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Abstract. We prove that the Fodor-type Reflection Principle (FRP) is equivalent to
the assertion that any Boolean algebra is openly generated if and only if it is ℵ2-projective.
Previously it was known that this characterization of openly generated Boolean algebras
follows from Axiom R. Since FRP is preserved by c.c.c. generic extension, we conclude in
particular that this characterization is consistent with any set-theoretic assertion forcable
by a c.c.c. poset starting from a model of FRP.

A crucial step of the proof of the main result is to show that FRP implies Shelah’s
Strong Hypothesis (SSH). In particular, we show that FRP implies the Singular Cardinals
Hypothesis (SCH). Extending a result of the second author, we also establish some new
characterizations of SSH in terms of topological reflection theorems.

1. Introduction. In [7], [8], [9], [12], it is shown that many mathe-
matical reflection theorems which were originally proved under Axiom R of
Fleissner [4] hold already under the Fodor-type Reflection Principle (FRP)
and that most of them are even equivalent to FRP over ZFC.

The present paper deals with the reflection theorem on the open gener-
atedness of Boolean algebras proved in [5] under Axiom R and shows that
this reflection theorem is also equivalent to FRP (Theorem 5.2).

Here, FRP is the following principle introduced in [9]:

FRP : For any regular cardinal λ > ℵ1, stationary E ⊆ Eλω = {α ∈ λ :
cf(α) = ω} and mapping g : E → [λ]≤ℵ0 , there is I ∈ [λ]ℵ1 such
that

(1.1) cf(I) = ω1;
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(1.2) g(α) ⊆ I for all α ∈ I ∩ E;
(1.3) for any regressive f : E ∩ I → λ such that f(α) ∈ g(α) for all

α ∈ E ∩ I, there is ξ∗ < λ such that f−1 ′′{ξ∗} is stationary in
sup(I).

In Fuchino et al. [9], it is shown that FRP follows from RP (see below
for the definition of this principle). Since RP trivially follows from Axiom R,
FRP is also a consequence of Axiom R.

In contrast to RP which implies that the size of the continuum is less
than or equal to ℵ2 (S. Todorčević, see e.g. Theorem 37.18 in [14]), FRP does
not put any restriction on the size of the continuum since FRP is preserved
by c.c.c. generic extension ([9]).

RP and Axiom R are the principles defined as follows:

RP : For any cardinal λ of cofinality > ω1 and stationary S ⊆ [λ]ℵ0 , there
is an I ∈ [λ]ℵ1 such that

(1.4) ω1 ⊆ I;
(1.5) cf(I) = ω1;
(1.6) S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

T ⊆ [X]ℵ1 for an uncountable set X is said to be ω1-club (or tight and
unbounded in Fleissner’s terminology in [4]) if

(1.7) T is cofinal in [X]ℵ1 with respect to ⊆;
(1.8) for any increasing chain 〈Iα : α < ω1〉 in T of length ω1, we have⋃

α<ω1
Iα ∈ T .

Axiom R : For any uncountable cardinal λ and stationary S ⊆ [λ]ℵ0 and
ω1-club T ⊆ [λ]ℵ1 , there is I ∈ T such that S ∩ [I]ℵ0 is stationary
in [I]ℵ0 .

R. E. Beaudoin [1] proved that Axiom R follows from MA+(σ-closed).
It is easy to see that Axiom R implies RP. It is also easy to see that FRP
implies the stationary sets of ordinals version of the reflection principles
which we denote ORP:

ORP : For any cardinal λ of cofinality > ω1 and stationary S ⊆ Eλω there is
a δ ∈ Eλω1

= {α < λ : cf(α) = ω1} such that S ∩ δ is stationary in δ.

By the remarks above and by results from [9] and [12], the axioms men-
tioned above can be put together in the following diagram:

MM ⇒ MA+(σ-closed) ⇒ Axiom R ⇒ RP Y⇐⇒ FRP Y⇐⇒ ORP

FRP is equivalent to its apparent strengthening obtained when the
phrase “there is I ∈ [λ]ℵ1” is replaced by “there are stationarily many
I ∈ [λ]ℵ1”:
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Lemma 1.1. Assume FRP. Suppose λ > ℵ1 is a regular cardinal. Then,
for any mapping g : E → [λ]≤ℵ0 on a stationary E ⊆ Eλω and club C ⊆ [λ]ℵ1,
there is I ∈ C such that I together with E and g satisfies (1.1)–(1.3).

Proof. Suppose that λ, E, g, C are as above. Let skM be the canonical
Skolem-hull operator on M = 〈H(θ),∈, g, C, . . . ,E〉 for a sufficiently large
regular cardinal θ and a well-ordering E on H(θ). Let C∗ = {α < λ :
ω1 < α, skM(α) ∩ λ = α} and let h : λ → λ be defined by h(α) =
min ((E ∩ C∗) \ α) for α ∈ λ.

Now, let g′ : E → [λ]≤ℵ0 be defined by

(1.9) g′(α) = g(α) ∪ {h(α)}

for α ∈ S. By FRP, there is I0 ∈ [λ]ℵ1 such that 〈I0, E, g′〉 |= (1.1)–(1.3).
Then, by (1.9), and since C∗ is closed, we have sup(I0) ∈ C∗. Let I ∈ [λ]ℵ1
be such that I0 ∪ ω1 ⊆ I ⊆ sup(I0) and skM(I) ∩ λ = I. Then I ∈ C since
I =

⋃
(C ∩ skM(I)) by ω1 ⊆ skM(I) and elementarity. Clearly I together

with E and g satisfies (1.1)–(1.3).

For an uncountable set X, a filtration of X is a continuously ⊆-increasing
sequence 〈Xα : α < δ〉 of subsets of X such that δ = cf(|X|), |Xα| < |X| for
all α < δ and

⋃
α<δXα = X. If X is an algebraic structure we also assume

that all Xα, α < δ, are subalgebras of X.
The following fact was proved in Fuchino et al. [9].

Lemma 1.2 (see the proof of Lemma 2.4 in [9]). Suppose that λ, E, g
are as in the definition of FRP, and I ∈ [λ]ℵ1, together with these E and g,
satisfies (1.1)–(1.3). Then, for any filtration 〈Iα : α < ω1〉 of I, the set

{α < ω1 : sup(Iα) ∈ I and g(sup(Iα)) ∩ sup(Iα) ⊆ Iα}

is stationary in ω1.

Our notation and conventions on Boolean algebras are quite standard
and follow closely S. Koppelberg [15]. In particular, a Boolean algebra B
is thought to be an algebraic structure B = 〈B,+,−, ·, 0, 1〉 satisfying the
usual axiom of Boolean algebras with the partial ordering ≤B (or simply ≤
if it is clear which B is meant) defined by a ≤B b ⇔ a · b = a (⇔ a+ b = b).

For a Boolean algebra B, let B+ = B \ {0}. A set X ⊆ B+ is pairwise
disjoint if x · y = 0 for any distinct x, y ∈ X. Recall that a Boolean algebra
B is said to satisfy the c.c.c. (countable chain condition) if every pairwise
disjoint X ⊆ B+ is countable.

For Boolean algebras A and B, we write A ≤ B to denote that A is a
subalgebra of B. The subalgebra A is relatively complete (notation: A ≤rc B)
if A ≤ B and, for any b ∈ B, pA(b) =

∑AA�b exists, where A�b denotes
the ideal {a ∈ A : a ≤ b} on A; pA(b) is called the lower projection of b
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on A. If A ≤rc B, the upper projection qA(b) of b ∈ B on A defined by
qA(b) = −pA(−b) is the smallest element of the filter A↑b = {a ∈ A : b ≤ a}
on A. To prove that A ≤rc B, it is clearly enough to show that all b ∈ B
have their upper projection qA(b).

