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On the uniqueness of the ergodic maximal function

by

Lasha Ephremidze (Tbilisi)

Abstract. It is proved that the ergodic maximal operator is one-to-one.

1. Introduction. Let T be any operator which maps one function space
into another. The uniqueness theorem for T, i.e., the injectivity property of
T is often used as an important tool in studying some problems related to
this operator. In many situations the uniqueness theorem is an easy conse-
quence of more profound results concerning T. For example, when T is the
Fourier transform, then we have the inversion formula for both discrete and
continuous cases and for the conjugate operator or the Hilbert transform
T2f = −f . These imply the uniqueness of T. On the other hand there are
some integral operators for which the uniqueness theorem fails to hold at
all.

The situation is different for the Hardy–Littlewood maximal operator
(considered on a set of positive functions). Here the uniqueness theorem
cannot be easily deduced from the known results. For one-sided maximal
functions the uniqueness theorem is proved in [2], while for non-one-sided
maximal operators the problem is still open.

The ergodic maximal operator f 7→ f ∗ (see (2)) plays an important role
in the theory of measure-preserving transformations, including the proof of
the main result—Birkhoff Ergodic Theorem—which actually reduces to the
Ergodic Maximal Theorem. Thus the problem naturally arises whether this
operator has the uniqueness property. The present paper gives an affirma-
tive answer to this question for finite measure spaces (see Theorem 1 in
Section 2). The idea of the proof is borrowed from [2], though it needs some
additional effort.

In Section 3 the uniqueness theorem is proved as an auxiliary statement
for the discrete maximal operator (see Proposition 2).
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In Section 4 the infinite measure situation is studied thoroughly. In this
case the uniqueness theorem holds for non-negative functions only.

Although we cannot provide further applications of the uniqueness the-
orems proved in the paper, in our opinion this does not diminish the inde-
pendent interest of these results.

In this paper we deal only with the discrete case. The continuous pa-
rameter case is considered in [3].

2. Formulation of the main result; some auxiliary propositions.
Let (X,S, µ) be a finite measure space,

µ(X) <∞,(1)

and let T : X → X be a measure-preserving ergodic transformation. For an
integrable function f , f ∈ L(X), the ergodic maximal function is denoted
by f∗:

f∗(x) = sup
n

1
n

n−1∑

k=0

f(T kx), x ∈ X.(2)

The main goal of this paper is to prove the following assertion.

Theorem 1. Let f, g ∈ L(X) and

f∗ = g∗ a.e.(3)

Then
f(x) = g(x)(4)

for a.a. x ∈ X (with respect to the measure µ).

Remark 1. Condition (1) is necessary for the theorem to be valid.
Counter-examples will be given in Section 4.

Remark 2. The theorem remains valid if we do not require the trans-
formation T to be ergodic. By the standard discussion, the general situation
can be reduced to the ergodic case.

First we prove some auxiliary statements.

Lemma 1. Let f ∈ L(X). Then

ess inf f∗ =
1

µ(X)

�

X

f dµ ≡ λ0.

Proof. That f∗ ≥ λ0 a.e. follows from the Individual Ergodic Theorem:

lim
n→∞

1
n

n−1∑

k=0

f ◦ T k = λ0 a.e.(5)
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(see [4], [6]). On the other hand, the Maximal Ergodic Theorem asserts that

µ(f∗ > λ) ≤ 1
λ

�

(f∗>λ)

f dµ, λ ≥ λ0(6)

(see [6, p. 30]), and if µ(f ∗ > λ) = µ(X) for some λ > λ0, we see from (6)
that µ(X) ≤ λ−1 �

X f dµ. This implies λ ≤ λ0, which is a contradiction.

The following proposition will be used in proving Theorem 1. It is not a
new result (see [6, p. 84]; [7]) but a different proof by means of the filling
scheme method apparently is of independent interest.

Proposition 1. Let T be a measure-preserving ergodic transformation
of a finite measure space (X,S, µ) and let

�

X

f dµ = 0.(7)

Then

µ(E) = 0,(8)

where E = {x ∈ X : Snf(x) =
∑n

k=0 f(T kx) < 0 for all n ≥ 0}.
The filling scheme method (see [5], [6]) defines a sequence of functions

as follows:

f0 = f, fn+1 = −f−n + f+
n ◦ T, n = 0, 1, . . . ,

where f+ = max(0, f) and f− = max(0,−f).
Note that, for n = 0, 1, . . . ,

(9) fn(x) ≥ 0 ⇒ fn+1(x) ≥ 0,

(10) fn+1(x) > 0 ⇒ fn(Tx) > 0,

(11) f−n+1(x) ≤ f−n (x),

(12) fn(x) < 0, fn(x) < fn+1(x) ⇒ fn(Tx) > 0.

