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A parabolic Pommerenke–Levin–Yoccoz inequality

by

Xavier Buff (Toulouse) and Adam L. Epstein (Coventry)

Abstract. In a recent preprint [B], Bergweiler relates the number of critical points
contained in the immediate basin of a multiple fixed point β of a rational map f : P1 → P1,
the number N of attracting petals and the residue ι(f, β) of the 1-form dz/(z − f(z))
at β. In this article, we present a different approach to the same problem, which we were
developing independently at the same time. We apply our method to answer a question
raised by Bergweiler. In particular, we prove that when there are only N grand orbit
equivalence classes of critical points in the immediate basin, then

<((N + 1)/2− ι(f, β)) > N/π2.

1. Introduction. In this article, we will restrict our study to rational
maps. The results we obtain may be generalized to finite type mappings (see
[Ep1] for the appropriate definitions). In particular, the special case of finite
type meromorphic functions f : C→ P1 has been considered by Bergweiler
in [B]. The techniques we use are similar to the ones described by Shishikura
in [Sh2].

In the first section f : (C, 0)→ (C, 0) is a germ having a parabolic fixed
point at 0 with multiplier e2iπp/q. In the rest of the article, f : P1 → P1

is a rational map or a polynomial having a fixed point β with multiplier
e2iπp/q. It is known (see the Appendix) that there exist an integer ν ≥ 1
called the parabolic multiplicity of β, a complex number α ∈ C called the
formal invariant of f at β, and a local analytic coordinate ϕ : (P1, β) →
(C, 0) defined in a neighborhood of β, such that the expression of f in this
coordinate is

ϕ ◦ f ◦ ϕ−1(z) = e2iπp/qz(1 + zνq + αz2νq) +O(|z|2νq+2).
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In the following, we will use the notation N = νq. When β 6=∞ and q = 1,
the complex number α is the residue of the 1-form dz/(z − f(z)) at β. In
this article we will use another way of encoding the formal invariant α.

Definition 1. We define the résidu itératif of f at β by

résit(f, β) =
N + 1

2
− α.

The résidu itératif is determined by the formal invariant and vice versa.
The term “résidu itératif” is due to Écalle [Éc]. For our purposes, it is a
better way of encoding the formal invariant for two reasons: it will have an
understandable geometric interpretation as a Grötzsch defect and it behaves
nicely under iteration. Indeed, an easy (but computational) induction shows
that for any integer n ≥ 1, we have

f◦n(z) = e2iπnp/qz

(
1+nzN +n2

(
N + 1

2
− 1
n

résit(f, β)
)
z2N

)
+O(|z|2N+2).

A germ
z 7→ λz(1 + azN + bz2N ) +O(|z|2N+2)

is conjugate (via a change of variable z = %w with %N = a) to

w 7→ λw

(
1 + wN +

b

a2w
2N
)

+O(|w|2N+2).

It follows immediately that for any integer n ≥ 1, we have

résit(f◦n, β) =
1
n

résit(f, β).

The local dynamics of f at β is well understood. It has been completely
classified topologically by Camacho [C] and analytically by Voronin [V] and
Écalle [Éc] (see also [Ma] and [MR]). In particular, it is known that there
exist N attracting petals Patt,k and N repelling petals Prep,k, ordered cycli-
cally with counterclockwise orientation, such that the image of the attract-
ing petal Patt,k is contained in the petal Patt,k+νp, whereas the image of
the repelling petal Prep,k contains the petal Prep,k+νp. Under iteration of f ,
the orbit of every point contained in an attracting petal converges to the
parabolic fixed point.

The global dynamics is also well understood. Since f is a rational map, it
has a Fatou set Ωf on which the family of iterates of f is normal. The Julia
set Jf = P1 \Ωf is the closure of the set of repelling cycles. The parabolic
fixed point β has a basin of attraction

Wβ = {z ∈ C | f◦n(z)
6=−−−→

n→∞
β}

which is a union of connected components of the Fatou set. The attracting
petals Patt,k are contained inWβ. We denote byΩk the connected component
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of Wβ which contains Patt,k and we refer to the union of these components
as the immediate basin of β. Figure 1 shows the basin (dark and light grey)
and the immediate basin (dark grey) of 0 for the polynomial z 7→ z(1 + z2).
It also shows attracting and repelling petals.

Ω0

Ω1
ω1

ω0

f◦q
f◦q Prep,0

Patt,1

Prep,1

Patt,0

S+
1 S−0

S+
0S−1

Fig. 1. The parabolic basin of 0 for the polynomial P (z) = z + z3 is colored grey. The
parabolic multiplicity is 2. There are two attracting petals and two repelling petals. The
connected components of the immediate basin are dark grey. The sepals are light grey.

Fatou [F1] proved that the immediate basin of β contains at least ν
critical points of f . In [B], Bergweiler shows that the number of critical
points contained in the immediate basin of β and the formal invariant are
related. He implicitly proves the following proposition.

Theorem A. Let f : P1 → P1 be a rational map of degree d having a
parabolic fixed point β with multiplier e2iπp/q and parabolic multiplicity ν.
Denote by Ωk, k ∈ Z/NZ, the connected components of the immediate basin
of β. Assume those connected components are simply connected and choose
uniformizing maps ϕk : Ωk → D. Then the mapping Fk = ϕk ◦f◦q ◦ϕ−1

k is a
Blaschke product having a parabolic fixed point βk, the invariant résit(Fk, βk)
is real , and

<(résit(f◦q, β)) ≥ 1
2

∑

k∈Z/NZ
résit(Fk, βk).

Bergweiler then studies the case where the immediate basin of β contains
exactly ν distinct critical points of f , one for each component. The following
corollary follows easily from Theorem A. We were aware of the application
to rational maps having simple critical points but we never thought about
the applications to mappings having multiple critical points.

Corollary. Let f : P1 → P1 be a rational map having a parabolic fixed
point β with multiplier e2iπp/q and parabolic multiplicity ν. If the immediate
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basin of β contains exactly ν simple critical points of f , then

<(résit(f◦q, β)) ≥ N/4.
If the immediate basin of β contains exactly ν critical points ωj with mul-
tiplicities mj , then

<(résit(f◦q, β)) ≥ 3N
20

+
3q
10

ν∑

j=1

1
mj(mj + 2)

>
3N
20

.

Remark. Equalities are possible if and only if N = 1 or N = 2.

In particular, Bergweiler deduces that when <(résit(f ◦q, β)) < N/4, the
immediate basin of β contains at least ν+1 critical points of f counted with
multiplicity (so that there are at least 2, counting multiplicity, in some com-
ponent of the immediate basin) and that when <(résit(f ◦q, β)) ≤ 3N/20, the
immediate basin of β contains at least ν+1 (possibly multiple) distinct crit-
ical points of f . In this article, we will present a different approach to those
results. The proof is inspired by the so-called Pommerenke–Levin–Yoccoz
inequality (see for example [Po], [L], [Pe] or [H]). We will then show that
Bergweiler’s estimates can be improved in the case where f is a polynomial.
However, the inequality we obtain is probably not optimal.

Theorem B (Pommerenke–Levin–Yoccoz inequality for parabolic fixed
points). Let P : C→ C be a polynomial of degree d having a parabolic fixed
point β with multiplier e2iπp/q and parabolic multiplicity ν. Denote by Kβ

the connected component of KP that contains β and by Ωk, k ∈ Z/NZ,
the connected components of the immediate basin of β. Choose uniformizing
maps ϕk : Ωk → D, and let βk be the unique parabolic fixed point of the
Blaschke product Fk = ϕk ◦ P ◦q ◦ ϕ−1

k . Then we have the inequality

<(résit(P ◦q, β)) >
m

2q log d
+

1
2

∑

k∈Z/NZ
résit(Fk, βk),

where m ≥ N is the number of accesses to β in C \Kβ.

Corollary. Let P : C → C be a polynomial of degree d having a
parabolic fixed point β with multiplier e2iπp/q and parabolic multiplicity ν.
Denote by Kβ the connected component of KP that contains β and by m ≥ N
the number of accesses to β in C\Kβ. If the immediate basin of β contains
exactly ν simple critical points of P , then

<(résit(P ◦q, β)) ≥ m

2q log d
+
N

4
.

If the immediate basin of β contains exactly ν critical points ωj with mul-
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tiplicities mj , then

<(résit(P ◦q, β)) ≥ m

2q log d
+

3N
20

+
3q
10

ν∑

j=1

1
mj(mj + 2)

>
m

2q log d
+

3N
20

.

Example. In the case of the cubic polynomial P (z) = z+ z3, the filled-
in Julia set is connected, and there are exactly 2 accesses to the parabolic
fixed point 0 in C \KP . Each connected component of the immediate basin
contains exactly one simple critical point (those critical points are denoted
by ω0 and ω1 in Figure 1). Thus, the parabolic Pommerenke–Levin-Yoccoz
inequality gives

<(résit(P, 0)) =
3
2
>

1
log 3

+
1
2
∼ 1.410239226.

Finally, we will answer a question raised by Bergweiler, by finding a
universal positive lower bound to the résidu itératif of f at β when the
number of grand orbit equivalence classes of critical points in the immediate
basin of β is minimal.

Definition 2. Define two critical points to be grand orbit equivalent if
their orbits intersect.

We do not know whether the following inequality is optimal or not.

Theorem C. Let f : P1 → P1 be a rational map having a parabolic
fixed point β with multiplier e2iπp/q and parabolic multiplicity ν. Assume
that there are exactly ν grand orbit equivalence classes of critical points in
the immediate basin of β. Then

<(résit(f◦q, β)) > N/π2.

2. The Fatou flower and the Voronin–Écalle invariants. In this
section, we start by recalling classical results from the analytic classification
of parabolic germs f : (C, 0)→ (C, 0). In particular, we recall the definition
of attracting and repelling petals Patt,k and Prep,k and of attracting and
repelling Fatou coordinates ϕatt,k : Patt,k → C and ϕrep,k : Prep,k → C.
With Fatou coordinates, we then define horn maps (also frequently called
first return maps or Écalle maps) which are germs h+

k : (C, 0)→ (C, 0) and
h−k : (P1,∞)→ (P1,∞). We finally make explicit a crucial relation between
the product of the multipliers of the horn maps h±k at 0 and ∞ and the
résidu itératif.

2.1. The Fatou flower. Let f : (C, 0)→ (C, 0) be a germ of the form

f(z) = e2iπp/qz(1 + zN + αz2N ) +O(|z|2N+2),

with N = νq.
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Definition 3 (Attracting and repelling petals). For any real number
% > 0, denote by P̂att and P̂rep the sectors

P̂att = {Z ∈ C | %−<(Z) < |=(Z)|}, P̂rep = {Z ∈ C | %+<(Z) < |=(Z)|}.
Then, for any k ∈ Z/NZ, denote by Patt,k and Prep,k the sets

Patt,k =
{
z ∈ C∗

∣∣∣∣
(2k − 2)π

N
< Arg(z) <

2kπ
N

and − 1
NqzN

∈ P̂att

}
,

Prep,k =
{
z ∈ C∗

∣∣∣∣
(2k−1)π

N
< Arg(z) <

(2k+1)π
N

and − 1
NqzN

∈ P̂rep

}
.

