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Density in the space of topological measures

by

S. V. Butler (Urbana-Champaign, IL)

Abstract. Topological measures (formerly “quasi-measures”) are set functions that
generalize measures and correspond to certain non-linear functionals on the space of con-
tinuous functions. The goal of this paper is to consider relationships between various
families of topological measures on a given space. In particular, we prove density theo-
rems involving classes of simple, representable, extreme topological measures and mea-
sures, hence giving a way of approximating various topological measures by members of
different classes.

1. Introduction. Let X be a compact Hausdorff space. Let C(X) (re-
spectively O(X)) denote the collection of closed (respectively open) subsets
of X, and A(X) = C(X) ∪ O(X). A topological measure on X is a function
µ : A(X)→ R+ such that:

(i) µ(
⊔n
i=1 Ai) =

∑n
i=1 µ(Ai) (t indicates disjoint union, and all Ai and⊔n

i=1Ai are assumed to be in A(X));
(ii) µ(U) = sup{µ(C) : C ⊆ U, C ∈ C(X)} for all U ∈ O(X).

From (i) and (ii) it also follows that topological measures are monotone.
Topological measures are not only finitely, but also countably additive: if
A =

⊔∞
i=1 Ai, where A,Ai ∈ A(X) (i = 1, 2, . . .), then µ(A) =

∑∞
i=1 µ(Ai)

(see [15]). While topological measures resemble Borel measures, they in gen-
eral need not be subadditive. Therefore, the class of topological measures is
a larger collection of set functions on A(X) than the class of measures. Later
we will show that there are situations when measures are nowhere dense in
the space of all topological measures on X. A positive topological measure
has a (necessarily unique) extension to a regular Borel measure on X if and
only if for any open sets U and V we have µ(U ∪ V ) ≤ µ(U) + µ(V ) (see
[19]), while for a signed topological measure the condition for extension to
a measure is µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ) (see [11]).
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Remark 1.1. 1. Topological measures correspond to quasi-linear func-
tionals, i.e. functionals that are only assumed to be linear on singly gener-
ated subalgebras in C(X). The singly generated subalgebra generated by a
continuous function f is the smallest subalgebra of C(X) that contains f
and constants. The Aarnes Representation Theorem (see [2]) enables one to
restate the results for topological measures as results for quasi-linear func-
tionals.

2. In this paper we assume that X is compact Hausdorff. It is possible
to consider the theory of topological measures in a more general setting, for
example, taking a locally compact or a completely regular space. See [5], [8].

The paper is organized as follows. Section 2 provides some examples
of topological measures that are not measures, and two basic construction
techniques. The combination of these techniques is used in the proof of
later results, while examples are linked to various families of topological
measures discussed in Sections 3 and 4. In Section 3 we discuss the rela-
tionship between measures and topological measures. For example, if X is
an n-manifold with boundary, n ≥ 2, the family of measures is nowhere
dense in the set of topological measures. The known results included in this
section give the reader an up-to-date picture of connections between mea-
sures and topological measures, and are also necessary for the results of
the last section. The majority of new results are concentrated in Section 4,
where we prove density theorems involving classes of extreme, representable
topological measures and measures.

2. Examples and basic techniques. We will outline two important
techniques for constructing topological measures. One uses q-functions, and
the other uses solid sets. A set is solid if both the set and its complement
are connected. To use the powerful technique of solid sets (developed by
J. Aarnes in [4]) we also assume that X is connected and locally connected.

For simplicity, in this paper we shall also assume that X has a certain
topological characteristic, genus g = 0 (see [4] for details). One way to
describe the “g = 0” condition is the following: if the union of two open
solid sets in X is the whole space, their intersection must be connected.
(See [13].) Intuitively, X does not have holes or loops. In the case where X
is locally path connected, g = 0 if the fundamental group π1(X) is finite (in
particular, if X is simply connected), or, more generally, if the cohomology
module H1(X) = 0 ([14], [17]). A compact, connected, locally connected,
Hausdorff space will be called a q-space, and a q-space with genus 0 will be
called a q0-space. Examples of q0-spaces include the unit ball in Rn, n ≥ 2,
and the unit sphere in Rn, n ≥ 3. Notice that 1-dimensional q0-spaces are
dendrites, i.e. continua that are locally connected and contain no circles.
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Dendrites turn out to be very important in the theory of integration with
respect to topological measures.

