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Fiber entropy and conditional variational
principles in compact non-metrizable spaces

by

Tomasz Downarowicz and Jacek Serafin (Wrocław)

Abstract. We consider a pair of topological dynamical systems on compact Haus-
dorff (not necessarily metrizable) spaces, one being a factor of the other. Measure-theoretic
and topological notions of fiber entropy and conditional entropy are defined and studied.
Abramov and Rokhlin’s definition of fiber entropy is extended, using disintegration. We
prove three variational principles of conditional nature, partly generalizing some results
known before in metric spaces: (1) the topological conditional entropy equals the supre-
mum of the topological fiber entropy over the factor, which also equals the supremum of the
topological fiber entropy given a measure over all invariant measures on the factor, (2) the
topological fiber entropy given a measure equals the supremum of the measure-theoretic
conditional entropy over all invariant measures on the larger system projecting to the
given one. Combining the above, we get (3) the topological conditional entropy equals the
supremum of the measure-theoretic conditional entropy over all invariant measures. A tail
entropy of a measure is introduced in totally disconnected spaces. As an application of our
variational principles it is proved that the tail entropy estimates from below the “defect
of upper semicontinuity” of the entropy function.

Introduction. In this note we address some problems concerning the
relationship between topological and measure-theoretic entropy, a subject
which has gained a lot of attention in the study of dynamical systems. We
begin with a short survey of the relevant results.

In 1969, Goodwyn [Gw] proved, assuming that the underlying phase
space X is compact and metric, the inequality hν(T ) ≤ h(T ) between
measure-theoretic and topological entropy. Later Goodman [Gm] showed
that supν hν(T ) ≥ h(T ) (the supremum is taken over all invariant mea-
sures), completing the variational principle.
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In the meantime Bowen [B] considered a factor map π between two
compact metric dynamical systems (X,T ) and (Y, S), and formulated a
version of topological conditional variational principle, proving that

h(T ) ≤ h(S) + sup
y∈Y

h(T, π−1(y)),

where h(T,K) is the entropy of a compact subset of X.
In 1973 Ruelle [R] introduced the notion of pressure P (T, f) of a real-

valued continuous function, which for f ≡ 0 coincides with the notion of
topological entropy. He formulated and proved a variational principle for
pressure: supν(hν(T ) +

�
f dν) = P (T, f), for T being an expansive homeo-

morphism satisfying a so-called specification property. Later, Walters [W1]
proved the same statement under the sole assumption that T be continuous,
extending the classical variational principle.

In 1976 Misiurewicz [M1] gave an elementary proof of the variational
principle of Goodwyn and Goodman without the metrizability assumption,
and versions of his proof (usually metric) became standard in many ergodic
theory textbooks. In another paper [M2] Misiurewicz introduced the notions
of topological conditional entropy with respect to a cover and the topological
conditional entropy of a topological system, and connected those quantities
with the “defect of upper semicontinuity” of the measure-theoretic entropy
function defined on the space of invariant measures.

In 1977 Ledrappier and Walters [L-W] worked in the setting of Bowen
and proved a relative variational principle in the form

sup
ν
hν(T ) = hµ(S) + �

Y

h(T, π−1(y)) dµ(y),

where the supremum is taken over all invariant measures ν projecting via
π to µ. Actually, they formulated a relative variational principle for the
pressure with the above formula being a special case.

We should also mention more recent results: in 1997 Blanchard, Glas-
ner and Host [B-G-H] proved a version of the variational principle valid
for a fixed cover. Lately, some of their concepts have been applied in [D],
where a close relation is shown between measure-theoretic conditional en-
tropy and a topological notion of the so-called residual entropy introduced
by M. Boyle. A forthcoming paper [B-F-F] with further connections be-
tween measure-theoretic and topological entropies has been announced to
the authors during the preparation of this article.

The purpose of this note is to gather, enrich and unify the knowledge
about the relations between several notions (some of them newly introduced)
of measure-theoretic and topological fiber and conditional entropy. Both in
measure-theoretic and topological setup, we consider a pair of dynamical
systems, one being a factor of the other. Most attention is paid to the topo-
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logical case, where both structures come into play. In our considerations
we do not assume metrizability of the underlying spaces. Important ex-
amples of actions of a homeomorphism on nonmetrizable compact spaces
arise naturally e.g. in the study of Ellis semigroups, universal flows on βZ,
etc. Nevertheless, most of our results seem to be new even in the metric
context (see below).

In Section 1 we work exclusively in the measure-theoretic setup. Basing
on the classical work of Abramov and Rokhlin [A-R] we introduce a new
notion of fiber entropy of a partition (which turns out to be a nonconstant
function on the factor space; we provide a simple example), and we prove
that its integral is equal to the classical conditional entropy of that parti-
tion given the factor. This generalizes the result in [A-R] obtained for skew
products and where the supremum over all partitions is taken.

In Section 2 (and later on) we turn to the topological situation. We define
topological fiber entropy as a function on the factor space. This notion is
similar to the integrand in the quoted result of [L-W]. It turns out that our
function is constant almost everywhere on the supports of ergodic measures
(earlier shown in [W2] in the metrizable case), which suggests that it should
be more properly viewed as a function defined on the space of invariant
measures on the factor. This leads to the notion of a topological fiber entropy
given a measure, an analog of the integral in the result of [L-W].

Next, we define the topological conditional entropy of a system with
respect to its factor. This is a new notion, which in some situations coincides
with Misiurewicz’s conditional entropy with respect to a cover.

In Section 3 we formulate and prove three variational principles. In the
outer variational principle the topological conditional entropy is realized as
the supremum over all invariant measures on the factor of the topological
fiber entropies given these measures, or as the supremum over the factor
space of the topological fiber entropy function, a term appearing in Bowen’s
inequality quoted above. We are not aware of any analog of this result in
the metric case. We remark that one of the equalities in our assertion has
already been applied in the study of relative Pinsker factors [Le-S].

The inner variational principle states that the topological fiber entropy
given a measure ν on the factor is equal to the supremum of the measure-
theoretic conditional entropies over all invariant measures on the larger sys-
tem projecting to ν. This generalizes the above-mentioned result of Ledrap-
pier and Walters to the nonmetrizable case.

Combining both inner and outer principles results in a conditional vari-
ational principle connecting directly the topological and measure-theoretic
conditional entropies. Bowen’s quoted inequality follows as a corollary. The
authors of [B-F-F] prove a metric version of the conditional variational prin-
ciple with an additional assumption of the factor system being asymptot-
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ically h-expansive; their notion of the topological conditional entropy of a
factor map is slightly different from our notion of the topological conditional
entropy given a factor.

Due to a conflict in terminology, we call Misiurewicz’s “topological con-
ditional entropy of the system” the tail entropy. In Section 4 we discuss the
case of a totally disconnected dynamical system, where, applying the outer
variational principle, that notion can be expressed in terms of our topologi-
cal fiber entropy. This leads naturally to a new concept of the tail entropy of
an invariant measure. While the tail entropy of the system bounds globally
from above the “defect of upper semicontinuity” of the entropy function
(see [M2]), we easily prove, using the inner variational principle, that the
tail entropy of a measure provides a pointwise lower bound.

For the convenience of the reader we include an Appendix in which we
summarize all the necessary facts concerning upper semicontinuous func-
tions, invariant Radon probability measures, and the like, which might not
seem obvious without the metrizability assumption. We also give a straight-
forward and elementary proof of a version of Kingman’s ergodic theorem
for subadditive processes, which is used in Section 2. Some formulas of that
proof are also applied in Section 3.

Because there are many different entropy functions appearing side by side
in our note, we decided to slightly modify the classical notation. In order
to easily distinguish between topological and measure-theoretic notions of
entropy, the first are always denoted by boldface H or h, while we use
upright H or h for the latter. To reduce the number of parameters, we never
indicate the transformation, which remains fixed on a given space. It suffices
to remember that capital H (in both settings) is an absolute entropy not
referring to the action, while lower case h involves averaging along the orbits
of sets. The measure, classically appearing as a subscript, is here most of the
time treated as a variable, hence finds its place inside parentheses. A vertical
bar inside parentheses separates objects referring to the larger system on its
left from objects referring to the factor on its right. The only exception to
this rule occurs at the beginning of Section 1, before the factor is introduced.

