopy groups are finite. Indeed,
the homotopy groups of P coincide with groups of homotopy classes of maps
from suspensions of M to A. Those sets are the same as mod p homotopy
groups of A (see [26]). In view of Proposition 1.4 on p. 3 in [26] one has an
exact sequence

0→ πm(A)⊗ Z/p→ πm(A;Z/p)→ πm−1(A) ∗ Z/p→ 0,

and since the homotopy groups of A are finitely generated, the homo-
topy groups of P are finite. By Miller’s Theorem (Sullivan Conjecture—see
[25]), AK(Z/p,1) is weakly contractible as A is finite-dimensional. Therefore,
PK(Z/p,1) = (AK(Z/p,1))M is weakly contractible. Since K(Z[1/p], 1) ∧M
is contractible (compute its homology groups), PK(Z[1/p],1) is weakly con-
tractible. Let K = K(Z/p, 1) ∨ K(Z[1/p], 1). Notice that PK is weakly
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contractible. Applying 8.11 one gets a non-trivial map f : X → L′ so that
K ∈ AE(X).

8.14 and 2.1 imply the following.

Corollary 8.15. Suppose L is a countable, finite-dimensional CW
complex and p is a prime number. If Hn(L;Z/p) 6= 0 for some n ≥ 1,
then there is a compactum X so that dimZ[1/p] X = 1 = dimZ/pX and L is
not an absolute extensor of X.

9. Extension types of infinite symmetric products. In this sec-
tion we consider Problem 7.1 in the case of K being an infinite symmet-
ric space and L being a compact CW complex (respectively, a countable,
finite-dimensional CW complex).

Lemma 9.1. Suppose p is a prime. The following conditions are equiva-
lent for any countable connected pointed CW complex K:

(1) H∗(SP(K);Z/p) = 0.
(2) Z/p∞ 6∈ σ(Hs(K)) for all s ≥ 1.

Proof. (1)⇒(2). Let Gi = Hi(K) for i ≥ 1. If p · Gi 6= Gi for some i,
then there is a non-trivial map K(Gi, i)→ K(Gi/p ·Gi, i), a contradiction
as Gi/p · Gi is a direct sum of copies of Z/p. Thus p ·Gi = Gi for all i. If
p-Tor(Gi) 6= 0 for some i, then K(Gi, i) dominates K(Z/p∞, i). To complete
the proof of (1)⇒(2) it suffices to show that K = K(Z/p∞, i) has non-trivial
Z/p-cohomology. Put L = K(Z/p, i+ 2) and notice that K ≤ L in view of
Bockstein’s inequalities. Put P = K(Z/p, i+4) and notice that the triviality
of Z/p-cohomology of K means πn(PK) = 0 for all n ≥ 1. Now, 8.13 says
that πn(PL) = 0 for all n ≥ 1, a contradiction as π2(PK) = Z/p.

(2)⇒(1). Notice that M(Z[1/p], 1) ≤Gr K. Indeed, Z/p∞ 6∈ σ(Hs(K))
for all s ≥ 1 means that H∗(K) has no p-torsion and is divisible by p. If F ⊗
Z[1/p] = 0 and F is a Bockstein group, then F must be either Z/p or Z/p∞.
Therefore H∗(K;F ) = 0, which completes the proof of M(Z[1/p], 1) ≤Gr K.
Also, H∗(K(Z[1/p], 1);Z/p) = 0. If H∗(SP(K);Z/p) 6= 0, then there is a
compactum X so that K(Z[1/p], 1) ∈ AE(X) but SP(K) 6∈ AE(X) (see
8.15), which contradicts

K(Z[1/p], 1) ∼Gr M(Z[1/p], 1) ≤Gr K ∼Gr SP(K)

(see 5.5 and 5.6).

Theorem 9.2. Suppose L is a connected countable CW complex and
n ≥ 0. If Σn(SP(L)) has the extension type of a countable, finite-dimen-
sional and non-trivial CW complex , then either SP(L) is of the same ex-
tension type as K(Z(l), 1) for some subset l of primes or it is of the same
extension type as K(Q,m) for some m ≥ 1.
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Proof. Let Gi = Hi(L) for i ≥ 1.
Suppose SP(L) is not of the same extension type as K(Q,m) for any m.

There is the smallest r with σ(Gr) 6= σ(Q) (see 7.5). There must be a prime
p with Z/p∞ ∈ σ(Gr), which means H∗(SP(L);Z/p) 6= 0 (see 9.1). Suppose
Σn(SP(L)) ∼ K, where K is finite-dimensional. That means H∗(K;Z/p)
6= 0 (see 8.13) and there is a compactum Xp with dimZ[1/p](Xp) = 1 =
dimZ/p(Xp) so that K is not an absolute extensor of Xp (see 8.15). If r ≥ 2,
then dimGi(Xp) ≤ i for all i as dimZ(Xp) ≤ 2. Hence SP(L) ∈ AE(Xp),
which implies K ∈ AE(Xp), a contradiction. Thus, r = 1. If σ(G1) 6= σ(Z(l))
for all sets l of primes, then the p above may be chosen so that Z(p) 6∈ σ(G1),
which implies dimG1(Xp) = 1. Again, SP(L) ∈ AE(Xp), which implies
K ∈ AE(Xp) (see 4.4), a contradiction. Assume σ(G1) = σ(Z(l)). If σ(Gs) ⊂
σ(Z(l)) for each s > 1, then we are done by 7.5. Suppose σ(Gs) ⊂ σ(Z(l)) does
not hold for some s > 1. There must be a prime p 6∈ l so that Z/p∞ ∈ σ(Gs).
Again, there is a compactum Xp with dimZ[1/p](Xp) = 1 = dimZ/p(Xp) so
that K is not an absolute extensor of Xp. This implies dimGi Xp ≤ 1 for all
i and SP(L) ∈ AE(Xp). Again, K ∈ AE(Xp), a contradiction.