Let Cs(X) (respectively Os(X)) denote the family of closed (respectively
open) solid sets in X. If X is a q0-space, a topological measure on X is the
unique extension of a solid set function, i.e. a set function µ : As(X) =
Os(X) ∪ Cs(X)→ R+ such that

(A)
∑n
i=1 µ(Ci) ≤ µ(C) whenever

⊔n
i=1 Ci ⊆ C, Ci, C ∈ Cs(X), i =

1, . . . , n;
(B) µ(U) = sup{µ(C) : C ⊆ U, C ∈ Cs(X)} for all U ∈ Os(X);
(C) µ(A) + µ(X \ A) = µ(X) for all A ∈ A(X).

We will also use q-functions, which were introduced in [7] and elaborated
in [9].

Definition 2.1. A function f : [0, 1]→ [0, 1] is called a q-function if

1. f is continuous from the right;
2. f(0) = 0, f(1) = 1, f(x−) + f(1− x) = 1 for 0 < x ≤ 1;
3.
∑n
i=1 xi < 1 implies

∑n
i=1 f(xi) ≤ f(

∑n
i=1 xi).

Once we have a topological measure (or a solid set function) we may get
a new one by applying a q-function. More precisely, we have the following
theorem proved in [9]:

Theorem 2.2. Let X be a q0-space, µ a topological measure on X, f a
q-function. Define a function ν on solid subsets of X by : ν(C) = f(µ(C))
for all C ∈ Cs(X), and ν(U) = 1 − ν(X \ U) for all U ∈ Os(X). Then
ν = f ◦ µ as defined above is a topological measure on X if and only if f
is continuous on the split spectrum of µ, i.e., on the set {α ∈ (0, 1) : there
exist disjoint closed solid sets C,C ′ ∈ Cs(X) with µ(C) = α, µ(C ′) = 1−α}.

In this paper we will use step functions of the form f(Ii) = i/n where
Ii = [i/(n+ 1), (i+ 1)/(n+ 1)) for i = 0, . . . , n and In+1 = [n/(n+ 1), 1].
We call such functions regular (n+ 1)-valued step q-functions.

On the space of all normalized topological measures on X, denoted by
TM(X), we consider the weak∗ topology which can be described as generated
by subbasic open sets:

Û(α) = {µ : µ(U) > α},
where U ∈ Os(X), α ∈ [0, 1]. The space TM(X) is a compact Hausdorff
convex topological space. (See [1]; a more general result is in [16].)

Now we will give some examples of topological measures. In these ex-
amples topological measures are not subadditive, hence not measures. (This
also implies that the corresponding functionals are only quasi-linear, but
not linear.)
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Example 2.3. Let X be the unit square and B be the boundary of X.
Fix a point p in X \ B. Define µ on solid sets as follows: Let µ(A) = 1 if
(i) B ⊂ A, or (ii) p ∈ A and A intersects B. Otherwise, we let µ(A) = 0.
It is not very difficult to see that µ is a solid set function, and hence gives
a topological measure on X. Notice that µ is not subadditive. Let A1 be a
closed solid set consisting of two adjacent sides of the boundary B, and A2

be a closed solid set that is the other two adjacent sides of B. Let A3 be
the open solid set X \B. Then we have: X = A1 ∪A2 ∪A3, µ(X) = 1, but
µ(A1) + µ(A2) + µ(A3) = 0.

Example 2.4. Let X be the unit sphere, and let P = {p1, . . . , pn} be a
set of n distinct points in X, with n an odd number. We define a solid set
function µ on X by letting µ(A) = 1 if A ∩ P contains a majority of points
of P ; otherwise let µ(A) = 0. The resulting topological measure µ is not
subadditive, since it is not difficult to represent X as a union of solid sets
each containing less than half of the points.

The next example is a generalization of the previous one:

Example 2.5. Let X be the unit sphere and P = {p1, . . . , p2n+1} be a
subset of X. We use Theorem 2.2 to obtain a topological measure µ = f ◦ ν
where f is the regular (n + 1)-valued step q-function and ν is the average
of point masses at p1, . . . , p2n+1. If A ∈ As(X) and A contains 2k or 2k+ 1
points from the set P then µ(A) = k/n. Again, it is not difficult to check
that µ is not subadditive.