If % is sufficiently large, then for each k ∈ Z/NZ, the change of variable
Z = −1/(NqzN ) conjugates f◦q : Patt,k → Patt,k to a mapping Fatt,k :
P̂att → P̂att satisfying the asymptotic development

Fatt,k(Z) = Z + 1 +
A

Z
+O

(
1
|Z|2

)
with A =

1
N

résit(f◦q, 0).

Similarly, it conjugates f ◦q : Prep,k → f◦q(Prep,k) to a mapping Frep,k :
P̂rep → Frep,k(P̂rep) satisfying the asymptotic development

Frep,k(Z) = Z + 1 +
A

Z
+O

(
1
|Z|2

)
with A =

1
N

résit(f◦q, 0).

We fix once and for all such a sufficiently large real %.

Definition 4. If N = 1, we denote by U+ the connected component of
Patt ∩ Prep which is contained in the upper half-plane and by U− the one
contained in the lower half-plane. Otherwise, we denote by U+

k , k ∈ Z/NZ,
the intersection Prep,k ∩ Patt,k+1 and by U−k the intersection Prep,k ∩ Patt,k.
We define the sepals S±k by

S±k =
⋃

n∈Z
f◦nq(U±k ).

Each sepal S−k is a Jordan domain which intersects the two petals Patt,k
and Prep,k, while each sepal S+

k is a Jordan domain which intersects the two
petals Prep,k and Patt,k+1. The forward f◦q-orbit of any point z ∈ S−k ∪S+

k−1
eventually enters the attracting petal Patt,k and the backward f◦q-orbit of
any point z ∈ S−k ∪S+

k eventually enters the repelling petal Prep,k. Figure 3
shows an example of sets U+ and U− (dark grey) and Figure 1 shows an
example of sepals (light grey).

2.2. The Fatou coordinates. It is well known that there exist attracting
(respectively repelling) Fatou coordinates Φatt,k : P̂att → C (respectively
Φrep,k : P̂rep → C) conjugating Fatt,k (respectively Frep,k) to the translation
Z 7→ Z + 1. These Fatou coordinates are uniquely defined up to addition of
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a complex constant. Moreover, the Fatou coordinates admit the asymptotic
developments

Φatt,k(Z)=Z − A logatt(Z) + Catt,k +O(1/|Z|),
Φrep,k(Z)=Z − A logrep(Z) + Crep,k +O(1/|Z|),

(1)

where A = (1/N)résit(f ◦q, 0), Catt,k and Crep,k are constants, and logatt and
logrep are branches of logarithms defined respectively in C \R− and C \R+.

One may then define attracting Fatou coordinates ϕatt,k : Patt,k → C
and repelling Fatou coordinates ϕrep,k : Prep,k → C by

ϕatt,k(z) = Φatt,k

(
− 1
NqzN

)
and ϕrep,k(z) = Φrep,k

(
− 1
NqzN

)
.

Those Fatou coordinates conjugate f ◦q to the translation Z 7→ Z + 1.
The attracting Fatou coordinates ϕatt,k extend analytically to Patt,k ∪

S−k ∪ S+
k−1 via the formula

ϕatt,k(z) = ϕatt,k(f◦nq(z))− n,
where n is chosen large enough so that f ◦nq(z) ∈ Patt,k. Similarly, the re-
pelling Fatou coordinates ϕrep,k extend analytically to Prep,k ∪ S−k ∪ S+

k via
the formula

ϕrep,k(z) = ϕrep,k([f−1]◦nq(z)) + n,

where n is chosen large enough so that [f−1]◦nq(z) ∈ Prep,k.

2.3. The horn maps

Definition 5. Define V −k = ϕrep,k(S−k ), V +
k = ϕrep,k(S+

k ), W−k =
ϕatt,k(S−k ) and W+

k = ϕatt,k+1(S+
k ). Then denote by H−k : V −k → W−k the

restriction of ϕatt,k◦(ϕrep,k)−1 to V −k and by H+
k : V +

k →W+
k the restriction

of ϕatt,k+1 ◦ (ϕrep,k)−1 to V +
k . We refer to H±k as lifted horn maps for f .

Remark. Since Fatou coordinates are uniquely defined up to an addi-
tive constant, lifted horn maps are uniquely defined up to pre- and post-
composition with a translation.

The regions V ±k and W±k are invariant under translation by 1. More-
over, the asymptotic development of the Fatou coordinates implies that
the regions V +

k and W+
k contain an upper half-plane, whereas the regions

V −k and W−k contain a lower half-plane. Consequently, under the projec-
tion π : Z 7→ ζ = e2iπZ , the regions V +

k and W+
k project to punctured

neighborhoods V+
k andW+

k of 0, whereas V −k and W−k project to punctured
neighborhoods V−k and W−k of ∞.

The lifted horn maps H±k satisfy H±k (Z+ 1) = H±k (Z) + 1 on V ±k . Thus,
they project to mappings h±k : V±k → W±k such that the following diagram
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commutes:

V ±k W±k

V±k W±k

π

��

H±k //

π

��

h±k

//

Definition 6. The maps h±k are called horn maps for f .

Remark. The horn maps (or their inverses) are the Voronin–Écalle in-
variants which play a crucial role in the classification, up to analytic conju-
gacy, of parabolic germs.

Since the lifted horn maps H±k are uniquely defined up to pre- and post-
composition with a translation, the horn maps h±k are uniquely defined up
to pre- and post-multiplication by constants. More precisely, if h±k and h̃±k
are horn maps for f , then there exist constants αk ∈ C∗ and βk ∈ C∗ such
that

h̃−k (ζ) = αkh
−
k (ζ/βk) and h̃+

k (ζ) = αk+1h
−
k (ζ/βk).

Indeed, there exist constants ak ∈ C and bk ∈ C such that for all k ∈ Z/NZ,
we have

ϕ̃att,k = ϕatt,k + ak and ϕ̃rep,k = ϕrep,k + bk.

Then, for all k ∈ Z/NZ, we get

H̃−k (Z) = H−k (Z − bk) + ak and H̃+
k (Z) = H+

k (Z − bk) + ak+1.

Projecting via π, and using the notation αk = e2iπak and βk = e2iπbk , we
easily derive that

h̃−k (ζ) = αkh
−
k (ζ/βk) and h̃+

k (ζ) = αk+1h
−
k (ζ/βk).

2.4. Multipliers of the horn maps and the résidu itératif. On the sector
{Z ∈ C | %+ |<(Z)| < =(Z)}, we have

Φatt,k+1(Z) = Z−A logatt(Z) +O(1), Φrep,k(Z) = Z−A logrep(Z) +O(1),

where A = résit(f◦q, 0)/N . Since

H+
k = Φatt,k+1 ◦ (Φrep,k)−1,

we see that H+
k (Z) = Z + O(1). This proves that h+

k (ζ) → 0 as ζ → 0.
Thus, the horn maps h+

k extend analytically to 0 by h+
k (0) = 0. One shows

similarly that the horn maps h−k extend analytically to∞ by h−k (∞) =∞. In
the following, the horn maps h−k will be considered as germs h−k : (P1,∞)→
(P1,∞) and the horn maps h+

k will be considered as germs h+
k : (P1, 0) →

(P1, 0).
We now come to the key result (equality (2)) relating the formal in-

variant of f to the horn maps. We will see below that this result has an
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understandable geometric interpretation as a Grötzsch defect (equalities (3)
and (5)).

Proposition 1. Assume f : (C, 0)→ (C, 0) is a germ having a parabolic
fixed point at 0 with multiplier e2iπp/q and parabolic multiplicity ν. Let h−k :
(P1,∞) → (P1,∞) and h+

k : (C, 0) → (C, 0), k ∈ Z/NZ, be horn maps
for f . Let λ+

k be the multiplier of 0 as a fixed point of the horn map h+
k .

Similarly , let λ−k be the multiplier of ∞ as a fixed point of the horn map
h−k . Then ∏

k∈Z/NZ

(
λ−k λ

+
k

)
= e4π2résit(f◦q,0).(2)

Remark. Since the horn maps are only defined up to pre- and post-
multiplication by constants, the multipliers are not canonically defined.
However, this proposition shows that their product does not depend on
the various choices made.

Proof of Proposition 1. Let us first show that the product of the mul-
tipliers does not depend on the choice of Fatou coordinates. Let h±k and
h̃±k be two systems of horn maps for f . We know that there exist constants
αk ∈ C∗ and βk ∈ C∗ such that

h̃−k (ζ) = αkh
−
k (ζ/βk) and h̃+

k (ζ) = αk+1h
−
k (ζ/βk).

This in turn yields

λ̃−k =
βk
αk
λ−k and λ̃+

k =
αk+1

βk
λ+
k .

Thus, we get
∏

k∈Z/NZ
(λ̃−k λ̃

+
k ) =

(
β0

α0
· α1

β0

)(
β1

α1
· α2

β1

)
. . .

(
βN−1

αN−1
· α0

βN−1

) ∏

k∈Z/NZ
(λ−k λ

+
k )

=
∏

k∈Z/NZ
(λ−k λ

+
k ).

To compute this product, observe that

λ−k = lim
ζ→∞

ζ

h−k (ζ)
and λ+

k = lim
ζ→0

h+
k (ζ)
ζ

.

Since,

h−k (e2iπΦrep,k(Z)) = e2iπΦatt,k(Z) and h+
k (e2iπΦrep,k(Z)) = e2iπΦatt,k+1(Z),

we have

λ−k = lim
=(Z)→−∞

e2iπ[Φrep,k(Z)−Φatt,k(Z)]

and
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λ+
k = lim

=(Z)→∞
e2iπ[Φatt,k+1(Z)−Φrep,k(Z)].

We are allowed to normalize the Fatou coordinates the way we want. Since
Fatou coordinates are defined up to addition of a complex constant and
in view of the asymptotic developments (1), we may arrange that, for all
k ∈ Z/NZ,

lim
=(Z)→−∞

Φatt,k(Z)− Φrep,k(Z) = −2iπA

and

lim
=(Z)→∞

Φatt,k+1(Z)− Φrep,k(Z) = 0.

Indeed, in (1) we may take logatt to be the branch of logarithm defined on
C\R− which takes the value 0 at 1, take logrep to be the branch of logarithm
defined on C \R+ which takes the value iπ at −1 and take all the constants
Catt,k and Crep,k to be 0. With these normalizations, the multipliers λ−k
are equal to e4π2A and the multipliers λ+

k are all equal to 1. Hence, the
product of the multipliers is equal to e4π2NA. This proves the proposition
since NA = résit(f◦q, 0).