We thank Mariusz Lemańczyk for an inspiring discussion, and Zbigniew
Lipecki for his comments regarding measure theory. We also thank the ref-
eree for valuable remarks.

1. Measure-theoretic conditional and fiber entropy. The first
part of this section contains a short repetition on measure-theoretic en-
tropy in dynamical systems, in which we partly acquaint the reader with
our modified notation. Apart from recalling some classical definitions, we
also prove a few more or less standard lemmas which we failed to find in the
literature in the suitable form.
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Let T denote a measurable transformation of a measurable space (X,Σ)
to itself. The σ-field Σ will remain fixed and we will skip it in the notation of
related objects. Let P(X) denote the convex set of all probability measures
on X. If µ ∈ P(X) then Tµ is given by the formula Tµ(A) = µ(T−1A)
(A ∈ Σ). By PT (X) we denote the convex subset of P(X) consisting of
all T -invariant measures. If µ ∈ PT (X) then the triple (X,µ, T ) is called a
measure-theoretic dynamical system.

Let α and β denote finite measurable partitions of X (in what follows,
we will skip the words “finite” and “measurable” since no other partitions
will be considered). It is customary to write

α ∨ β := {C = A ∩B : A ∈ α, B ∈ β, C 6= ∅}.
We say that α is a refinement of β (and write α < β) if α ∨ β = α. For a
partition α and an n ≥ 1 we set

αn :=
n−1∨

i=0

T−iα.

Throughout this paper we write:

H(µ, α) := −
∑

A∈α
µ(A) log(µ(A)),

H(µ, α |β) := H(µ, α ∨ β)− H(µ, β) =
∑

B∈β
µ(B)H(µB, α),

where µ ∈ P(X), and µB denotes the conditional measure induced by µ
on B (or zero if µ(B) = 0), the latter equality being well known. Using
this equality and the fact that the real function φ(x) := −x log x is concave
one easily shows that the function H(·, α |β) is concave on P(X). Another
standard fact states that H(µ, α |β) increases with respect to α and decreases
with respect to β.

It is also known (see also Lemma 1 below) that if µ is invariant then
H(µ, αn) is a subadditive sequence, and hence, when divided by n it con-
verges to its infimum. The limit

h(µ, α) := lim
n→∞

1
n

H(µ, αn) = inf
n

1
n

H(µ, αn)

is the entropy of µ with respect to α (classically denoted by hµ(α, T ) and
called “the entropy of α with respect to the transformation T”). Finally,
the entropy of the measure µ (usually called “the entropy of the measure-
preserving transformation T” and denoted by hµ(T )) is defined as

h(µ) := sup
α

h(µ, α),

where α ranges over all (finite) partitions of X.
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Before we continue, we introduce some abstract terminology. If T :
X → X is a map of any abstract set to itself then by a process we shall
mean an arbitrary sequence (Hn)n∈N of nonnegative functions defined on X.
A process is called subadditive if, for every x ∈ X and any natural m and n,

Hm+n(x) ≤ Hn(x) +Hm(Tnx).

Lemma 1. The process H(µ, αn |βn) defined on P(X) is subadditive
(with respect to T defined on measures).

Proof. We have

H(µ, αm+n |βm+n) = H(µ, αm+n ∨ βm+n)−H(µ, βm+n)

= H(µ, αn ∨ βn |T−nαm ∨ T−nβm)

+ H(µ, T−nαm ∨ T−nβm)− H(µ, βn ∨ T−nβm).

We add and subtract H(µ, T−nβm) in the last expression. The first term
of this expression is clearly not larger than H(µ, αn ∨ βn |T−nβm), which
combined with +H(µ, T−nβm) produces

H(µ, αn ∨ βn ∨ T−nβm).

The second term combined with −H(µ, T−nβm) produces

H(µ, T−nαm |T−nβm),

which we can write as H(Tnµ, αm |βm). We thus obtain

H(µ, αm+n |βm+n)

≤ H(µ, αn ∨ βn ∨ T−nβm) + H(Tnµ, αm |βm)− H(µ, βn ∨ T−nβm)

= H(µ, αn |βn ∨ T−nβm) + H(Tnµ, αm |βm)

≤ H(µ, αn |βn) + H(Tnµ, αm |βm),

and the subadditivity is proved.

As an immediate consequence of Lemma 1 and the relevant definitions
we obtain:

Corollary 1. If µ ∈ PT (X) then H(µ, αn |βn) is a subadditive se-
quence and hence

inf
n

1
n

H(µ, αn |βn) = lim
n→∞

1
n

H(µ, αn |βn) = h(µ, α ∨ β)− h(µ, β).

Now let Y = (Y,Θ) be another measurable space with a measurable
map S : Y → Y . We will assume that there exists a measurable surjection
π : X → Y such that πT = Sπ. In that case, π induces a map from P(X)
into P(Y ) (denoted by the same letter) by the formula (πµ)(B) = µ(π−1(B))
(B ∈ Θ). Clearly π(PT (X)) ⊂ PS(Y ). If µ ∈ PT (X) and ν = πµ then we
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say that (Y, ν, S) is a measure-theoretic factor of (X,µ, T ) via the factor
map π.

A partition β of X is said to be Y -measurable if β = π−1γ, where
γ is a partition of Y . Clearly, for any µ ∈ P(X) and ν = πµ, we have
H(µ, β) = H(ν, γ).

Definition 1. Let (Y, ν, S) be a measure-theoretic factor of (X,µ, T ).
For a partition α of X we set

h(µ, α | ν) := inf
β

inf
n

1
n

H(µ, αn |β),

where β ranges over all Y -measurable partitions of X. Furthermore, we set

h(µ | ν) := sup
α

h(µ, α | ν),

with α ranging over all partitions of X. The latter is called the conditional
entropy of the system (X,µ, T ) given the factor (Y, ν, S).

Lemma 2. We have

h(µ | ν) = sup
α

inf
n

inf
β

1
n

H(µ, αn |βn) = h(µ)− h(ν)

(for the last equality we assume that h(ν) <∞).

Proof. We have

h(µ | ν) = sup
α

inf
β

inf
n

1
n

H(µ, αn |β) = sup
α

inf
n

inf
β

1
n

H(µ, αn |β)

= sup
α

inf
n

inf
β

1
n

H(µ, αn |βn) = sup
α

inf
β

inf
n

1
n

H(µ, αn |βn)

= sup
α

inf
β

(h(µ, α ∨ β)− h(µ, β)),

with Corollary 1 applied in the last step. Next,

sup
α

inf
β

(h(µ, α ∨ β)− h(µ, β)) ≥ sup
α

inf
γ

(h(µ, α)− h(ν, γ)) = h(µ)− h(ν).

On the other hand, exchanging trivially supremum and infimum we get

sup
α

inf
β

(h(µ, α ∨ β)− h(µ, β)) ≤ inf
β

sup
α

(h(µ, α ∨ β)− h(µ, β))

= inf
β

(sup
α

h(µ, α ∨ β)− h(µ, β))

= inf
γ

(sup
α

h(µ, α)− h(ν, γ)) = h(µ)− h(ν).

The remaining part of this section is devoted to defining measure-theo-
retic fiber entropy as a function on the factor space Y . The original “fiber
entropy” was introduced by Abramov and Rokhlin in skew products, and
it was defined as a number, not a function. But if we drop the supremum
over all partitions and the integral in their definition, we obtain a quite
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interesting (nonconstant even in the ergodic case) function on the factor
(see Example 1 below; we soon provide the details in a more general setup).

There are at least two ways of extending the notion of fiber entropy to a
general dynamical system (X,µ, T ) and its factor (Y, ν, S). Firstly, we can
try to isomorphically represent the system (X,µ, T ) as a skew product with
(Y, ν, S) in the base. This is possible in standard spaces if both T and S are
ergodic and invertible (see [Ko]; the statement in [A-R] without invertibility
is false). The second approach (which we shall exploit) is to define fiber
entropy using a disintegration of a measure:

Definition 2. Let π : (X,Σ, µ) → (Y,Θ, ν) be a homomorphism of
measure spaces. By a disintegration of µ with respect to ν we mean a family
of measures µy defined for ν-a.e. y ∈ Y , each supported by π−1y, such
that, for every bounded measurable function f on X, the function f(y) :=�
f(x) dµy(x) is measurable, and

� f(y) dν(y) = � f(x) dµ(x).

