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Abstract. We prove that for i ≥ 1, the arithmetic I∆0 + Ωi does not prove a variant
of its own Herbrand consistency restricted to the terms of depth in (1 + ε) logi+2, where
ε is an arbitrarily small constant greater than zero.

On the other hand, the provability holds for the set of terms of depths in logi+3.

1. Introduction. One of the main methods of showing that one set of
axioms, say T , is strictly stronger than another one, say S ⊆ T , is to show
that T ` ConS . However, as proved by Wilkie and Paris [WP87], this method
does not work for theories of bounded arithmetic if we use the usual Hilbert
style provability predicate. Indeed, they proved that even the strong arith-
metic I∆0 + exp does not prove the Hilbert style consistency of Robinson’s
arithmetic Q, that is, I∆0 +exp does not prove that there is no Hilbert proof
of 0 6= 0 from Q. Thus, if we hope to prove that one bounded arithmetic
is stronger than another one by using consistency statements we should use
some other provability notions, like tableaux or Herbrand provability. Indeed,
for these notions it is usually easier to show that a given theory is consistent
since, e.g., Herbrand proofs are of larger size than Hilbert ones. Thus, it may
happen in a model of I∆0 +exp that a theory S is inconsistent in the Hilbert
sense and consistent in the Herbrand sense. Only when we know that the su-
perexponentiation function is total we can prove the equivalence of the above
notions of provability. (The superexponentiation function is defined by the
inductive conditions supexp(0) = 1 and supexp(x+1) = exp(2, supexp(x)).)
For some time it has even been unknown whether the second Gödel incom-
pleteness theorem holds for the arithmetics I∆0 + Ωi and the Herbrand style
provability predicate. Adamowicz and Zbierski [AZ01] proved, for i ≥ 2,
the second incompleteness theorem for I∆0 + Ωi and the Herbrand notion
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of consistency, and later Adamowicz [A01] proved this result for I∆0 + Ω1.
Recently, Kołodziejczyk [K06a] showed a strengthening of these results. He
proved that there is a finite fragment S of I∆0 + Ω1 such that no theory
I∆0 + Ωi proves the Herbrand consistency of S. Thus, if one wants to prove
strict hierarchy of bounded arithmetics by means of provability of Herbrand
consistency one should consider a thinner notion, e.g., Herbrand proofs re-
stricted to some definable cuts of a given model of a bounded arithmetic.
Such a study is the main subject of our paper.

Now, we state our main result. Let logn be the set of elements a such the
nth iteration of exp on a exists. If exp is not provably total in T then there
are models of T in which not all elements are in logn. For C > 0, C logn

is the set of elements a such that there exists b in logn such that a is less
than or equal to Cb. Let us observe that the above notions are definable by
existential formulas.

We consider Herbrand consistency statements parametrized by a stan-
dard integer N . This parameter tells us how good a Herbrand evaluation is
on a given set of terms. Namely, the truth value of formulas with codes less
than N has to be decided. We show that for some fixed N , for each i ≥ 1,
I∆0 + Ωi does not prove its Herbrand consistency, restricted to the terms of
depth in (1+ε) logi+2, where ε > 0 (see Theorem 4.12). That is, for some N ,
for each i ≥ 1 and each ε > 0,

I∆0 + Ωi 0 HCons(N, I∆0 + Ωi, (1 + ε) logi+2).

On the other hand it may be proved by standard methods that for each i,

for each N , I∆0 + Ωi ` HCons(N, I∆0 + Ωi, logi+3),

that is, I∆0 +Ωi proves its Herbrand consistency restricted to terms of depth
logi+3 (see Theorem 3.2).

It is tempting to close the gap by proving, at least for some i ≥ 1, either
that

(1.1) for each N , I∆0 + Ωi ` HCons(N, I∆0 + Ωi, logi+2)

or

(1.2) I∆0 + Ωi 0 HCons(N, I∆0 + Ωi, A logi+3) for some N,A ∈ N.

Indeed both conjectures (1.1) and (1.2) have interesting consequences for
bounded arithmetics. If (1.1) holds then I∆0 + Ωi+1 would not be Π1-
conservative over I∆0 + Ωi. This is so because logi+2 is closed under ad-
dition in the presence of Ωi+1. Thus, in I∆0 + Ωi+1 the cuts logi+2 and
(1+ε) logi+2 are the same. It would then follow from (1.1) that I∆0 +Ωi+1 `
HCons(I∆0 + Ωi, A logi+2) for each A ∈ N.

On the other hand, if (1.2) holds this would mean that we cannot mimic
the proof of Theorem 3.2 for the cut A logi+3. But the only tool needed in
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that proof which is unavailable in this situation is the existence of a suitable
truth definition for ∆0 formulas. It would follow that there is no such truth
definition for ∆0 formulas whose suitable properties are provable in I∆0+Ωi.
This is related to a major open problem in bounded arithmetics: how much
exponentiation is needed for a truth definition for bounded formulas.

The paper is structured as follows. In Section 2 we introduce all the main
notions needed to define Herbrand consistency, which is the main object of
our study. In that section we present and prove the main technical facts about
these notions. In Section 3 we show which cases of Herbrand consistency are
indeed provable. Then, in Section 4 we use the tools assembled in Section 2
to prove our main result about unprovability of Herbrand consistency.

2. Basic notions and facts. In this section we present some basic
notions and we prove their properties which will be used throughout the
paper. We state some properties of coding of terms and formulas. Then we
define evaluations on a set of terms and describe how an evaluation can
be used to define a model. We also state some combinatorial properties of
evaluations like the Estimation Lemma. They will be used in proving our
main result but the reader may want to skip some combinatorial arguments
in this section on a first reading. We end this section with a suitable definition
of Herbrand consistency.

For a detailed treatment of bounded arithmetics we refer to [HP93]. We
consider bounded arithmetics theories I∆0+Ωi, for i ≥ 1. I∆0 is just the first
order arithmetic with the induction axioms restricted to bounded formulas,
i.e. formulas with quantification of the form Qx ≤ t(z̄), where Q ∈ {∃, ∀},
x 6∈ {z̄} and t is a term in a language of I∆0 + Ωi (that is, using only +,×
and ωi function symbols). For i ≥ 1, the axiom Ωi states the totality of
the function ωi. The functions ωi are defined as follows. Let log(x) be the
logarithm with base 2. Let lh(x) be the length of the binary representation
of x,

lh(x) = plog(x+ 1)q.

Now,

ω1(x) =
{

0 if x = 0,
2(lh(x)−1)2 if x > 0,

ωi+1(x) =
{

0 if x = 0,
2ωi(lh(x)−1) if x > 0.

Let exp(x) = 2x. The following relation between exp and ωi will be
important for us: for all i ≥ 1 and all k,

(2.1) ωki (expi+2(0)) = expi+2(k).

This equality allows us to infer the existence of the (i+ 2)th iterated exp on
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a number k from the existence of an interpretation for a term ωki (expi+2(0)).
We will also need the supexp(x) function defined by the conditions supexp(0)
= 1 and supexp(x + 1) = exp(supexp(x)), and the log∗(x) function, which
is a kind of inverse of supexp, defined as

log∗(x) = max({i ≤ x : supexp(i) ≤ x} ∪ {0}).

We extend the language by adding a function symbol s∃xϕ of arity n for
each formula ∃xϕ with n free variables.

We identify terms and formulas with their Gödel numbers. A numeral for
a number i is denoted i and its Gödel number is assumed to be 2i. We take
the tree depth of i to be log2(i). The tree depth of other terms is defined by
the inductive condition

tr(f(t1, . . . , tk)) = 1 + max{tr(ti) : i ≤ k}.

By the depth of a term t we define the maximum of its tree depth and the
size of the greatest function symbol in t, that is,

dp(t) = max({f : f occurs in t} ∪ {tr(t)}).

For a set of terms Λ, the depth of Λ is dp(Λ) = max{dp(t) : t ∈ Λ}.
It may seem arbitrary to define the tree depth of i to be tr(i) = log2(i),

especially when we recall that the tree depth of the usual binary represen-
tation of i is log(i). However, we can construct a canonical term i denoting
a number i of tree depth O(log2(i)). Indeed, if for each number k ≤ i there
is a term k of tree depth x then each number r < i2 may be decomposed as
r = ki + m with k,m < i and we can write the term for r as r = k · i + m
of tree depth x + 2. This leads to a recursive dependence, that terms for
numbers less than 22n can be written with tree depth 2n = 2 log2(22n

).
For simplicity of arguments we define the tree depth of a term i to be just
log2(i).