Lemma 2 (cf. [1, Lemma 1.1]). For each n ≥ 0, we have
{
x : max

0≤m≤n
Smf(x) ≥ 0

}
= (fn ≥ 0).

Proof. We slightly modify the proof of Lemma 1.1 of [1]. Since
m∑

k=0

fn+1◦T k =
m∑

k=0

−f−n ◦T k+
m∑

k=0

f+
n ◦T k+1 = −f−n +

m∑

k=1

fn◦T k+f+
n ◦Tm+1,

we have

(13) fn(Tm+1x) > 0 ⇒
m∑

k=0

fn+1(T kx) ≤
m+1∑

k=0

fn(T kx),
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(14) fn(x) < 0 ⇒
m∑

k=0

fn+1(T kx) ≥
m+1∑

k=0

fn(T kx),

for n,m = 0, 1, . . .
We shall show that:

(i) If fm(x) < 0 for all m < n and fn(x) ≥ 0, then Snf(x) ≥ 0.
(ii) If Smf(x) ≥ 0, then fm(x) ≥ 0 (consequently, fn(x) ≥ 0 for all

n ≥ m, see (9)).

Indeed, if the assumptions in (i) hold, then

0 < fn(x)− fn−1(x) = fn(x) + f−n−1(x) = f+
n−1(Tx),

and consequently fn−1(Tx) > 0, fn−2(T 2x) > 0, . . . , f(T nx) > 0 (see (10)).
Thus, by (13) we have

0 ≤ fn(x) ≤ fn−1(x) + fn−1(Tx) ≤ . . . ≤
n∑

k=0

f(T kx)

and (i) follows.
If now Smf(x) ≥ 0 and we assume fn(x) < 0 for all n < m, then by (14)

we have
m∑

k=0

f(T kx) ≤
m−1∑

k=0

f1(T kx) ≤ . . . ≤ fm(x)

and (ii) is proved.

Proof of Proposition 1. By Lemma 2,

E = {x ∈ X : fn(x) < 0 for all n ≥ 0}.
Since (7) holds and limn→∞ �

X f
+
n dµ = 0 (see [1, (19)]), we have

lim
n→∞

�

X

f−n dµ = 0.

Consequently,

lim
n→∞

f−n (x) = 0(15)

for a.a. x ∈ X, since f−n (x) ↓ (see (11)).
Set

ln = µ{x ∈ E : f−n+1(x) < f−n (x)}, n = 0, 1, . . .

If

µ(E) > 0,(16)
then ∞∑

n=0

ln =∞,(17)
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because of (15) (otherwise the sequence f−n (x) would change its value only
finitely many times for a.a. x∈E). Since {x ∈ X : −f−n (x) < −f−n+1(x) < 0}
⊂ {x ∈ X : fn(Tx) > 0} \ (fn+1 > 0) = T−1(fn > 0) \ (fn+1 > 0) (see (12)),
we have

ln ≤ µ(T−1(fn > 0))− µ(fn+1 > 0) = µ(fn > 0)− µ(fn+1 > 0).

Hence
∞∑

n=0

ln ≤
∞∑

n=0

(µ(fn > 0)− µ(fn+1 > 0)) = µ(f > 0),

which contradicts (17). Consequently, (16) is not valid and (8) holds.

Corollary 1. Let f ∈ L(X) and let

Ff =
{
x ∈ X : f∗(x) =

1
n

n−1∑

k=0

f(T kx) for some n > 0
}
.(18)

Then

µ(Ff ) = µ(X),(19)

and , consequently ,

µ{x ∈ X : Tnx ∈ Ff for all n ≥ 0} = µ(X).(20)

Proof. Lemma 1 implies that

µ(f∗ ≥ λ0) = µ(X).

It follows from the Individual Ergodic Theorem (see (5)) that almost all
x ∈ (f∗ > λ0) belong to Ff . Obviously, (f − λ)∗ = f∗ − λ, and if we apply
Proposition 1 to the function f − λ0, we find that almost all x ∈ (f ∗ = λ0)
belong to Ff . Thus (19) holds.

Since {x ∈ X : T nx ∈ Ff for all n ≥ 0} =
⋂∞
n=0 T

−n(Ff ), (20) holds as
well.

3. Discrete maximal operator; the proof of the main result.
Let Γ denote the set of all sequences of real numbers indexed by N0 =
{0, 1, 2, . . .}. The discrete maximal operator M is defined by

Mα(n) = sup
m≥n

1
m− n+ 1

m∑

k=n

α(k), n ∈ N0, α ∈ Γ.

