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Abstract. A net in a Hausdorff uniform space is called cofinally Cauchy if for each
entourage, there exists a cofinal (rather than residual) set of indices whose corresponding
terms are pairwise within the entourage. In a metric space equipped with the associated
metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each
cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary
and sufficient conditions for the nonempty closed subsets of the metric space equipped
with Hausdorff distance to be cofinally complete.

1. Introduction. A net 〈xλ〉λ∈Λ in a Hausdorff uniform space 〈X, U〉
is of course called Cauchy if for each entourage U , there exists a residual
subset Λ0 of Λ such that whenever {λ, µ} ⊆ Λ0, then (xλ, xµ) ∈ U . Re-
placing residual by cofinal in the definition, we obtain nets that are called
cofinally Cauchy, and those uniform spaces in which each cofinally Cauchy
net clusters are naturally called cofinally complete [6, 7, 12, 14, 15, 21]. Co-
final completeness can as expected be described in terms of filters [14, 15],
and from this perspective it was shown to be intrinsic to paracompactness
by Corson [9]. Corson implicitly showed that a (completely regular) Haus-
dorff space is paracompact if and only if it admits a uniformity for which
the associated uniform space is cofinally complete.

Twenty years after Corson’s seminal paper appeared, Rice [20] intro-
duced the notion of uniform paracompactness for a Hausdorff uniform space:
for each open cover {Vi : i ∈ I} of a uniform space 〈X,U〉, there exists an
open refinement and an entourage U such that for each x ∈ X, U(x) meets
only finitely many members of the refinement. He then produced two sep-
arate descriptions of uniform paracompactness. Later it was observed that
one of these descriptions was equivalent to cofinal completeness of nets: for
each open cover of X directed by inclusion, there exists an entourage U
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such that {U(x) : x ∈ X} refines the initial cover [15, 22]. Subsequently,
Fried and Froĺık [11] characterized uniform paracompactness in terms of a
functional separation property within the semiuniform product of X and an
arbitrary compactification of X.

As expected, with their additional structure, more can be said about cofi-
nal completeness/uniform paracompactness in the context of metric spaces.
For example, Hohti [13] showed that a metric space 〈X, d〉 is uniformly para-
compact if and only if (1) nlc(X) := {x ∈ X : x has no compact neighbor-
hood} is compact, and (2) for all δ > 0, {x ∈ X : d(x,nlc(X)) > δ} is
uniformly locally compact. Recently, Beer [6] showed that sequential cofinal
completeness is equivalent to Hohti’s conditions, so that for metric spaces,
if each cofinally Cauchy sequence has a cluster point, then so does each co-
finally Cauchy net. Outside the metric setting, that each cofinally Cauchy
sequence has a cluster point does not guarantee that each net based on a
well-ordered (directed) set does. Consider the ordinal space [0, Ω) where Ω
is the first uncountable ordinal. Each sequence 〈xn〉 in the space without re-
striction has a cluster point (one such is infn(supk≥n xk)). Now consider the
trace of the unique totally bounded uniformity for the compact Hausdorff
space [0, Ω] on [0, Ω). Since the induced uniformity is also totally bounded,
each net 〈xλ〉λ∈Λ in [0, Ω) is cofinally Cauchy. But the identity net fails to
have a cluster point. Separately, Burdick [7, Example 3.1] has shown that
so-called linear cofinal completeness for nets in a Hausdorff uniform space,
where the directed sets must be well-ordered, is a properly weaker notion
than cofinal completeness for arbirary nets (linear cofinal completeness evi-
dently fails for [0, Ω)).

Results of [6] show that the cofinally complete metric spaces seem to
constitute a parallel universe to the UC-spaces [4, 5, 6, 24], also known as
the Atsuji spaces [2, 3, 16] or Lebesgue spaces [18], which also forms an
intermediate class of metric spaces between the compact spaces and the
complete ones. Most familiarly, a metric space 〈X, d〉 is a UC-space if and
only if each continuous function f with values in an arbitrary metric space is
uniformly continuous [1, 5]. Cofinally complete spaces can also be character-
ized in terms of uniform properties of continuous functions: a metric space
is cofinally complete if and only if each continuous function with values in
an arbitrary metric space is uniformly locally bounded [6]. The UC-spaces,
too, have been shown by Toader [5, 23] to be those for which generalized
Cauchy sequences (with distinct terms) in a somewhat different sense have
cluster points. Both classes can be described in terms of Cantor-type theo-
rems for decreasing sequences of closed sets [3, 6]. Both can be characterized
by the existence of cluster points for sequences on which certain geometric
functionals go to zero; in the case of UC-spaces, the functional measures
the isolation of points of X [1], whereas for cofinally complete spaces, the
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functional measures the local compactness of the space at each point [6].
A metrizable space X has a compatible UC-metric if and only if its set of
limit points X ′ is compact [4, 19], whereas it admits a compatible cofinally
complete metric if and only if nlc(X) is compact [6, 21].