2.5. The case of a rational map. Let us now consider the case of a
rational map f having a parabolic fixed point β with multiplier e2iπp/q. As
mentioned above, there exists a local change of coordinates ϕ : (P1, β) →
(C, 0), in which the expression of f is

ϕ ◦ f ◦ ϕ−1(z) = e2iπp/qz(1 + zN + αz2N ) +O(|z|2N+2).

The preceding analysis applies, proving the existence of Fatou coordinates
ϕatt,k : Patt,k → C and ϕrep,k : Prep,k → C and of horn maps h±k . Our goal
is to prove that those horn maps are defined on natural maximal domains
and are ramified coverings above C∗ in an appropriate sense. This result
will only be used in the last section, in order to handle the case of multiply
connected immediate basins.

Recall that each attracting petal Patt,k is contained in a connected com-
ponent Ωk of the immediate basin of β. The attracting Fatou coordinate
ϕatt,k : Patt,k → C extends to a holomorphic function ϕatt,k : Ωk → C via
the formula

ϕatt,k(z) = ϕk(f◦nq(z))− n,
where n is chosen large enough so that f ◦nq(z) belongs to the attracting
petal Patt,k. Similarly, the inverse ψrep,k of the repelling Fatou coordinate
ϕrep,k : Prep,k → C extends to a meromorphic function ψrep,k : C → P1 via
the formula

ψrep,k(z) = f◦nq(ψrep,k(z − n)).
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JP

∂ϕrep(Prep)

PrepPatt

Ω

D+

D−
ϕrep

ψrep

Fig. 2. The polynomial P (z) = z + z2 − .46z3 has a parabolic fixed point at 0. Left: the
Julia set of the polynomial P . The parabolic basin of 0 is colored grey. Right: the preimage
of JP by the meromorphic function ψrep : C→ P1.

Definition 7 (see Figures 2 and 4). For each k ∈ Z/NZ, we define D+
k

(respectively D−k ) to be the connected component of ψ−1
rep,k(Ωk+1) (respec-

tively of ψ−1
rep,k(Ωk) which contains an upper half-plane (respectively a lower

half-plane). In addition, we define D±k to be the projection of D±k via the
projection π : Z 7→ e2iπZ .

Then, for each k ∈ Z/NZ, the lifted horn maps H±k are defined on the
domains D±k by the formulae

H−k = ϕatt,k ◦ ψrep,k and H+
k = ϕatt,k+1 ◦ ψrep,k.

They project to horn maps h±k : D±k → C∗. We will show that those horn
maps are ramified coverings in an appropriate sense and locate their critical
values.

Definition 8. An analytic mapping h : X → Y , where X and Y are
Riemann surfaces, is said to be a ramified covering if for each point y ∈ Y ,
there exists a neighborhood V of y such that every connected component of
f−1(V ) is proper over V . A point x ∈ X is said to be critical if the local
degree of f at x is greater than 1. The image of a critical point is called a
critical value.

Remark. It follows from the definition of ramified covering that the
local degree of f at x is well defined and positive for every x ∈ X.

The composition of ramified coverings is a ramified covering. Thus, in
order to prove that the horn maps are ramified coverings, it is sufficient to
prove that ϕatt,k : Ωk → C, ψrep,k : D−k → Ωk, and ψrep,k : D+

k → Ωk+1, are
ramified coverings.
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Proposition 2. The extended attracting Fatou coordinate ϕatt,k : Ωk→C
is a ramified covering. The critical points of ϕatt,k are exactly the pre-critical
points of f◦q which are in Ωk.

Proof. Given any bounded disk V ⊂ C and any connected component
U of ϕ−1

att,k(V ), observe that the restriction ϕatt,k : U → V may be decom-
posed as

U
f◦nq−−→ f◦nq(U)

ϕatt,k−n−−−→ V,

where n is chosen large enough so that n+V ⊂ ϕatt,k(Patt,k). It follows that
this restriction is a proper mapping (because f is proper), so the extended
Fatou coordinate ϕatt,k : Ωk → C is a ramified covering.

Differentiating the formula ϕatt,k(f◦q(z)) = ϕatt,k(z)+1, one easily shows
that the critical points of ϕatt,k are exactly the pre-critical points of f ◦q

contained in Ωk.

Figure 3 illustrates the covering property of ϕatt in the case of the poly-
nomial z 7→ z + z2.

The treatment of the repelling Fatou coordinate is more subtle. The
meromorphic function ψrep,k : C→ C is not a ramified covering.

Definition 9. Define Cf to be the set of critical points of f , and Pf to
be the post-critical set of f :

Pf =
⋃

ω∈Cf

⋃

n≥1

f◦n(ω).

Moreover, define Af to be the accumulation set of all critical orbits:

Af =
⋂

n∈N
f◦n(Pf ).

Proposition 3. The meromorphic function ψrep,k : C → C restricts to
a ramified covering

ψrep,k : ψ−1
rep,k(P1 \ Af )→ P1 \ Af .

A point Z ∈ C is a critical point of ψrep,k if and only if there exists an
integer n ≥ 1 such that ψrep,k(Z − n) is a critical point of f◦q.

Remark. This proposition shows that ψrep,k : ψ−1
rep,k(P1 \Pf )→ P1 \Pf

is a covering map, but we will need a slightly stronger result.

Proof of Proposition 3. We have to prove that given any point y∈P1\Af ,
there exists a neighborhood V of y such that any connected component of
ψ−1

rep,k(V ) is proper over V .
Let V be any neighborhood of y and let U be a connected component of

ψ−1
rep,k(V ). For any n ∈ N, set Un = {z ∈ C | z+n ∈ U} and Vn = ψrep,k(Un).

For any z ∈ C and any n ∈ N, we have

ψrep,k(z) = f◦nq(ψrep,k(z − n)).
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ω

JP

β

{<(ϕ)=−1}

{<(ϕ)=0}

JP
0 ω

P P

ω

{=(ϕ)=0}JP

PP

U+

U−

P̂att∩P̂rep

P̂att∩P̂rep

PrepPatt

P̂attP̂rep

z 7→Z=−1/z

{=(ϕ)<0} {=(ϕ)>0}

Fig. 3. The polynomial P (z) = z + z2 has a parabolic fixed point at 0 with immediate
basin Ω. Any attracting Fatou coordinate extends to a ramified covering ϕatt : Ω → C.
We can normalize ϕatt so that ϕatt(ω) = 0, where ω = −1/2 is the unique critical point
of P . Left: the curves {z ∈ Ω | <(ϕatt(z)) ∈ Z}. Right: the basin Ω is tiled by the regions
{z ∈ Ω | =(ϕatt(z)) < 0} and {z ∈ Ω | =(ϕatt(z)) > 0}. Down: the same picture in the
coordinate Z = −1/z.

Consequently, Vn is a connected component of f−nq(V ). In particular, f ◦nq :
Vn → V is proper, and the proposition will follow if we prove that for a good
choice of V and for n large enough, ψrep,k : Un → Vn is proper. In fact, we will
show that we may choose V carefully enough so that for all sufficiently large
n, Vn is contained in the repelling petal Prep,k. In that case, ψrep,k : Un → Vn
is an isomorphism, and the proof is complete.

Since, by assumption, y is not accumulated by the critical orbits, we may
assume that V is relatively compact in {y}∪(P1\Pf ). Observe that β ∈ Af ,
and thus, there exists an integer n1 such that

V ∩ f◦n1q(Patt,k ∪ Patt,k+1) = ∅.
Since f◦q(Patt,k ∪Patt,k+1) ⊂ Patt,k ∪Patt,k+1, it follows that for any n ∈ N,

Vn ∩ f◦n1q(Patt,k ∪ Patt,k+1) = ∅.
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Moreover, there are only finitely many n’s (possibly none) such that y is a
critical value of f◦nq. Thus, we may choose n2 ≥ 0 such that f−n2q(V ) is
relatively compact in P1\Pf . For any connected component V ′ of f−n2q(V ),
we see that the restriction f ◦n2q : V ′ → V is proper (because f is proper)
and has at most one critical value at y (by the choice of V ). Thus, Vn2 is
simply connected and relatively compact in P1 \ Pf . It follows that for any
integer n ≥ n2, the sequence of inverse branches gn : Vn2 → Vn of f◦(n−n2)q

forms a normal family for uniform convergence on Vn2 (and not just on
compact subsets of Vn2).

Given any M > 0, there exists an integer nM such that for any n ≥ nM ,
the set Un intersects the left half-plane {Z ∈ C | <(Z) < −M}. Since M
can be arbitrarily large, it follows that for any ε > 0 and any n sufficiently
large, the set Vn intersects the disk Dε of radius ε centered at β. However,
we observed that

Vn ∩ f◦n1q(Patt,k ∪ Patt,k+1) = ∅.
It follows from Hurwitz’s theorem that the sequence gn : Vn2 → Vn con-
verges uniformly on Vn2 to the mapping which is constantly equal to β.
Consequently, for any ε > 0, we may choose n large enough so that Vn
intersects Dε, does not intersect f ◦n1q(Patt,k ∪ Patt,k+1), and has diameter
less than ε. By choosing ε small enough, we see that Vn is contained in the
repelling petal Prep,k as required.

We finally see that ψrep,k : U → V is an isomorphism if and only if
f◦nq : Vn → V is unramified. This proves the statement for the critical
points of ψrep,k.

Observe that the grand orbit of any point z ∈ Ωk is mapped by ϕatt,k
to a Z-orbit. Such an orbit projects to exactly one point via the projection
π : Z 7→ e2iπZ . This is in particular true if z is a critical point of f ◦q

contained in Ωk.

Definition 10. For any k ∈ Z/NZ, we define Ck to be the set of critical
points of f◦q contained in Ωk and we set Vk = π ◦ ϕatt,k(Ck).

Proposition 4. For any k ∈ Z/NZ, the horn maps h±k : D±k → C∗ are
ramified coverings. The set of critical values of h−k : D−k → C∗ is exactly the
set Vk, and the set of critical values of h+

k : D+
k → C∗ is exactly the set

Vk+1.

Remark. In particular, we see that the horn map h−k restricts to a
covering map above C∗ \ Vk and the horn map h+

k restricts to a covering
above C∗ \ Vk+1.

Proof of Proposition 4. Every orbit is discrete in the immediate basin
of β. Thus, Ωk ∩ Af = ∅. Moreover H−k : D−k → C is the composition of



A parabolic Pommerenke–Levin–Yoccoz inequality 263

ψrep,k : D−k → Ωk and ϕatt,k : Ωk → C. This shows that for any k ∈ Z/NZ,
the lifted horn map H−k : D−k → C is a ramified covering. Similarly, one can
show that H+

k : D+
k → C is a ramified covering. It follows immediately that

h±k : D±k → C∗ is a ramified covering.
We will now show that the set of critical values of h−k : D−k → Ωk is Vk.