We already mentioned that measures constitute a subfamily in the space
of topological measures. The examples above will enable us to introduce a
few other families of topological measures in the space TM(X).

One goal of this paper is to show how members of one family of topolog-
ical measures can be approximated by elements of another family. We say
that Y is dense in Z if Z is contained in the closure of Y . The set Z may
or may not be a subset of Y .

3. Measures and simple topological measures

Definition 3.1. A topological measure is simple if it only assumes val-
ues 0 and 1.

Note that the only simple measures are point masses. Examples 2.3
and 2.4 show that there are simple topological measures that are not mea-
sures.

Definition 3.2. A topological measure µ on X is finitely defined if there
is a finite subset P of X such that

∑n
i=1 µ(Ai)≤µ(A) whenever

⊔n
i=1(Ai∩P )

⊆ A ∩ P and A,A1, . . . , An ∈ As(X).
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Topological measures in Examples 2.4 and 2.5 are finitely defined, where-
as the topological measure in Example 2.3 is not. Later on we will use the
following theorem, first proved by F. Knudsen in [17].

Theorem 3.3. Any simple topological measure on a q0-space can be ap-
proximated by finitely defined simple topological measures.

For the sake of completeness we will give a short proof of the theorem,
based on the following definition and lemma.

Definition 3.4. A family of sets {Ak}nk=1 is called linked if Ai∩Aj 6= ∅
for any i, j ∈ {1, . . . , n}.

Lemma 3.5. Let {Uk}nk=1 (where n ≥ 1) be a linked family of open solid
subsets of a q0-space X. Then there exists a simple finitely defined topological
measure µ such that µ(Uk) = 1 for all k = 1, . . . , n.

Proof. The proof is by induction on n.

• n = 1. We may choose µ to be a point mass δx for any x ∈ U1.
• n = 2. Take µ = δx for any x ∈ U1 ∩ U2.
• Assuming the result for n, we will prove the statement in the case n+1,

where n ≥ 2. Let {Uk}n+1
k=1 be a linked family of open solid sets. For each

j ∈ {1, . . . , n} the set {Uk : k 6= j} is a linked family of n sets. By assumption
there exists a {0, 1}-valued finitely defined topological measure µj such that
µj(Uk) = 1 for all k 6= j. Consider a topological measure ν = (µ1 + . . .
. . .+µn+1)/(n+ 1) if n is even and ν = (µ1 +µ1 +µ2 + . . .+µn+1)/(n+ 2)
if n is odd. Then ν is finitely defined and for all j ∈ {1, . . . , n+ 1}, ν(Uj) >
1/2. If q is the regular 2-valued q-function, then by Theorem 2.2, µ = q ◦ ν
is a simple finitely defined topological measure, and µ(Uj) = 1 for all j =
1, . . . , n+ 1.

Proof of Theorem 3.3. Let µ be a simple topological measure in a basic
open set W =

⋂n
i=1 Ûi(αi) in the space TM(X), where each αi ∈ (0, 1), and

Ui is a solid subset of X. Then µ(Ui) > αi, i.e. µ(Ui) = 1 for i = 1, . . . , n.
This implies that the family {Ui}ni=1 is a linked family of open solid sets.
(Otherwise, there would be disjoint sets Ui, Uj , and then µ(X) ≥ µ(UitUj)
= µ(Ui) + µ(Uj) = 2, which is a contradiction.) By Lemma 3.5 there exists
a finitely defined simple topological measure which belongs to W .

In view of Theorem 3.3 one may ask whether any topological measure
can be approximated by finitely defined ones. The affirmative answer to this
question is given in [6].

Theorem 3.6. Finitely defined topological measures are dense in the col-
lection of all topological measures on a q0-space.
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The set of measures on X is a closed convex subset of TM(X). This
statement is easy to check using the description of the topology on TM(X)
given by quasi-linear functionals: µα → µ if and only if for the correspond-
ing functionals we have %α(f) → %(f) for all f ∈ C(X). The relationship
between topological measures and quasi-linear functionals is given in the
Aarnes Representation Theorem (see [2]). If µ is a measure, then the cor-
responding functional is linear, and the relationship between the two is the
standard one, given by the Riesz Representation Theorem.