If A ≤ B but A is not a relatively complete subalgebra of B, we write
A ≤¬rc B. If A ≤ B, we have A ≤¬rc B if and only if there is a b ∈ B which
has no lower projection on A (i.e. the ideal A�b is not generated by a single
element).

A ≤ B is a σ-subalgebra of B (notation: A ≤σ B) if, for all b ∈ B, the
ideal A�b on A is generated by countably many elements of A�b.

For Boolean algebras A and B, A⊕ B denotes their free product. Note
that A and B are identified canonically with subalgebras of A ⊕ B and we
have A ≤rc A⊕B, B ≤rc A⊕B with respect to this identification.

A Boolean algebra B is projective if, for any Boolean algebras A and C,
Boolean homomorphism ϕ : B → A and surjective Boolean homomorphism
ψ : C → A, there is a unique Boolean homomorphism η : B → C such that
ϕ = ψ ◦ η.
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::u
u

u
u

u
u
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Theorem 1.3 (R. Haydon, S. Koppelberg, see [16]). For a Boolean al-
gebra B, the following are equivalent:

(a) B is projective.
(b) B ⊕ Fr(κ) is free for some large enough κ.
(c) There is a continuously increasing chain 〈Bα : α < ρ〉 of subalgebras

of B such that
⋃
α<ρBα = B, B0 is countable, Bα+1 is countably

generated over Bα and Bα ≤rc B for all α < ρ.

Note that it follows from (b) above that every projective Boolean algebra
satisfies the c.c.c.

A Boolean algebra B is openly generated (or rc-filtered in the terminology
of L. Heindorf and L. B. Shapiro [13]) if {A ∈ [B]ℵ0 : A ≤rc B} contains
a club subset of [B]ℵ0 . The notion of open generatedness was originally
studied by E. V. Shchepin in the context of topological spaces. L. Heindorf
then translated this notion into the context of Boolean algebras via Stone
duality. See [13] for more historical details.

The following can be obtained immediately from the definition of open
generatedness and Theorem 1.3.
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Lemma 1.4.

(1) If a Boolean algebra B is openly generated and |B| ≤ ℵ1, then B is
projective.

(2) A Boolean algebra B is openly generated if and only if, for any σ-
closed p.o. P forcing |B| to be less than or equal to ℵ1, we have
‖–P “B is projective”.

(3) If a Boolean algebra B is projective then B is openly generated.
(4) An openly generated Boolean algebra B satisfies the c.c.c.

Let κ be a cardinal and P a property of a Boolean algebra. A Boolean
algebra B is said to be κ-P if the set

{C ∈ [B]<κ : C ≤ B and C satisfies P}
contains a club subset of [B]<κ.

By Lemma 1.4(1)&(3), we obtain:

Lemma 1.5. A Boolean algebra B is ℵ2-projective if and only if B is
ℵ2-openly generated.

Our main theorem can now be formulated as follows:

Theorem 1.6. Assume FRP. Then, for any Boolean algebra B, the fol-
lowing are equivalent:

(a) B is openly generated.
(b) B is ℵ2-projective (i.e. ℵ2-openly generated).

We shall prove this theorem in Section 4. The proof of Theorem 1.6 uses
the fact that FRP implies Shelah’s Strong Hypothesis (SSH). This fact is
established in the following Section 2. In continuation of Rinot [17], we also
give some new characterizations of SSH in terms of topological reflection
theorems.

In Section 3, we give a fairly self-contained exposition of (mostly al-
ready known) results on openly generated and ℵ2-openly generated Boolean
algebras which we need in the proof of Theorem 1.6.

The assertion of Theorem 1.6 was proved first under MA+(σ-closed) by
the first author in [5]. Qi Feng then pointed out that almost the same proof
can be applied to prove the assertion under Axiom R (see also Fuchino [6]).

On the other hand, the proof of Theorem 1.6 is not a straightforward
modification of the proof under Axiom R in [5]. This is partially due to the
fact that FRP cannot handle the reflection on any singular cardinal λ (see
Lemma 2.2 in [9]). But, even for regular λ > ℵ1, it appears that we need
some more algebraic tools (some being proved under SSH) from Section 3.

In [5], a counterexample to the assertion of Theorem 1.6 was constructed
under the existence of a non-reflecting stationary set S ⊆ Eκω for some regu-
lar cardinal κ. This means that the assertion of Theorem 1.6 implies ORP. In



266 S. Fuchino and A. Rinot

Section 5, we construct a counterexample to the assertion of Theorem 1.6 un-
der the existence of an almost essentially disjoint ladder system g : S → [κ]ℵ0
for a regular cardinal κ and a stationary S ⊆ Eκω. In Fuchino et al. [12], it is
proved that the existence of such a ladder system is equivalent to the nega-
tion of FRP. Thus, this construction shows that the assertion of Theorem
1.6 implies FRP and hence it is equivalent to FRP over ZFC (Theorem 5.2).

2. FRP implies Shelah’s Strong Hypothesis. In light of previous
work showing that the Singular Cardinal Hypothesis (SCH) follows from
diverse reflection principles (see e.g. [20]–[23]), it seems natural to ask if
FRP also implies SCH.

However, in contrast to the principles considered in the papers cited
above, FRP does not imply that the continuum is very small. Hence the right
question to ask here seems to be whether FRP implies Shelah’s Strong Hy-
pothesis (SSH). Note that SCH and SSH become equivalent under 2ℵ0 < ℵω
(see Theorem 2.1 and (2.2) below).

In this section, we shall give the positive answer to the latter question.
Of course the positive answer to the former question follows from this.

Let us begin by reviewing the definition and some basic facts about SSH.
Shelah’s Strong Hypothesis (SSH) states that the pseudopowers of singular
cardinals take their minimal possible values, i.e. pp(λ) = λ+ holds for all
singular λ. Here, the pseudopower pp(λ) is defined as the supremum of

PP(λ) = {cf(
∏

a/D) : a ⊆ λ ∩ Reg, sup a = λ, otp(a) = cf(λ),
D is an ultrafilter over a disjoint from the
ideal Ib(a) of bounded subsets of a}.

Claim 2.4 in Section II of [19] shows that a result similar to Silver’s theorem
holds for pp(·). From this it follows that

(2.1) if pp(λ) > λ+ for some singular cardinal λ then there is a singular
cardinal λ′ ≤ λ of countable cofinality such that pp(λ′) > (λ′)+.

SSH is actually a cardinal-arithmetical statement.

Theorem 2.1 (S. Shelah, see [17]). SSH is equivalent to each of the
following assertions:

(a) cf([κ]θ, ⊆) = κ for all cardinals κ, θ with θ < cf(κ).
(b) cf([κ]ℵ0 , ⊆) = κ+ for all singular cardinals κ with cf(κ) = ω.

Note that the implication (b) ⇒ SSH in Theorem 2.1 follows from (2.1).
By Silver’s theorem, it is easy to see that the Singular Cardinal Hypoth-

esis (SCH) is equivalent to the assertion:

(2.2) cf([κ]ℵ0 , ⊆) = κ+ for every singular cardinal κ > 2ℵ0 of cofinality ω.
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From this and the characterization of SSH above, it is clear that SSH
implies SCH.

S. Shelah (Claim 1.3 in Chapter II of [19]) proved that

(2.3) if pp(λ) > λ+ for a singular cardinal λ, then there is a better scale
〈~λ, ~f 〉 for λ.