A similar proof shows that the set of critical values of h+
k : D+

k → Ωk+1 is
Vk+1. The critical values of h−k are exactly the images of the critical values
of H−k by π. A critical value of H−k is either a critical value of ϕatt,k or the
image by ϕatt,k of a critical value of ψrep,k. We know that the critical values
of ϕatt,k : Ωk → C are the pre-critical points of f ◦q contained in Ωk, i.e., the
points in the backward orbit of Ck. Moreover, if Z ∈ D−k is a critical point
of ψrep,k, then there exists an integer n such that Z − n ∈ D−k is mapped
by ψrep,k to a critical point ω of f ◦q. This critical point is contained in Ωk
and f◦nq(ω) = ψrep,k(Z). Thus, the critical values of ψrep,k : D−k → Ωk are
the points of the forward orbit of Ck. This shows that the critical values of
H−k are exactly the images by ϕatt,k of the points which belong to the grand
orbit of Ck.

Example. Figure 4 gives an idea of how lifted horn maps and horn
maps behave in the case of the polynomial f(z) = z + z2. This polynomial

Z 7→ζ=e2iπZ

0

D+

D−

D+

Fig. 4. Left: The tiled domains D+ and D−. Right: the tiled domain D+.
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has a unique critical point ω ∈ C. We can normalize the attracting Fatou
coordinate ϕatt so that it sends ω to 0. Figure 4 shows the sets D± and
D+. The domains D+ and D− are tiled by the preimages of the upper and
lower half-planes by H+ and H−. More precisely, the lifted horn maps H±

are isomorphisms between each grey tile and the upper half-plane, whereas
they are isomorphisms between each white tile and the lower half-plane. In
the case of D+, the horn map h+ is an isomorphism between the punctured
grey tile containing 0 in its boundary and the punctured disk D∗. It is a
universal covering from the other grey tiles to the punctured disk D∗, and
it is a universal covering from each white tile to C \ D.

3. The Grötzsch defect and applications. In this section, we will
prove Theorem A, its Corollary and Theorem B.

3.1. Definition of the Grötzsch defect. Let us first give a formal defini-
tion of Grötzsch defect. The notion of Grötzsch defect and its relevance to
the Pommerenke–Levin–Yoccoz inequality are due to Carsten Petersen. One
formulation is as follows.

Definition 11. We say that a compact E ⊂ C∗ is equatorial if P1 \ E
consists of two simply connected components: D+ containing 0, and D−

containing ∞. Given any equatorial compact set E, let ϕ+ : D+ → D
(respectively ϕ− : D− → P1 \ D) be a Riemann map fixing 0 (respectively
∞) with multiplier %+ (respectively %−). We define the Grötzsch defect of
E to be

defect(E) =
1

2π
log |%−%+|.

For example, the Grötzsch defect of a round cylinder E = {z ∈ C∗ | r ≤
|z| ≤ R} is the modulus of E, i.e., defect(E) = 1

2π (logR− log r).

Lemma 1. (a) The Grötzsch defect of any equatorial compact set E ⊂ C∗
is nonnegative. It vanishes if and only if E is a circle centered at 0.

(b) If E contains disjoint equatorial annuli Ai of moduli Mi, then
defect(E) ≥∑Mi. Equality holds if and only if the annuli Ai are all round
annuli centered at 0 and E =

⋃
Ai.

Proof. The proof is based on a classical length-area argument. It is a
variant of Grötzsch’s inequality. Statement (a) is in fact a degenerate case
of statement (b). We leave the proof of (a) to the reader and we prove (b).

Consider the flat metric |dz|2/|z|2 on C∗. We claim that the area of an
equatorial annulus A is at least equal to its modulus, with equality if and
only if A is a round annulus centered at 0. Indeed, let M be this modulus
and denote by A the annulus

A = {z = x+ iy ∈ C | 0 < y < M}/Z.
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Moreover, let ϕ : A → A be a conformal parameterization of A. Then

area(A) =
M�

0

1�

0

|ϕ′(x+ iy)|2
|ϕ(x+ iy)|2 dx dy ≥

M�

0

( 1�

0

|ϕ′(x+ iy)|
|ϕ(x+ iy)| dx

)2

dy ≥M.

In the first inequality, we used Schwarz’s inequality, and in the second we
used the observation that the length of any equatorial curve is at least 1.
Equality in Schwarz’s inequality can only be achieved if ϕ′/ϕ is constant,
and the length of an equatorial curve is 1 only if it is a round circle centered
at 0. This precisely implies that A is a round annulus centered at 0. One
easily checks that the area of such an annulus is equal to its modulus.

Now, as in the definition of the Grötzsch defect, let D+ and D− be the
two simply connected components of P1 \E. Let ϕ+ : D+ → D (respectively
ϕ− : D− → P1 \ D) be a Riemann map fixing 0 (respectively ∞) with
multiplier %+ (respectively %−). Denote by A(M) the annulus

A(M) = {z ∈ D+ | e−2πM < |ϕ+(z)|} ∪E ∪ {z ∈ D− | e2πM > |ϕ−(z)|}.
The boundary of this annulus consists of two Jordan curves γ+(M) and
γ−(M); γ+(M) is contained in between two circles of radii |%+|e−2πM +o(1)
and γ−(M) is contained in between two circles of radii |1/%−|e2πM + o(1).
Thus, using the definition of Grötzsch defect, we have

area(A) = 2M + defect(E) + o(1).

Moreover, the annulus A contains the equatorial annuli Ai as well as the
annuli

{z ∈ D+ | e−2πM < |ϕ+(z)| < 1} and {z ∈ D− | 1 < |ϕ−(z)| < e2πM}.
Those annuli are all disjoint and thus

2M + defect(E) + o(1) ≥M +M +
∑

Mi,

which implies the first part of (b).
To get the second part of (b), observe that when M ′ > M , the annulus

A(M ′) contains A(M) and A(M ′)\A(M) is the disjoint union of two annuli,
each of modulus M ′ −M . As previously, Schwarz’s inequality implies that

area(A(M ′) \ A(M)) ≥ 2(M ′ −M).

In particular, the function area(A(M))−2M is increasing withM . Therefore,
for all M > 0, we have

defect(E) = lim
M→∞

area(A(M))− 2M ≥ area(A(M))− 2M ≥
∑

Mi.

As a consequence, we see that when defect(E) =
∑
Mi, we must have

area(A(M)) = 2M +
∑

Mi
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for all M > 0. This means that we have equality in Schwarz’s inequality,
which can only be achieved when the annuli Ai are all round annuli centered
at 0 and E =

⋃
Ai.

3.2. Rational maps with simply connected parabolic basins. The follow-
ing result has been proved independently by W. Bergweiler [B]. Even though
his proof and ours are based on similar ideas such as asymptotics of Fatou
coordinates and conjugation to Blaschke products, there are various differ-
ences between the arguments.

Theorem A. Let f : P1 → P1 be a rational map of degree d having
a parabolic fixed point β with multiplier e2iπp/q and parabolic multiplicity
ν. Denote by Ωk, k ∈ Z/NZ, the connected components of the immediate
basin of β. Assume that these connected components are simply connected
and choose uniformizing maps ϕk : Ωk → D. Then the mapping Fk =
ϕk ◦ f◦q ◦ ϕ−1

k is a Blaschke product having a parabolic fixed point βk, the
invariant résit(Fk, βk) is real , and

<(résit(f◦q, β)) ≥ 1
2

∑

k∈Z/NZ
résit(Fk, βk).

Proof. For each k ∈ Z/NZ, the map f ◦q : Ωk → Ωk is a proper mapping.
Hence, the mapping Fk = ϕk ◦ f◦q ◦ ϕ−1

k is a proper mapping from the unit
disk to itself. The proper holomorphic mappings from D to D are exactly
the Blaschke products.

Lemma 2 (Fatou [F3]). The Blaschke product Fk has a unique nonre-
pelling fixed point βk. The Julia set of Fk is the unit circle S1. The fixed
point βk is parabolic with multiplier 1 and parabolic multiplicity 2. Its résidu
itératif résit(Fk, βk) is real.

Proof. It is known that the Julia set of a Blaschke product is contained
in S1 and is either a Cantor set or S1 (because S1 is totally invariant).

If JFk is a Cantor set, then the Fatou set has exactly one connected
component Ω. This Fatou component is fixed. It is an attracting or parabolic
domain and the corresponding attracting or parabolic fixed point βk belongs
to S1. We will show by contradiction that this case is not possible. Recall
that each quotient Ωk/f◦q is a Riemann surface isomorphic to the cylinder
C/Z. Since f◦q : Ωk → Ωk is conjugate to Fk : D → D, we see that D/Fk
is also a Riemann surface isomorphic to the cylinder C/Z. However, if βk
were an attracting fixed point with multiplier λ, the Riemann surface Ω/Fk
would be isomorphic to the torus C∗/λ and D/Fk would be isomorphic to
the annulus H/λ. Such an annulus is never isomorphic to C/Z, which gives a
contradiction. If βk were a parabolic fixed point, the Riemann surface Ω/Fk
would be isomorphic to the cylinder C/Z and D/Fk would be isomorphic
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to the cylinder H/Z. Again, this cylinder is not isomorphic to C/Z, which
gives a contradiction.

The above discussion shows that JFk = S1. Hence D is a fixed Fatou
component. Since Fk : D → D is conjugate to f ◦q : Ωk → Ωk, the orbit of
every point in D leaves every compact subset of D. Thus, D is a parabolic do-
main for Fk and the orbit of every point in D converges to a parabolic fixed
point βk ∈ S1 with multiplier 1. Using the symmetry z 7→ 1/z, we see that
the basin of attraction of this parabolic fixed point has two connected com-
ponents: D and P1 \D. Hence, the parabolic multiplicity of βk is equal to 2.
Since the anti-holomorphic map z 7→ 1/z conjugates Fk to itself, the formal
invariant of Fk at βk is necessarily real, whence résit(Fk, βk) is also real.

For each k ∈ Z/NZ, the Blaschke product Fk has a parabolic fixed
point βk with parabolic multiplicity 2. The immediate basin of βk has two
connected components: Ωk,0 = D and Ωk,1 = P1 \ D (see Figure 5). There
are two attracting petals Patt,k,0 ⊂ Ωk,0 and Patt,k,1 ⊂ Ωk,1. There are
two extended attracting Fatou coordinates ϕatt,k,j : Ωk,j → C, j ∈ Z/2Z.

β

Prep,k,1

Prep,k,0

Prep,k−1

Prep,k

β

Ωk,0

Ωk

ϕk

Fig. 5. The conformal representation ϕk : Ωk → D induces conformal representations
ϕ−k : D−k → C \ D and ϕ+

k : D+
k → D∗.
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Similarly, there are two repelling petals Prep,k,j and two repelling Fatou
coordinates ϕrep,k,j : Prep,k,j → C. Their inverses extend to meromorphic
mappings ψrep,k,j : C→ P1 so that we may define the domains

D−k,j = ψ−1
rep,k,j(Ωk,j) and D+

k,j = ψ−1
rep,k,j(Ωk,j+1).