Additionally, if π is a factor map between dynamical systems (X,µ, T ) and
(Y, ν, S) and µSy = Tµy ν-a.e. then we say that the disintegration is equiv-
ariant.

In the next theorem we will assume that there exists an equivariant
disintegration of µ with respect to ν. Obviously, any skew product satisfies
this assumption. In general, for the existence of a disintegration we need
the measure space X to be compact in the sense of Marczewski (see [P]);
this includes the case of Radon measures on compact Hausdorff spaces, on
which most of our attention will be focused. If in addition the action of S
on Y is invertible (this restriction does not apply to the next sections of this
work), then the disintegration is equivariant (compare Proposition 5.9 in [F]
for the metrizable case). Without the invertibility assumption the existence
of an equivariant disintegration is not guaranteed.

The following definition is a direct generalization of a function appearing
in [A-R] in the definition of the fiber entropy in skew products:

Definition 3. Let α be a finite partition of X. By the fiber entropy
of α with respect to the measure µ we mean the function h(µ, α | ·) defined
ν-almost everywhere on Y by the formula

h(µ, α | y) := lim
n

H(µy, α |T−1αn).

Note that for fixed y the above sequence is nonincreasing, hence its limit
is the same as the infimum.

Translating to our notation, Abramov and Rokhlin have proved that (in
case h(ν) <∞)
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sup
α

� h(µ, α|y)dν(y) = h(µ)− h(ν)

(= sup
α

h(µ, α|ν) by our Lemma 2 and Definition 1).

Below we strengthen the Abramov–Rokhlin theorem by showing that it also
holds for a fixed partition α (i.e., that supα can be dropped on both sides).

Theorem 1. If (Y, ν, S) is a factor of (X,µ, T ) via a map π such that
there exists an equivariant disintegration of µ with respect to ν, then, for
every partition α of X,

� h(µ, α | y) dν(y) = h(µ, α | ν).

Proof. We have

� h(µ, α | y) dν(y) = � lim
n

H(µy, α |T−1αn) dν(y)

= lim
n

� [H(µy, αn+1)− H(µy, T−1αn)] dν(y)

= lim
n

[ � H(µy, αn+1) dν(y)− � H(µy, αn) dν(y)
]
,

using the monotone convergence theorem, equivariance of the disintegration
and invariance of the measure ν. The limit of the last sequence is the same
as the limit of its averages, which, after cancellation, reads

lim
n

1
n

� H(µy, αn) dν(y).

By Lemma 1, equivariance and invariance, the above integrals form a sub-
additive sequence, hence we can replace the limit by the infimum. It remains
to show that

� H(µy, αn) dν(y) = inf
β

H(µ, αn |β).

Each partition β is obtained as the preimage of a partition γ of Y . After
applying all relevant definitions and integrating on each set D ∈ γ with
respect to the conditional measure νD induced by ν on D, the left hand side
becomes

−
∑

A∈αn

∑

D∈γ
ν(D) � µy(A) log(µy(A)) dνD(y),

which we write as
∑

A∈αn

∑

D∈γ
ν(D) � φ(µy(A)) dνD(y),

where φ(x) := −x log x (a concave function). Viewing the last integral as an
average value of φ, we see that it is not larger than the value of φ at the
average of the arguments. But this latter average equals
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� µy(A) dνD(y) =
1

ν(D)
�
Y

�
π−1(y)

1A∩B(x) dµy(x) dν(y)

=
µ(A ∩B)
µ(B)

= µB(A),

by the definition of the disintegration, with B := π−1(D) ∈ β (hence µ(B) =
ν(D)). Consequently, the last double sum is not larger than

∑

A∈αn

∑

B∈β
µ(B)φ(µB(A)),

i.e., than H(µ, αn |β).
For the opposite inequality it suffices to notice that, by uniform conti-

nuity of φ on the interval [0, 1], the average value of φ does not differ from
the value at the average by more than ε/#αn if the arguments stay in an
interval of an appropriately chosen length δ. Thus we need to find a finite
partition γ of Y such that, for every D ∈ γ and A ∈ αn, the values of µy(A)
with y ranging over D do not vary by more than δ. But such a partition is
easily constructed as

γ :=
∨

A∈αn
γA,

where γA is the preimage under the measurable function 1A : y 7→ µy(A) of
the partition of [0, 1] into intervals of length δ. We now have

H(µ, αn |β)− � H(µy, αn) dν(y)

=
∑

A∈αn

∑

D∈γ
ν(D)

[
φ(µB(A))− � φ(µy(A)) dνD(y)

]

≤
∑

A∈αn

∑

D∈γ
ν(D)

ε

#αn
≤ ε.

Example 1. Let (Y, ν, S) be the two-point periodic cycle on Y = {a, b}
(here ν({a}) = ν({b}) = 1/2), and (Z, λ, S) be the (1/2, 1/2) Bernoulli shift
on two symbols {0, 1}. Define (X,µ, T ) as the skew product T (a, z) = (b, z),
T (b, z) = (a, Sz), with µ = ν × λ. Let α be a three-set generating partition:
{a} × Z, {b} × Z0 and {b} × Z1, where Z0 and Z1 denote the 0-coordinate
cylinders in Z. Obviously h(µ | ν) = h(µ) = (log 2)/2. Clearly, ν is an ergodic
measure, thus any invariant function on Y is constant. On the other hand,
it is immediately seen from the definition that the fiber entropy function is
not constant on Y : h(µ, α | a) = 0 and h(µ, α | b) = log 2.

2. Topological fiber entropy and conditional entropy. Our goal
is to introduce topological analogs of the notions appearing in the previous
section. We choose to identify topological fiber entropy with what is known
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as the “topological entropy of a fiber” in the sense of Bowen. The function
on the factor space Y defined in this way is constant almost everywhere
on the supports of ergodic measures (see Theorem 2 below), and in this
sense it is not a perfect analog of the measure-theoretic fiber entropy of a
partition. Attempts to improve the notion have given rather artificial results.
It seems more appropriate to keep the definition, but view the topological
fiber entropy as a function defined on the set of measures on the factor space.
In this setting it becomes an analog of the measure-theoretic conditional
entropy, and in the next sections we will prove strong relations between
these notions. On the other hand, topological conditional entropy has yet
another meaning, as a value not depending on the measures. Later, we will
also show how that constant is related to topological fiber entropy (and
through this to measure-theoretic conditional entropy).

Standing assumption. In the remainder of this note we shall be inter-
ested in the following case: (X,Σ) and (Y,Θ) are compact Hausdorff spaces
with σ-fields of Borel sets, both maps T : X → X and S : Y → Y are
continuous (not necessarily onto). The factor map (surjection) π : X → Y is
also continuous. We then say that (X,T ) and (Y, S) are topological dynam-
ical systems and that (Y, S) is a topological factor of (X,T ) via the factor
map π.

In such a case we restrict the meaning of P(X),P(Y ),PT (X), and PS(Y )
to Radon (Borel regular) probability measures. Endowed with the weak∗

topology, all these sets become nonempty compact Hausdorff spaces, and
the maps T , S and π defined appropriately on measures become continuous.
It is important that π(PT (X)) = PS(Y ) (use e.g. the Hahn–Banach theorem
and an averaging technique).

From now on, the letters A,A′, An, etc. will denote open sets in X, while
script letters A,A′, etc. will be used for finite open covers of X. For covers
we will skip the words “finite”, “open”, and “of X”, as no other covers will
be considered.

We say that a cover A′ is inscribed in A (and write A′ < A) if each
A′ ∈ A′ is contained in some A ∈ A. The joinings of covers, A ∨ A′ and
An, are defined by identical formulas as for partitions. Clearly, Am+n =
Am ∨ T−mAn for any m,n ∈ N.

If F is any family of sets then
⋃F denotes the union of all members

of F .
For a cover A and a set K ⊂ X, we define

N(A |K) := min{#F : F ⊂ A,
⋃
F ⊃ K}.

(compare N(B,A) in [M2] for an open set B).
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With a cover A temporarily fixed we define a series of quantities (condi-
tional in nature) leading eventually to the notion of topological fiber entropy.

Definition 4. For y ∈ Y set

N(A | y) := N(A |π−1y) and H(A | y) := log N(A | y).