Theorem 3.7. If X is a compact n-manifold with boundary , n ≥ 2,
then the family of measures is nowhere dense in the space TM(X).

This theorem holds for an arbitrary genus of X. In this paper we are
interested in the situation g = 0, which we discussed above. For the general
definition of genus the reader is referred to [4].

Proof. Let m be a measure in W =
⋂l
j=1 Ûj(αj), a non-empty basic

open set in the space TM(X). In particular, m(Uj) > αj for j = 1, . . . , l. By
the Krein–Milman Theorem, m is approximated by a convex combination of
extreme points of TM(X) which are measures, i.e. by a convex combination
of point masses. We may assume that

m =
n∑

i=1

riδi

where ri are rational numbers and δi are point masses at points pi. We may
rewrite m as

m =
q1δ1 + . . .+ qnδn

q

where q = q1 + . . . + qn. Let V1, . . . , Vn be q0-neighborhoods around the
points p1, . . . , pn so that each Vi is in the same Uj as the point pi. Inside
each Vi we may construct a topological measure µi which is not a measure.
(For instance, a topological measure as in Examples 2.3 or 2.4 will do.) Then

µ =
q1µ1 + . . .+ qnµn

q

is a topological measure which is not a measure, since its restriction to each
Uj is not a measure. We also have

µ(Uj) ≥
{∑

qiµ(Vi)/q : Vi ⊂ Uj
}

=
{∑

qi/q : pi ∈ Uj
}

= m(Uj) > αj ,

in other words, a topological measure µ is in W .

From the previous proof it is easy to see that measures are nowhere
dense in the collection of topological measures on X if each point of X
has a contractible neighborhood of dim ≥ 2. The dimension condition is
the crucial one. Work on the theory of topological measures and dimension
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theory initiated by R. Wheeler, and continued by D. Shakmatov, D. Fremlin,
and D. Grubb, describes a very different relationship between measures and
topological measures on a space of dimension not greater than 1. See [19],
[18], [10] or [12] (a more general result).

Theorem 3.8. If dim(X) ≤ 1 then any topological measure is a mea-
sure, i.e. the family of measures is TM(X).

4. Representable and extreme topological measures

Definition 4.1. We say a topological measure is representable if it be-
longs to the closed convex hull of the set of simple topological measures.

Representable topological measures (and corresponding functionals that
are also called representable) were introduced by J. Aarnes in [3]. The next
theorem we state is due to J. Aarnes as well.

Let X∗ denote the set of all simple topological measures on X, and
P(X∗) be the collection of all subsets of X∗. Define a map Ψ∗ : A(X) →
P(X∗) by Ψ∗(A) = {µ ∈ X∗ : µ(A) = 1}.

Theorem 4.2. For each positive, regular Borel measure m on X∗ with
m(X∗) = 1 the set function µ defined by

(∗) µ(A) = (m ◦ Ψ∗)(A) for A ∈ A(X)

is a representable topological measure on X. Conversely , for each repre-
sentable topological measure µ on X there is a positive, regular Borel mea-
sure m on X∗ with m(X∗) = 1 satisfying condition (∗).

The proof of this theorem and other facts about representable topological
measures and quasi-linear functionals are in [3].

Any measure is a representable topological measure. However, we will
show below that representable topological measures do not give the whole
space TM(X).

To discuss extreme topological measures we will use the notion of a
solidly chainable space. Let F be a finite collection of subsets of X. We
denote the number of elements of F by |F|. For a subset C ⊆ X let n(C)
be the number of sets from F that are subsets of C. Thus n(C) ≤ |F| for
any set C.

Definition 4.3. A finite family F = {F1, . . . , Fm} of sets is chained if
Fi ∩ Fj = ∅ if and only if 1 < |i− j| < m− 1.

Definition 4.4. A space X is solidly chainable with respect to a finite
subset P if for a chained family F = {F1, . . . , Ft} of subsets of P and a
closed solid set C1 in X, with n(C1) ≥ 1, which contains sets F1, . . . , Fn(C1)

and does not intersect (
⋃F)\(F1∪. . .∪Fn(C1)), there exists a chained family
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{C1, . . . , Cm} of closed solid sets such that n(Ci) = 1 for i = 2, . . . ,m, where
m = t− n(C1) + 1.