Here, a pair 〈~λ, ~f 〉 is said to be a better scale for a singular cardinal λ if

(2.4) ~λ = 〈λi : i < cf(λ)〉 is a strictly increasing sequence of regular
cardinals cofinal in λ;

(2.5) ~f = 〈fα : α < λ+〉, fα ∈
∏
i<cf(λ) λi for all α < λ+ and 〈fα :

α < λ+〉 is a scale in
∏
i<cf(λ) λi with respect to the ideal Ib(cf(λ))

of bounded subsets of cf(λ);
(2.6) for every δ < λ+ with cf(δ) > cf(λ), there is a closed unbounded

C ⊆ δ such that

(2.6a) otp(C) = cf(δ),
(2.6b) for all β ∈ C there is i < cf(λ) such that fγ(j) < fβ(j) for

all j ≥ i and γ ∈ C ∩ β.

It is proved in Cummings et al. [2, Theorem 4.1] that the existence of a
better scale for singular λ implies the combinatorial principle ADSλ. Here,

ADSλ : There exists a sequence 〈aα : α < λ+〉 of unbounded subsets of λ
such that

(2.7) otp(aα) = cf(λ);
(2.8) for all β < λ+ there exists g : β → κ such that the sequence

〈aα \ g(α) : α < β〉 consists of pairwise disjoint sets.

In [9] it is shown that ADSλ for a singular cardinal λ of cofinality ω implies
ADS−(λ+) where, for a regular cardinal κ,

ADS−(κ) : There are a stationary set S ⊆ κ and g : S → [κ]ℵ0 such that

(2.9) g(α) ⊆ α and otp(g(α)) = ω for all α ∈ S;
(2.10) g is almost essentially disjoint, that is, for all β < κ, there is a

function f : S ∩ β → [κ]<ℵ0 such that f(α) < sup(g(α)) for all
α ∈ S ∩ β, and g(α) \ f(α), α ∈ S ∩ β, are pairwise disjoint.

It is also shown in [9] that ADS−(κ) for a regular uncountable κ implies
¬FRP—actually, we can further show that FRP is equivalent to the state-
ment that ADS−(κ) does not hold for any regular uncountable κ (see [12,
Theorem 2.5]).
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By putting together the facts mentioned above we obtain a proof of
the following theorem (1). We give here a slightly more direct proof of this
theorem.

Theorem 2.2. FRP implies SSH.

Proof. Suppose ¬SSH. Then, by (2.1), there is a singular cardinal λ such
that cf(λ) = ω and pp(λ) > λ+. By (2.3), there is a better scale 〈~λ, ~f 〉 for λ,
say, with ~λ = 〈λi : i < ω〉 and ~f = 〈fα : α < λ+〉. Fix a one-to-one mapping
ϕ : ω>λ→ λ and let E = Eλ

+

ω \ λ. Let g : E → [λ+]ℵ0 be defined by

(2.11) g(α) = {ϕ(fα�n) : n ∈ ω} for α ∈ E.

Note that we actually have g : E → [λ]ℵ0 and hence g(α) ⊆ α for all α ∈ E.
We show that this g together with the E as above is a counterexample

to FRP.
Suppose that I ∈ [λ]ℵ1 satisfies (1.1) and (1.2). We have to show that I

does not satisfy (1.3).
Let δ = sup(I). Then there is a club C ⊆ δ satisfying (2.6a) and (2.6b).

For n ∈ ω, let

(2.12) En = {β ∈ C : fγ(j) < fβ(j) for all γ ∈ C ∩ β and j ≥ n,
n is the minimal number with this property for β}.

By (2.6b), we have

(2.13) C =
⋃̇
n∈ω

En.

Let f : E ∩ I → λ be defined by

(2.14) f(α) =

{
ϕ(fα�(n+ 1)) if α ∈ En,
ϕ(∅) if there is no n as above.

Then f(α) ∈ g(α)∩α for all α ∈ E ∩ I. For any stationary S ⊆ E ∩ δ, there
is n∗ ∈ ω such that S∩En∗ is stationary by (2.13). For α, α′ ∈ S∩En∗ with
α < α′ we have fα(n∗) < fα′(n∗) by (2.12). It follows that f(α) 6= f(α′) for
all α, α′ ∈ S ∩ En∗ by the definition (2.14) of f .

This shows that the mapping f as above exemplifies the failure of (1.3)
for this I.

As already mentioned in the introduction, FRP is known to be equivalent
to many mathematical reflection theorems. Hence the implication FRP ⇒
SSH suggests that SSH can also be regarded as a reflection theorem. In fact,

(1) After the results in this section had been obtained, the authors learned that
Toshimichi Usuba was also aware of Theorem 2.2 by the same combination of known
results.



Openly generated Boolean algebras and a reflection principle 269

by the work of Rinot [17] as well as the next Theorems 2.3 and 2.4, SSH can
be characterized in terms of topological reflection theorems.

The proof of the following theorem is a further development of the idea
of the proof of the Theorem in [17] and is also similar to but much more
involved than the proof of the implication FRP ⇒ SSH given above.

Let us begin with the definition of the topological notions used in the
next theorem. A topological space X is said to be thin if, for any D ⊆ X,
we have |D| ≤ |D|+. For a cardinal κ, X is said to be <κ-thin if, for any
D ∈ [X]<κ we have |D| ≤ |D|+.

Recall that a topological space X is countably tight if for any Y ⊆ X and
x ∈ X, we have x ∈ Y if and only if there is Y ′ ∈ [Y ]ℵ0 such that x ∈ Y ′.
The density d(X) of a topological space X is the minimal size of D ⊆ X
such that D = X.

Theorem 2.3. The following are equivalent:

(a) SSH.
(b) For any countably tight topological space X, if X is <ℵ1-thin, then

X is thin.
(c) For any countably tight topological space X, if X is <κ-thin for κ =

max{ℵ1, d(X)}, then X is thin.

Proof. (a)⇒(b): Assume SSH and suppose that X is a countably tight
<ℵ1-thin topological space.

Let D ⊆ X. By SSH, there is an H ⊆ [D]ℵ0 of cardinality ≤ |D|+ such
that H is cofinal in [D]ℵ0 with respect to ⊆. By countable tightness, we have
D =

⋃
{Y : Y ∈ H}. Since X is <ℵ1-thin, we have |Y | ≤ ℵ1 for all Y ∈ H.

Thus |D| = |
⋃
{Y : Y ∈ H}| ≤ |H| · ℵ1 ≤ |D|+.

(b)⇒(c) is trivial.
(c)⇒(a): Assume ¬SSH. Then by (2.1) there is a singular cardinal λ of

countable cofinality such that pp(λ) > λ+. Let 〈λn : n < ω〉 be an increasing
sequence of regular cardinals cofinal in λ, and D an ultrafilter over ω such
that D is disjoint from the ideal Ib(ω) of bounded subsets of ω (i.e. D is
non-principal) and cf(

∏
i<ω λi, <D) ≥ λ++.

Let κ = λ+. Since κ is regular, we have Eκ
+

<κ ∈ I[κ+] by Lemma 4.4
in [18]. By Lemma 2.3 in [18], this means that there is a sequence ~x = 〈xα :
α < κ+〉 with xα ⊆ α for all α < κ+ and a club C ⊆ κ+ such that

(2.15) for every δ ∈ Eκ
+

<κ ∩ C, there is a cofinal subset aδ of δ of order
type cf(δ) such that aδ ∩ α = xα for all α ∈ aδ.