Since the partition of X into preimages of points is upper semicontinuous
(u.s.c.; see Appendix, (A1)), it is not hard to see that the above are u.s.c.
functions on Y . Clearly, if A′ < A then H(A′ | y) ≥ H(A | y). We also easily
verify that H(T−1A | y) ≤ H(A |Sy) (compare inequality (1.5) in [M2]).

Lemma 3. For any two covers A, B we have H(A ∨ B | y) ≤ H(A | y) +
H(B | y). The sequence (H(An | ·))n of functions defined on Y is a subaddi-
tive process.

Proof. Let F1 and F2 be minimal cardinality covers of π−1y by members
of A and B, respectively. Clearly, F = F1∨F2 is a cover of π−1y by members
of A ∨ B, and its cardinality is not larger than #F1#F2. Hence

N(A∨ B | y) ≤ #F1#F2 = N(A | y)N(B | y),

and the first assertion follows. To prove the second statement we note that
Am+n = Am ∨ T−mAn, then apply the first statement of the lemma and
the inequality H(T−mAn | y) ≤ H(An |Smy).

We can continue with further definitions.

Definition 5. If ν is a Radon probability measure on Y then we set

H(A | ν) := � H(A | y) dν.

The function H(A | ·) defined as above is upper semicontinuous on the
set P(Y ) (see Appendix, (A8)). Note that

0 ≤ 1
n

H(An | ·) ≤ a,
where a := log #A (this notation will be used throughout the paper).

Definition 6. The topological fiber entropy of the cover A given y equals

h(A | y) := lim sup
n→∞

1
n

H(An | y)

(compare h(T, π−1y,A) in [M2]).

From our next theorem (see Theorem 2 below) it will follow that at
“most” of the points y in the above definition we have in fact convergence.
The following statement is an easy consequence of the definition of h(A | y)
and the proof will be omitted.

Lemma 4. If A, A′ are covers such that An < A′ for some n ≥ 1, then

h(A | y) ≥ h(A′ | y).
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By Lemma 3, for any invariant measure ν on Y , the sequence H(An | ν)
is subadditive. Thus n−1H(An | ν) converges to its infimum.

Definition 7. If ν is a probability measure on Y then we define

h(A | ν) := inf
n

1
n

H(An | ν) (= lim
n

1
n

H(An | ν) for ν invariant).

Note that h(A | ν) is still a u.s.c. function on P(Y ) (see Appendix, (A5)).
Although H(An | y) = H(An | δy) for any y ∈ Y and n ∈ N (here δy denotes
the Dirac measure at y), we must not confuse h(A | y) with h(A | δy), of
which the latter may be strictly smaller.

Remark 1. It follows easily from Definitions 5 and 7 that, for any pos-
itive integer m, the quantity analogous to h(A | ν) evaluated for the trans-
formation Tm is equal to mh(A | ν).

Remark 2. If ν ∈ PS(Y ) then h(T−1A | ν) = h(A | ν). Indeed, from the
inequality H(T−1A | y) ≤ H(A |Sy) and Lemma 3 we deduce that

H(T−1An | y) ≤ H(An |Sy) = H(A ∨ T−1An−1 |Sy)

≤ H(A |Sy) + H(T−1An−1 |Sy).

Integrating with respect to an invariant measure ν on Y , dividing by n, and
letting n→∞ proves the assertion.

As an application of Lemma 3 and the subadditive ergodic theorem (see
e.g. [Kr], Theorem 5.3; see also Appendix, (A13), for a direct proof) we
obtain the following

Theorem 2 (cf. Corollary 1.2 in [W2]). If ν̃ is an ergodic measure on
Y then

h(A | y) = lim
n

1
n

H(An | y) = h(A | ν̃) ν̃-a.e.

Let Y ′ denote the set of points y∈Y such that the limit limnn
−1H(An | y)

exists and belongs to the closure of the set of values h(A | ν̃) for all ergodic
measures ν̃. Then Y ′ is a Borel set, and ν(Y ′) = 1 for any invariant measure
ν (see Appendix, (A12)). Thus, by the bounded convergence theorem, for
any such ν we have

Corollary 2.
h(A | ν) = � h(A | y) dν.

In particular , h(A | ·) is an affine function on PS(Y ).

So far the cover A was fixed. We will now pass to a limit over A becoming
more and more fine.

Definition 8. We set

h(X | y) := sup
A

h(A | y), h(X | ν) := sup
A

h(A | ν),
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where A ranges over all finite covers, and ν is a probability measure on Y .
The above quantities will be called the topological fiber entropy of X given
y, and given ν, respectively. Of course, infinity is admitted in both cases.

Remark 3. By Remark 1, the quantities analogous to h(X | y) and
h(X | ν) evaluated for the transformation Tm (m∈N) are equal to mh(X | y)
and mh(X | ν), respectively.

As a consequence of Lemma 4 we note that in metric spaces the above
suprema can be realized as monotone limits over a fixed countable increasing
sequence (Ai)i∈N of covers, thus the function h(X | ·) is Borel-measurable
(II Baire class) both on Y and on P(Y ), and

h(X | ν) = � h(X | y) dν

for any invariant measure ν, while

h(X | y) = h(X | ν̃)

ν̃-a.e. for an ergodic measure ν̃.
Warning: In nonmetrizable spaces the above functions may not be mea-

surable (hence the above integral is not defined). Also, we no longer control
the size of the set where the last equality holds. Nevertheless, we will be
able to prove variational principles concerning these functions.

Recall that a cover A is called a generator of (X,T ) if
⋃
nAn is a basis for

the topology. It also follows from Lemma 4 that if a cover A is a generator
of (X,T ) then it realizes the suprema in Definition 8.

We now proceed with defining the topological conditional entropy.

Definition 9. Let

N(A |Y ) := sup
y∈Y

N(A | y), H(A |Y ) := log N(A |Y ) = sup
y∈Y

H(A | y).

From Lemma 3 it follows that H(An |Y ) is a subadditive sequence. Thus
we can introduce the following:

Definition 10. Set

h(A |Y ) := inf
n

1
n

H(An |Y ) = lim
n→∞

1
n

H(An |Y ).

Definition 11. The topological conditional entropy of (X,T ) given the
factor (Y, S) is defined by

h(X |Y ) := sup
A

h(A |Y ).

Remark 4. We recall that M. Misiurewicz [M2] defines the topologi-
cal conditional entropy of a cover A and of the system given a cover B by
h(A |B) := infn n−1 log N(An | Bn) and h(X | B) := supA h(A |B), respec-
tively, where N(A |B) := supB∈BN(A |B). It is elementary to see that if B
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is a sufficiently fine Y -measurable cover (preimage under π of a cover of Y ),
then our N(A |Y ) is equal to Misiurewicz’s N(A |B). Thus

h(A |Y ) = inf
n

1
n

H(An |Y ) = inf
n

1
n

inf
B

log N(An | B)

= inf
n

1
n

inf
B

log N(An | Bn) = inf
B

h(A |B),

where B ranges over all Y -measurable covers. Taking the supremum over all
covers A, we obtain

h(X |Y ) = sup
A

inf
B

h(A |B).

If B is a generator for (Y, S) then it realizes the infimum, hence

h(X |Y ) = h(X | B).

Remark 5. In [B-F-F] a different notion is considered:

e∗(π) := inf
B

sup
A

h(A |B).

The relation between that notion and our topological conditional entropy is
the following:

h(X |Y ) ≤ e∗(π) ≤ h(X |Y ) + h∗(Y ),

where h∗(Y ) denotes Misiurewicz’s tail entropy of the factor system (see
Introduction for terminology). The first inequality is obvious, and the second
follows from the standard inequality h(A |B) ≤ h(A |B′) + h(B′ | B) (see
[M2], (1.17)) by passing to the limit with B′, A, and B, consecutively.

3. Conditional variational principles. This section contains the
main results of our paper. We will connect the notions of topological fiber
entropy, topological conditional entropy and measure-theoretic conditional
entropy.

Theorem 3 (Outer variational principle). Let (Y, S) be a topological
factor of (X,T ). Then

h(X |Y ) = sup
y∈Y

h(X | y) = sup
ν

h(X | ν) = sup
ν̃

h(X | ν̃),

where the last two suprema are taken over all invariant and all ergodic Radon
probability measures on Y , respectively.