The lifted horn maps H±k,j : D±k,j → C are then defined by

H−k,j = ϕatt,k,j ◦ ψrep,k,j and H+
k,j = ϕatt,k,j+1 ◦ ψrep,k,j .

The lifted horn maps H±k,j descend to horn maps h±k,j : D±k,j → C via the
projection π : Z 7→ e2iπZ . We claim that we may normalize the repelling
Fatou coordinates so that, for each j ∈ Z/2Z, we have ψ−1

rep,k,j(S
1) = R.

Indeed, since the repelling Fatou coordinates are only defined up to trans-
lation, we can normalize them so that ϕrep,k,j(S1 ∩Prep,k,j) intersects R. As
Fk commutes with the reflection z 7→ 1/z, each repelling Fatou coordinate
conjugates the mapping z 7→ 1/z to an anti-holomorphic mapping which is
defined in a left half-plane and commutes with the unit translation. Such a
mapping is necessarily a symmetry with respect to a horizontal line. This
shows that ϕrep,k,j(S1∩Prep,k,j) ⊂ R. Since Fk ◦ψrep,k,j(Z) = ψrep,k,j(Z+1),
and since F−1

k (S1) = S1, we conclude that ψ−1
rep,k,j(S

1) = R. It follows im-
mediately that for each k ∈ Z/NZ and each j ∈ Z/2Z, we have

D+
k,j = H+, D−k,j = H−, D+

k,j = D, D−k,j = P1 \ D.

Let us now come back to the proof of the inequality

<(résit(f◦q, β)) ≥ 1
2

∑

k∈Z/NZ
résit(Fk, βk).

First, recall that ϕk conjugates f◦q : Ωk → Ωk to Fk : Ωk,0 → Ωk,0 and
thereby induces isomorphisms ϕ−k : D−k → D−k,0 and ϕ+

k : D+
k−1 → D+

k,1.
Let %+

k be the multiplier of ϕ+
k at 0 and %−k be the multiplier of ϕ−k at ∞.

Since D−k,0 = P1 \ D and D+
k,1 = D, we see that the Grötzsch defect of the

equatorial compact set Ek = C∗ \ (D+
k ∪ D−k ) is

defect(Ek) = %−k %
+
k−1.

Observe that for any k ∈ Z/NZ, we may normalize the attracting Fatou
coordinates ϕatt,k,0 and ϕatt,k,1 so that

ϕatt,k,0(z) = ϕatt,k ◦ ϕ−1
k (z) and ϕatt,k,1(z) = ϕatt,k ◦ ϕ−1

k (z),

whence

h+
k,0(z) = h−k,0(1/z) and h−k,1(z) = h+

k,1(1/z).
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Moreover, the following two diagrams commute:

C∗

C

Ωk Ωk,0 = D

D−k D−k,0 = H−

D−k D−k,0 = C \ D

π

OO

ϕatt,k

�
�

�
�

�
�

�
� ::

ϕk //

ϕatt,k,0

dd�
�

�
�

�
�

�
�

ψrep,k

OO

π

��

ψrep,k,0

OO

π

��

ϕ−k

//

C∗

C

Ωk Ωk,0 = D

D+
k

D+
k,1 = H+

D+
k

D+
k,1 = D

π

OO

ϕatt,k

�
�

�
�

�
�

� <<

ϕk //

ϕatt,k,0

cc�
�

�
�

�
�

�

ψrep,k−1

OO

π

��

ψrep,k,1

OO

π

��

ϕ−k

//

Consequently, we have h−k = h−k,0 ◦ ϕ−k and h+
k−1 = h+

k,1 ◦ ϕ+
k . In particular,

we see that for any k ∈ Z/NZ,

λ+
k,0 = λ−k,0, λ−k,1 = λ+

k,1, λ−k = λ−k,0%
−
k , λ+

k−1 = λ+
k,1%

+
k ,

where λ±k,j is the multiplier of the horn map h±k,j .
Applying Proposition 1, we deduce that

e4π2résit(f◦q,β) =
∏

k∈Z/NZ
(λ−k λ

+
k ) =

∏

k∈Z/NZ
(λ−k,0λ

+
k,1)

∏

k∈Z/NZ
(%−k %

+
k ).

Taking the logarithm of the modulus of each member gives

4π2<(résit(f◦q, β))=
∑

k∈Z/NZ
log |λ−k,0λ+

k,1|+
∑

k∈Z/NZ
log |%−k %+

k |

=
1
2

∑

k∈Z/NZ
log |λ−k,0λ+

k,1|2 +
∑

k∈Z/NZ
2π defect(Ek).

On the other hand, it similarly follows from Proposition 1 that

e4π2résit(Fk,βk) =
∏

j∈Z/2Z
(λ−k,jλ

+
k,j) = |λ−k,0λ+

k,1|2.

Combining these observations, we obtain the following equality which will
be employed again in the proof of Theorem B:

<(résit(f◦q, β)) =
1
2

∑

k∈Z/NZ
résit(Fk, βk) +

1
2π

∑

k∈Z/NZ
defect(Ek).(3)

This concludes the proof of Theorem A since we proved that the Grötzsch
defect of an equatorial compact set is always nonnegative.
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Corollary. Let f : P1 → P1 be a rational map having a parabolic fixed
point β with multiplier e2iπp/q and parabolic multiplicity ν. If the immediate
basin of β contains exactly ν simple critical points of f , then

<(résit(f◦q, β)) ≥ N/4.
If the immediate basin of β contains exactly ν critical points ωj with multi-
plicities mj, then

<(résit(f◦q, β)) ≥ 3N
20

+
3q
10

ν∑

j=1

1
mj(mj + 2)

>
3N
20

.

Proof. Let Ωk, k ∈ Z/NZ, be the N connected components of the im-
mediate basin of β. We know that each Ωk contains at least, and thus ex-
actly, one critical point Ωk of f◦q (otherwise, the extended Fatou coordinate
ϕatt,k : Ωk → C would be an isomorphism). Let us first show that Ωk is
necessarily simply connected.

Lemma 3 (Fatou [F2]). Let g : P1 → P1 be a rational map and Ω be
a fixed Fatou component containing exactly one critical point of g, possibly
multiple of multiplicity m. Then Ω is simply connected and g : Ω → Ω is
of degree m+ 1.

Proof. Since Ω contains a critical point of g, it cannot be a Siegel disk
or a Herman ring. Hence, it is necessarily the immediate basin of attraction
of an attracting fixed point, a superattracting fixed point or (as in the case
at hand) a parabolic fixed point with multiplier 1. In each case, there exist
simply connected domains U1 and U0 such that U0 ⊂ U1, the restriction g :
U1 → U0 is a (possibly ramified) covering, and the orbit of every point in Ω
eventually enters U0. Then we may inductively define Un to be the connected
component of g−1(Un−1) which contains Un−1. Note that χ(U0) = 1, where
χ denotes the Euler characteristic. We will show that χ(Un) = 1, whence
Un is simply connected, for every positive integer n. Note that as each Un is
a proper subset of the Riemann sphere, we necessarily have χ(Un) ≤ 1; we
will establish the reverse inequality χ(Un) ≥ 1 by induction on n.

Observe that the mapping g : U0 → U1 is proper, so by the Riemann–
Hurwitz formula, we have

χ(Un) = dnχ(Un−1)− kn,
where dn is the degree of g : Un → Un−1 and where kn is the number of
critical points of g in Un. By assumption, we have kn = 0 or kn = m.
Moreover, we claim that dn − kn ≥ 1 for all n ≥ 1. Indeed, if kn = 0 then
dn − kn = dn ≥ 1; on the other hand, if kn = m then the critical value is
contained in Un−1 and has at least m+ 1 preimages (counting multiplicity)
in Un, whence dn ≥ m+ 1 and therefore dn−kn ≥ (m+ 1)−m = 1. Finally,
if χ(Un−1) ≥ 1 then we have
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χ(Un) = dnχ(Un−1)− kn = dn − kn ≥ 1.

Thus, each region Un is simply connected. It follows that Ω =
⋃
Un is

simply connected and furthermore g : Ω → Ω has degree m + 1 by the
Riemann–Hurwitz formula.

To summarize, we have shown that f ◦q : Ωk → Ωk is a proper mapping
of degree 2 and that Ωk is simply connected. Now choose a uniformizing
map ϕk : Ωk → D. We have seen in Theorem A that Fk = ϕk ◦ f◦q ◦
ϕ−1
k has a parabolic fixed point βk ∈ S1. Counting multiplicity, there are

degFk + 1 = 3 fixed points of Fk, and as βk is a multiple fixed point with
parabolic multiplicity 2, it follows that βk is the only fixed point of Fk. The
Holomorphic Index Formula (see [M2], Chapter 12) asserts that ι(Fk, βk) = 1
and consequently

résit(Fk, βk) =
2 + 1

2
− 1 =

1
2
.

This completes the proof of the Corollary in the case of simple critical points:

<(résit(f◦q, β)) ≥ 1
2

∑

k∈Z/NZ
résit(Fk, βk) =

N

4
.

Our treatment of multiple critical points is patterned after Bergweiler’s dis-
cussion in [B]. His crucial observation is that if the immediate basin con-
tains exactly ν (possibly multiple) critical points, then one may still con-
trol the real part of the residu itératif. Indeed, for each j = 1, . . . , ν, the
cycle 〈Ωj , Ωj+ν , . . . , Ωj+ν(q−1)〉 contains at least, and thus exactly, one crit-
ical point ωj of f . Let us denote by mj the multiplicity of this critical
point. Lemma 3 asserts that for any j = 1, . . . , ν and for any l ∈ Z/qZ,
the connected component Ωj+νl is simply connected and the restriction
f◦q : Ωj+νl → Ωj+νl is a proper mapping of degree mj + 1. This restric-
tion is conjugate to the unique Blaschke product of degree mj + 1 with
critical points of multiplicity mj at 0 and ∞ and a parabolic fixed point at
1, that is, to

Fj(z) =
zmj+1 + a

1 + azmj+1 with a =
mj

mj + 2
.

As
résit(Fj , 1) =

3
10

+
3

5mj(mj + 2)
>

3
10
,

it follows that

<(résit(f◦q, β))≥1
2

∑

l∈Z/qZ

ν∑

j=1

(
3
10

+
3

5mj(mj + 2)

)

=
3N
20

+
3q
10

ν∑

j=1

1
mj(mj + 2)

>
3N
20

.
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Example. Let f : P1 → P1 be a quadratic rational map with a parabolic
fixed point β of multiplier 1 and parabolic multiplicity ν = 1. By conjugating
f with a Möbius transformation, we may assume that the multiple fixed
point is ∞, and that f is tangent to Z 7→ Z + 1 near ∞. We may express
such a map as

fA(Z) = Z + 1 +
A

Z
, A ∈ C∗.

Figure 6 shows the locus L of parameters A ∈ C∗ for which the Julia set
JfA is connected.