We now define a <D increasing sequence 〈fα : α < κ+〉 of elements of∏
i<ω λi inductively as follows: Let f0 ∈

∏
i<ω λi be arbitrary. Suppose that

〈fβ : β < α〉 has been chosen for some α < κ+. Since cf(
∏
i<ω λi, <D) ≥ κ+,
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there is some g ∈
∏
i<ω λi such that fβ <D g for all β < α. Let fα ∈

∏
i<ω λi

be defined by

(2.16) fα(n) =

{
sup({fβ(n) : β ∈ xα} ∪ {g(n)}) if |xα| < λn,

g(n) otherwise.

Since g ≤ fα (coordinatewise), we have fβ <D fα for all β < α.
Fix a one-to-one mapping ψ : ω>λ → λ \ ω1 and let F = {yα : α ∈ C}

where yα = {ψ(fα�n) : n ∈ ω} for α < κ+. Note that F ⊆ [λ \ ω1]ℵ0 and
hence F ∩ λ = ∅.

Let X be the the Mrówka space over the disjoint union of F and λ, that
is, the space X ∪λ with the topology τ such that each α < λ is isolated and
each y ∈ F has the neighborhood base

By = {{y} ∪ (y \ s) : s ∈ [y]<ℵ0}.
〈X, τ〉 is then first countable and hence countably tight.

We show that 〈X, τ〉 is a counterexample to (c). Note that, for any A ⊆ λ,
we have

(2.17) A = A ∪ {y ∈ F : |A ∩ y| = ℵ0}
and, for any B ⊆ X,

(2.18) λ ∩B = λ ∩B.
In particular, λ = X and d(X) = λ. Since λ+ < κ+ = |X| = |λ|, X is not
thin. Thus the following claim establishes that X is a counterexample to (c).

Claim 2.3.1. For every D ∈ [X]<λ we have |D| = |D|.
Proof. Suppose not and let D ∈ [X]<λ be such that |D| > |D|. Since

λ ∩D = λ ∩D by (2.18), we have

(2.19) |F ∩D| > |D|.
By (2.17), it follows that |λ ∩ D| ≥ ℵ0. Let θ = |D|+. By (2.19), there is
I ∈ [C]θ such that otp(I) = θ and yα ∈ D for all α ∈ I. Let δ = sup(I).
Then cf(δ) = θ < λ < κ. Since C is closed, we have δ ∈ C. Thus δ ∈ Eκ+

<κ∩C
and there is an aδ as in (2.15) for this δ.

Let jγ ∈ aδ and iγ ∈ I for γ < θ be defined inductively such that

(2.20) jγ0 < iγ0 < jγ1 < iγ1 for all γ0 < γ1 < θ.

In particular jγ < iγ < jγ+1 for all γ < θ and hence fjγ <D fiγ <D fjγ+1 .
Let n∗ ∈ ω be such that λn∗ > θ. Since D is a filter disjoint from Ib(ω),

for each γ < θ there is an nγ ∈ ω \ n∗ such that

(2.21) fjγ (nγ) < fiγ (nγ) < fjγ+1(nγ).

For n < ω, let I(n) = {γ < θ : nγ = n}. Then θ =
⋃
n<ω I(n). Since

cf(θ) = θ > ω, there is n† < ω such that I(n†) is cofinal in θ.
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Subclaim 2.3.1.1. 〈fiγ (n†) : γ ∈ I(n†)〉 is strictly increasing.

Proof. For γ0, γ1 ∈ I(n†) with γ0 < γ1, we have iγ0 < jγ0+1 ≤ jγ1 < iγ1 .
Hence, fiγ0 (n†) < fjγ0+1(n†) and fjγ1 (n†) < fiγ1 (n†). Thus it is enough to
show

(2.22) fjγ0+1(n†) ≤ fjγ1 (n†).

If γ0+1 = γ1, this is trivial. If jγ0+1 < jγ1 , then jγ0+1 ∈ aδ∩jγ1 by the choice
of jγ ’s. Since xjγ1 = aδ∩jγ1 by (2.15), we have |sjγ1 | ≤ |aδ| = θ < λn∗ ≤ λn† .
Thus the first case in (2.16) has been applied when fjγ1 (n†) was defined. In
particular, since jγ0 ∈ aδ ∩ jγ1 = xjγ1 , (2.22) holds. Subclaim 2.3.1.1

Let I ′ = {iγ : γ ∈ I(n†)}. Since I ′ ⊆ I we have {yα : α ∈ I ′} ⊆ D. It
follows by (2.17) that yα ∩D is infinite for all α ∈ I ′. Since 〈fα(n†) : α ∈ I ′〉
is a strictly increasing sequence of length θ,

{(D ∩ yα) \ {ψ(fα�m) : m < n†} : α ∈ I ′}
is a family of θ many pairwise disjoint infinite subsets of D. This is a con-
tradiction to |D| < θ. Claim 2.3.1 Theorem 2.3

We also obtain Theorem 2.4 below by almost the same proof as above.
Let us call a topological space X very thin if every D ⊆ X of regular

cardinality satisfies |D| = |D|. Let us also say that X is <κ-very thin if
every D ⊆ X of regular cardinality < κ has |D| = |D|.

Note that if a very thin space X is countably tight then also |D| = |D|
for all D ⊆ X of cardinality with uncountable cofinality.

Theorem 2.4. The following are equivalent:

(a) SSH.
(b′) For any countably tight topological space X, if X is <ℵ1-very thin,

then X is very thin.
(c′) For any countably tight topological space X, if X is <κ-very thin

for κ = max{ℵ1, d(X)}, then X is very thin.

The Theorem in [17] is now almost included in Theorem 2.4.

Corollary 2.5 (A version of (1)⇔(4) of Theorem of Rinot [17]). The
following are equivalent:

(a) SSH.
(d) For a countably tight topological space X, if

(cf(d(X)) > ω and |X| > d(X)) or |X| > d(X)+,

then there is a countable subset D of X such that |D| = |X|.
Proof. (a)⇒(d) can be shown by the proof of (a)⇒(b) of Theorem 2.3

with the infinite version of the pigeonhole principle.
(d)⇒(a) follows from (b′)⇒(a) of Theorem 2.4.
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3. Properties of openly generated and ℵ2-openly generated
Boolean algebras. In this section, we consider some results on openly
generated and ℵ2-openly generated Boolean algebras needed in the next
section.

Lemma 3.10 and Theorem 3.12 below already appeared in [6]. Under Ax-
iom R, Theorem 1.6 would immediately follow from these results. However,
for our proof of Theorem 1.6 under FRP, we need apparently some more
structure theory on ℵ2-openly generated Boolean algebras.

[6] provides assertions (Corollary A.4.6 and Theorem A.4.7 there) on
ℵ2-openly generated Boolean algebras beyond our Lemma 3.10 and Theo-
rem 3.12 which could be used for our purpose. Unfortunately, for the proof
of these assertions in [6], a lemma is used which was later proved to be inde-
pendent of ZFC (under some large cardinal) and whose proof (see Theorem
10 in [11]) requires a very weak form of the square principle, and the status
of this square principle under Axiom R or even FRP is still open (see also
“added in proof” in [10]).

To avoid this problem, we make use of Theorem 3.13 below in the proof
of Theorem 1.6 in Section 4.

For a Boolean algebra B, a mapping f : B → [B]<ℵ0 is called a Freese–
Nation mapping (FN-mapping, for short) on B if, for any a, b ∈ B with
a ≤ b, there is c ∈ f(a) ∩ f(b) such that a ≤ c ≤ b. The following is the
essence of Theorems 3.2 and 3.3. We sketch the proof for the convenience of
the reader.