Proof. This proof relies largely on exchanging suprema and infima.
For the first inequality “≥” we need to show that

sup
A

inf
n

sup
y

1
n

H(An | y) ≥ sup
y

sup
A

lim sup
n→∞

1
n

H(An | y).
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Since the infimum on the left is in fact a limit (hence also lim sup), the above
follows trivially from basic properties of suprema. The next inequality “≥”
is also elementary: by Corollary 2,

sup
y

h(A | y) ≥ sup
ν

h(A | ν)

for every cover A, so we can apply supA on both sides, and then exchange
the suprema.

Next, we show that supν h(X | ν) ≥ h(X |Y ), i.e.

sup
ν

sup
A

inf
n

1
n

H(An | ν) ≥ sup
A

inf
n

sup
y

1
n

H(An | y)

with the first supremum taken over all invariant measures. Since we can
exchange the suprema on the left hand side, it remains to show that, for a
fixed cover A,

sup
ν

inf
n

1
n

H(An | ν) ≥ inf
n

sup
y

1
n

H(An | y) =: Q.

Suppose that the left hand side of the last inequality is smaller than Q minus
some ε. Recall that on the compact set PS(Y ) we have

inf
n

1
n

H(An | ν) = h(A | ν),

and, by subadditivity, this infimum is realized as a monotone limit of a
subsequence indexed by (nk) with each nk+1 being a multiple of nk. Since
each H(An | ·) is a u.s.c. function, we conclude that

1
n

H(An | ν) < Q− ε

for some positive integer n and all invariant measures ν (see Appendix,
(A6)). Further, by upper semicontinuity of H(An | ·) on the set P(Y ) of all
probability measures, the same holds on some neighborhood U of PS(Y ).
Thus there exists an m0 such that the above inequality is valid for all mea-
sures of the form

ν = Mm(δy) :=
1
m

m−1∑

i=0

δSiy,

for any m being a multiple of m0 and y ∈ Y (see Appendix, (A9)). We
choose the m so large that 2an/(m+ n) ≤ ε/2. From the inequality (A15)
in the Appendix, we deduce that

1
m+ n

H(Am+n | y) ≤ 1
n

H(An |Mm(δy)) +
ε

2
≤ Q− ε

2
for any y, that is, we can apply supy on the left hand side. But by definition,
Q ≤ supy (m+ n)−1H(Am+n | y), a contradiction.
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To see that the supremum over all ergodic measures ν̃ is not too small
(it is obviously not too large) we use the following argument: Fix a cover
A. Let Y ′ be as defined before Corollary 2. Now, by that corollary, for any
invariant measure ν, h(A | ν) cannot be larger than sup{h(A | y) : y ∈ Y ′},
i.e., than supν̃ h(A | ν̃). We have shown that

sup
ν

h(A | ν) ≤ sup
ν̃

h(A | ν̃).

Applying the supremum over all covers A on both sides, and exchanging the
suprema, we conclude this argument.

Theorem 4 (Inner variational principle; cf. Theorem 2.1 in [L-W]). Let
π : X → Y be a topological factor map between topological dynamical systems
(X,T ) and (Y, S). If ν is an invariant Radon probability measure on the
factor (Y, S) then

h(X | ν) = sup{h(µ | ν) : µ ∈ PT (X), πµ = ν}.
Proof. In general, we follow Misiurewicz’s proof of the classical varia-

tional principle (see e.g. [W3]). Some details, however, are much more com-
plicated, due to conditionality of the entropies.

For the inequality “≥” fix an invariant measure µ on X such that πµ = ν.
We will first show that h(X | ν) ≥ h(µ | ν)− log 2− 1, i.e. (by definitions)

sup
A

inf
n

1
n

� H(An | y) dν ≥ sup
α

inf
β

inf
n

1
n

H(µ, αn |β)− log 2− 1.

We do so by constructing, for each partition α, a cover A such that for every
n there exists a Y -measurable partition β satisfying

1
n

� H(An | y) dν ≥ 1
n

H(µ, αn |β)− log 2− 1.

Let α = {C1, . . . , Ck}. By regularity of µ, we can find another partition
α′ = {C ′0, C ′1, . . . , C ′k} with each C ′i closed and contained in Ci (i = 1, . . . , k)
and with µ(C ′0) < 1/log k. It is elementary to see that H(µ, α |α′) < 1. We
construct the cover A = {A1, . . . , Ak} by letting Ai = C ′0 ∪ C ′i (every such
Ai is open). From now on we fix the cover A.

For a given n the cover An consists of elements of the form

J(j) =
n−1⋂

i=0

T−i(C ′0 ∪ C ′j(i)),

where j = (j(i)) ∈ {1, . . . , k}n. For given j and a binary sequence c =
(c(i)) ∈ {0, 1}n we define a set

Jc(j) :=
n−1⋂

i=0

T−i(C ′c(i)j(i)),
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where c(i)j(i) denotes the ordinary product of numbers. Clearly, each non-
empty set Jc(j) belongs to the partition (α′)n, and

J(j) =
⋃

c∈{0,1}n
Jc(j).

Fix some y ∈ Y and let F be a family realizing the minimum in the definition
of N(An | y). Then the family {Jc(j) : J(j) ∈ F , c ∈ {0, 1}n} covers not
only π−1y but the entire set

⋃F . Thus, if B is any Borel subset of
⋃F

containing π−1y then

N(An | y) · 2n ≥ N((α′)n |B)

(the definition of N(· |B) for partitions is analogous to that for covers). If
now µB is any probability measure supported by B, then

H(µB, (α′)n) ≤ log N((α′)n |B) ≤ H(An | y) + n log 2.

(The first inequality follows from the well known estimate of the entropy of
a partition with respect to any measure by the entropy with respect to a
measure assigning equal weights to all elements of the partition.)

Let γ be the partition of Y into the equivalence classes with respect
to the following relation: y ∼ y′ whenever π−1y and π−1y′ are covered by
exactly the same families F ⊂ An. It is straightforward to verify (using e.g.
upper semicontinuity of the partition into fibers of π; see Appendix, (A1))
that each class is an intersection of an open set and a closed set, hence it
is Borel. Set β := π−1γ and let D be an element of γ. It is clear that if
y ∈ D and F ⊂ An is a family which covers π−1y then π−1D ⊂ ⋃F , hence
the last displayed estimate applies to B := π−1D. Moreover, the function
H(An | y) assumes a constant value, denoted by H(An |D), on each element
D of the partition γ. Thus we have

� H(An | y) dν =
∑

D∈γ
ν(D)H(An |D)

≥
∑

B∈β
µ(B)H(µB, (α′)n)− n log 2

= H(µ, (α′)n |β)− n log 2.

Further, applying a standard estimate for conditional entropy (see [W3],
Theorem 4.3(i)) and subadditivity of the sequence H(µ, αn | (α′)n) (see Co-
rollary 1), we obtain

H(µ, αn |β) ≤ H(µ, (α′)n |β) + H(µ, αn | (α′)n) < H(µ, (α′)n |β) + n,

which implies the desired inequality
1
n

� H(An | y) dν ≥ 1
n

H(µ, αn |β)− log 2− 1.

We have proved that h(X | ν) ≥ h(µ | ν)− log 2−1. Replacing T by Tm, and
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S by Sm, where m is an arbitrary positive integer, we can write

mh(X | ν) ≥ mh(µ | ν)− log 2− 1

(see Remark 3). Dividing both sides by m and letting m → ∞ completes
this part of the proof.

Proving the other inequality in the assertion is the most complicated
reasoning of this note. Recall that, by compactness, an open set A is an
Fσ-set if and only if A = {x : f(x) > 0} for some continuous function f on
X (see e.g. [G-J]). We begin by picking a cover A consisting of open Fσ-sets,
and an ε > 0, which will remain fixed for the rest of the proof.

For every pair (y,m) (y ∈ Y and m ∈ N sufficiently large), we want to
construct a probability measure µ(y,m) on X supported by π−1y, with large
value of H(µ(y,m), α

m) for any sufficiently fine partition α, chosen uniformly
for all pairs (y,m). In the most popular version of the proof of the classi-
cal variational principle, Bowen’s definition of entropy (using a metric) is
strongly used. As a substitute of the metric we shall employ pseudometrics.
We remark that in his original proof of the classical variational principle in
nonmetrizable spaces, Misiurewicz uses the uniform structure.