0 2 4

L
L

1/4

.75+.75i 2.2+2.2i

−.2−2.2i−.75i

Fig. 6. The connectedness locus L of the family {Z 7→ Z + 1 +A/Z}, A ∈ C∗. Left: in the
coordinates A. Right: in the coordinates 1/A.

Claim. The Julia set of fA is connected if and only if the basin of at-
traction ΩA of the parabolic fixed point contains only one critical point.

Indeed, since the basin ΩA contains at least one critical point of fA, the
restriction fA : ΩA → ΩA is a proper mapping of degree 2; note that in
this case ΩA is totally invariant and that the Julia set of fA is equal to the
boundary of ΩA. In view of Lemma 3 if ΩA contains only one critical point
then ΩA is simply connected, whence the Julia set JfA is connected. On the
other hand, if both critical points lie in ΩA then χ(ΩA) = 2χ(ΩA) − 2 by
the Riemann–Hurwitz formula, so that χ(ΩA) is either 2 or −∞. As ΩA is a
proper subset of the Riemann sphere, we have χ(ΩA) ≤ 1, whence χ(ΩA) =
−∞; in particular, Jf is disconnected (and therefore totally disconnected;
see [M1]).
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As an application of the above corollary, we deduce that the connected-
ness locus L is contained in the half-plane {A ∈ C∗ | <(A) > 1/4}. Indeed,
the résidu itératif of f at ∞ is A. Figure 6 also shows the set L in the
coordinate 1/A. The image of the half-plane {A ∈ C | <(A) > 1/4} by the
mapping A 7→ 1/A is the disk of radius 2 centered at 2.

3.3. Polynomials. In this subsection, we assume that P is a polynomial
of degree d. The following result is proved in [M2] (see Theorems 18.11,
18.12 and 18.13) and deals with polynomials having a connected Julia set.

Proposition 5. Let P be a polynomial having a parabolic fixed point β
with multiplier e2iπp/q and parabolic multiplicity ν. Assume that the filled-in
Julia set KP is connected. Then each repelling petal Prep,k contains at least
one external ray which lands at β. Moreover , β is the landing point of only
finitely many external rays, all of which are necessarily periodic with exact
period q.

Let us generalize this result for disconnected Julia sets.

Proposition 6. Let P be a polynomial having a parabolic fixed point β
with multiplier e2iπp/q and parabolic multiplicity ν. Denote by Kβ the con-
nected component of KP that contains β. Then there are finitely many ac-
cesses to β in C \Kβ. They are all periodic with period q.

Proof. Denote by GP : C→ [0,∞[ the Green function defined by

GP (z) = lim
n→∞

1
dn

max{log |P ◦n(z)|, 0}.

Let η be the minimum, over all the escaping critical points ω, of GP (ω) and
let U (respectively V ) be the connected component of C \ G−1

P (η) (respec-
tively C \ G−1

P (dη)) containing Kβ . Then P : U → V is a polynomial-like
mapping whose filled-in Julia set is Kβ. The proposition now follows imme-
diately from the straightening theorem for polynomial-like mappings [DH]
and from Proposition 5.

Since the connected components Ωk, k ∈ Z/NZ, of the immediate basin
of β are Fatou components, and since P is a polynomial, we see that the
components Ωk are simply connected. As in Theorem A, we can choose
uniformizing maps ϕk : Ωk → D. Then the proper mapping P ◦q : Ωk → Ωk
is conjugate to a Blaschke product Fk = ϕk ◦ P ◦q ◦ ϕ−1

k : D → D having a
parabolic fixed point βk ∈ S1.

Theorem B (Pommerenke–Levin–Yoccoz inequality for parabolic fixed
points). Let P : C→ C be a polynomial of degree d having a parabolic fixed
point β with multiplier e2iπp/q and parabolic multiplicity ν. Denote by Kβ

the connected component of KP that contains β and by Ωk, k ∈ Z/NZ, the
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connected components of the immediate basin of β. Choose uniformizing
maps ϕk : Ωk → D, and let βk be the unique parabolic fixed point of the
Blaschke product Fk = ϕk ◦ P ◦q ◦ ϕ−1

k . Then we have the inequality

<(résit(P ◦q, β)) >
m

2q log d
+

1
2

∑

k∈Z/NZ
résit(Fk, βk),

where m ≥ N is the number of accesses to β in C \Kβ.

Proof. The proof follows from equality (3). We will show that the m
accesses to β in C \Kβ give rise to m disjoint equatorial annuli contained
in the disjoint union of the equatorial compact sets Ek, k ∈ Z/NZ. We will
also show that the moduli of those annuli are at least π/(q log d). Hence,

∑

k∈Z/NZ
defect(Ek) ≥

mπ

q log d
.(4)

This almost gives the required result. We will have to prove that the in-
equality is strict.

Let us first show that each access to β in C\Kβ gives rise to an equatorial
annulus of modulus at least π/(q log d) contained in one of the equatorial
compact sets Ek, k ∈ Z/NZ. By considering P ◦q instead of P , we may
assume that the multiplier at β is 1 and each access is fixed. Thus, without
loss of generality, we may assume that q = 1. When KP is connected, it is
known that each access to β in C \Kβ gives rise to an equatorial annulus of
modulus exactly equal to π/log d (combine [M2], Theorem 18.13, with [H],
Proposition 3.5). The proof essentially proceeds as follows.

(a) The set of accesses to β in C \KP is in one-to-one correspondence
with the set of connected components of

⋃
k∈Z/NZ Prep,k \ KP modulo P .

Each such component is an equatorial annulus.
(b) The modulus of this annulus can be computed in the following way.

Consider the conformal representation ϕ : C \KP → C \D. When correctly
normalized, this conformal representation conjugates P : C \KP → C \KP

to the mapping f(z) = zd. An access to β in C \KP corresponds to a fixed
point α of f in S1. The modulus of the corresponding equatorial annulus is
π/logλ, where λ = d is the multiplier of f at α.

We have to show that the proof can be generalized when KP is discon-
nected. Since P restricts to a polynomial-like mapping whose filled-in Julia
set Kβ is connected, (a) generalizes immediately by replacing KP by Kβ.

The difficulty consists in generalizing (b), i.e., estimating the modulus
of the corresponding equatorial annulus. Observe that since the immediate
basin of β is contained in Kβ, this component is not reduced to a point.
Then, define V = P1 \ Kβ and U = P1 \ P−1(Kβ). Since Kβ is forward
invariant, we see that U ⊂ V and P : U → V is a proper mapping. Choose
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ϕ : V → V ′ = P1 \ D to be an isomorphism fixing ∞. This conformal
representation conjugates P : U → V to a proper mapping f : U ′ = ϕ(U)→
V ′. By Schwarz’s reflection principle, this mapping extends analytically in a
neighborhood of S1. Each access to β in V corresponds to a fixed point α of
f in S1. The modulus of the equatorial annulus corresponding to this access
is π/logλ, where λ is the multiplier of f at α. In order to prove that the
modulus is at least π/log d, we must show that λ ≤ d. We will prove that
for any z ∈ U ′, we have |f(z)| ≤ |z|d. This shows that f is less expanding
than the mapping z 7→ zd on S1, and consequently the multiplier at any of
its fixed points α ∈ S1 is less than d. In other words, for ε > 0, we have

|f(α+ εα)| = 1 + f ′(α)ε+ o(ε) ≤ 1 + dε+ o(ε) = |α+ εα|d,
and thus, f ′(α) ≤ d.

Let us now prove that for any z ∈ U ′, we have |f(z)| ≤ |z|d. First observe
that since P has no poles in U \{∞}, f is holomorphic in U ′ \{∞}. Besides,
since P has a superattracting fixed point at∞ with local degree d, so does f .
In particular, the mapping f(z)/zd is holomorphic in a neighborhood of ∞,
and thus, it is holomorphic through the whole set U ′. Since f : U ′ → V ′

is proper, we see that |f(z)| tends to 1 as z tends to the boundary of U ′.
Thus, when z tends to the boundary of U ′, we see that |f(z)/zd| cannot
accumulate values greater than 1. By the maximum modulus principle, we
see that for any z ∈ U ′, we have |f(z)/zd| ≤ 1.

We finally have to prove that in (4), equality cannot be achieved. Let
us assume that equality is achieved. Then Lemma 1 asserts that the m
equatorial annuli corresponding to the accesses to β in C \ Kβ are round
annuli. As a consequence, the boundaries of those annuli are unions of circles.
It follows that the image of ∂Kβ under the meromorphic function ψrep,k is
equal to a finite union of horizontal lines (with at least two distinct lines).
Since ψrep,k : Prep,k → C is univalent, we see that the intersection ∂Kβ ∩
Prep,k consists of finitely many R-analytic arcs and the asymptotics of ψrep,k
near β shows that the union of those arcs forms a cusp at β. One of these
analytic arcs, γ say, contains some point z0 ∈ ∂Kβ and there exists a simply
connected domain U such that ∂Kβ ∩ U = γ ∩ U . Since Kβ is the filled-in
Julia set of a polynomial-like restriction of P , for m sufficiently large, ∂Kβ =
P ◦m(γ ∩ U), and thus, ∂Kβ is an analytic curve. As in [St], Theorem 3,
page 140, we can conclude that ∂Kβ must be an analytic Jordan curve or
Jordan arc. This is not possible since β belongs to this curve and there is a
cusp at β.

The above argument can be used to generalize the classical Pommerenke–
Levin–Yoccoz inequality, which relates the combinatorial rotation number of
the repelling fixed point β of a polynomial P to its multiplier. The standard
hypothesis is that KP is connected. However, Jin [Ji] has shown that one
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need only assume that the connected component ofKP that contains β is not
reduced to a point and obtain the same relation between the combinatorial
rotation number and the multiplier.

Example. We may apply those results to the family of cubic polyno-
mials Pα(z) = z+ z2 +αz3. We denote by L the connectedness locus of this
family: the set of parameters α ∈ C for which the Julia set is connected.

L

<(résit(Pα,0))> 1
log 3 + 1

4

<(résit(Pα,0))< 1
2 log 3 + 1

4

<(résit(Pα,0))< 1
4

.4+i 9+8i

−7−8i−.6−i

<(α)= 3
4−

1
2 log 3

<(α)= 3
4−

1
log 3

|log(1+1/α)−log 3|<log 3

Fig. 7. The connectedness locus of the family Pα(z) = z+z2 +αz3. Left: in the coordinate
α. Right: in the coordinate 1/α.

Figure 7 shows the locus L in the coordinate α (left) and in the coordinate
1/α (right). The polynomial Pα : C → C has a parabolic fixed point at 0
with multiplier 1, parabolic multiplicity 1 and formal invariant α. Hence,
résit(Pα, 0) = 1 − α. Moreover, the polynomial Pα has two (finite) critical
points. The immediate basin of 0 may contain one or both critical points.
Theorem A shows that when <(résit(Pα, 0)) < 1/4, i.e., when <(α) > 3/4,
the immediate basin contains two critical points. This inequality corresponds
to the white disk centered at 2/3 with radius 2/3 in the coordinate 1/α; it
is known that the set of parameters α for which both critical points lie in
the immediate basin of 0 is the connected component of the interior of L
which contains this disk.