Thus, if α(n) = f(T nx), then

Mα(n) = f∗(Tnx).(21)
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Let us use the brief notations (Mα > λ) = {n ∈ N0 : Mα(n) > λ},
Ip,q = {p, p+ 1, . . . , q} and

Ap,q =
1

q − p+ 1

q∑

k=p

α(k), 0 ≤ p ≤ q <∞.

We say that Ip,q, 0 ≤ p ≤ q < ∞, is a finite connected component of
N ⊂ N0 if Ip,q ⊂ N and p− 1, q + 1 do not belong to N .

Lemma 3. Let α ∈ Γ . If

Mα(n) =
1

q − n+ 1

q∑

k=n

α(k),(22)

then Ap,q ≥Mα(n) for each p ∈ In,q.
Proof. If p = n, there is nothing to prove. If Ap,q < Mα(n) for some

p ∈ In+1,q, then taking into account that An,p−1 ≤Mα(n), we have
q∑

k=n

α(k) =
p−1∑

k=n

α(k) +
q∑

k=p

α(k) = (p− n)An,p−1 + (q − p+ 1)Ap,q

< (p− n)Mα(n) + (q − p+ 1)Mα(n) = (q − n+ 1)Mα(n).

This contradicts (22).

Corollary 2. If n < m and Mα(n) > Mα(m), then (22) holds for
some q ∈ In,m−1.

Proof. We have Mα(n) 6= lim supq→∞An,q, since otherwise Mα(m)
would have the same value as Mα(n). Hence (22) holds for some q ≥ n
and it follows from the lemma that q < m.

Lemma 4. Let α ∈ Γ . If Ip,q is a finite connected component of the set
(Mα > λ), then for all n ∈ Ip,q:

(i) Mα(n) =
1

m− n+ 1

m∑

k=n

α(k)

for some m ∈ In,q, and

(ii)
1

q − n+ 1

q∑

k=n

α(k) > λ.(23)

Proof. Since Mα(n) > λ ≥Mα(q+1), Corollary 2 implies that (i) holds.
It follows from (i) that sup{m ≤ q : An,m > λ} = q. Hence (23) holds.

For α ∈ Γ , let Nα ⊂ N0 be the set of integers for which the supremum is
achieved after finitely many steps, i.e., n ∈ Nα if and only if Mα(n) = An,m
for some m ≥ n.
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Remark 3. Observe that if

α(n) = f(Tnx),(24)

then n ∈ Nα ⇔ Tnx ∈ Ff (see Corollary 1). Hence if f ∈ L(X), then for
a.a. x ∈ X the sequence (24) has the property that n ∈ Nα for all n ≥ 0
(see (20)).

Lemma 5. Let Mα(n) = λ and n ∈ Nα.

(i) If Mα(n+ 1) ≤ λ, then

α(n) = λ.(25)

(ii) If In+1,m is a finite connected component of (Mα > λ), then

1
m− n+ 1

m∑

k=n

α(k) = λ.(26)

Proof. Obviously, α(n) ≤ λ and

An,m ≤ λ.(27)

Let q ≥ n be the integer for which

An,q = λ.(28)

(i) If α(n) < λ, then the inequality An+1,q ≤Mα(n+ 1) ≤ λ implies
q∑

k=n

α(k) = α(n) + (q − n)An+1,q < λ+ (q − n)λ = (q − n+ 1)λ,

which contradicts (28). Thus (25) holds.
(ii) Let us first show that q cannot be less than m. Indeed, if q < m,

then Aq+1,m > λ, by Lemma 4(ii), and
m∑

k=n

α(k) =
q∑

k=n

α(k)+
m∑

k=q+1

α(k) = (q−n+1)λ+(m−q)Aq+1,m > (m−n+1)λ,

which contradicts (27). Assume now that q > m. If An,m < λ, then the
inequality Am+1,q ≤Mα(m+ 1) ≤ λ yields
q∑

k=n

α(k) =
m∑

k=n

α(k) +
q∑

k=m+1

α(k) < λ(m−n+ 1) +λ(q−m) = λ(q−n+ 1),

which contradicts (28). Thus q = m and (26) holds.

The following lemma is crucial in proving Theorem 1.