For each set A ∈ A we fix a nonnegative continuous function fA such
that A = {x : fA(x) > 0} (this is possible since A is an open Fσ). The
formula

d(x, x′) := max{|fA(x)− fA(x′)| : A ∈ A}
defines a pseudometric on X. Denote by εA the minimal value of the con-
tinuous function obtained as the pointwise maximum of all the functions
fA (we remark that εA coincides with the Lebesgue number of the cover A
with respect to d). Below we will use the convention that

√
m denotes the

integer part of
√
m. A set E ⊂ X is said to be (m, εA)-separated if, for any

x, x′ in E, there exists a positive integer k ∈ [
√
m,m+

√
m− 1] such that

d(T kx, T kx′) ≥ εA (we have slightly modified the classical definition for
purely technical reasons). By compactness of X and continuity of d, every
such set is finite.

We define the measure µ(y,m) as follows: in π−1y we select a maximal
(m, εA)-separated set E(y,m) (i.e., one realizing the maximal cardinality of all
(m, εA)-separated subsets of π−1y), and we let µ(y,m) be the equidistributed
probability measure on this finite set.

We now show that the cardinality of E(y,m) is at least N(T−
√
mAm | y).

Namely, by the definition of εA, for each x ∈ X and k ≥ 0 there exists an
A ∈ A such that fA(T kx) ≥ εA. We denote this A by Ax,k. Then we define

Ax :=
m+
√
m−1⋂

k=
√
m

T−kAx,k.



236 T. Downarowicz and J. Serafin

Clearly, x ∈ Ax ∈ T−
√
mAm. It suffices to show that the family F :=

{Ax : x ∈ E(y,m)} covers π−1y. Suppose there exists a point x′ ∈ π−1y
not covered by F . This means that for every x ∈ E(y,m) there exists a
k ∈ [

√
m,m+

√
m− 1] with x′ 6∈ T−kAx,k, i.e., such that fAx,k(T kx′) = 0.

Since fAx,k(T kx) ≥ εA, we obtain d(T kx, T kx′) ≥ εA. Thus E(y,m) ∪ {x′} is
an (m, εA)-separated set, a contradiction to maximality of E(y,m).

Let α be any partition of X into sets of d-diameter strictly smaller than
εA (this restriction does not depend on the pair (y,m)). Then, for each
0 ≤ i ≤ √m− 1, every element of T−iαm+

√
m contains at most one element

of any (m, εA)-separated set, in particular it contains at most one atom of
the measure µ(y,m). This implies that

H(T i(µ(y,m)), α
m+
√
m) = H(µ(y,m), T

−iαm+
√
m) = log #E(y,m)

≥ H(T−
√
mAm | y).

If β is any Y -measurable partition of X, then, since T i(µ(y,m)) is supported
by a single fiber, the left hand side of the last inequality is

H(T i(µ(y,m)), α
m+
√
m |βm+

√
m).

Fix a positive integer n ≤ √m. Summing over 0 ≤ i ≤ n− 1, we get

n−1∑

i=0

H(T i(µ(y,m)), α
m+
√
m |βm+

√
m) ≥ nH(T−

√
mAm | y).

Now, by Lemma 1 and the formula (A14) in the Appendix, the left hand
side is not larger than

m+
√
m−1∑

i=0

H(T i(µ(y,m)), α
n |βn) + n

√
ma.

Next, we divide both sides by m +
√
m and apply the concavity of the

conditional entropy function H(·, αn |βn) to further majorize the left hand
side expression. Consequently, our inequality becomes

H(Mm+
√
m(µ(y,m)), α

n |βn) ≥ n

m+
√
m

(H(T−
√
mAm | y)−√ma),

where, as before, Mm+
√
m denotes the averaging operator. Now, consider an

ergodic measure ν̃ on Y . Let Yν̃ be the Borel set where the convergence of
Theorem 2 holds for ν̃ and the cover A. Let y ∈ Yν̃ . Then, by Lemma 3,

1
m

H(T−
√
mAm | y) ≥ 1

m
H(Am+

√
m | y)− 1

m
H(A

√
m | y),
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the right hand side converging to h(A | ν̃). Therefore,

1
m

H(T−
√
mAm | y) ≥ h(A | ν̃)− ε

for m larger than some integer N(y, ε). Summarizing, we have proved that,
for every ergodic ν̃, if y ∈ Yν̃ and m > N(y, ε) then

H(Mm+
√
m(µ(y,m)), α

n |βn) ≥ mn

m+
√
m

(
h(A | ν̃)− ε− a√

m

)

for every n <
√
m, sufficiently fine α, and Y -measurable β.

As stated (with a proof) in (A10) of the Appendix, each ergodic mea-
sure ν̃ can be approximated by measures of the form Mm(δy) with y ∈
Yν̃ and m sufficiently large. Thus, if ν ′ = c1ν̃1 + . . . + ckν̃k is a con-
vex combination of ergodic measures, it can be approximated by measures
of the form Mm′(∆ν′), where ∆ν′ := c1δy1 + . . . + ckδyk , yi ∈ Yν̃i , for
each 1 ≤ i ≤ k and m′ > maxiN(yi, ε). For a given pair (ν ′,m′) we set
µ(ν′,m′) := c1µ(y1,m′) + . . . + ckµ(yk,m′). Obviously, µ(ν′,m′) projects by π
to ∆ν′ , and hence Mm′(µ(ν′,m′)) projects to Mm′(∆ν′). Applying concavity
to the left hand side and the fact that h(A | ·) is affine on invariant mea-
sures (Corollary 2) to the right hand side of the last displayed inequality,
we obtain

H(Mm′+
√
m′(µ(ν′,m′)), α

n |βn) ≥ m′n

m′ +
√
m′

(
h(A | ν′)− ε− a√

m′

)
.

Let ν be an arbitrary invariant measure on Y . We choose a net of convex
combinations ν ′ of ergodic measures converging to ν. By the properties of
the function h(A | ·) (see Corollary 2 and remark following Definition 7), we
can do it so that h(A | ν ′) converges to h(A | ν) (see Appendix, (A11)). We
approximate each ν ′ in this net by a measure of the form Mm′(∆ν′) with
m′ > maxiN(yi, ε) (depending on ν ′) so that Mm′(∆ν′)→ ν. Of course, we
can do it so that the parameter m′ grows to infinity with ν ′. By choosing
a subnet we can assume that the corresponding measures Mm′(µ(ν′,m′))
converge to some µ in P(X). Obviously, µ is an invariant measure and
π(µ) = ν. It is elementary to verify that also

Mm′+
√
m′(µ(ν′,m′))→ µ.

Passing with ν ′ to the limit in the last displayed estimate (so that m′ →∞),
and then dividing both sides by n, we obtain

1
n

H(µ, αn |βn) ≥ h(A | ν)− ε,

provided that µ is a continuity point of the function H(·, αn |βn).
Recall that our estimates hold for all partitions α into sets of d-diameter

smaller than εA and all Y -measurable partitions β. The definition of µ does
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not depend on the choice of α and β. The required continuity condition is
satisfied whenever α and β consist of sets with boundaries of µ measure
zero. As is not hard to see (using the functions fA), such an α exists among
all the partitions considered. We now fix such an α (remembering that this
choice does not depend on n). As we soon explain, required partitions β also
exist and suffice for our purposes.

We would like to apply the first equality of Lemma 2. Taking infβ would
yield

inf
β

1
n

H(µ, αn |βn) ≥ h(A | ν)− ε.

The above holds if the infimum is taken over all Y -measurable partitions
having zero boundaries with respect to µ (for such partitions our previous
estimation works). But, using regularity of ν and an argument involving
Urysohn functions, every Y -measurable partition β can be easily modified
(by modifying the corresponding partition γ of Y ) to a partition with zero
boundaries in such a manner that the value of H(µ, αn |βn) is changed as
little as we wish. Thus we can skip the zero boundaries restriction on β.
Next, with no further obstacles, we apply the infimum over n. Finally, the
supremum over α is obviously not smaller than the value obtained for our
fixed α. We have proved that there exists an invariant measure µ projecting
to ν such that

h(µ | ν) ≥ h(A | ν)− ε.
It is well known (see e.g. [G-J], 16.7(a)) that in every cover one can inscribe
a cover by open Fσ-sets, hence we can take the supremum of the right hand
side over all covers . Since ε is arbitrary, the desired inequality is proved.