Theorem B shows that when the immediate basin contains only one
critical point, we have
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<(résit(Pα, 0)) = 1− <(α) >
1

2 log 3
+

1
4
.

Thus, in the closed disk {α ∈ C | <(α) ≥ 3/4− 1/(2 log 3)}, the immediate
basin of 0 contains both critical points of Pα and the Julia set is connected.
This improves the previous result. In the coordinate 1/α this region is the
disk of radius R1 centered at R1, with

R1 =
2 log 3

3 log 3− 2
∼ 1.695602768.

As Pα is a cubic polynomial, there are two fixed external rays (for monic
polynomials of degree 3 these rays would have argument 0 and 1/2). It is
known that when the Julia set is connected, each such ray lands at a fixed
point which is either repelling or parabolic with multiplier 1. We know that
at least one of them lands at 0. When both land at 0, Theorem B shows
that

<(résit(Pα, 0)) = 1− <(α) ≥ 1
log 3

+
1
4
.

In the coordinate 1/α, this region is the disk of radius R2 centered at −R2,
with

R2 =
2 log 3

4− 3 log 3
∼ 3.120334586.

Finally, when one of the two fixed rays do not land at 0, then it lands
instead at a repelling fixed point with combinatorial rotation number 0.
There is only one fixed point other than 0, namely −1/α, and its multiplier
is 1 + 1/α. The classical Pommerenke–Levin–Yoccoz inequality asserts that
one of the branches of log(1 + 1/α) belongs to the closed disk with radius
log 3 centered at log 3.

4. The number of grand orbit equivalence classes of critical
points. In this section, we again assume that f : P1 → P1 is a rational
map, but we no longer require that the components Ωk be simply con-
nected: consequently, we may no longer uniformize to obtain finite Blaschke
products. Nevertheless, our techniques still yield interesting results. Here
we show that the résidu itératif and the number of grand orbit equivalence
classes of critical points in the immediate basin of β are related.

Theorem C. Let f : P1 → P1 be a rational map having a parabolic
fixed point β with multiplier e2iπp/q and parabolic multiplicity ν. Assume
that there are exactly ν grand orbit equivalence classes of critical points in
the immediate basin of β. Then

<(résit(f◦q, β)) > N/π2.
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Proof. Observe that, by assumption, there may be several critical points
of f◦q in a given component Ωk, but their grand orbits by f ◦q must coincide.
Thus, the set Vk (see Definition 10) contains only one point. We may nor-
malize the attracting Fatou coordinates ϕatt,k so that Vk = {1}. The horn
maps h±k : D±k → C∗ are then ramified only above 1 and the lifted horn
maps H±k : D±k → C are ramified only above Z.

Step 1. Let us define V = (C\R)∪ ]0, 1[. Since V is a simply connected
domain which omits the critical values of H+

k , there exists an inverse branch
G+
k of H+

k defined on V which maps points with large positive imaginary
part to points with large positive imaginary part. Similarly, there exists an
inverse branchG−k ofH−k defined on V which maps points with large negative
imaginary part to points with large negative imaginary part. We set

U±k =
⋃

n∈Z
(n+G±k (V )) and U±k = π(U±k ).

Figure 8 shows the preimages of the upper and lower half-planes by the lifted
horn map of the rational map f(Z) = Z + 1 + 1/(9Z). This rational map

π

Ek

U+
k

U−k

U+
k

U−k

0

Fig. 8. The sets U±k , U±k and Ek
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has a parabolic fixed point at∞ with multiplier 1 and parabolic multiplicity
1 (whence N = 1) and the résidu itératif is 1/9. The critical points are ±1/3:
these are grand orbit equivalent since f(−1/3) = 1/3. Figure 8 shows the
sets U± and U±.

Lemma 4. For any k ∈ Z/NZ:

(a) the sets U+
k and U−k are disjoint ;

(b) the sets G+
k (H−) and G−k (H+) are disjoint from all their translates

by an integer.

Proof. Let us first prove (a). If N > 1, the immediate basin has several
disjoint connected components Ωk, k ∈ Z/NZ. The domains D−k and D+

k

are connected components of ψ−1
rep,k(Ωk) and ψ−1

rep,k(Ωk+1) respectively, so
the domains of definition of H−k and H+

k are disjoint. It follows that the sets
U−k ⊂ D−k and U+

k ⊂ D+
k are also disjoint.

Let us now assume that N = 1 and that the domains D− and D+

intersect. As both are connected components of ψ−1
rep(Ω), we have D− = D+.

Moreover, since both lifted horn maps are defined by H± = ϕatt ◦ ψrep, we
have H− = H+. We denote by H : D → C this lifted horn map. Now, G+

and G− are both inverse branches of H, and if the sets G+(V ) and G−(V )
were intersecting, the two inverse branches G− and G+ would be equal. We
will show that this is not possible.

Assume, by contradiction, that this is the case and denote by G : V → C
this inverse branch. We know that H(Z + 1) = H(Z) + 1 and H(Z) =
Z+O(1) when |=(Z)| → ∞. Thus, when |=(Z)| is sufficiently large, the only
preimage of H(Z) + 1 with large imaginary part is Z + 1. Since G : V → C
is an inverse branch of H that sends points with large imaginary part to
points with large imaginary part, we see that G(Z + 1) = G(Z) + 1 when
|=(Z)| is sufficiently large. By the identity theorem, this remains true on
the connected component of V ∩ (V − 1) which contains points with large
imaginary part, i.e., on H+∪H−. It follows that we can extend G analytically
to C \ Z =

⋃
n∈Z(n+ V ) using the formula G(Z + 1) = G(Z) + 1. Since the

imaginary part of G(Z) is bounded when =(Z) is sufficiently small, the
singularities of G : C \Z→ C are removable. Hence, G extends to an entire
mapping G : C → C. Since H ◦ G = Id, it follows that H : C → C is
an isomorphism. This gives the required contradiction since H is ramified
above Z.

Let us now prove (b). Assume by contradiction that there exists an
integer n∈Z and a point Z0 ∈G+

k (H−) such that Z0 + n∈G+
k (H−). Then

the two mappings Z 7→ G+
k (Z) and Z 7→ G+

k (Z−n)+n are inverse branches
of H+

k defined on the lower half-plane H−. They both send H+
k (Z0 + n) =

H+
k (Z0)+n to Z0+n. Hence, those two branches are equal and G+

k (Z−n) =
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G+
k (Z)−n on H−. This shows thatG+

k (H−) is invariant under the translation
Z 7→ Z + n. The Riemann surface G+

k (H−)/nZ ⊂ C/nZ is isomorphic to
the cylinder H−/nZ and has infinite modulus. Thus, the imaginary part of
Z cannot be bounded on G+

k (H−). Since G+
k (H−) avoids G+

k (H+), which
contains an upper half-plane, we see that G+

k (H−) contains points with
arbitrary large negative imaginary part. It follows thatG+

k (Z+1) = G+
k (Z)+

1 on H+ ∪H−. This leads to the same contradiction as in (a).

It follows that U±k is simply connected and π : U±k → U±k is a universal
covering. Thus, the sets U±k are doubly connected. Moreover, U+

k is a punc-
tured neighborhood of 0 and U−k is a punctured neighborhood of ∞. Hence,
U+
k ∪ {0} and U−k ∪ {∞} are simply connected. Consequently,

Ek = C∗ \ (U+
k ∪ U−k )

is an equatorial compact set. Our goal is now to prove the following equality:

<(résit(f◦q, β)) =
N

π2 +
1

2π

∑

k∈Z/NZ
defect(Ek).(5)

This will complete the proof of the theorem since the Grötzsch defect of Ek
is positive.

Step 2. Let us introduce the ramified coverings Γ : C \ (Z+ 1/2)→ C
and γ : C∗ \ {−1} → C∗ defined by

Γ (Z) = Z − 1
π

tan(πZ) and γ(ζ) = ζe2(1−ζ)/(1+ζ).

Those ramified coverings are related by the following commutative dia-
gram:

C \ (Z+ 1/2) C

C∗ \ {−1} C∗

Γ //

π

��
π

��
γ

//

The multipliers of γ at 0 and∞ are both equal to e2. The critical points and
critical values of Γ are the integers, whereas γ has only one critical point
and one critical value: 1.

Lemma 5 (see Figure 9). The mapping Γ restricts to an isomorphism

Γ : {Z ∈ H+ | 0 < <(Z) < 1} → H− ∪ {Z ∈ C | 0 < <(Z) < 1}.
Proof. This follows from the fact that Γ has no pole in {Z ∈ H+ |

0 < <(Z) < 1}, combined with the fact that when Z turns once around
{Z ∈ H+ | 0 < <(Z) < 1} with counterclockwise orientation, Γ (Z) turns
once around {Z ∈ C | 0 < <(Z) < 1} with counterclockwise orientation. We
leave the details to the reader.
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10
0 1

1/2

Γ

Fig. 9. The isomorphism Γ : {Z ∈ H+ | 0 < <(Z) < 1} → H− ∪ {Z ∈ C | 0 < <(Z) < 1}

ϕ+
k

ϕ+
k

γh+
k

h+
k γ

Ek

C\D

D∗

0

Fig. 10. The relation h±k = γ ◦ ϕ±k

Let us define χ+ : V → C to be the inverse branch of Γ which maps
points with large positive imaginary part to points with large positive imag-
inary part. Define χ− : V → C to be the inverse branch of Γ which maps
points with large negative imaginary part to points with large negative imag-
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−.75i

.75+.75i

1/9

{<(A)=1/π2}

Fig. 11. Critical orbit relations for quadratic rational maps with a multiple fixed point:
Z 7→ Z + 1 +A/Z.

inary part. Then set
W± =

⋃

n∈Z
(n+ χ±(V )) and W± = π(W±).

Lemma 5 implies that W+ = H+ and W+ = D∗. Similarly, one can prove
that W− = H− and W− = C \ D.

Step 3. Finally, let Φ±k : G±k (V ) → χ±(V ) be the isomorphism defined
by Φ±k = χ± ◦ H±k . Since H±k and χ± commute with translation by 1, so
does Φ±k . Thus, we can extend Φ±k to an isomorphism Φ±k : U±k →W± using
the formula Φ±k (Z + 1) = Φ±k (Z) + 1. Those isomorphisms project via π to
isomorphisms ϕ+

k : U+
k → D∗ and ϕ−k : U−k → C \ D. It follows that

defect(Ek) =
1

2π
log |%−k %+

k |,
where %±k is the multiplier of the map ϕ±k .
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Moreover, the relation H±k = Γ ◦Φ±k projects to h±k = γ◦ϕ±k (see Fig. 10).
The multipliers of γ at 0 and at ∞ are both equal to e2. Thus, we have

λ±k = e2 · %±k
and

4π2<(résit(f◦q, β))=
∑

k∈Z/NZ
log |λ−k λ+

k | =
∑

k∈Z/NZ
(4 + log |%−k %+

k |)

=4N +
∑

k∈Z/NZ
2π defect(Ek).