Lemma 6. Let α ∈ Γ and let Ip,q be a finite connected component of
(Mα > λ) for some λ. Then the values Mα(n), n ∈ Ip,q, uniquely define
the values α(n), n ∈ Ip,q. Thus if Mα(n) = Mβ(n), n ≥ 0, for some β ∈ Γ ,
then α(n) = β(n) for n ∈ Ip,q.
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Proof. Note that n ∈ Nα for each n ∈ Ip,q, by Lemma 4(i).
Arrange the values Mα(n), n ∈ Ip,q, in descending order, i.e., assume

λ1 > . . . > λj > λ, where

Ii = {n ∈ Ip,q : Mα(n) = λi} 6= ∅ and
j⋃

i=1

Ii = Ip,q.

Define the values α(n) by induction with respect to i. For i = 1, one can
readily say that α is equal to λ1 on I1, i.e., α(n) = λ1 for all n ∈ I1. Indeed,
since

λ1 = max
k∈Ip,q

Mα(k),

if α(n) < λ1, then An,m < λ1 for all m ≤ q and Mα(n) cannot be equal to
λ1 by Lemma 4(i).

Assume now that α is already defined on I1∪ . . .∪Ii, i < j; we will define
it on Ii+1. Fix n ∈ Ii+1 (so that Mα(n) = λi+1) and consider two cases:

(i) Mα(n+ 1) ≤ λi+1. Then, by Lemma 5(i),

α(n) = λi+1.

(ii) Mα(n + 1) > λi+1. Then there exists m ≤ q such that In+1,m is a
finite connected component of (Mα > λi+1), and since α is already defined
on In+1,m ⊂ (Mα > λi+1) ∩ Ip,q =

⋃i
k=1 Ik by induction, we can apply

formula (26) to define α(n):

α(n) = λi+1(m− n+ 1)−
m∑

k=n+1

α(k).

Corollary 3. Let α ∈ Γ and let Mα(0) > Mα(m) for some m ≥ 0.
Then the values Mα(n), n ∈ I0,m, uniquely define the value α(0). Thus if
Mα(n) = Mβ(n), n ≥ 0, for some β ∈ Γ , then α(0) = β(0).

Proof. If we take λ ∈ (Mα(m),Mα(0)), then m 6∈ (Mα > λ) and 0
belongs to the finite connected component of (Mα > λ).

Lemma 7. Let α, β ∈ Γ be sequences such that Mα = Mβ. If n ∈
Nα ∩Nβ and Mα(n) = Mβ(n) ≥Mα(m) = Mβ(m) for some m > n, then

α(n) = β(n).(29)

Proof. Let Mα(n) = λ = Mβ(n). If λ ≥ Mα(n + 1), then Lemma 5(i)
shows that α(n) = λ = β(n). Thus (29) holds.

If λ < Mα(n), then there exist q ≤ m such that In+1,q is a finite con-
nected component of (Mα > λ). Hence α(k) = β(k) for all k ∈ In+1,q, by
Lemma 6, and

q∑

k=n

α(k) = λ(q − n+ 1) =
q∑

k=n

β(k),

by Lemma 5(ii). Consequently, (29) holds.
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Proposition 2. Let α, β ∈ Γ , Nα = Nβ = N0 and

Mα(n) = Mβ(n), n ≥ 0.

Then
α(n) = β(n), n ≥ 0.

Remark 4. If α(n) = 0, n ≥ 0, and β(n0) = −1, β(n) = 0 whenever
n 6= n0, then Mα(n) = Mβ(n) = 0, n ≥ 0. Thus the requirement that at
each point the supremum be achieved after finitely many steps is necessary.

Proof of Proposition 2. By Lemma 7 it is enough to show that each
α ∈ Γ such that Nα = N0 has the following property: For each n ∈ N0 there
exist m > n such that

Mα(n) ≥Mα(m).(30)

Obviously, lim supm→∞A0,m=lim supm→∞An,m ≡ λ0 and Mα(n) ≥ λ0
for each n ≥ 0. Since n ∈ Nα, we have λ0 <∞.

If Mα(n) = λ > λ0 and Mα(m) ≥ λ for each m > n, then we can
construct an increasing sequence of non-negative integers n = n0 < n1 < . . .
such that Ank−1,nk−1 ≥ λ, k = 1, 2, . . . Thus, lim supk→∞An,nk−1 ≥ λ. This
is a contradiction and therefore (30) holds for some m > n.

If Mα(n) = λ0 = An,m, then Am+1,q cannot be greater than λ0 for any
q > m. Otherwise

q∑

k=n

α(k) =
m∑

k=n

α(k) +
q∑

k=m+1

α(k)

= λ0(m− n+ 1) + (q −m)Am+1,q > λ0(q − n+ 1),

which is a contradiction. Thus Mα(m+ 1) = λ0.