We conclude this section by formulating several obvious consequences of
the outer and inner variational principles.

Theorem 5 (Conditional variational principle; cf. [B-F-F]). Let π :
X → Y be a topological factor map between topological dynamical systems
(X,T ) and (Y, S). Then

h(X |Y ) = sup
µ∈PT (X)

h(µ |πµ).

Corollary 3 (cf. Theorem 17 in [B]). If h(Y ) <∞ then

h(X |Y ) ≥ h(X)− h(Y ).

Corollary 4. For every ν ∈ PS(Y ) with h(ν) <∞,

h(X | ν) ≤ h(X)− h(ν).
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4. Tail entropy in totally disconnected spaces. M. Misiurewicz
[M2] introduced the notion of “topological conditional entropy” of a dy-
namical system (X,T ):

h∗(X) := inf
B

h(X | B),

where B ranges over all covers. We would rather call it the tail entropy of
(X,T ), because in our paper, “topological conditional entropy” has a differ-
ent meaning. One of the important properties of h∗(X) is that it estimates
from above the possible “defect of upper semicontinuity” of the entropy
function (see below for details).

We would like to compare that notion with our topological fiber entropy.
Because the latter relies on the existence of a factor, it will be convenient
to assume that the space X is totally disconnected—this guarantees a rich
structure of factors (or existence of a finite topological generator). Namely,
in that case, in each cover we can inscribe a cover B by disjoint (hence closed
and open) sets. Such a cover generates a topological factor of (X,T ) which
we denote by (YB, SB). The dynamical system (X,T ) is then isomorphic to
the inverse limit

(X,T ) = lim←−B
(YB, SB),

where (B) is the net of all disjoint covers ordered by the relation “<”.

Remark 6. In the metrizable case, if the topological entropy is finite,
we can replace the system (X,T ) by its totally disconnected extension in
a way that does not change any of the entropy properties. This is done
via theorems by E. Lindenstrauss and B. Weiss ([Li-W], [Li]) which allow
one to find a basis of the topology consisting of sets whose boundaries have
measure zero for all invariant measures. In this manner, the facts stated
below implicitly apply to all compact metrizable dynamical systems with
finite topological entropy.

By Remark 4, in the totally disconnected case, Misiurewicz’s definition
can be reformulated as follows:

h∗(X) := inf
B

h(X |YB) (= lim
B

h(X |YB)),

where the infimum (limit) is taken over all covers by disjoint open and closed
sets. By the outer variational principle, we obtain

h∗(X) = inf
B

sup
µ∈PT (X)

h(X | νB),

where νB denotes the projection of µ onto the factor space YB. The following
definition sounds natural in this context:
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Definition 12. Let µ ∈ PT (X). The tail entropy of µ is defined as

h∗(µ) := inf
B

h(X | νB).

Again, it is not hard to verify (using for example the inner variational
principle) that the above infimum is of a monotone net, hence it can be
replaced by the appropriate limit. Clearly, we have

h∗(X) ≥ sup
µ∈PT (X)

h∗(µ).

Unfortunately, a “tail variational principle” (equality in the above state-
ment) does not hold in general: the function h(X | νB) is usually not u.s.c.,
hence we cannot take infimum outside the supremum. We will show that the
“defect of upper semicontinuity” of the entropy function locates in-between
(see Theorem 6). Let

(h+ − h)(µ) := lim sup
µ′→µ

h(µ′)− h(µ)

(µ, µ′ ∈ PT (X)). (In [M2], the above quantity is denoted by h∗µ(T ). We are
not using that notation, since we reserve the star for the tail entropy.)

Theorem 6. For every µ ∈ PT (X) with h(µ) <∞,

h∗(X) ≥ (h+ − h)(µ) ≥ h∗(µ).

Proof. The first inequality is well known (see [M2], Theorem 4.2). By
the definition of h∗(µ) and the inner variational principle, for every cover B
and ε > 0 we can find an invariant measure µB,ε on X projecting to νB and
such that

h(µB,ε)− h(νB) ≥ h∗(µ)− ε
(if h∗(µ) is infinite then the right hand side can be made arbitrarily large).
Since the covers B eventually generate the topology, it is easily seen that
the net of measures (µB,ε)B,ε converges weak∗ to µ. This implies the second
inequality.

We remark that none of the inequalities of Theorem 6 can be reversed
(even with supµ applied to the middle and right hand side). In [D], Remark 5,
we find an example with constant entropy function and h∗(X) positive.
Using techniques similar to those used in Example 1 of [D], an example with
h∗(·) ≡ 0 and non-u.s.c. entropy function can be constructed; one needs
a jump down of h(·) realized exclusively by a net of measures projecting
differently than the limit measure. Finally, one easily verifies that in Misiu-
rewicz’s example of a system with h∗(X) > 0 (see also X ′′ in Example 1 of
[D]), h∗(µ) = h(X) = log 2 for a certain measure µ, which shows that all
quantities in Theorem 6 can be equal and positive.
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Appendix

Upper semicontinuous partitions and functions. Let α be a (usually in-
finite) partition of a compact Hausdorff space X into closed sets. Then

(A1) there exists a continuous map π : X → Y into another Hausdorff
space such that α coincides with the partition into fibers of π if and
only if for every open set A ⊂ X the union of all elements of α
contained in A is open.

In that case we say that α is an upper semicontinuous partition of X.
A real-valued function f defined on a compact Hausdorff spaceX is called

upper semicontinuous (u.s.c.) if one of the following equivalent conditions
holds:

(A2) f = infα gα for some family {gα} of continuous functions,

(A3) f = limα gα, where (gα) is a nonincreasing net of continuous func-
tions,

(A4) for each r ∈ R the set {x : f(x) ≥ r} is closed.

Clearly, by (A2),

(A5) the infimum of any family of u.s.c. functions is again a u.s.c. func-
tion.

By (A4), both the sum and supremum of finitely many u.s.c. functions
are u.s.c. functions.

The following statement will be useful:

(A6) If f = lim fα is the limit of a nonincreasing net of u.s.c. functions
defined on a compact space, and g is a continuous function strictly
larger than f , then g is strictly larger than fα for some α.

Proof. For each α the function fα− g is u.s.c. Thus the set {x : fα(x) ≥
g(x)} is closed. The above sets decrease with respect to α, so if they all were
nonempty they would have a nonempty intersection, on which f(x) ≥ g(x),
a contradiction.

Assume that X is a compact Hausdorff space and µ a Radon (Borel
regular) probability measure on X. We can use neither bounded nor mono-
tone convergence theorems for nets of functions. Nonetheless, the measure
satisfies the so-called τ -smoothness condition, in particular we do have

(A7) if f = limα fα is the limit of a nonincreasing net of nonnegative
continuous functions, then

lim
α

� fα dµ = � f dµ.



242 T. Downarowicz and J. Serafin

Proof. First observe that f is u.s.c. and bounded, hence the integral
on the right is defined. The inequality “≥” is obvious. For the opposite
inequality, fix an ε > 0 and for each n ∈ N define Fn = {x : f(x) ≥ nε}. By
boundedness of f the number m of nonempty such sets is finite, and since
f is u.s.c., these sets are closed. By regularity, we can inductively find open
sets Un satisfying, for each 1 ≤ n ≤ m,

Fn ⊂ Un, µ(Un \ Fn) <
1

m(m+ 1)
, Un+1 ⊂ Un.

Let gn denote an Urysohn function: 0 ≤ gn ≤ 1, gn ≡ 0 on the complement
of Un and gn ≡ 1 on Fn (see e.g. [E]). It is easily seen that the continuous
function

g = ε
(

1 +
m∑

n=1

gn

)
≤ (m+ 1)ε

satisfies g(x) > f(x) at each point of X, and µ{x : g(x) − f(x) > ε} <
1/(m+ 1). Thus

�
g dµ <

�
f dµ + 2ε, and, by (A6), g > fα for some α,

which implies
�
g dµ > limα

�
fα dµ. Since ε was arbitrary, this concludes the

proof.

From the definition of the weak∗ topology, and by (A3) and (A7), we
conclude that

(A8) if f is a u.s.c. function on Y then
�
f dµ is a u.s.c. function on P(X).