X is solidly chainable if it is solidly chainable with respect to any finite
subset.

Notice that since F is a chained family, in Definition 4.4 the assumption
that C1 contains sets F1, . . . , Fn(C1) may be replaced by the assumption that
C1 contains n(C1) consecutive members of F .

Example 4.5. The unit sphere Sk is solidly chainable for k ≥ 2. In fact,
given C1 with n(C1) = 1, one may choose closed solid arcs C2, . . . , Cm as
follows. Beginning with t > 3 (the only interesting case), let C2 be an arc
such that C2 ∩P = F2. For i = 3, . . . ,m− 1 choose Ci to be an arc through
the points of Fi such that Ci ∩ (C1 ∪ . . . ∪ Ci−1) is an arc through the
points of Fi ∩ Fi−1. Let Cm be an arc through the points of Fm such that
Cm ∩ (C2 ∪ . . . ∪ Cm−1) is an arc through the points of Fm ∩ Fm−1.

Similarly, the unit ball Bk is solidly chainable with respect to any finite
set F that does not intersect the boundary of the ball for k = 1, 2. For k ≥ 3
the unit ball Bk is solidly chainable with respect to any finite set.

Notice that if X is a unit square in R2 and P is a finite subset of X that
has points on the boundary of the square, then X may not be solidly chain-
able with respect to P . Suppose P = {p1, p2, p3, p4} where each segment
of the boundary contains exactly one of these points, and points p1, p2 are
on the opposite segments. Then F = {{p1, p2}, {p2, p3}, {p3, p4}, {p4, p1}}
is a chained family of subsets of P with no corresponding chained family
of closed solid sets. Any solid set in X containing points p1, p2 cannot be
disjoint from a solid set containing points p3, p4.

Remark 4.6. Topological measures in all three examples in Section 2 are
extreme points in the space TM(X). Notice that the only extreme measures
are point masses. Theorems 4.7 (which is proved in a more general form
in [9]) and 4.8 show that we have a large family of extreme topological
measures.

Theorem 4.7. Let µ1, . . . , µ(n+1)l−1 (where n, l are natural numbers) be
simple topological measures on X that are finitely defined by disjoint sets, µ
be the average of µ1, . . . , µ(n+1)l−1, and q be the regular (n+ 1)-valued step
q-function. If X is a solidly chainable q0-space then ν = q◦µ is a topological
measure on X that is extreme if and only if n = 1 or l ≥ 2.

This theorem shows that for any natural n there are infinitely many
extreme topological measures that assume values 0, 1/n, . . . , 1.

Theorem 4.8. Extreme topological measures are dense in the set of rep-
resentable topological measures on a solidly chainable q0-space.
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Proof. To prove the theorem we need to show that if µ is a convex
combination of simple topological measures that belongs to a basic open set
W of TM(X) then there exists an extreme topological measure ν which is
also in W .

Let µ be a convex combination of simple topological measures which
belongs to a basic open set W =

⋂l
i=1 Ûi(αi) in the space TM(X), where

each Ui is a solid subset of X and αi ∈ (0, 1). Whenever {Uj}j∈J is a
disjoint subcollection of {U1, . . . , Ul} we have

∑
j∈J αj < 1, since otherwise

we would have µ(X) ≥ ∑j∈J µ(Uj) >
∑
j∈J αj ≥ 1. Choose βi such that

αi < βi < µ(Ui) for i = 1, . . . , l. In other words, µ ∈ W ′ ⊆ W , where
W ′ =

⋂l
i=1 Ûi(βi).

Suppose µ =
∑m
i=1 riµi with

∑m
i=1 ri = 1. We may assume that all ri

are rational. Using Theorem 3.3 we may also assume that all µi are finitely
defined simple topological measures. Then we can write

µ =
k1µ1 + . . .+ kmµm∑m

i=1 ki
.

Multiplying the numerator and the denominator by an appropriate inte-
ger we may take the denominator to be as large a number as we wish. For a
sufficiently large denominator, adding a point mass to one of the sets Ui will
give a new topological measure that is still in W ′. Hence we may assume
that the denominator is an odd number.