We do not fix one particular coding method. Indeed, any usual, efficient
coding is good for our purpose. We only state some properties which we
require from a coding.

We assume that if ϕ′ is a subformula of ϕ then the length of the code of
ϕ′ is not greater than that of ϕ, lh(ϕ′) ≤ lh(ϕ). We assume that a code of
a term sϕ(t1, . . . , tk) is not greater than (ϕ

∏
i≤k ti)

O(1). The last expression
should be read simply as a product of numbers coding the formula ϕ and
terms ti, for i ≤ k. Let us remark that usual efficient codings possess this
property. Indeed, for the length of a term t = sϕ(t1, . . . , tk) we have

(2.2) lh(ϕ) +
∑
i≤k

lh(ti) ≤ lh(t) ≤ A
(

lh(ϕ) +
∑
i≤k

lh(ti)
)
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for some integer A ∈ N. Thus, t ≤ 2A(lh(ϕ)+
P

i≤k lh(ti)) and

t ≤
(
ϕ
∏
i≤k

ti

)A
.(2.3)

Later we will refer to the constant A from the above formulas. However,
note that the precise value of A depends on the coding method one uses.

An evaluation p on a set of terms Λ is a boolean function from Λ2 into
{0, 1}. A given evaluation p tells us which terms are equal under p. That is,
t equals t′ under p if p(t, t′) = 1. For an evaluation p on Λ we define a model
M(Λ, p). The equality relation of M(Λ, p) is given by p(t, t′) = 1. Then, for
a function symbol f and terms t1, . . . , tk the value of f on t1, . . . , tk is just
f(t1, . . . , tk). We define the ordering in M(Λ, p) as: t ≤ t′ if and only if there
is s ∈ Λ such that p(t + s, t′) = 1. Thus, we adopt the standard method of
defining the ordering relation.

Let us observe thatM(Λ, p) is a well defined model if and only if Λ has the
property that if f is a function symbol in our language and t1, . . . , tar(f) ∈ Λ,
then f(t1, . . . , tar(f)) ∈ Λ. To have the equality relation well defined we
have to require that the relation on terms given by p(t, t′) = 1 is reflexive,
symmetric and transitive. Moreover, it should be a congruence relation with
respect to the operation of applying a function symbol, that is, for each
t1, . . . , tn and s1, . . . , sn and for each n-ary function symbol f ,

if for each i ≤ n, p(ti, si) = 1 then p(f(t1, . . . , tn), f(s1, . . . , sn)) = 1.

We assume that all the evaluations to be considered satisfy the above con-
ditions.

Let us note that, assuming some coding, all the above notions are ex-
pressible in arithmetic. Let M |= I∆0. We will say that Λ is a set of terms
in M if Λ is an element of M which satisfies the definition of being a set
of terms. Since such a definition may be written as a ∆0 formula, say ϕ(x),
we have M |= ϕ(Λ). We use the same convention to state that an element
p ∈M is an evaluation on Λ, that is, p and Λ satisfy inM a ∆0 arithmetical
formula which states that x is an evaluation of y.

If Λ is a set of terms in M , it may contain some elements which are
not terms in our sense. Nevertheless, it is possible to treat all elements of Λ
as terms by using the satisfaction relation of M . E.g. if (2a) ∈ Λ for some
nonstandard a, then 2a can be thought of as a numeral a denoting a.

Now, let Λ ∈ M be a set of terms in M . For I ⊆ M we denote by Λ�I
the subset of terms from Λ with depths in I, that is,

Λ�I = {t ∈ Λ : dp(t) ∈ I}.
If I is a cut inM (that is, I is downward closed and closed under successors)
thenM(Λ�I, p) is a well defined model (where we also restrict the evaluation



196 Z. Adamowicz and K. Zdanowski

p to Λ�I). Indeed,M(Λ�I, p) is closed under the operations of the arithmeti-
cal signature. If terms t1, t2 are in Λ�I then the result of adding t1 and t2 is
the term t1 + t2. Its depth dp(t1 + t2) = max{dp(t1), dp(t2)}+ 1 is in I, pro-
vided that dp(t1), dp(t2) ∈ I. Thus M(Λ�I, p) is closed under addition (and
the same argument applies to multiplication, successor and ωi functions).
Let us observe that Λ�I is not an element of M even if Λ is.

In the definition below and in the rest of this article we deal with formulas
in prenex normal form only. Thus, if we write ¬ϕ for ϕ in prenex normal
form we assume that negation is pushed into the quantifier free part of ϕ
using the rules ¬∃x γ ≡ ∀x¬γ and ¬∀x γ ≡ ∃x¬γ.

Definition 2.1. For a formula ϕ(x1, . . . , xn) and terms t1, . . . , tn we
define a sequence of terms s1, . . . , sr by induction on the complexity of ϕ.

If ϕ is quantifier free then the sequence for ϕ and t1, . . . , tn is just
t1, . . . , tn.

If ϕ = ∃xψ(x1, . . . , xn, x) then the sequence for ϕ and t1, . . . , tn is the
sequence for ψ(x1, . . . , xn, x) and terms t1, . . . , tn, s∃xψ(x1,...,xn,x)(t1, . . . , tn).

If ϕ = ∀xψ(x1, . . . , xn, x) then the sequence for ϕ and t1, . . . , tn is the
sequence for ¬ψ and terms t1, . . . , tn, s∃x¬ψ(x1,...,xn,x)(t1, . . . , tn).

We then call s1, . . . , sr the terms needed to evaluate ϕ(x1, . . . , xn) on
t1, . . . , tn or just the sequence of terms for ϕ and t1, . . . , tn.

As we will see, the definition of the relation p |= ϕ[t1, . . . , tn], in order to
work properly, requires all terms s1, . . . , sr to be in Λ.

Definition 2.2. Let t1, . . . , tn ∈ Λ and ϕ(x1, . . . , xn) be a formula. We
say that (ϕ, t1, . . . , tn) is good enough (g.e. for short) for Λ if all terms from
the sequence for ϕ and t1, . . . , tn are in Λ.

Since the sequence of terms needed to evaluate ϕ on t1, . . . , tn is the same
as the sequence needed to evaluate ¬ϕ on t1, . . . , tn we have an obvious fact.

Fact 2.3. For each Λ, ϕ and t1, . . . , tn ∈ Λ, (ϕ, t1, . . . , tn) is g.e. for Λ
if and only if (¬ϕ, t1, . . . , tn) is g.e. for Λ.

Now, we define the notion of satisfaction for evaluations. Later, we relate
this notion to the satisfaction relation in a model M(Λ, p).

Definition 2.4. Let p be an evaluation on Λ. By induction on ϕ we
define p |= ϕ[t̄] for t̄ ∈ Λ such that (ϕ, t̄) is g.e. for Λ:

• p |= t = t′ if p(t, t′) = 1,
• p |= t ≤ t′ if there is s ∈ Λ such that p |= (t+ s = t′),
• for ϕ quantifier free, p |= ϕ[t̄] if p makes ϕ true in the sense of propo-

sitional logic,
• p |= ∃xϕ(x̄, x)[t̄] if p |= ϕ(x̄, x)[t̄, s∃xϕ(t̄)],
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• p |= ∀xϕ(x̄, x)[t̄] if for all terms t ∈ Λ such that (ϕ, t̄, t) is g.e. for Λ,
p |= ϕ(x̄, x)[t̄, t].

Of course, whenever we write p |= ϕ[t̄] we assume that (ϕ, t̄) is g.e. for Λ.

One can easily prove the following fact by induction on the complexity
of ϕ.

Fact 2.5. Let p be an evaluation on Λ and let ϕ and t̄ be g.e. for Λ. If
if p |= ϕ[t̄] then p 6|= ¬ϕ[t̄].

Definition 2.6. Let T be a theory and let p be an evaluation on Λ. We
call p a T -evaluation if for all ϕ ∈ T such that ϕ is g.e. for Λ, p |= ϕ.

If T has a ∆0 definable set of axioms then the notion of T -evaluation is
definable by a ∆0 formula.

We have the following relation between p |= ϕ and M(Λ, p) |= ϕ.

Proposition 2.7. Let Λ be a set of terms such that for any formula
ψ(x1, . . . , xn, y) and t1, . . . , tn ∈ Λ, the term s∃y ψ(t1, . . . , tn) is also in Λ.
Let p be an evaluation on Λ such that M(Λ, p) is well defined. Then for a
formula ϕ and t̄ ∈ Λ,

if p |= ϕ[t̄] then M(Λ, p) |= ϕ[t̄].