Invariant Radon probability measures. The collection P(X) of all Radon
probability measures defined on X is well known to be weak∗ compact. Let
(X,T ) be a topological dynamical system. Then T induces a continuous
map on P(X) by the formula Tµ(B) = µ(T−1B) (B is a Borel subset of X).
It is well known that the set PT (X) of all T -invariant Radon probability
measures on X is nonempty, compact, convex, and that its extreme points
are exactly the ergodic measures.

For n ∈ N define a continuous map Mn : P(X)→ P(X) by

Mn(µ) :=
1
n

n−1∑

i=0

T iµ.

Then, as is easily verified, for any subsequence (nk) such that, for each k,
nk+1 is a multiple of nk, the sets Mnk(P(X)) decrease and their (nonempty)
intersection is contained in PT (X). In particular this implies that

(A9) if U ⊃ PT (X) is an open set in P(X) then Mnk(P(X)) ⊂ U for
sufficiently large k.

Let µ̃ ∈ PT (X) be an ergodic measure. In contrast to the metrizable
case, the so-called generic points (i.e., points x ∈ X such that Mn(δx)→ µ̃
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in the weak∗ topology as n → ∞) may not exist. But still, the following
holds:

(A10) if X ′ ⊂ X satisfies µ̃(X ′) = 1 then µ̃ can be approximated in the
weak∗ topology by a net of the form Mnι(δxι) with xι ∈ X ′ for
every ι. Moreover, the convergence still holds if each nι is replaced
by an arbitrary larger integer.

Proof. By the ergodic theorem, for every ε and every finite collection
F of continuous functions, there exists an x(ε,F) ∈ X ′ and an n(ε,F) ∈ N
such that if n ≥ n(ε,F) and f ∈ F then

�
f d(Mn(δx(ε,F))) differs from

�
f dµ̃

by less than ε. The pairs (ε,F) form a directed family, hence a net of the
desired properties has been constructed.

Let P be a compact convex subset of a locally convex linear space V .
Then, by the Krein–Milman theorem, P is equal to conv(exP), i.e., to the
closure of the convex hull of the extreme points of P.

(A11) If f is a nonnegative affine u.s.c. function defined on P, then, for
every µ ∈ P, we have

f(µ) = lim sup
µ′→µ

f(µ′),

where µ′ ∈ conv(exP).

Proof. By upper semicontinuity, f(µ) cannot be smaller than the expres-
sion on the right. Suppose it is strictly larger. In the space V × R consider
the compact convex set F = conv{(µ̃, r) : µ̃ ∈ exP, 0 ≤ r ≤ f(µ̃)}. By
our assumption, the pair (µ, f(µ)) does not belong to F . By the Hahn–
Banach theorem, there exists a continuous affine function g on P such that
g(µ̃) > f(µ̃) for every µ̃ ∈ exP, and g(µ) < f(µ). The function h = f − g
is affine, u.s.c., assumes negative values at all extreme points of P, and is
positive at µ. We arrive at a contradiction by showing that any affine u.s.c.
function h attains its maximal value at some extreme point. Indeed, the set
M where h attains its maximum Q is nonempty, closed, and convex. Let
µ be an extreme point of M. If µ 6∈ exP, then it admits a decomposition
µ = 1

2 (µ1 + µ2) with µ1 6= µ2. But then h(µ1) = h(µ2) = Q, which implies
that both µ1 and µ2 are in M, a contradiction with extremality of µ in
M.

We now make sure that the following statement holds without metriz-
ability of X:

(A12) Let A be a Borel set. If µ̃(A) = 0 for every ergodic measure µ̃ then
µ(A) = 0 for every invariant measure µ.
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Proof. By regularity of µ, it suffices to prove the above for closed sets A.
For such A, µ(A) is a nonnegative affine u.s.c. function on PT (X) (see (A8)).
The statement now follows directly from (A11).

Subadditive ergodic theorem. Let (Hn)n≥1 be a subadditive measurable
process defined on a measure-theoretic dynamical system (X,µ, T ), i.e., a
sequence of measurable functions on X such that for every x ∈ X and any
natural m and n,

Hm+n(x) ≤ Hn(x) +Hm(Tnx).

Assume that H1 is bounded by a constant a. Then obviously n−1Hn is also
bounded by a. The following subadditive ergodic theorem holds (see [Kr],
Theorem 5.3 for a more general version):

(A13) If µ̃ is an ergodic measure on X then n−1Hn(x) converges µ̃-a.e.
to the constant h = infn n−1

�
Hn dµ̃.

Proof. Fix two natural numbers m > n and write m = kn + l (l < n).
By subadditivity of Hn, we have

Hm(x) ≤
k−1∑

i=0

Hn(Tnix) + la.

Replacing x by Tx, . . . , Tn−1x and adding, we obtain

(A14)
n−1∑

i=0

Hm(T ix) ≤
m−1∑

i=0

Hn(T ix) + nla.

On the other hand, applying subadditivity again, for each 0 ≤ i < n we
have

Hm+n(x) ≤ Hi(x) +Hm(T ix) +Hn−i(Tm+ix),

where the sum of the first and last terms does not exceed na. Averaging
over 0 ≤ i < n and applying the previous estimate we get

(A15) Hm+n(x) ≤ 1
n

n−1∑

i=0

Hm(T ix) + na ≤ 1
n

m−1∑

i=0

Hn(T ix) + 2na.

Dividing by m and letting m→∞ we obtain, by the ergodic theorem,

lim sup
m→∞

1
m
Hm(x) ≤ 1

n
� Hn dµ̃

for µ̃-almost every x. Since n is arbitrary, we can write

lim sup
m→∞

1
m
Hm(x) ≤ h µ̃-a.e.
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It remains to prove the reverse inequality with lim inf. Suppose for con-
tradiction that for some positive ε,

lim inf
n→∞

1
n
Hn(x) < h− 3aε =: c

on a positive measure set. By subadditivity, Hn+1(x) ≤ a+Hn(Tx), hence
the function lim infn n−1Hn is subinvariant, and thus, by ergodicity, con-
stant µ̃-a.e. This implies that the inequality lim infn n−1Hn(x) < c holds in
fact on a full measure set. In particular,

µ̃

( ∞⋃

n=1

{
x :

1
n
Hn(x) < c

})
= 1.

Then there exists n0 such that the set

E :=
n0⋃

n=1

{x : Hn(x) < nc}

has measure larger than 1− ε. By the von Neumann theorem applied to the
characteristic function of E, there exists a positive integer m0 larger than
n0/ε such that the set

F :=
{
x :

1
m0

#{i : 0 ≤ i < m0, T
ix ∈ E} > 1− ε

}

has measure also larger than 1− ε. We have

m0h ≤ � Hm0 dµ̃ = �
F

Hm0 dµ̃+ �
Y \F

Hm0 dµ̃.

The second integral is smaller than m0aε. We arrive at a contradiction by
estimating the first integral by m0(c + 2aε). This will be done by showing
that Hm0(x) ≤ m0(c+ 2aε) for every x ∈ F . Namely, for such x we proceed
as follows:

We denote by i1 the smallest nonnegative integer with T i1x ∈ E, and we
choose an n1 ≤ n0 with Hn1(T i1x) < n1c (see definition of E). Inductively,
for each k > 1 we let ik be the smallest integer satisfying ik ≥ ik−1 + nk−1

and T ikx ∈ E, and we choose an nk ≤ n0 with Hnk(T ikx) < nkc. We
call [ik, ik + nk) a good interval. The number of positive integers smaller
than m0 not contained in good intervals is at most m0ε (see definition of
F ). The length of the last incomplete part of a good interval intersecting
[0,m0) (if any) is at most n0, also smaller than m0ε. The sum n1 + . . .+nk0

representing the joint length of good intervals fully contained in [0,m0) is
thus larger than m0(1 − 2ε). A final application of subadditivity allows us
to write

Hm0(x) ≤
k0∑

k=1

Hnk(T ikx) +
(
m0 −

k0∑

k=1

nk

)
a,
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where the first sum comes from the good intervals, and the second estimates
the rest. Replacing each Hnk(T ikx) by nkc we obtain

Hm0(x) ≤ m0c+ 2m0εa = m0(c+ 2aε),

as claimed.
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