Lemma 3.1 (L. Heindorf and L. B. Shapiro [13]).

(1) Suppose that B is an openly generated Boolean algebra with a closed
unbounded C ⊆ {C ∈ [B]ℵ0 : C ≤rc B}. If D ≤ B is such that
C ∩ [D]ℵ0 is closed unbounded in [D]ℵ0, then D ≤rc B.

(2) Suppose that B is a Boolean algebra and f : B → [B]<ℵ0 is an
FN-mapping. If A ≤ B is closed with respect to f then A ≤rc B.

(3) Suppose that A ≤rc B and both A and B have FN-mappings. Then
for any FN-mapping f on A there is an FN-mapping f̃ on B ex-
tending f .

Proof. (1): Suppose that D ≤ B and C ∩ [D]ℵ0 is closed unbounded
in [D]ℵ0 . If D ≤¬rc B then there would be a b ∈ B without its lower
projection into D. Then we can construct a continuously increasing sequence
〈Cα : α < ω1〉 in C ∩ [D]ℵ0 such that 〈pCα(b) : α < ω1〉 is strictly increasing.
But this is a contradiction to Lemma 1.4(4).

(2): Suppose that A ≤ B is closed with respect to an FN-mapping f :
B → [B]<ℵ0 . Then, for each b ∈ B, we have pA(b) =

∑A f(b) ∩A.
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(3): Let g : B → [B]<ℵ0 be an FN-mapping. Then the mapping f̃ on B
defined by

f̃(b) =

{
f(b) if b ∈ A,
g(b) ∪ f(pA(b)) ∪ f(qA(b)) otherwise,

for b ∈ B is as desired.

The equivalence of (a)–(c) of the theorem below can be proved us-
ing Lemma 3.1(1)&(3), while the implication (c)⇒(d) follows from Lemma
3.1(2) and the implication (e)⇒(a) follows immediately from the definition
of open generatedness.

Theorem 3.2. For a Boolean algebra B, the following are equivalent.

(a) B is openly generated.
(b) (Heindorf and Shapiro [13]) There is a filtration 〈Bα : α < λ〉 of B

with λ = |B| such that, for every α < λ, Bα ≤rc B, |Bα| = |α + ω|
and Bα is openly generated.

(c) (Heindorf and Shapiro [13]) There is an FN-mapping on B.
(d) (Fuchino [6]) For any sufficiently large regular θ and M ≺ H(θ) with

B ∈M , we have B ∩M ≤rc B.
(e) (Fuchino [6]) For any sufficiently large regular θ and countable M ≺
H(θ) with B ∈M , we have B ∩M ≤rc B.

Theorem 3.2(a)⇔(c) and Lemma 3.1(3) imply the following:

Theorem 3.3 (Heindorf and Shapiro [13]). Suppose that 〈Bα : α < δ〉
is a continuously increasing sequence of openly generated Boolean algebras
for some limit ordinal δ such that Bα ≤rc Bα+1 for every α < δ. Then
B =

⋃
α<δ Bα is also openly generated.

Theorem 3.4 (I. Bandlow, unpublished, see Theorem 2.2.11 in [13]). If
Bn, n ∈ ω, are openly generated Boolean algebras such that Bn ≤σ Bn+1 for
all n ∈ ω, then B =

⋃
n∈ω Bn is also openly generated.

Proof. We give here a proof using the characterization Theorem 3.2(a)
⇔(e) of openly generated Boolean algebras.

Let θ be a sufficiently large regular cardinal. It is enough to show that,
for any countable M ≺ H(θ) with B ∈M , we have B ∩M ≤rc B.

Without loss of generality, we may assume that 〈Bn : n ∈ ω〉 ∈ M .
Suppose that b ∈ B. Then b ∈ Bn∗ for some n∗ ∈ ω. Since Bn∗ is openly
generated and Bn∗ ∈M , b∗ = pBn∗∩M (b) exists by Theorem 3.2(a)⇔(e).

We show that b∗ = pB∩M (b). Suppose b′ ∈ (B ∩M)�b. Since Bn∗ ≤σ B,
there is a countable X ⊆ Bn∗ coinitial in Bn∗↑b′ = {c ∈ Bn∗ : b′ ≤ c}.
We may assume that X ∈ M and hence X ⊆ M by the countability of X.
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Since b ∈ Bn∗↑b′, there is b′′ ∈ X ⊆ Bn∗ ∩ M such that b′′ ≤ b. Since
b′′ ∈ (B ∩M)�b, we have b′ ≤ b′′ ≤ b∗.

The following lemma should be a folklore:

Lemma 3.5. For a regular cardinal κ and a club C ⊆ [X]κ for some
set X with κ ⊆ X, there is a mapping f : X<ω → X such that

C(f) = {a ∈ [X]κ : κ ⊆ a and a is closed with respect to f} ⊆ C.
Proof. Let θ be sufficiently large. We may assume that κ < |X|. LetM =

〈H(θ),∈, X,C,E〉 where E is a well-ordering on H(θ). Let N = skM(|X|)
where skM(·) denotes the Skolem-hull operator corresponding to the built-in
Skolem functions ofM. Let ϕ : X → N be a bijection and let f : N<ω → N
code the built-in Skolem functions of M�N and ϕ−1.

Now, identifying 〈N, {ϕ ′′c : c ∈ C}〉 with 〈X,C〉, we can show that this
f is as desired:

Claim 3.5.1. If a ⊆ N is closed with respect to f and κ ⊆ a then
a ∩X ∈ C and a = ϕ ′′a ∩X.

Proof. Since a is closed with respect to the Skolem functions, we have
a ≺ N (i.e. M�a ≺ M�N). Since κ ⊆ a, it follows that a ∩ X =

⋃
(a ∩

C) and a ∩ C is upward directed by elementarity. Thus a ∩ X ∈ C by
closedness of C. Since a is also closed with respect to ϕ−1, we have a =
ϕ ′′a ∩X. Claim 3.5.1 Lemma 3.5

Note that we cannot drop the condition “κ ⊆ a” for an uncountable κ
in general (see Feng [3]).

Lemma 3.6. Suppose that X is a set and κ is a regular cardinal < |X|
and C ⊆ [X]κ is club in [X]κ. Then, for λ = |X|, the set

C = {Y ∈ [X]<λ : C ∩ [Y ]κ is club in [Y ]κ}
contains a set C′ such that, for all regular λ′ with κ < λ′ ≤ λ, C′ ∩ [X]<λ

′
is

club in [X]<λ
′
.

Proof. We may assume that κ ⊆ X. By Lemma 3.5, there is a mapping
f : X<ω → X such that

C(f) = {a ∈ [X]κ : κ ⊆ a and a is closed with respect to f} ⊆ C.
Let

C′ = {Y ∈ [X]<λ : κ ⊆ Y and Y is closed with respect to f}.
Then C′ ⊆ C and C′ is as desired.

Proposition 3.7. Suppose that B is a κ-openly generated Boolean al-
gebra for a regular cardinal κ. If θ is a sufficiently large regular cardinal and
M ≺ H(θ) is such that B ∈ M and κ ≤ |M | ⊆ M , then B ∩M is also a
κ-openly generated Boolean algebra.
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Proof. If |M | ≥ |B| then B ∩M = B and hence the assertion trivially
holds. So we may assume |M | < |B|. Let C = {A ∈ [B]<κ : A is openly
generated}. Since C contains a club subset of [B]<κ, there are C and C′ as
in Lemma 3.6 for this C. By the elementarity of M , we may assume that
C′ ∈ M . Then B ∩M =

⋃
C′ ∩M ∈ C′. In particular, B ∩M is κ-openly

generated.