Theorem 9.3. Suppose L is a connected countable CW complex and
n ≥ 0. If Σn(SP(L)) is of a compact non-trivial extension type (i.e., there is
a compact CW complex K of the same extension type as Σn(SP(L))), then
SP(L) is of the same extension type as S1.

Proof. Let K be a compact CW complex of the same extension type
as Σn(SP(L)). By 9.2 either SP(L) ∼ K(Z(l), 1) or SP(L) ∼ K(Q,m) for
some m ≥ 1. I l is not the set of all primes or SP(L) ∼ K(Q,m) for some
m ≥ 1, then there is a prime p such that H∗(SP(L);Z/p) = 0 (choose
p 6∈ l if SP(L) ∼ K(Z(l), 1) or any p if SP(L) ∼ K(Q,m)). That implies
H∗(K;Z/p) = 0 by 8.13. Since K is finite, H̃∗(K) must be a torsion graded
group and H̃∗(K;Q) = 0. Thus, H̃∗(SP(L);Q) = 0 (see 5.6), a contradiction
as SP(L) ∼ K(Z(l), 1) or SP(L) ∼ K(Q,m) for some m ≥ 1.

Theorem 9.3 generalizes all the known theorems related to the difference
between extension types:

(1) Sn and K(Z, n) are of different extension types for n ≥ 3 ([6]).
(2) Sn and K(Z, n) are of different extension types for n ≥ 2 ([20]).
(3) M(Z/p, n) and K(Z/p, n) are of different extension types for n ≥ 1

([24]).
(4) M(Z/2, 1) and K(Z/2, 1) are of different extension types ([23]).
(5) RPn and RP∞ are of different extension types for n ≥ 1 ([12]).

Besides generalizing the above-mentioned results, a major reason for 9.3
was our interest in pursuing ways of proving/disproving existence of univer-
sal spaces of given cohomological dimension. In [14], the author generalized
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a result of Shvedov which states that, for any compact CW complex K, the
class of compacta X such that K is an absolute extensor of X has a universal
space. That generalization deals with K homotopy dominated by a compact
CW complex. Thus a natural way to see if there is a universal space of a given
cohomological dimension is to verify if a particular CW complex has exten-
sion type of a compact CW complex. Theorem 9.3 closes that route of prov-
ing existence of universal spaces for any infinite symmetric product but S1.

Lemma 9.4. M(Q, n) and K(Q, n) are of the same extension type for
all n ≥ 2.

Proof. M = M(Q, n) can be realized as the telescope of fm : Sn → Sn,
where fm is of degree m! for m ≥ 1. In particular, the homotopy groups of
M(Q, n) are torsion groups for i ≥ 2n. By Sullivan’s Theorem [30] there is a
map f : M(Q, n)→ K such that Hi(K) = Hi(M)⊗Q, πi(K) = πi(M)⊗Q
for all i ≥ 1 and f∗ : Hi(M) → Hi(K) corresponds to Hi(M) ⊗ Z →
Hi(M)⊗Q for all i ≥ 1. Thus, f is a homotopy equivalence. In particular,
πi(M) = 0 for i ≥ 2n. Thus, M(Q, n) ∼ K(Q, n) (see [13]).

Theorem 9.5. Suppose G is a countable Abelian group. The following
conditions are equivalent :

(1) There is a Moore spaceM(G,n) of the same extension type asK(G,n).
(2) Either n = 1 and there is a subset l of primes such that K(G, 1) is of

the same extension type as K(Z(l), 1), or n ≥ 2 and K(G,n) is of the
same extension type as K(Q, n).

Proof. (2)⇒(1) follows from 9.4 and the fact that one can chooseM(Q, 1)
to be K(Q, 1).

(1)⇒(2). Notice that Σ(M(G,n)) is homotopy equivalent to a finite-
dimensional CW complex and has the same extension type as Σ(K(G,n)).
Use 9.2.

Remark 9.6. Theorem 9.5 solves the following problem posed by Dran-
ishnikov (see [28, p. 983]): Is it true that for any compactum X and any
countable group G the conditions M(G, 1) ∈ AE(X) and K(G, 1) ∈ AE(X)
are equivalent?

Problem 9.7. Suppose the extension type of a countable CW complex
K is at most the extension type of a compact non-contractible CW com-
plex L. Is there a finite-dimensional, countable CW complex M of the same
extension type as K?

Remark 9.8. One cannot replace compactness of L by finite-dimensio-
nality of L. Indeed, K(Z, 2) ≤ M(Q, 2) but K(Z, 2) does not have the ex-
tension type of a countable finite-dimensional CW complex (see 9.2 and
7.5).
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Problem 9.9. Suppose the extension type of a countable CW complex
K is at most the extension type of a compact non-contractible CW com-
plex L. Is there a universal space among all compacta X so that K ∈
AE(X)?
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