Proof of Theorem 1. Equality (3) implies that

Mαx(n) = Mβx(n), n ≥ 0,

for a.a. x ∈ X (more exactly for all x 6∈ ⋂∞n=0 T
−n(f∗ 6= g∗)), where

αx(n) = f(Tnx) and βx(n) = g(Tnx)(31)

(see (21)). Thus the sequences (31) satisfy the conditions of Proposition 2
for a.a. x ∈ X (see Remark 3). Consequently, f(x) = αx(0) = βx(0) = g(x)
and thus (4) holds for a.a. x ∈ X.

4. Infinite measure case. In this section we consider a situation when
the measure of the space is infinite,

µ(X) =∞.(32)
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Then for each integrable f we have

lim
n→∞

1
n

n−1∑

k=0

f(T kx) = 0(33)

for a.a. x ∈ X (see [4]) and consequently f ∗ ≥ 0 a.e.
The uniqueness theorem is no longer valid in this case. However we

claim that the following theorem is true. The first part contains a positive
statement of the theorem, while the second part provides a great variety of
counter-examples showing that the uniqueness fails to hold.

Theorem 2. Let T be a measure-preserving ergodic transformation of
a σ-finite measure space (X,S, µ) with µ(X) =∞.

(i) If f ∈ L and

f∗ = g∗ a.e. on X,(34)

then f = g a.e. on (f∗ > 0).
(ii) If f ∈ L and µ(f∗ = 0) > 0, then (34) holds for each g ∈ L such

that g = f on (f∗ > 0) and g ≤ f on (f∗ = 0).

The lemma below which is trivial for conservative ergodic transforma-
tions needs a little proof in the ergodic case.

Lemma 8. Let T be a measure-preserving ergodic transformation of a
σ-finite measure space (X,S, µ). If µ(Q0) <∞ and Qc

0 = X \Q0, then

µ
(
Q0 \

∞⋃

m=1

T−m(Qc
0)
)

= 0.

Proof. Note first that for each measurable Q such that 0 < µ(Q) < ∞
we have

µ(Q ∩ T−1(Qc)) > 0.

Indeed, otherwise µ(Q ∩ T−1(Q)) = µ(Q ∩ T−1(X)) = µ(Q), which contra-
dicts the ergodicity of T .

Let now Q = Q0 \
⋃∞
m=1 T

−m(Qc
0). Since Qc =

⋃∞
m=0 T

−m(Qc
0) we have

T−1(Qc) ⊂ ⋃∞m=1 T
−m(Qc

0). Hence

µ(Q ∩ T−1(Qc)) = µ(∅) = 0

and this implies that µ(Q) = 0.

Proof of Theorem 2. (i) We may assume that the equality (34) holds
everywhere.

For each λ > 0 we have µ(f ∗ > λ) < ∞ (see (6); we can assume that
λ0 = 0 when (32) holds). By Lemma 8,



Ergodic maximal function 227

µ
(

(f∗ > λ) \
∞⋃

m=1

T−m(f∗ ≤ λ)
)

= 0.

Thus, for a.a. x ∈ (f∗ > λ) there exists m = m(x) such that f ∗(Tmx) ≤ λ <
f∗(x). Since λ > 0 is arbitrary, we can conclude that for a.a. x ∈ (f ∗ > 0)
there exists m = m(x) such that f ∗(Tmx) < f∗(x). For each such x, if we
apply Corollary 3 to the sequence α(n) = f(T nx), n = 0, 1, . . . , the assertion
shows that f(x) = α(0) is uniquely determined. Hence part (i) follows.

(ii) Obviously, g∗ ≤ f∗ and since g∗ ≥ 0, we have g∗ = 0 a.e. on (f∗ = 0).
It remains to show that for a.a. x ∈ (f ∗ > 0) we have

f∗(x) ≤ g∗(x).(35)

If x ∈ Ff (see (18); observe that a.a. x ∈ (f ∗ > 0) belongs to Ff by (33))
and

f∗(x) =
1

q + 1

q∑

k=0

f(T kx) > 0,

then f∗(T kx) ≥ f∗(x) > 0 for each k ∈ I0,q, by Lemma 3. Thus f(T kx) =
g(T kx) for each k ∈ I0,q, by hypothesis. Consequently,

1
q + 1

q∑

k=0

g(T kx) =
1

q + 1

q∑

k=0

f(T kx)

and (35) holds.

It follows from Theorem 2 that for non-negative functions the uniqueness
theorem is always true.

Corollary 4. Let 0 ≤ f, g ∈ L and f ∗ = g∗ a.e. Then f = g a.e.

Proof. f = g a.e. on (f ∗ > 0) by Theorem 2, while a.e. on (f ∗ = 0) both
f and g are 0.
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