Proof. The proof is a straightforward induction on the complexity of ϕ.
For quantifier free formulas the statement is obvious. If ϕ = ∃y ψ(t̄, y) then
from p |= ϕ[t̄] we deduce that p |= ψ[t̄, s], where s = s∃y ψ(x̄,y)(t̄), and we
may use our inductive assumption to conclude that M(Λ, p) |= ψ[t̄, s] and
that M |= ϕ[t̄].

For ϕ = ∀y ψ(t̄, y) we observe that, by the condition on Λ, for all s ∈ Λ,
(ψ, t̄, s) is g.e. for Λ. It follows that for all s ∈ Λ, p |= ψ[t̄, s]. Since the
universe of M(Λ, p) is made from terms in Λ, the inductive assumption
implies that for all a ∈M , M(Λ, p) |= ψ[t̄, a] and M(Λ, p) |= ϕ[t̄].

Let us observe that it can happen that neither p |= ϕ[t̄] nor p |= ¬ϕ[t̄].
This is the case when e.g. for some ψ(x, y), p |= ¬ψ[t, s∃y ψ(t)] and p |= ψ[t, s],
for some term s. In this case p 6|= ∃y ψ(x, y)[t] and p 6|= ∀y ¬ψ(x, y)[t]. This
is why we need the following definition which describes the situation when
p satisfies, for a given formula ϕ(x̄), the law of excluded middle.

Definition 2.8. Let (ϕ(x1, . . . , xk), t1, . . . , tk) be g.e. for Λ.
An evaluation p on Λ decides (ϕ, t1, . . . , tk) if

p |= ϕ[t1, . . . , tk] or p |= ¬ϕ[t1, . . . , tk].

An evaluation p decides a formula ϕ(x̄) if for each sequence of terms
t̄ ∈ Λ such that (ϕ, t̄) is g.e. for Λ, p decides (ϕ, t̄).

Let N be an integer. An evaluation p on Λ is N -deciding if p decides all
formulas ϕ with codes less than N .
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For formulas which are decided by an evaluation p the satisfaction rela-
tion behaves in a way which is easy to handle.

Lemma 2.9. Let (∀xϕ, t̄) be g.e. for Λ and let p decide ∀xϕ. Then
p |= ∀xϕ[t̄] ⇔ p |= ϕ[t̄, s∃x¬ϕ(t̄)].

Proof. The direction from left to right is obvious. So let us assume p |=
ϕ[t̄, s∃x¬ϕ(t̄)]. Since p decides ∀xϕ we have either

p |= ∀xϕ[t̄] or p |= ∃x¬ϕ[t̄].

But if the latter is true then p |= ¬ϕ[t̄, s∃x¬ϕ(t̄)], which is impossible by our
assumption and Fact 2.5.

We have the following proposition:

Proposition 2.10. Let ϕ = Q1x1 . . . Qnxn ψ(z̄, x1, . . . , xn), where ψ is
quantifier free, and let (ϕ, t̄) be g.e. for Λ. Let p, an evaluation on Λ, decide
ϕ(t̄). Then

p |= ϕ[t̄] ⇔ p |= ψ[t̄, s1/x1, . . . , sn/xn],

where t̄, s1, . . . , sn is the sequence for (ϕ, t̄).

Proof. The proof is an easy induction on the complexity of ϕ. For the
only nontrivial step for the universal quantifier, one uses Lemma 2.9.

The relation p |= ϕ[t̄] is preserved when going to some subsets of the
original set of terms Λ. As a consequence, if Λ′ ⊆ Λ and M(Λ′, p) is a well
defined model, then its properties may be deduced from the properties of p
considered as an evaluation on Λ.

Let us recall that for a cut I ⊆M , Λ�I = {t ∈ Λ : dp(t) ∈ I}.
Proposition 2.11. Let M |= I∆0 and let p ∈ M be an evaluation on a

set of terms Λ ∈M . Let I ⊆M be a cut in M and let p�I be an evaluation
p restricted to Λ�I. If t̄ ∈ Λ�I and p |= ϕ[t̄] then p�I |= ϕ[t̄]. Consequently,
if p |= ϕ[t̄], then M(Λ�I, p�I) |= ϕ[t̄].

Proof. We need to show that for all t̄ ∈ Λ�I, if p |= ϕ[t̄] then p�I |= ϕ[t̄].
For ϕ quantifier free the conclusion is obvious. For ϕ = ∃y ψ(t̄, y) one

uses the fact that the term for Skolem witness, s∃y ψ(x̄,y)(t̄), is a member
of Λ�I, together with the inductive assumption. For the universal quantifier
step one uses the fact that Λ�I is a subset of Λ.

We will write p for an evaluation on a set of terms Λ as well as for its
restriction to any subset of Λ. The last proposition shows that in order to
establish that M(Λ�I, p) |= ϕ, it suffices to show that p |= ϕ when we treat
p as an evaluation on the whole Λ.

The next lemma shows that if an evaluation p decides a formula ∃y ϕ(y, t̄)
then to check whether p |= ∃y ϕ(y, t̄), it suffices to check whether p |= ϕ(s, t̄)
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for some term s ∈ Λ. Indeed, any s is as good as the canonical witness for
∃y ϕ(t̄) which is s∃y ϕ(t̄).

Lemma 2.12. Let p be an evaluation on Λ and let p decide ∃y ϕ(y, t̄).
Then

p |= ∃y ϕ(y, t̄) if and only if
there is s ∈ Λ such that (ϕ, s, t̄) is g.e. for Λ and p |= ϕ(s, t̄).

Proof. To prove the direction from left to right it suffices to take s =
s∃y ϕ(t̄). For the direction from right to left let us assume that there is s0 ∈ Λ
such that (ϕ, s0, t̄) is g.e. for Λ and p |= ϕ(s0, t̄). By definition we have

p |= ∃y ϕ(y, t̄) if and only if p |= ϕ(s∃y ϕ(t̄), t̄).

Thus let us assume, for the sake of contradiction, that

p 6|= ϕ(s∃y ϕ(t̄), t̄).

Since p decides ∃y ϕ(y, t̄), it follows that

p |= ¬∃y ϕ(y, t̄).

This is equivalent to saying that for all s′ ∈ Λ such that (ϕ, s′, t̄) is g.e. for Λ,

p |= ¬ϕ(s′, t̄).

But this contradicts our assumption that p |= ϕ(s0, t̄).

In the next lemma we show a kind of closedness of the relation p |= ϕ
under the Hilbert notion of provability. This lemma will be useful in estab-
lishing that a given T -evaluation p will satisfy some consequences of T .

Lemma 2.13. Let T ` ϕ, let M |= I∆0 and let p ∈M be a T -evaluation
on Λ, where Λ contains all terms of standard depth. If p decides ϕ, then
p |= ϕ.

Proof. In the proof we use the fact that if M |= I∆0 then p and Λ have
all the properties proven above for evaluations.

Let Λ′ ⊆ Λ be the set of all terms in Λ of standard depth. Then M(Λ′, p)
is a well defined model. Moreover, since Λ′ contains all standard terms, each
axiom of T is g.e. for Λ′. Then, as p is a T -evaluation, M(Λ′, p) |= T . Now,
if p |= ¬ϕ, then M(Λ′, p) |= ¬ϕ, which is impossible.

Let T0 be a finite set of axioms of I∆0 which characterize the recursive
properties of successor, addition and multiplication and basic properties of
ordering. We have to put in T0 all axioms which are used in the proof of
Lemma 2.14 below, e.g., such as ∀x ∀y (x ≤ y + 1⇒ (x ≤ y ∨ x = y + 1)).

Lemma 2.14. Let M |= I∆0, let Λ be a set of terms from M such that
{0, . . . , k} ⊆ Λ and let p ∈M be a T0-evaluation on Λ. Then:
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(i) for each t ∈ Λ, i ≤ k, if p |= t ≤ i then there exists j ≤ i, p |= t = j;
(ii) for each i, j ≤ k, i ≤ j if and only if p |= i ≤ j;
(iii) for each i, l,m ≤ k,

• i+ j = m⇔ p |= i+ j = m,
• ij = m⇔ p |= ij = m.