If λ is any finitely defined topological measure determined by the set
F1, we may replace kλ with k different topological measures λ1, . . . , λk that
are determined by disjoint finite sets. We just need to move the set F1 that
defines λ a little bit to get disjoint “copies” of it, sets F2, . . . , Fk, so that
|Fj ∩ Ui| = |F1 ∩ Ui| for all j = 2, . . . , k and all i = 1, . . . , l. Hence, we may
now consider µ ∈W ′ of the form

µ =
µ1 + . . .+ µm

m
,

where µi are simple topological measures finitely defined by disjoint sets,
and m is as large an odd number as we wish.

Choose m = 2n+ 1 so that 1/(n+ 1) < min{βi−αi : i = 1, . . . , l}. Then
for i = 1, . . . , l there exist ji such that

αi ≤
ji

n+ 1
<
ji + 1
n+ 1

< βi < µ(Ui).

Let q be the regular (n+1)-valued step q-function, i.e. q
([

j
n+1 ,

j+1
n+1

))
= j/n

for j = 0, . . . , n − 1, and q
([

n
n+1 , 1

])
= 1. By Theorem 4.7 the topological

measure ν = q ◦ µ is extreme. For i = 1, . . . , l we have

ν(Ui) = q(µ(Ui)) > ji/n > ji/(n+ 1) ≥ αi.
This means that the extreme topological measure ν is in W .
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Theorem 4.9. Let X be a solidly chainable q0-space. Then measures
on X are approximated by extreme topological measures.

Proof. This follows from Theorem 4.8 and the fact that any measure is
a representable topological measure.

In the proof of the next theorem we will need the following result (see
Lemma 2.22 in [9], and Lemma 3.3 in [4]):

Lemma 4.10. Let X be a q-space. Let K ⊆ U , where K ∈ C(X) and
U ∈ Os(X), or K ∈ Cs(X) and U ∈ O(X). Then there exist V ∈ Os(X)
and C ∈ Cs(X) such that K ⊆ V ⊆ C ⊆ U .

Theorem 4.11. Suppose that X is a solidly chainable q0-space. For
n ≥ 1 let q be the regular (n + 1)-valued step q-function, and µ = (µ1 +
. . .+ µ2n+1)/(2n+ 1), where µ1, . . . , µ2n+1 are simple topological measures
on X finitely defined by disjoint sets. Then the extreme topological measure
ν = q ◦ µ is representable if and only if n = 1.

Proof. (⇒) If n = 1 then the topological measure ν is simple, hence
representable.

(⇐) Let n ≥ 2. By Theorem 4.7, ν is an extreme topological measure.
We will show that ν is not representable. Choose a positive number α which
satisfies the inequality

1
n+ 1

<
2

2n+ 1
< α <

1
n

=
2

2n
.

Then we also have:

(n+ 1)α > 1, i.e. 1− nα < α,(∗)

(n+ 1)α >
2(n+ 1)
2n+ 1

, i.e.
2(n+ 1)
2n+ 1

− nα < α.(∗∗)

Now we will outline the construction of a basic open set W in TM(X)
of the form

W =
2n+1⋂

i=1

Ûi(α),

where Ui are open solid sets in X that are linked in a circular chain, i.e.
Ui ∩ Uj = ∅ if and only if 1 < |i− j| < 2n.

Suppose P1, . . . , P2n+1 are disjoint finite sets determining µ1, . . . , µ2n+1.
Form a family of 2n + 1 finite sets: F = {{P1 t P2}, . . . , {P2n+1 t P1}}.
By Lemma 4.10 there exists a solid set C1 containing the set P1 t P2.
Since X is solidly chainable, we may find solid sets C2, . . . , C2n+1 containing
the sets P2 t P3, . . . , P2n+1 t P1 respectively, that are linked in a circular
chain. Using Lemma 4.10 we may enlarge C1, . . . , C2n+1 to open solid sets
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U1, . . . , U2n+1 that form a circular chain and contain respectively the sets
P1 t P2, . . . , P2n+1 t P1.

Notice that ν ∈ W , because ν(Ui) = 1/n > α for i = 1, . . . , 2n + 1.
We will show that no convex combination of simple topological measures is
in W .