Dividing on both sides by 4π2 gives the required equality (5).

Example. Figure 11 illustrates the inequality of Theorem C in the case
of quadratic rational maps Z 7→ Z + 1 + A/Z. The parameters for which
the two critical points are grand orbit equivalent are exactly the corners of
the tiles. It seems that the leftmost one is A = 1/9 > 1/π2. We see that the
estimate we obtain is good, but we do not know whether it is optimal.

5. More results. The techniques introduced in this article can be used
in order to get other inequalities relating the résidu itératif at a parabolic
fixed point to the behaviour of the critical orbits contained in the basin of
this fixed point. For example, one may as well prove that when the sets Vk
(see Definition 10) are contained in the equatorial compact sets Ek, then

<(résit(f◦q, β)) ≥ 1
2π

∑

k∈Z/NZ
defect(Ek).

In particular, if each set Vk is contained in a circle centered at 0, then we
have <(résit(f, β)) ≥ 0. This was already observed in [Ep2] where Epstein
writes: “considerations of the return maps on Écalle cylinders shows in fact
that there are at least ν + 1 critical values with infinite forward orbit in the
immediate basin of a parabolic-attracting or parabolic-indifferent cycle of
degeneracy ν”. This is the case, for example, when f is the nth iterate of
some rational map g satisfying the assumptions of Theorem C: observe that

résit(f, β) =
1
n

résit(g, β)−−−→
n→∞

0.

In [Je] (see Proposition 2), Jellouli proves among other things that for
the quadratic polynomial P (z) = e2iπp/qz + z2, we have

<(ι(P ◦q, 0)) ≤ q + 1
2

.

This is equivalent to <(résit(P ◦q, 0)) ≥ 0. Our results show that Jellouli’s
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inequality can be improved to

<(ι(P ◦q, 0)) ≤ q + 1
2
−
(

1
2 log 2

+
q

4

)
.

Finally, the original motivation of our study was to try and see whether
Epstein’s generalization of the Fatou–Shishikura inequality (see [Ep3]) could
be obtained using Shishikura’s arguments (see [Sh1]). The answer is yes, and
we get an improved inequality.

Let f : P1 → P1 be a rational map and let M be a real number. Associate
with each nonrepelling cycle c = {α0, . . . , αn−1} of f a number γM (c) defined
to be

γM (c) =





0 if c is superattracting,
1 if c is attracting, not superattracting,
1 if c is irrationally indifferent,
ν if c is parabolic, and <(résit(f ◦(nq), α0)) > νqM

(ν is the parabolic multiplicity and
the multiplier of the cycle is e2iπp/q),

ν + 1 if c is parabolic, and <(résit(f ◦(nq), α0)) ≤ νqM.

We count the number γM (f) of nonrepelling cycles of f counted with this
multiplicity:

γM (f) =
∑

γM (c),

where the sum is taken over all the nonrepelling cycles of f .
Then, define the number δ(f) of infinite tails of critical orbits. An infinite

tail of a critical orbit is a non(pre)periodic sequence (ω, f(ω), f ◦2(ω), . . .),
where ω is a critical point of f . Two infinite tails of critical orbits (ω1, f(ω1),
f◦2(ω1), . . .), and (ω2, f(ω2), f◦2(ω2), . . .) are equivalent if f◦i(ω1) = f◦j(ω2)
for some i, j ≥ 0. The number δ(f) of infinite tails of critical orbits is the
number of equivalence classes.

In [Ep3], Epstein proves that

δ(f) ≥ γ0(f).

Using Shishikura’s perturbative arguments, combined with our Theorem C,
one may improve this result:

δ(f) ≥ γ1/π2(f).

This result is probably not optimal and one may have δ(f) ≥ γ1/9(f).

Appendix: The parabolic multiplicity and the formal invari-
ant. In this appendix, we recall the definitions of the parabolic multiplicity
ν and the formal invariant α. We then prove that any parabolic germ of
the form z 7→ e2iπp/qz + O(|z|2) is analytically conjugate to a germ of the
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form z 7→ e2iπp/qz(1+zνq +αz2νq)+O(|z|2νq+2). This appendix is extracted
from [BH].

Definition 12. Let β ∈ P1 be a fixed point of an analytic mapping f
defined in a neighborhood of β. If β 6=∞, we define the multiplicity of β as
a fixed point of f to be the residue

1
2iπ

�

γ

1− f ′(z)
z − f(z)

dz,

where γ is a small loop turning once around β with counterclockwise orien-
tation. If β =∞, we define the multiplicity of β to be the multiplicity of 0
as a fixed point of 1/f(1/z).

If β 6= ∞, the multiplicity of β as a fixed point of f is equal to the
multiplicity of β as a solution of the equation f(z) − z = 0. In particular,
the multiplicity of a fixed point is equal to 1 when the multiplier λ is not 1,
and it is greater otherwise.

The following proposition asserts that the multiplicity of a fixed point β
is an analytic invariant. Hence, the definition of the multiplicity at infinity
makes sense.

Proposition 7. The multiplicity of a fixed point β is an analytic in-
variant. More precisely , if g = ϕ ◦ f ◦ ϕ−1, where ϕ is a local analytic
isomorphism, then the multiplicity of β as a fixed point of f is equal to the
multiplicity of ϕ(β) as a fixed point of g.

Proof. The multiplicity is equal to 1 if and only if the multiplier differs
from 1. Since the multiplier at a fixed point is an analytic invariant, we see
that being a simple fixed point does not depend on the choice of coordinates.

Now, to prove the proposition for a multiple fixed point (i.e., when the
multiplier is equal to 1), consider the family of mappings

fε(z) = f(z) + ε, ε ∈ C.
Denote by m the multiplicity of β as a fixed point of f . When ε 6= 0 is
small, a multiple fixed point β of f will split up into a cluster of m nearby
simple fixed points. Since the integral of (1 − f ′(z))/(z − f(z)) on γ varies
continuously with ε, and since this integral is a sum of residues which are
analytic invariants when ε 6= 0, it follows that the multiplicity of β is also
an analytic invariant.

Proposition 8. Let f(z) = e2iπp/qz +O(|z|2) be an analytic mapping
defined in a neighborhood of 0 and having a parabolic fixed point at 0.

(a) The multiplicity of 0 as a fixed point of f ◦q is of the form νq + 1
for some integer ν ≥ 1, called the parabolic multiplicity of the fixed point.
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(b) The mapping f can be analytically conjugated to a mapping of the
form

g(z) = e2iπp/qz(1 + zνq) +O(|z|νq+2).

Remark. The parabolic multiplicity of a parabolic fixed point is not
the same as the multiplicity of the fixed point.

Proof of Proposition 8. Set λ = e2iπp/q. If f(z) = λz + azk + O(zk+1),
then setting ϕ(z) = z + bzk, we find that

ϕ ◦ f ◦ ϕ−1(z) = λ(z + (a+ b(λk − λ))zk) +O(zk+1).

If k is not congruent to 1 modulo q, we can set

b =
a

λ− λk
so that ϕ ◦ f ◦ ϕ−1(z) = λz + O(zk+1). This proves that by successive
conjugations with mappings of the form ϕ(z) = z + bzk, we can eliminate
terms with powers that are not congruent to 1 modulo q, so the first term we
cannot eliminate this way will have a power of the form νq + 1 for some ν.

We will now show that νq + 1 is the multiplicity of 0 as a fixed point
of f◦q. Let g(z) = λ(z + azνq+1) + O(|z|νq+2) be this conjugate of f . One
can easily check by induction that for any n ≥ 1, we have

g◦n(z) = λn(z + nazνq+1) +O(|z|νq+2).

In particular, for n = q, we have λn = 1, and thus,

g◦q(z) = z + qazνq+1 +O(|z|νq+2).

This shows that the multiplicity of 0 as a fixed point of g◦q is equal to νq+1.
Since the maps f◦q and g◦q are analytically conjugate, this proves part (a)
of the proposition.

The only thing left to show is that the coefficient a can be taken to be 1;
it is easy to show that a linear change of variables w = %z will accomplish
this if we take %νq = a.

The next proposition shows that f has only one formal invariant α.

Proposition 9. Let f(z) = e2iπp/qz + O(|z|2) be an analytic mapping
defined in a neighborhood of 0 and having a parabolic fixed point at 0.

(a) There exists a number α such that for any integer k > 2νq+1, there
is a polynomial ϕk(z) with ϕk(0) = 0, ϕ′k(0) = 1 and

ϕk ◦ f ◦ ϕ−1
k (z) = e2iπp/qz(1 + zνq + αz2νq) +O(|z|k).

(b) There exists a formal power series ϕ(z) = z +O(|z|2) such that

ϕ ◦ f ◦ ϕ−1(z) = e2iπp/qz(1 + zνq + αz2νq).

Remark. This series usually diverges.
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Proof of Proposition 9. We will show that we can eliminate terms degree
by degree in the expansion of f . We have seen in the proof of Proposition 8
that we can easily eliminate any term of degree k, if k is not congruent to 1
modulo q.

Again, we set λ = e2iπp/q and we suppose that

f(z) = λ(z + zνq+1 + azmq+1) +O(|z|mq+2)

with ν < m < 2ν. Then setting

ϕ(z) = z(1 + bz(m−ν)q) with b =
a

(2ν −m)q
,

we will show that

ϕ ◦ f ◦ ϕ−1(z) = λ(z + zνq+1) +O(|z|mq+2).

Define g = ϕ ◦ f ◦ ϕ−1 and assume g(z) = λz(1 + zνq + µzk) + O(|z|k+2)
for some integer k ≤ mq. We want to show that µ = 0. We will do it by
comparing the power series of ϕ ◦ f and g ◦ ϕ:

ϕ ◦ f(z)=λz(1 + bz(m−ν)q + zνq + (a+ b+ (m− ν)q)zmq) +O(|z|mq+2),

g ◦ ϕ(z)=λz(1 + bz(m−ν)q + zνq + (b+ bνq)zmq + µzk) +O(|z|k+2).

By the choice of b, we have a+ b+ (m− ν)q = b+ bνq. Hence, the equality
of power series of ϕ ◦ f and g ◦ ϕ yields µ = 0.

Next suppose that

f(z) = λz + zνq+1 + αz2νq+1 + azmq+1 +O(zmq+2)

with m > 2ν. Then if we set again

ϕ(z) = z(1 + bz(m−ν)q) with b =
a

(2ν −m)q
,

the same computation shows that

(ϕ ◦ f ◦ ϕ−1)(z) = λz + zνq+1 + αz2νq+1 +O(zmq+2).

This proves (a). Moreover, since all the polynomials ϕ we have used were
of the form z + bkz

k, and there was at most one of any given degree, the
composition of all these polynomials is a well defined formal power series.
This proves (b).
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48 (1920), 33–94.
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Laboratoire Émile Picard
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