Proof. The proof of (i) is an easy induction on i ≤ k. For i = 0 one
uses the fact that p makes true the following axioms of T : ∀x (0 ≤ x) and
∀x ∀y ((x ≤ y ∧ y ≤ x) ⇒ x = y). Thus, if p |= i ≤ 0 then p |= i = 0. The
induction step follows easily from the fact that p makes true the following
axiom: ∀x ∀y (x ≤ y + 1⇒ (x ≤ y ∨ x = y + 1)).

For (ii) and (iii) one uses the inductive definitions of addition and mul-
tiplication and the properties of the ordering.

The next lemma is a strengthening of Lemma 2.14. It shows that if
{0, . . . , k} ⊆ Λ then any T0-evaluation on Λ has to reflect the truth for ∆0

formulas on {0, . . . , k}, not only equalities between terms. We will use this
for a ∈ M and {0, . . . , a} ⊆ Λ. Then the ∆0 theory of M about {0, . . . , a}
has to be reflected in M(Λ, p).

Lemma 2.15 (Absoluteness Lemma). Let M |= I∆0, let Λ ∈M be a set
of terms such that {0, . . . , k} ⊆ Λ and let p ∈ M be a T0-evaluation on Λ.
Let ϕ be a ∆0 formula with only variables as bounds of quantifiers, such that
values of terms in ϕ(x̄) are not greater than max{x̄}. For all i1, . . . , im ≤ k
such that (ϕ, im, . . . , im) is g.e. for Λ, the following holds in M: if p decides
(ϕ, im, . . . , im) then

ϕ(i1, . . . , im) ⇔ p |= ϕ[i1, . . . , im].

Proof. The proof is by induction on the complexity of ϕ. The case of
atomic formulas holds by Lemma 2.14(ii)&(iii). The bounded quantifier step
can be carried out by using Lemma 2.14(i).

Now, we will estimate the size of terms which occur in the sequence for
a given formula ϕ and t̄. This lemma will be useful for ensuring that terms
needed to evaluate ϕ(t1, . . . , tk) are elements of a given Λ.

Lemma 2.16 (Estimation Lemma). Let ϕ(x1, . . . , xk) be a formula, let
t1, . . . , tk be arbitrary terms and let t1, . . . , tk, w1, . . . , wr be the sequence of
terms needed to evaluate ϕ on t1, . . . , tk. Then, for all i ≤ r,

wi ≤ max{tj : j ≤ k}(ϕE)ϕ(ϕE),

where E is a standard constant.
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Proof. First, we prove by induction on i ≤ r that

wi ≤
(
ϕ
∏
j≤k

tj

)(2A)i

.

By (2.2), let A be such that

lh(sϕ(t1, . . . , tk)) ≤ A
(

lh(ϕ) +
∑
j≤k

lh(tj)
)
.

Then

w1 ≤ 2A(lh(ϕ)+
P

j≤k lh(tj)) ≤ ϕA
(∏
j≤k

tj

)A
≤ ϕ2A

(∏
j≤k

tj

)2A
.

Now, let

wi = sψ(t1, . . . , tk, w1, . . . , wi−1),

wi+1 = sψ
′
(t1, . . . , tk, w1, . . . , wi),

for ψ and ψ′ being subformulas of ϕ. Then we have the following inequalities
(the second follows from the fact that ψ′ is a subformula of ψ; the third uses
the left inequality of (2.2)):

lh(wi+1) ≤ A
(

lh(ψ′) +
∑
j≤k

lh(tj) +
∑
j≤i

lh(wj)
)

≤ A
(

lh(ψ) +
∑
j≤k

lh(tj) +
∑
j≤i−1

lh(wj)
)

+A lh(wi)

≤ A(lh(wi) + lh(wi)) = 2A lh(wi).

Thus, by the inductive assumption,

wi+1 ≤ 22A lh(wi) ≤ (wi)2A ≤
((
ϕ
∏
j≤k

tj

)(2A)i)2A
≤
(
ϕ
∏
j≤k

tj

)(2A)i+1

.

But r, k ≤ log(ϕ), so

wi ≤
(∏
j≤k

tj

)O(1)log(ϕ)

ϕO(1)log(ϕ)

≤ (max{ti : i ≤ r})log(ϕ)O(1)log(ϕ)
ϕO(1)log(ϕ)

≤ (max{ti : i ≤ r})log(ϕ)(ϕO(1))ϕ(ϕO(1))

≤ (max{ti : i ≤ r})(ϕO(1))ϕ(ϕO(1)).

The theorem below is Theorem 1.1 from [A02]. Below, we write x ∈ logn

to indicate that x is within the nth logarithm of a universe. This can be ex-
pressed as ∃x1 . . . ∃xn [Exp(x, xi)∧

∧
1≤i<n Exp(xi, xi+1)], where Exp(x, y, z)

is a ∆0 formula defining (provably in I∆0) the graph of the exponentiation
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function (see [HP93]). For a sequence x̄ = x1, . . . , xk, x̄ ∈ logn should be
read as

∧
1≤i≤k xi ∈ logn. Consequently, ∃x̄ ∈ logn ϕ(x̄) is shorthand for

∃x̄ (x̄ ∈ logn ∧ϕ(x̄)).

Theorem 2.17 (Adamowicz, [A02]). For eachm,n∈N there is a bounded
formula θ(x̄) such that

I∆0 + Ωn + ∃x̄ ∈ logm θ(x̄) is consistent

and
I∆0 + Ωn + ∃x̄ ∈ logm+1 θ(x̄) is inconsistent.

Let us recall that an evaluation p on Λ is a T -evaluation if for each ϕ ∈ T
such that ϕ is g.e. for Λ, p |= ϕ. Then, for an integer N , p is N -deciding if p
decides all formulas ϕ with codes less than N , that is, for each t̄ such that
(ϕ, t̄) is g.e. for Λ, either p |= ϕ[t̄] or p |= ¬ϕ[t̄].

We define the following version of Herbrand consistency.

Definition 2.18. Let N be a standard constant. HCons(N,T, i) is a Π1

arithmetical formula which states that for each set of terms Λ of depth not
greater than i, there exists an N -deciding T -evaluation on Λ.

Let us comment on the above definition. Usually, Herbrand consistency
is formulated as follows. Let sk(ϕ) be the quantifier free formula obtained
after skolemization of ϕ and removing its universal quantifiers. E.g.

sk(∀x ∃y ∀z ∃wP (x, y, z, w)) = P (x, s1(x), z, s2(x, z)),

where s1 and s2 are the Skolem functions for ∃y ∀z ∃wP (x, y, z, w) and
∃wP (x, s1(x), z, w), respectively. Then, for a sequence of terms t̄ and a for-
mula ϕ(x̄) with free variables x̄ let ϕ[t̄] be the formula obtained by substi-
tution of terms t̄ for the variables x̄. Then the Herbrand theorem can be
stated as follows: a formula ϕ is provable in first order logic if and only if
there exists a finite set of terms Λ such that

∨
t̄∈Λ ¬sk(¬ϕ)[t̄] is provable in

propositional logic.
Since we are concerned with consistency, we use an equivalent form: a

formula ϕ is consistent if and only if for each finite set of terms Λ, the formula∧
t̄∈Λ sk(ϕ)[t̄] is consistent in propositional logic.
If a given theory T has equality as the only predicate, a boolean eval-

uation only needs to state which pairs of terms for a skolemized language
are equal. Hence a theory T is consistent if and only if for each finite set
of terms Λ in the skolemized language there is an evaluation p on pairs of
terms from Λ such that p makes true all axioms of T which are g.e. for Λ.

In proving the above equivalence one needs to note that T is consistent
if and only if its skolemization sk(T ) is consistent. The left-to-right direction
of the above equivalence may be easily proved by taking any model M for
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sk(T ). Indeed, we can interpret in M any term from sk(T ) and define an
evaluation from the satisfaction relation of M .

To prove the other direction one needs to observe that sk(T ) is a purely
universal theory. Now, let p be a boolean evaluation on the set of atomic
formulas of sk(T ) with all possible substitutions of terms of sk(T ). If p makes
all axioms from sk(T ) true then, by universality of sk(T ), p defines a model
of sk(T ) on a set of terms. In order to obtain such a p, it is enough, by
compactness, to find good evaluations for each finite set of terms Λ.

Our definition of Herbrand consistency deviates from the above in two
ways. Firstly, we add Skolem functions for all formulas of the form ∃y ψ, not
only for subformulas of axioms of T . This alone does not change the difficulty
of proving Herbrand consistency. Indeed, if a Skolem term does not occur in
the axioms of sk(T ) then we can interpret it freely e.g. as denoting zero. Thus,
more terms do not introduce any difficulty in proving Herbrand consistency.
However, this changes with the requirement that an evaluation should decide
some finite set of formulas less than N .