For a Boolean algebra B,X ⊆ B and b ∈ B, let tpX(b) = 〈X�b,X↑b〉. Let
us say that B is ω-stable if |{tpX(b) : b ∈ B}| ≤ ℵ0 for all X ∈ [B]ℵ0 . Note
that ω-stability defined here only roughly corresponds to the model-theoretic
notion of the ω-stability of structures. Clearly B is ω-stable if {tpA(b) :
b ∈ B} is countable for cofinally many countable A ≤ B (where “cofinally
many” refers to the cofinality in [B]ℵ0 with respect to ⊆). If A ≤ B, A is
countable and A ≤rc B then each tpA(b) is decided by 〈pA(b), qA(b)〉 and
hence |{tpA(b) : b ∈ B}| ≤ ℵ0. Thus:

Lemma 3.8. If a Boolean algebra B is projective then B is ω-stable.

For a Boolean algebra B and X ⊆ B, let X⊥ = {c ∈ B : b · c = 0 for
every b ∈ X}. An ideal I on B is said to be regular if (I⊥)⊥ = I. Note that
(X⊥)⊥ ⊇ X for any X ⊆ B. In the following, we shall also simply write I⊥⊥

in place of (I⊥)⊥.
A Boolean algebra B is said to have the Bockstein Separation Property

(BSP for short) if every regular ideal I of B is countably generated, i.e. if
there is always a countable cofinal subset of such I.

Theorem 3.9 (Koppelberg [16]). If a Boolean algebra B is projective
then B has the BSP.

For a regular uncountable cardinal θ, M ≺ H(θ) is said to be ω-bounding
if for every x ∈ [M ]ℵ0 there is y ∈ [M ]ℵ0 ∩M such that x ⊆ y.

M ≺ H(θ) is said to be H(κ)-like if for any x ∈ [M ]<κ there is N ∈
M ∩ [M ]<κ such that x ⊆ N ≺ M . Clearly, if M is H(ℵ1)-like, then M is
ω-bounding.

Since any internally approachable elementary submodel of H(θ) of car-
dinality ℵ1 is H(ℵ1)-like, there are cofinally many H(ℵ1)-like M ≺ H(θ)
of cardinality ℵ1. More generally, if cf([κ]ℵ0 ,⊆) = κ and θ is a sufficiently
large regular cardinal, then there are cofinally many H(ω1)-like elementary
submodels M ∈ [H(θ)]κ of H(θ).

Lemma 3.10. Suppose that B is an ℵ2-projective Boolean algebra. Then

(1) B satisfies the c.c.c.;
(2) B has the BSP;
(3) B is ω-stable.
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Proof. (1): Suppose that B does not satisfy the c.c.c. and let X ∈ [B+]ℵ1
be pairwise disjoint. By the ℵ2-projectiveness of B, there is A ∈ [B]ℵ1 such
that A ≤ B, X ⊆ A and A is projective. But since A satisfies the c.c.c. (see
the remark after Theorem 1.3) this is a contradiction.

(2): Suppose that I ⊆ B is a regular ideal on B. Let θ be a sufficiently
large regular cardinal and let M ≺ H(θ) be ω-bounding with |M | = ℵ1 and
B, I ∈ M . Then B ∩M is projective and hence has the BSP by Theorem
3.9. Since I ∩M is a regular ideal in B∩M , there is a countable X ⊆ I ∩M
generating I ∩M . Let x ∈ M be such that x is countable and X ⊆ x ⊆ I.
Then M |= “x generates I”. By elementarity, x really generates I.

(3): Suppose that B were not ω-stable. Then there would be X ⊆ [B]ℵ0
and bα ∈ B, α < ω1, such that tpX(bα), α < ω1, are pairwise distinct. Let
A ∈ [B]ℵ1 be such that A ≤ B, A is projective and X ∪ {bα : α < ω1} ⊆ A.
Then X and bα, α < ω1, witness that A is not ω-stable. This contradicts
Lemma 3.8.

Lemma 3.11. Suppose that κ is a cardinal with cf([κ]ℵ0 ,⊆) = κ and θ
is a sufficiently large regular cardinal. Then there are cofinally many M ∈
[H(θ)]κ such that M is an H(ℵ1)-like elementary submodel of H(θ).

Proof. For every A ∈ [H(θ)]κ we show that there is an H(ℵ1)-like ele-
mentary submodel M of H(θ) such that A ⊆M and |M | = κ.

Let 〈Mα : α < ω1〉, 〈Cα : α < ω1〉 and 〈Dα : α < ω1〉 be defined
inductively such that

(3.1) A ⊆M0;
(3.2) 〈Mα : α < ω1〉 is an increasing chain;
(3.3) Mα ≺ H(θ) and |Mα| = κ for all α < ω1;
(3.4) Cα ∈ [[Mα]ℵ0 ]κ and Cα is cofinal in [Mα]ℵ0 with respect to ⊆ for all

α < ω1;
(3.5) for all α < ω1, we have Dα ∈ [[H(θ)]ℵ0 ]κ, N ≺ H(θ) for all N ∈ Dα

and if c ∈ Cα then there is some N ∈ Dα with c ⊆ N ;
(3.6) Dα ⊆Mα+1 for all α < ω1.

Let M =
⋃
α<ω1

Mα. Then this M is as desired: A ⊆ M by (3.1) and
M ≺ H(θ) by (3.2) and (3.3). Suppose that c ∈ [M ]ℵ0 . Then there is α < ω1

such that c ∈ [Mα]ℵ0 . By (3.4) and (3.5), there is N ∈ Dα such that c ⊆ N .
By (3.6), N ∈Mα+1 ⊆M . N ≺M by (3.5). Thus M is H(ℵ1)-like.

Theorem 3.12. Suppose that B is a c.c.c. ω-stable Boolean algebra with
the BSP. Then, for every sufficiently large regular cardinal θ and ω-bounding
M ≺ H(θ) with B ∈M , we have B ∩M ≤rc B.

Proof. Let B, θ and M be as above. We show that qB∩M (b) exists for
all b ∈ B.
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Let U be a maximal pairwise disjoint subset of (B ∩M)�−b. Then U
is countable since B satisfies the c.c.c. Since M is ω-bounding, there is
S ∈ [M ]ℵ0 ∩M such that U ⊆ S. Let T = {tpB∩S(b) : b ∈ B}. Then T ∈M .
By the ω-stability of B, |T | = ℵ0. It follows that T ⊆ M . In particular,
tpB∩S(b) ∈M . Let b′ ∈M be such that tpB∩S(b′) = tpB∩S(b).

Now, let K = (B ∩ S)� − b = (B ∩ S)� − b′. Then K ∈ M and U ⊆ K.
Let J = K⊥ (where ⊥ acts with respect to the Boolean algebra B). Then
J is a regular ideal on B and J ∈ M . Since B has the BSP, there is X ∈
[J ]ℵ0 cofinal in J . By elementarity, we may assume that X ∈M and hence
X ⊆M . Since b ∈ J , there is some d ∈ X such that b ≤ d.

We claim that d is the upper projection of b onto B ∩ M . Suppose
otherwise. Then there would be some c ∈ B ∩M such that b ≤ c and d 6≤ c,
i.e. d · −c 6= 0. By the maximality of U , and since d · −c ≤ −b, there is some
e ∈ U such that d ·−c ·e 6= 0. But this contradicts d ∈ X ⊆ J = K⊥ ⊆ U⊥.