Suppose the opposite. Let ν ′ =
∑m
j=1 λjνj , where νj are simple topolog-

ical measures and
∑m
j=1 λj = 1, be in W . For each i = 1, . . . , 2n+1 consider

the set
Ii = {j ∈ {1, . . . ,m} : νj(Ui) = 1}.

Notice that

(a) ν′(Ui) =
∑
j∈Ii λj .

(b) α < ν′(Ui) < 1 − α for i = 1, . . . , 2n + 1. (Since n ≥ 2, for any Ui
we may find a disjoint set Uj . Then ν′(Ui) + ν′(Uj) ≤ 1. Using the fact that
ν′ ∈W we get α < ν ′(Ui) ≤ 1− ν′(Uj) < 1− α.)

(c) Ui ∩ Uk = ∅ ⇒ Ii ∩ Ik = ∅. (If there exists j ∈ Ii ∩ Ik, then νj(X) ≥
νj(Ui) + νj(Uk) = 2, which is a contradiction.)

Introduce sets Ei = Ii ∩ Ii+1 for i = 1, . . . , 2n and E2n+1 = I2n+1 ∩ I1,
and consider two cases.

Case 1: There exists i ∈ {1, . . . , 2n+ 1} such that Ei = ∅. Say, E1 = ∅,
i.e. I1 ∩ I2 = ∅. Then using the disjointness of U2, U4, . . . , U2n and (c) above
we obtain a disjoint union I1 t I2 t I4 t . . . t I2n. Note that

∑
{λj : j ∈ I1 t I2 t I4 t . . . t I2n} ≤

m∑

i=1

λi = 1.

Then

ν′(U1) =
∑

j∈I1
λj ≤ 1−

∑

j∈I2
λj −

∑

j∈I4
λj − . . .−

∑

j∈I2n
λj

= 1− ν′(U2)− ν′(U4)− . . .− ν′(U2n) < 1− nα < α

by inequality (∗). But if ν ′(U1) < α, then ν ′ cannot belong to W . This is a
contradiction.

Case 2: For all i ∈ {1, . . . , 2n+1}, Ei 6= ∅. Note that we have a disjoint
union E1 t . . . t E2n+1. (If Ei ∩ Ek 6= ∅ then Ii ∩ Ii+1 ∩ Ik ∩ Ik+1 6= ∅,
which is impossible, since at least two of the sets Ui, Ui+1, Uk, Uk+1 are
disjoint.) Then

∑2n+1
i=1

∑
j∈Ei λj ≤ 1. For at least one i we have

∑
j∈Ei λj ≤

1/(2n+ 1). We may assume that
∑

j∈E1

λj ≤
1

2n+ 1
.



250 S. V. Butler

Now we have

ν′(U2) =
∑

j∈I2
λj

=
∑
{λj : j ∈ I2 ∩ (I1 t I4 t . . . t I2n)}

+
∑
{λj : j ∈ I2 \ (I1 t I4 t . . . t I2n)}

=
∑
{λj : j ∈ I2 ∩ I1}+

∑
{λj : j ∈ I2 \ (I1 t I4 t . . . t I2n)}

=
∑
{λj : j ∈ E1}+

∑
{λj : j ∈ I2 \ (I1 t I4 t . . . t I2n)}

≤
∑
{λj : j ∈ E1}+

∑
{λj : j ∈ {1, . . . , 2n+ 1} \ (I1 t I4 t . . . t I2n)}

≤ 1
2n+ 1

+ (1− nα) =
2(n+ 1)
2n+ 1

− nα < α

by (∗∗). Hence, ν ′(U2) < α, which contradicts the fact that ν ′ ∈W .

Remark 4.12. The previous theorem stays true if

µ =
µ1 + . . .+ µ(n+1)l−1

(n+ 1)l − 1
,

where l ≥ 2 and µi’s are finitely defined by disjoint sets. The proof given is
for the case l = 2 and generalizes to arbitrary l.

Corollary 4.13. There are infinitely many non-representable finitely
defined topological measures on a solidly chainable q0-space.

Proof. Non-representable extreme topological measures in Theorem 4.11
and in Remark 4.12 are also finitely defined.
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