If sk(T ) has a model, we can interpret any term in this model and con-
struct an evaluation from the satisfaction relation of this model. It is easy to
see that such an evaluation will decide any formula. Thus, the consistency of
sk(T ) gives the existence of an N -deciding evaluation, for any N . However,
in the bounded arithmetic world the requirement of being N -deciding may
increase the difficulty of proving Herbrand consistency. It will follow that
some formulas provable in T will have to be true also in the sense of the
constructed evaluation. Therefore our evaluations will be somewhat better
behaved. However, as we will see in Theorem 3.2 this additional condition
does not restrict the provability of some cases of Herbrand consistency while
it allows us to have an interesting and still natural unprovability result.

We do not specify what is the size of the constant N . We do not need
to fix it because for each i, I∆0 + Ωi ` HCons(N, I∆0 + Ωi, logi+3) for an
arbitrary constant N (Theorem 3.2). On the other hand for our unprovability
result one should takeN so large that evaluations decide all relevant formulas
which occur in the course of the proof of the unprovability of HCons(N, I∆0+
Ωi, (1+ε) logi+2). It will be a large constant but its precise value is irrelevant.
It may seem that N should have some self-referential properties. However,
as we will comment during the proof, it is enough that N is a large constant
definable by a short formula. E.g. it may be of the form expn(2), which is
definable by a formula ∃x0 . . . ∃xn (x0 = 2 ∧

∧
1≤i≤n xi = exp(xi−1)) which

has length linear in n.
We believe that our two theorems on provability and unprovability of

our notion of Herbrand consistency (see Theorems 3.2 and 4.12) justify our
choice. They show that we can come close to some border cases of prov-
ability of Herbrand consistency. Moreover, our discussion at the end of the
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Introduction shows that either way of closing the gap would be interesting.
Nevertheless, one should be aware that in the bounded arithmetic context
not only cut-free proof methods are not equivalent to proofs with cuts but
even various cut-free methods may not be equivalent when we do not have
the totality of exp. This was proven e.g. for tableaux and Herbrand proofs
by Kołodziejczyk ([K06b]).

Finally, let us note that a similar notion of evaluation was used in [AK04].
Evaluations defined there had to decide all Σb

n formulas not greater than a
fixed parameter N and had to reflect the truth of a model for Σb

n formulas
with numerals. Such a notion was related in [AK04] to instances of Σb

n+1

induction on some logk-part of a model.

3. Provability of Herbrand consistency. In this section we exhibit
a case for which Herbrand consistency is provable in bounded arithmetic.
To show that for each M |= I∆0 + Ωi, for a given set terms Λ ∈ M , there
exists in M an N -deciding I∆0 + Ωi-evaluation p, we will construct in M a
set of interpretations H for terms in Λ. Then an evaluation p will be defined
according to H. Intuitively, elements of H are just the real values for terms
in Λ. However, to construct H we should be able to compute values for all
Skolem functions from terms in Λ. This means that we should have a suitable
truth definition. Below, we state the existence of such a truth definition (see
Theorem 5.4 in [HP93]).

Theorem 3.1. There exists a ∆0 formula Tr∆0(ϕ, y, p) with a parameter
p which is, provably in I∆0, a truth definition for ∆0 formulas, whenever a
sufficiently large parameter is substituted for p. Namely, for ϕ(x1, . . . , xn)
and y = 〈b1, . . . , bn〉 one should take p ≥ exp(y)ϕ

c for some standard con-
stant c.

We will use the above truth definition in the proof of the next theorem.
All ∆0 formulas ϕ to which we will apply Tr∆0 will be smaller than log2(y).
Thus, it will be enough for us to take ω1(exp(y)) as parameter.

Theorem 3.2. For each N ∈ ω, I∆0 + Ωi proves its Herbrand consis-
tency restricted to the terms of depth not greater than logi+3 for N -deciding
evaluations, that is,

I∆0 + Ωi ` HCons(N, I∆0 + Ωi, logi+3).

Proof. We prove the theorem for the case of i = 1. The proof for i > 1
is essentially the same.

Let T = I∆0 + Ω1. Let M |= T and let Λ = {t1, . . . , tk} be a set of terms
of depth not greater than some d ∈ log4(M). For simplicity we assume that
if tm is a subterm of tj then m ≤ j. We prove by induction on m ≤ k that
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∃Hm = {ht1 , . . . , htm} ∀j ≤ m [∀a ≤ Λ (tj = a⇒ htj = a)∧
∀r ∀ϕ ≤ Λ ∀(n1, . . . , nr) ≤ Λ (tj = s∃y ϕ(tn1 , . . . , tnr)⇒
htj = the least witness of ∃y ϕ(htn1

, . . . , htnr
) or 0 otherwise)].

Since the theory T is Π1, it is easy to see that the greatest element of Hi

may be only for a term ωd1(0) and is less than exp3(d) ∈ log(M) because d ∈
log4(M). (We assume here that symbols for ω1(x) as well as for multiplication
and addition are of the form s∃y ϕ(x̄).) Thus, to compute the witness for
∃y ≤ t ϕ(htn1

, . . . , htnr
) we may use a universal formula Tr∆0(x, y, a) for

a = ω1(exp4(d)) ∈M .
It is worth mentioning that this is the only place where we use the relation

between the rate of growth of the ω1 function and the 4th logarithm (or, more
generally, between the rate of growth of ωi and the (i+ 3)th logarithm).

It is also easy to see that Hm is small enough to be in M . The number
of terms of depth below d is not greater than dlog(d)d . Indeed, the number of
nodes in the tree for a term of depth not greater than d is at most log(d)d

(log(d) is the branching of the tree and d is the depth of the tree). Since we
have only d labels for these nodes, the number of terms is at most dlog(d)d .
Thus,

card(Hi)≤ log4(M)(log5(M)log
4(M))≤22log6(M)(log4(M)+1)≤22log3(M)≤ log(M).

It follows that the size of Hm, the set of log(M) elements of sizes in log(M),
is not greater than

log(M)log(M) ≤ 2(log(M))2 ,

which is an element of M . Thus we can take an element of M to bound the
quantifier ∃Hm in the induction formula.

Now, we define an evaluation p on Λ = {t1, . . . , tk} according to Hk =
{ht1 , . . . , htk}:

p(t, t′) = 1 ⇔ ht = ht′ .

It suffices to show that p is an N -deciding T -evaluation. By induction on
the complexity of formulas we show that p decides all standard formulas.
Indeed, we show something stronger: for each formula ϕ and for all terms
s1, . . . , sr ∈ Λ,

M |= ϕ[hs1 , . . . , hsr ] ⇔ p |= ϕ[s1, . . . , sr].

For atomic formulas the statement is obvious, as it also is for all quanti-
fier free formulas. Now, let us take a formula ϕ = ∃y ψ(y, x̄) and s̄ ∈ Λ,
s̄ = s1, . . . , sr, such that (ϕ, s̄) is g.e. for Λ. If M |= ∃y ψ[hs1 , . . . , hsr ], then
for s = s∃y ψ(s1, . . . , sr), M |= ψ[hs, hs1 , . . . , hsr ] and, by the inductive as-
sumption, p |= ψ[s, s1, . . . , sr]. So, p |= ∃y ψ[s1, . . . , sr].
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On the other hand, if M |= ¬∃y ψ[hs1 , . . . , hsr ], then for all h ∈ H,
M |= ¬ψ[h, hs1 , . . . , hsr ]. It easily follows by the inductive assumption that
p |= ¬∃y ψ[s1, . . . , sr].

Let us observe that the above argument also works for all nonstandard
∆0 formulas if we change our statement to: for all terms s1, . . . , sr ∈ Λ,

M |= Tr∆0(ϕ, 〈hs1 , . . . , hsr〉, ω1(exp4(d))) ⇔ p |= ϕ[s1, . . . , sr].

As we stated above, Tr∆0(ϕ, 〈hs1 , . . . , hsr〉, ω1(exp4(d))) has in M all the
properties of a ∆0 truth definition.

Now we show that p satisfies bounded induction axioms. Let ϕ(x) be a
∆0 formula. We want to show that

p |= ∀z (¬ϕ(0) ∨ ∃x ≤ z (ϕ(x) ∧ ¬ϕ(x+ 1)) ∨ ϕ(z)).