Theorem 3.13. Suppose that SSH holds. Then every ℵ2-projective
Boolean algebra B has a filtration 〈Bα : α < κ〉 for κ = cf(|B|) such that
Bα+1 is ℵ2-projective and Bα+1 ≤σ B for all α < κ. In particular, Bα ≤σ B
for all limit α < κ of countable cofinality.

Proof. The assertion is trivial if |B| ≤ ℵ1. So assume that |B| ≥ ℵ2. Let
θ be a sufficiently large regular cardinal.

Case I: |B| = κ = λ+ and cf(λ) > ω. By SSH, we have cf([λ]ℵ0 ,⊆) = λ.
Hence, by Lemma 3.11, there is an increasing chain 〈Mα : α < κ〉 of elemen-
tary submodels of H(θ) such that

(3.7) B ∈M0;
(3.8) Mα is H(ω1)-like for all α < κ;
(3.9) |Mα| = λ for all α < κ;
(3.10) B ⊆

⋃
α<κMα.

Let Bα = B ∩
⋃
β<αMβ+1 for α < κ. Then 〈Bα : α < κ〉 is a filtration of B.

If α < κ is 0 or a successor ordinal, then Bα = B ∩Mα, and Bα is ℵ2-
projective by Proposition 3.7. If α is a limit ordinal, since M =

⋃
β<αMβ+1

is an elementary submodel of H(θ), Bα = B ∩M is also ℵ2-projective by
Proposition 3.7.

Thus the filtration 〈Bα : α < κ〉 is as desired.

Case II: |B| > κ. Similar to Case I.

Case III: |B| = κ = λ+ and cf(λ) = ω. Let λ = supn∈ω λn where
〈λn : n ∈ ω〉 is an increasing sequence of cardinals of cofinality > ω.

For α < κ and n < ω, let Mα,n be defined inductively such that

(3.11) B ∈Mα,0 for all α < κ;
(3.12) Mα,n ≺ H(θ) and |Mα,n| = λn for all α < κ and n < ω;
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(3.13) Mα,n is H(ℵ1)-like for all α < κ and n < ω;
(3.14) 〈Mα,n : n ∈ ω〉 is an increasing chain for all α < κ;
(3.15) 〈Mα+1 : α < κ〉 is an increasing chain where

(3.15a) Mα+1 =
⋃
n∈ωMα,n

for α < κ;
(3.16) B ⊆

⋃
α<κMα+1.

The construction of Mα,n’s is possible by SSH and Lemma 3.11. Let

(3.17) Mγ =
⋃
α<γ

Mα+1 for all limit γ < κ

and let Bα = B ∩ Mα for all α < κ. Then, by (3.12) and (3.15)–(3.17),
we have |Bα| ≤ λ for all α < κ and 〈Bα : α < κ〉 is a filtration of B. By
(3.11), (3.13) and Theorem 3.12, we have B ∩Mα,n ≤rc B for all α < κ and
n < ω. It follows by the definition (3.15a) of Mα+1 that Bα+1 = B∩Mα+1 =⋃
n∈ω B ∩Mα,n ≤σ B. By the definition of Bα’s and Proposition 3.7, all Bα,

α < κ, are ℵ2-projective.

4. Openly generated Boolean algebras under FRP. In this sec-
tion, we prove Theorem 1.6.

The implication (a)⇒(b) follows from Theorem 3.2(d) and Lemma 3.1(2).
The proof of the other implication “(b)⇒(a)” is done by induction on

the cardinality of B.
For Boolean algebras of cardinality ≤ ℵ1, the implication clearly holds.
From now on we need the assumption of FRP. Suppose that we have

shown the implication (b)⇒(a) for all Boolean algebras of cardinality < λ
for some cardinal λ > ℵ1.

Case I: λ is regular. Let B be an ℵ2-projective Boolean algebra of
cardinality λ. Let C ⊆ {C ∈ [B]ℵ1 : C is projective} be closed unbounded
in [B]ℵ1 . By Theorem 3.13, there is a filtration 〈Bα : α < λ〉 of B such that
all Bα, α < λ, are ℵ2-projective and Bα ≤σ B for all α ∈ λ \ Eκ>ω. Note
that we may apply Theorem 3.13 here by Theorem 2.2. By the induction
hypothesis, it follows that all Bα, α < λ, are openly generated.

Suppose, toward a contradiction, that B were not openly generated.

Claim 4.0.1. E = {α ∈ Eλω : Bα ≤¬rc B} is stationary in λ.

Proof. Otherwise, there is a closed unbounded C ⊆ λ such that, for
every α ∈ C ∩ Eλω, we have Bα ≤rc B. But then, by the c.c.c. of B, we can
show that Bα ≤rc B for all α ∈ C \ Eλω as well and it follows that B is
openly generated by Theorem 3.3. This is a contradiction to the assumption
on B. Claim 4.0.1
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We may assume that (the underlying set of) B is λ. By thinning out the
stationary set E, we may also assume that (the underlying set of) Bα is α
for all α ∈ E.

For each α ∈ E, we have Bα ≤σ B. So let ηα ∈ B and ηαn ∈ Bα,
n ∈ ω, be such that the ideal Bα�ηα is not generated by a single element
but {ηαn : n ∈ ω} generates it. Let g : E → [λ]ℵ0 be defined by g(α) =
{ηα}∪{ηαn : n ∈ ω} for α ∈ E. By (the principle shown in Proposition 1.1 to
be equivalent to) FRP, there is I ∈ C such that (1.1)–(1.3) hold for I with
the E and g as above.

Since I ∈ C, I (as a subalgebra of B) is openly generated. On the other
hand, by Lemma 1.2, I has a filtration 〈Iξ : ξ < ω1〉 such that

S = {ξ ∈ ω1 : sup(Iξ) ∈ I and {ηsup(Iξ)
n : n ∈ ω} ⊆ Iξ}

is stationary. Since ηsup(Iξ) ∈ I for ξ ∈ S ∩ I, it follows that {ξ ∈ ω1 :
Iξ ≤¬rc I} ⊇ S is also stationary. On the other hand, since I is openly
generated, the filtration 〈Iξ : ξ < ω1〉 has a continuous subsequence 〈I ′ξ :
ξ < ω1〉 such that I ′ξ ≤rc I for all ξ < ω1 by Theorem 3.2(b). This is a
contradiction.

Case II: λ is singular. Let B be an ℵ2-projective Boolean algebra of
cardinality λ and let µ = cf(λ) < λ. Without loss of generality, ω1 ⊆ B.
Let h : B<ω → B be such that all C ∈ [B]ℵ1 closed with respect to h with
ω1 ⊆ C are projective subalgebras of B.

Let 〈Bα : α < µ〉 be a filtration of B such that ω1 ⊆ B0 and each Bα
is closed with respect to h. Then each Bα is ℵ2-projective and hence, by
the induction hypothesis, openly generated. By Theorem 3.2(c), there is an
FN-mapping fα : Bα → [Bα]<ℵ0 for each α < µ. Now let 〈Cξ : ξ < µ〉 be
another filtration of B such that

(4.1) ω1 ⊆ C0;
(4.2) Cξ is closed with respect to h for all ξ < µ;
(4.3) Cξ is closed with respect to fα, α < µ, for all ξ < µ.

By (4.1), (4.2) and the induction hypothesis, all Cξ, ξ < µ, are openly
generated.