Let us assume that
M |= Tr∆0(ϕ, 0, exp4(d))

and

M |= ∀x ≤ hsi (Tr∆0(ϕ, x, exp4(d))⇒ Tr∆0(ϕ, x+ 1, exp4(d))),

where hsi is an arbitrary, fixed element of H. If not, then by the remark
above, we could easily show that either p |= ¬ϕ(0) or p |= ∃x ≤ si (ϕ(x) ∧
¬ϕ(x+1)). Now, by ∆0 induction inM for Tr∆0(ϕ, x, exp4(d)) we infer that
M |= Tr∆0(ϕ, hsi , exp4(d)). Thus, p |= ϕ[si]. Since si is arbitrary we have
shown that the induction axiom holds under p.

4. Unprovability of Herbrand consistency. In this section we prove
that for Ti = I∆0 +Ωi, there exists an integer N such that Ti does not prove
its Herbrand consistency restricted to terms of depth in (1+ε) logi+2, for any
ε > 0. However, for simplicity, we present the proof only for the subtlest case
of I∆0 +Ω1. Indeed, only in this case should we take care that all the objects
we construct are inside the model and that the main inductive argument can
be carried out in a bounded induction arithmetic. We encourage the reader
to review the proof after reading it to check how it behaves for i > 1. Indeed,
all estimations then become easier. One should only replace log3 with logi+2,
log4 with logi+3 and ensure that all elements needed in the proof are in the
model.

Therefore, from now on T = I∆0 + Ω1. For the sake of contradiction, till
the end of this section we assume that for all integers N there exists ε > 0
such that

T ` HCons(T, (1 + ε) log3, N).

In fact we will use this assumption for a fixed large value of N and one fixed
ε > 0 chosen for this N .
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Let us also fix a modelM |= T and an element a ∈ log3(M). We will con-
sider only evaluations for the set of Skolem terms for formulas ϕ ≤ log∗(a).
Since our result is about unprovability of HCons, such a restriction only
makes our result stronger.

The main idea of the proof is the following. Under the assumption that
T ` HCons(N,T, (1 + ε) log3), we show that for any model M |= T and any
a ∈ log3(M) we can construct a model M ′ such that

M�{0, . . . , a} ∼= M ′�{0, . . . , a} and M ′ |= a ∈ log4 .

Together with Theorem 2.17 this will allow us to obtain a contradiction when
we suitably choose an element a ∈ M which cannot be (provably in T ) in
log4 due to its ∆0 properties.

In order to construct M ′ we work in M . We construct a sequence of
sets of terms and evaluations on them, {(Λi, pi)}i≤a/C2 , for some standard
constant C. The key property of the sequence will be that under pi the
element exp4((1+ε/2)ia) exists. Then, the desired modelM ′ will be, roughly
speaking, the model defined by Λa/C2 and pa/C2 .

We should say a word on how we choose the constant C. Again the reader
should think about C as a fixed large integer. Our construction is uniform
in C so that a particular choice of C is not important. We only require that
C is so large that

• C > 4E log(C),
• C ≥ (|=) log(2A) + log(A) + 1,

where E is the constant from the Estimation Lemma, A is the constant from
(2.2), and |= is understood as a Gödel number for the formula x |= y[z].

We start with a definition which will be used in the main inductive ar-
gument. Since the definition is quite involved we comment on it below.

Definition 4.1. LetM |= I∆0, let a ∈ log3(M), and let ε > 0 be a small
standard constant. The elements a and ε are parameters of the definition
which are fixed during the whole proof.

Let Λ be a set of terms, let p be an evaluation on Λ and let k, b ∈ M .
The sequence (Λ, p, k, b) is suitable when

(i) k, b > N,
(ii) Λ is the set of terms of the form

Λ = {t : Term(t) ∧ dp(t) ≤ b ∧ t ≤ 22k},
(iii) p is a T -evaluation on Λ and p is N -deciding,
(iv) k + (ε/4)a < b and b(ε/4)a < 2k.

During the induction we will consider only suitable sequences (Λi, pi, ki, bi)
where ki = a− iC and bi = (1 + ε/2)i+1a, for i ≤ a/C2. In item (iv) of the
definition it would suffice that ki + N < bi and biN < 2ki . However this
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condition is not expressible by an arithmetical formula unless we can define
the standard part of the model.

For a suitable sequence (Λi, pi, ki, bi) we will have {0, . . . , 22(ki)−1} ⊆ Λi.
Since ki’s are decreasing, pi’s will reflect ∆0 truth on smaller parts of a
model. However, the element a will always be in this part. On the other
hand the depths of terms in Λi’s will grow with bi’s. It follows that we will
have bigger terms of the form ωbi(8) in Λi. This will allow us to show that
we have more exponentiation under pi as i grows. The above will determine
the needed properties of a model defined from (Λn, pn, kn, bn), for n = i/C2.

Now, we will establish some properties of a suitable (Λ, p, k, b).

Fact 4.2. Let (Λ, p, k, b) be suitable. Then {0, . . . , 22k−1} ⊆ Λ.

Proof. For i ≤ 22k−1, we have i ≤ 2i ≤ 22k and dp(i) ≤ k < b.

In the next lemma we show which formulas with numerals as parameters
are g.e. for a suitable sequence (Λ, p, k, b).

Lemma 4.3. Let (Λ, p, k, b) be suitable and let ϕ(x1, . . . , xr) be a formula
less than C. Then, for m1, . . . ,mk ≤ 22k−C , (ϕ,m1, . . . ,mr) is g.e. for Λ.

Proof. The lemma follows from the Estimation Lemma and the fact that,
by our choice of C, C > 4E log(C), where E is the constant from the Es-
timation Lemma. Indeed, by the Estimation Lemma, the size of the great-
est term needed to evaluate ϕ(m1, . . . ,mr) is not greater than (max{mi :
i ≤ r})(CE)C(CE). It follows that these terms are not greater than

(222k−C
)(CE)C(CE) ≤ 2(2k−C+1)(CE)+log(C)CE

≤ 2(2k−C+1+E log(C)+E log(C)+log log(C))

≤ 22k−C+4E log(C) ≤ 22k
.

Moreover, the depths of terms are not greater than k + N, which is less
than b.

In the most important case, the ϕ from Lemma 4.3 will be just x |= y[z].
In the lemma below we show how much exponentiation is available under

an evaluation p which occurs in a suitable sequence (Λ, p, k, b). We show that
p |= “exp3(b− C) exists”. Ideally, we would like to have exp3(b). Unfortu-
nately, to show that exp3(i) exists we need a term ωi1(8) and we need some
formulas with this term (used in the course of proof of Lemma 4.4) to be
g.e. for Λ. This is why we restrict Lemma 4.4 to exp3(b− C).

Lemma 4.4. Let (Λ, p, k, b) be suitable. Then

p |= ∃x (x = exp3(b− C)).
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Proof. Let (Λ, p, k, b) be a suitable sequence. In order to show that p |=
∃x (x = exp3(b− C)) we prove that for each i ≤ b− C,

p |= x = exp3(y)[ωi1(8)/x, i/y],

which clearly suffices by Lemma 2.12.
By Lemma 2.13 and since N is chosen large enough,

(4.1) p |= ∀y ∀x (x = ωy1(8)⇒ x = exp3(y)).

Of course, in the formula x = ωy1(8), y is a free variable so “x = ωy1(8)”
should not be read as an equality between two terms but as a formula with
free variables x and y.

By (4.1), to show that for all i ≤ b− C,

p |= x = exp3(y)[ωi1(8)/x, i/y],

it suffices to show that for each i ≤ b− C,

p |= x = ωy1(8)[ωi1(8)/x, i/y].

For i = 0 there is nothing to prove. Indeed, 8 = ω0
1(8) is a true ∆0

formula thus it has to be decided positively by p.
Now, let us assume that for some i < b − C, p |= x = ωy1(8)[ωi1(8), i].

Then, since
T ` ∀x ∀y [x = ωy1(8)⇒ ω1(x) = ωy+1

1 (8)],

we have, again by Lemma 2.13,

p |= ω1(x) = ωy+1
1 (8)[ωi1(8)/x, i/y].

Since p |= z = y + 1[i+ 1/z, i/y], the last display is nothing other than

p |= x = ωy1(8)[ωi+1
1 (8)/x, i+ 1/y].

Thus, we have proved the induction step and this ends the proof of the
lemma.

In the next lemma we show how to construct from a suitable sequence
(Λ, p, k, b) a new suitable sequence. The new sequence is of the form (Λ̃, p̃,
k − C, (1 + ε/2)b). The lemma below is, essentially, the inductive step in
our construction. The key property of the new sequence is that we will have
more exp available under p̃.

Lemma 4.5. Let ε′ = ε/2, M |= I∆0, a ∈ log3(M) and let i < a/C2. Let
(Λ, p, k, b) be suitable, where k = a − iC and b = (1 + ε′)i+1a. Then there
are Λ̃, p̃ such that (Λ̃, p̃, k̃, b̃) is suitable, where k̃ = k − C and b̃ = (1 + ε′)b.

Proof. It is straightforward that k̃ and b̃ satisfy item (iv) of Definition
4.1. Indeed, it is enough to verify that

a+ (ε/4)a < (1 + ε/2)a and (1 + ε/2)a/C
2
a < 2

C−1
C

a.
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We define Λ̃ in the only possible way as

Λ̃ = {t : Term(t) ∧ dp(t) ≤ b̃ ∧ t ≤ 22k̃}.

Claim 4.6. For each t ≤ 22k−C , t ∈ Λ̃ if and only if

p |= Term(t), p |= dp(t) ≤ (1 + ε′)b and p |= t ≤ 22k−C
.

Proof. For t ≤ 22k−C all the formulas: Term(x), dp(x) ≤ y and x ≤ 22y

with terms t and (1 + ε′)b are g.e. for Λ (see Lemma 4.3). Since p decides
these formulas, the claim follows from the Absoluteness Lemma.

Let Λ(t, x, y) be a formula expressing that the term t is such that t ≤ 22x

and dp(t) ≤ y. Claim 4.6 established that

(4.2) ∀t (t ∈ Λ̃ ⇔ p |= Λ[t, k − C, (1 + ε′)b]).

Let Λ(x, y) be the set of terms defined by Λ(t, x, y). We can refer to this set
by a term s∃z ∀t≤x (t∈z≡Λ(t,x,y)). Let

γ(x, y) := ∃z (z is an N -deciding T -evaluation on Λ(x, y)).

Next, let
p̂ = s∃z γ(x,y)(k − C, (1 + ε′)b).

We have assumed that T ` HCons(N,T, (1 + ε) log3). Thus, since

(1 + ε′)b ≤ (1 + ε)(b− C),

and by Lemmas 4.4 and 4.3, we have

p |= ∃z (z is an N -deciding T -evaluation on Λ(x, y))[k − C/x, (1 + ε′)b/y],

and consequently

p |= (z is an N -deciding T -evaluation on Λ(x, y))[p̂/z, k − C/x, (1 + ε′)b/y].

Of course, by our choice of N , p decides this formula (1).
Since p decides the formula x1 |= x2[x3], for each t1, t2 ∈ Λ̃ we have

p |= “ p̂ |= t1 = t2” or p |= “¬p̂ |= (t1 = t2)”,

and not both. Thus, we define p̃ on Λ̃ as follows: for each t1, t2 ∈ Λ̃,

p̃ |= t1 = t2 ⇔ p |= “ p̂ |= t1 = t2”.

Such a p̃ exists in M by ∆0 induction.
We claim that (Λ̃, p̃, k̃, b̃) is suitable. It suffices to show that p̃ is an

N -deciding T -evaluation on Λ̃. The other conditions from Definition 4.1 are
easily seen to be satisfied.

(1) One may object that we want N to be greater than a formula which uses N as a
fixed parameter. However, this is easily possible if N has a short encoding. If N is of the
form expn(2) for some n, then a formula ϕ(N) can be written in a short but equivalent
form ∃z (z = expn(2) ∧ ϕ(z)).
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Now, we establish the relationship between p̃ |= ϕ and p |= “ p̂ |= ϕ”. We
need to show that it makes sense to ask whether p |= “ p̂ |= ϕ” when we ask
whether p̃ |= ϕ.

Claim 4.7. Let ϕ ≤ log∗(a) and t1, . . . , tm ∈ Λ̃. If (ϕ, t1, . . . , tm) is g.e.
for Λ̃ then (|=, p̂, ϕ, 〈t1, . . . , tm〉) is g.e. for Λ.

Proof. Let us assume that (ϕ, t1, . . . , tm) is g.e. for Λ̃. Under the usual
coding the term sϕ(t1, . . . , tm) is greater than ϕ

∏
i≤m ti. Thus, by the con-

struction of Λ̃,
ϕ
∏
i≤m

ti ≤ 22k−C
.

Now, let

s0 = f1(p̂, ϕ, 〈t1, . . . , tm〉),
s1 = f2(p̂, ϕ, 〈t1, . . . , tm〉, s0),

...
sr = fr(p̂, ϕ, 〈t1, . . . , tm〉, s0, . . . , sr−1)

be all terms in the sequence for a formula p̂ |= ϕ[t1, . . . , tm] besides the
parameters p̂, ϕ and 〈t1, . . . , tm〉. (Here 〈x1, . . . , xm〉 is the mth iteration of
the pairing function.) We can estimate the depth of si as

dp(si) ≤ max{dp(ti) : i ≤ m} ∪ {dp(ϕ)} ∪ {dp(p̂)}+ N ≤ k + N < b.

Thus, it suffices to show that s1, . . . , sr ≤ 22k . We estimate the size of sr.
Since s1, . . . , sr are terms witnessing quantifiers in |=, we have r ≤ lh(|=).

Firstly, we estimate the lengths of the terms si. We show that for i ≤ r,

lh(si) ≤ 2iAi lh(s0)

where A is the constant from (2.2). Of course, there is nothing to prove for
s0 but we also write down the formula for lh(s0) since it will be useful later:

(4.3) lh(s0) ≤ A
(

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑
i≤m

lh(ti)
)
,

lh(s1) ≤ A
(

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑
i≤m

lh(ti) + lh(s0)
)

≤ 2A lh(s0),

lh(s2) ≤ A
{

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉)

+
∑

1≤i≤m
lh(ti) + lh(s0) + lh(s1)

}
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≤ A
{

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉)

+
∑

1≤i≤m
lh(ti)}+A{lh(s0) + lh(s1))

}
≤ A lh(s0) +A{20A0 lh(s0) + 21A1 lh(s0)}

≤
(
A+

∑
0≤j<2

2jAj
)

lh(s0) ≤
(

1 +
∑

0≤j<2

2j
)
A2 lh(s0) ≤ 22A2 lh(s0),

...

lh(sr) ≤ A
{

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

1≤i≤m
lh(ti) +

∑
0≤i<r

lh(si)
}

≤ A
{

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉)+
∑

1≤i≤m
lh(ti)

}
+A

∑
0≤i<r

lh(si)

≤ A lh(s0) +A
∑

0≤j<r
2jAj lh(s0)

≤
(

1 +
∑

0≤j<r
2j
)
Ar lh(s0) ≤ 2rAr lh(s0).

The length of the sequence t1, . . . , tm is less than lh(ϕ) ≤ log∗(a). We
can estimate the elements in the sum for lh(s0) from (4.3) as follows:

lh(p̂) ≤A(2 lh(k − C) + lh(sγ)),
lh(ϕ) ≤ log∗(a),

m lh(〈〉) ≤ log∗(a) lh(〈〉),
Thus, the length of s0 can be estimated by

lh(s0) ≤ A
{

lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

1≤i≤m
lh(ti)

}
≤ A

{
2A log(k) + log∗(a) + log∗(a) log∗(a) +

∑
1≤i≤m

lh(ti)
}

+ N.

Since a ≤ 22k , it follows that

lh(s0) ≤ A
{

3A log(k) +
∑

1≤i≤m
lh(ti)

}
.

Since the length of the greatest term sr is not greater than 2rAr lh(s0), we
can bound the size of sr by

sr ≤ 2(2A)r lh(s0) ≤ 2(2A)rA{3A log(k)+
P

1≤i≤m lh(ti)}

≤ 2(2A)r3A2 log(k)
( ∏
i≤m

ti

)(2A)rA
.
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Hence, because ϕ
∏
i≤m ti ≤ 22k−C ,

sr ≤ 2(2A)r3A2 log(k)(22k−C
)(2A)rA ≤ 2(2A)r3A2 log(k)22k−C(2A)rA

≤ 23 log(k)(2A)rA2
22k−C+r log(2A)+log(A) ≤ 22k−C+r log(2A)+log(A)+3 log(k)(2A)rA2

and, because k > N and 2k−C+r log(2A)+log(A) > 3 log(k)(2A)rA2,

sr ≤ 22k−C+r log(2A) log(A)+1 ≤ 22k
.