For ξ < µ and b ∈ B let α0 < µ be such that b ∈ Bαb . For α ∈ µ \αb, let

(4.4) bξα =
∑B

(fα(b) ∩ Cξ�b).

Note that bξα is well-defined since fα(b) is finite.

Claim 4.0.2. For ξ < µ and b ∈ B, 〈bξα : α ∈ µ \ αb〉 is an increasing
sequence cofinal in Cξ�b.
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Proof. Suppose αb ≤ α0 < α1 < µ. Since bξα0 ≤ b, there is c ∈ fα1(bξα0)∩
fα1(b) such that bξα0 ≤ c ≤ b. Since bξα0 ∈ Cξ by (4.4), we have fα1(bξα0) ⊆ Cξ
by (4.3). Hence c ∈ Cξ�b. By (4.4) with α = α1, it follows that c ≤ bξα1 .
Thus bξα0 ≤ b

ξ
α1 .

Now, suppose that c ∈ Cξ�b. Let α∗ ∈ µ \ αb be such that c ∈ Bα∗ .
Then there is d ∈ fα∗(c) ∩ fα∗(b) such that c ≤ d ≤ b. By (4.3) and since
c ∈ Cξ, we have d ∈ Cξ. Thus, by (4.4), we have c ≤ d ≤ bξα∗ . This shows
that {bξα : α ∈ µ \ α0} is cofinal in Cξ�b. Claim 4.0.2

Case IIa: µ = ω. By Claim 4.0.2, Cξ ≤σ B for all ξ < µ. By Bandlow’s
Theorem 3.4, it follows that B is openly generated.

Case IIb: µ > ω. In this case, we have the following:

Claim 4.0.3. Cξ ≤rc B for all ξ < µ.

Proof. Otherwise, 〈bξα : α ∈ µ \αb〉 would be strictly increasing for some
b ∈ B. Since B satisfies the c.c.c., this is a contradiction. Claim 4.0.3

By Theorem 3.3, it follows that B is openly generated. Theorem1.6

A Boolean algebra B is said to be L∞,ℵ2-projective if B |= ψ for any
L∞,ℵ2-sentence ψ which holds in all projective Boolean algebras. Similarly
to [5] we now obtain under FRP the following:

Theorem 4.1. Assume FRP. Then every L∞,ℵ2-projective Boolean al-
gebra is openly generated.

In [5] a counterexample to the assertion of Theorem 4.1 is constructed
under the existence of a non-reflecting stationary set in Eκω for some regu-
lar κ. This shows that the assertion of Theorem 4.1 above implies ORP.

Problem 1. Does the assertion of Theorem 4.1 imply FRP?

In the next section we show that the assertion of Theorem 1.6 implies
and hence is equivalent to FRP.

5. Implication of FRP from the assertion of Theorem 1.6. As
we already mentioned in Section 2, it is shown in [12, Theorem 2.5] that the
negation of FRP is equivalent to the existence of a regular κ > ℵ1 satisfying
ADS−(κ), that is, such that there is a stationary S ⊆ Eκω and an almost
essentially disjoint g : S → [κ]ℵ0 with

(5.1) g(α) ⊆ α and otp(g(α)) = ω for all α ∈ S.

In [12, Lemma 2.3] it is shown that we may assume that g as above is a
ladder system on S, that is, in addition to (5.1), we may also assume that
g(α) is a cofinal subset of α for all α ∈ S.
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Proposition 5.1. Suppose that S ⊆ Eκω is a stationary set for a regular
cardinal κ ≥ ℵ2 and g : S → [κ]ℵ0 is an almost essentially disjoint ladder
system. Then there is a Boolean algebra B of cardinality κ such that

(5.2) B is not openly generated, but
(5.3) B is λ-openly generated for all regular λ ≤ κ.

Proof. Let S and g be as above. Without loss of generality, we may
assume that g(α) consists of successor ordinals for all α ∈ S.

Let D = {α + 1 : α < κ} and let X = {cα : α ∈ S ∪ D} where cα,
α ∈ S ∪ D, are pairwise distinct constant symbols. Let <B be the partial
ordering on X defined by

(5.4) cα <B cβ if and only if α ∈ D, β ∈ S and α ∈ g(β)

for cα, cβ ∈ X.
Let B be the Boolean algebra generated by X freely except <B. That

is, B = FrX/I<B where I<B is the ideal on FrX generated by {cα · −cβ :
α, β ∈ S ∪D, cα <B cβ}.

We show that this B satisfies (5.2) and (5.3). Note that elements of B
can be represented uniquely by a term t in reduced disjunctive normal form
built up from some elements of X. In the following we always identify such
terms t with elements of B they represent. In particular, we consider X as
a subset of B.

For t ∈ B, let
C(t) = {cα : cα appears in t}.

Claim 5.1.1. B |= (5.2), i.e., B is not openly generated.

Proof. Otherwise there would be an FN-mapping f : B → [B]<ℵ0 . Let
f0 : X → [X]<ℵ0 be defined by f0(cα) =

⋃
{C(t) : t ∈ f(cα)}.

By Fodor’s Lemma, there is a stationary S′ ⊆ S such that

f0(cα) ∩ {cβ : β < α} ⊆ {cβ : β < δ∗}
for some fixed δ∗ < κ for all α ∈ S′. By a further application of Fodor’s
Lemma, we obtain a stationary set S′′ ⊆ S′ such that the first element in
g(α) above δ∗ is some fixed β∗ < κ for all α ∈ S′′. Let α∗ ∈ S′′ be such
that f0(cβ∗) ⊆ {cβ : β < α∗}. Since β∗ ∈ g(α∗) we have cβ∗ <B cα∗ . Then
f0(cβ∗) ∩ f0(cα∗) ⊆ δ∗. It follows that f(cβ∗) ∩ f(cα∗) cannot contain an
element interpolating cα∗ and cβ∗ with respect to the ordering ≤B. This is
a contradiction. Claim 5.1.1

Claim 5.1.2. B |= (5.3). More specifically, for any Y ∈ [X]<κ, [Y ]B is
openly generated.

Proof. Suppose Y ∈ [X]<κ. Let Ȳ = {α ∈ S ∪ D : cα ∈ Y }. Since g
is almost essentially disjoint, there is a regressive h : S ∩ Ȳ → κ such that



282 S. Fuchino and A. Rinot

g(α)\h(α), α ∈ S∩ Ȳ , are pairwise disjoint. Let f0 : Y → [Y ]<ℵ0 be defined
by

f0(cα) =


{cα, cβ} if β ∈ S ∩ Ȳ and

α ∈ g(β) \ h(β),
{cα} ∪ ({cβ : β ∈ g(α) ∩ h(α)} ∩ Y ) if α ∈ S ∩ Ȳ ,
{cα} otherwise

for cα ∈ Y .
Clearly f0 is an FN-mapping (for the partial ordering 〈Y,<B�Y 〉). Now

let f : [Y ]B → [[Y ]B]<ℵ0 be defined by

f(t) =
[ ⋃
{f0(c) : c ∈ C(t)} ∪ C(t)

]
B

for t ∈ [Y ]B. Then f is an FN-mapping on [Y ]B. Claim 5.1.2 Proposition 5.1

Theorem 5.2. The assertion of Theorem 1.6 is equivalent to FRP over
ZFC.

Proof. By Theorem 1.6, Proposition 5.1 and by [12, Theorem 2.5].
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Kôkyûroku 1619 (2008), 32–42.
[8] —, Fodor-type reflection principle and Balogh’s reflection theorems, RIMS Kôkyûro-
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