The last inequality is true since r ≤ log(|=) and we have chosen C so that
C ≥ (|=) log(2A) + log(A) + 1.

It is also easy to see that dp(sr) ≤ k + N < b. This completes the proof
of Claim 4.7.

We need to show that p̃ reflects p̂ not only for equality but for all formulas
of size log∗(a).

Claim 4.8. For each ϕ ≤ log∗(a), for each t1, . . . , tm ∈ Λ̃ such that
(ϕ, t1, . . . , tm) are g.e. for (Λ̃, p̃),

p̃ |= ϕ[t1, . . . , tm] ⇔ p |= “ p̂ |= ϕ[t1, . . . , tm]”.

Proof. The proof is by induction on ϕ. We use the fact that, by Claim
4.7, if (ϕ, t1, . . . , tm) is g.e. for Λ̃ then (|=, p̂, ϕ, 〈t1, . . . , tm〉) is g.e. for Λ.
So, it makes sense to write p |= “ p̂ |= ϕ[t1, . . . , tm]” whenever we may write
p̃ |= ϕ[t1, . . . , tm].

For ϕ atomic the statement follows from the definition of p̃.
Since, by the choice of N ,

p |= “ p̂ satisfies Tarski conditions for propositional connectives”,

it follows that the equivalence holds for all quantifier free formulas. Now, let
us consider the case where ϕ is of the form ∃y ψ(y, z̄). Let us assume that
p̃ |= ∃y ψ(y, t1, . . . , tm). Then

p̃ |= ψ[s∃y ψ(t1, . . . , tm), t1, . . . , tm].

By the inductive assumption,

p |= “ p̂ |= ψ[s∃y ψ(t1, . . . , tm), t1, . . . , tm]”.

Since all terms s∃y ψ(t1, . . . , tm), t1, . . . tm are in {0, . . . , 22k} it follows that
p decides that s∃y ψ(t1, . . . , tm) is a witnessing term for ∃y ψ and t1, . . . , tm.
Thus,

p |= (“ p̂ |= ψ[s∃y ψ(t1, . . . , tm), t1, . . . , tm]” ⇔ “ p̂ |= ∃y ψ[t1, . . . , tm]”).

Let us observe that in the above formula ψ and ∃y ψ are given as terms.
Thus, p does not need to decide these formulas to decide positively the above
equivalence. The proof of the implication from p |= “ p̂ |= ∃y ψ[t1, . . . , tm]” to
p |= ∃y ψ[t1, . . . , tm] goes exactly in the same way.
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Finally, let p̃ |= ∀xψ[t1, . . . , tm]. This is equivalent to

∀t ∈ Λ̃ p̃ |= ψ[t, t1, . . . , tm] and ∀t ∈ Λ̃ p |= “ p̂ |= ψ[t, t1, . . . , tm]”.

But, by (4.2),
∀t (t ∈ Λ̃⇔ p |= Λ[t, k − C, (1 + ε′)b]).

Thus
p |= ∀z (z ∈ Λ(k − C, (1 + ε′)b)⇒ p̂ |= ψ[t1, . . . , tm, z]),

and this is just the definition of

p |= “ p̂ |= ∀xψ[t1, . . . , tm]”.

Again, we skip the proof of the other implication.

Since p̂ is (under p) a T -evaluation, the following is true under p:

∀x ≤ log∗(a) ((x ∈ T ∧ “x is g.e. for Λ(k − C, (1 + ε′)b)” ⇒ p̂ |= x).

Then, by Claims 4.7 and 4.8, we have in M ,

∀ϕ ≤ log∗(a) (ϕ ∈ T ∧ “ϕ is g.e. for Λ̃” ⇒ p̃ |= ϕ).

Thus p̃ is a T -evaluation. Moreover, p̃ decides formulas less than or equal to
N because

p |= “ p̂ decides formulas less than or equal to N, ”

and this property is also transferred to p̃ by Claim 4.8. So, (Λ̃, p̃, k̃, b̃) sat-
isfies the third condition for being suitable. This completes the proof of
Lemma 4.5.

Now, we are ready to formulate the induction.

Proposition 4.9. Let N be chosen as above, and T = I∆0+Ω1. Assume
that for some ε > 0, T ` HCons((1 + ε) log3, N), M |= T and a ∈ log3(M).
Then, for all i ≤ a/C2 there exist Λi, pi such that

(Λi, pi, a− iC, (1 + ε/2)i+1a)

is suitable.

Proof. We prove the conclusion by induction on i ≤ a/C2. To carry out
the induction we should take a sufficiently large parameter to express the
induction formula as a bounded formula. To see that such a parameter exists
we should estimate the size of Λ0 and p0 which are the greatest among Λi,
pi for i ≤ a/C2. Λ0 is a set of terms 22a . Thus,

Λ0 ≤ 222a

.

Since a ∈ log3, Λ0 ∈M . An evaluation p0 is just a 0-1 function from the set
of pairs of terms from Λ and we can bound p0 as

p0 ≤ 2card(Λ)2 = 2(22a
)2 = 222·2a

= 222a+1

.
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In T , the third logarithm of a model is closed under successors. Thus, p0 ∈M
and we can bound the induction formula by an element from M .

To start the induction, the existence of a suitable (Λ0, p0, a, (1 + ε/2)a)
is guaranteed by our assumption that T ` HCons(N,T, (1 + ε) log3).

To prove the induction step let us assume that for some i ≤ a/C2 there
are Λi, pi such that the sequence (Λi, pi, a− iC, (1 + ε/2)i+1a) is suitable.
Then (Λi, pi, a− iC, (1+ε/2)i+1a) satisfies the assumptions of Lemma 4.5. It
follows that there exists (Λ̃, p̃, a− (i+ 1)C, (1+(ε/2))i+2a) which is suitable.
And this is just the (i+ 1)th sequence.

Lemma 4.10. Let N,C be large constants chosen as above. Let T = I∆0+
Ω1. Assume that for some ε > 0, T ` HCons(N,T, (1 + ε) log3). Then for
each model M |= T and for each a ∈ log3(M) there exists a model M ′ |= T

such that M ′�a = M�a and a ∈ C2

log(1+ε/2) log4(M ′).

Proof. By Proposition 4.9, for i = a/C2, there exists a suitable sequence

(Λ, p, a(1− 1/C), (1 + ε/2)a/C
2
a).

Now, for any cut 2a < I < (1 + ε/2)a/C
2
a if we take terms from Λ of depths

in I we can define from p a model M ′ for T . By Lemma 4.4 and Proposition
2.11,

M ′ |= ∃z {z = exp3((1 + ε/2)a/C
2
a− C)}.

But

(1 + ε/2)a/C
2
a− C = 2log(1+ε/2)C−2a+log(a) − C ≥ 2log(1+ε/2)C−2a.

It follows that
M ′ |= 2log(1+ε/2)C−2a ∈ log3

which means that a ∈ C2

log(1+ε/2) log4(M ′). Moreover, since {0, . . . , a} ⊆ Λ,
we conclude, by Lemma 2.14, that M ′�a = M�a.

Theorem 4.11. Let N be chosen as above, and let T = I∆0+Ω1. Assume
that for some ε > 0, T ` HCons(N,T, (1 + ε) log3). Then for each model
M |= T and each a ∈ log3(M) there exists a model M ′ |= T such that
M ′�a = M�a and a ∈ log4(M ′).

Proof. It suffices to use Lemma 4.10 twice. Indeed, let M |= T , a ∈
log3(M) and let D = C2/log(1 + ε/2) ∈ N. Then, by Lemma 4.10, there
exists M ′′ |= T such that M ′′�a = M�a and a ∈ D log4(M ′′). Thus, 2a/D ∈
log3(M ′′) and, again by Lemma 4.10, there existsM ′ |= T such thatM ′�2a/D
= M�2a/D and 2a/D ∈ D log4(M ′). Thus,

2a/D/D ∈ log4(M ′).

Since a > N and D ∈ N, a < 2a/D/D. So, we have a ∈ log4(M ′). This ends
the proof of the theorem.
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Now, we may formulate and prove the main result of the paper.
Theorem 4.12. Let T = I∆0 + Ωi. Let N be a sufficiently large integer.

Then, for any ε > 0, T does not prove its Herbrand consistency restricted
to terms of depth not greater than (1 + ε) logi+2, that is, T 0 HCons(N,T,
(1 + ε) logi+2).

Proof. This is an easy consequence of Theorems 4.11 and 2.17.
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