A basic question to ask in each case is this: when are the nonempty closed
subsets C0(X) of a metric space 〈X, d〉 equipped with Hausdorff distance
again a space of each type? In the case of UC-spaces, the answer is utterly
transparent [2, Theorem 3]: either X is compact or X is uniformly discrete.
The purpose of this paper is to answer the much more difficult question
for cofinally complete metric spaces, using results on local compactness of
hyperspaces of Costantini, Levi and Pelant [10].

2. Preliminaries. All metric spaces will be assumed to contain at least
two points. If A is a subset of a metric space 〈X, d〉, we denote its closure and
set of limit points by cl(A) and A′, respectively. We denote the nonempty
subsets of 〈X, d〉 by P0(X) and its closed subsets including ∅ by C(X). If
x ∈ X and A ∈ P0(X) we write d(x,A) for infa∈A d(x, a). Given ε > 0,
we call A ∈ P0(X) an ε-discrete subset if whenever a1 6= a2 in A, then
d(a1, a2) ≥ ε. If A,B are nonempty subsets of X, we call Dd(A,B) :=
inf{d(a, b) : a ∈ A, b ∈ B} the gap between them. When A 6= ∅, we adopt
the convention Dd(A, ∅) = Dd(∅, A) =∞.

If x is a point of a metric space 〈X, d〉 and α > 0, we denote the open ball
with center x and radius α by Sd(x, α). We call x a point of local compactness
of X if for some α > 0, cl(Sd(x, α)) is compact. Following [6], if x ∈ X has
a compact neighborhood, set

ν(x) = sup{ε > 0 : cl(Sd(x, ε)) is compact};
otherwise, set ν(x) = 0. We call a nonempty subset A of X uniformly locally
compact if inf{ν(a) : a ∈ A} > 0; note that this does not imply that A is
even locally compact as a metric subspace of X. A major result of [6] says
that 〈X, d〉 is cofinally complete if and only if each sequence 〈xn〉 in X with
limn→∞ν(xn) = 0 clusters. As a uniformly locally compact space X has no
such sequence, the criterion is fulfilled vacuously.

If A is a possibly empty subset of X and ε > 0, the ε-enlargement of A
is Aε :=

⋃
a∈A Sd(a, ε). If A,B are nonempty closed subsets of X, we define

the Hausdorff distance [5, 17] between them by
Hd(A,B) = max{{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}}

= inf{ε > 0 : B ⊆ Aε and A ⊆ Bε}.
Hausdorff distance so defined is an extended real-valued metric on C0(X)
which is finite-valued when restricted to the nonempty closed and bounded
sets. Of course, x 7→ {x} is an isometry of 〈X, d〉 into 〈C0(X), Hd〉. While
there are many ways to topologize the nonempty closed subsets of a metric
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space, we will call 〈C0(X), Hd〉 the hyperspace of X here. It is known that
two equivalent metrics determine the same hyperspace if and only if they are
uniformly equivalent metrics [5, Theorem 3.3.2]. Properties of completeness,
total boundedness, compactness of 〈X, d〉 carry over to the hyperspace [5,
Thm. 3.2.4]. Burdick [8] gave an internal condition on 〈X, d〉 characterizing
local compactness of 〈C0(X), Hd〉, and observed that local compactness of
the hyperspace guarantees uniform local compactness as well, and is guar-
anteed by X being a point of local compactness of the hyperspace. Actually,
his results are stated in the more general setting of uniform spaces. Here,
we rely on a more technical condition given by Costantini, Levi and Pelant
[10] to describe when a particular nonempty closed set is a point of local
compactness in the hyperspace.

3. When is a hyperspace cofinally complete? The main purpose
of this section is to present for a metric space 〈X, d〉 necessary and sufficient
conditions for the associated hyperspace 〈C0(X), Hd〉 to be cofinally com-
plete. In the process we give a tractable description of ν(C) for C ∈ C0(X)
for an arbitrary metric hyperspace. Of course formally,

ν(C) = sup{ε > 0 : SHd
(C, ε) has compact closure in the hyperspace}.

Singleton subsets of X belong to the hyperspace and fortunately for the
sake of clarity we have the following result.

Proposition 3.1. Let 〈X, d〉 be a metric space and let x0 ∈ X be arbi-
trary. Then ν(x0) = ν({x0}), the latter computed relative to C0(X).

Proof. If A ∈ C0(X) and Hd(A, {x0}) < α, then A ⊆ Sd(x0, α). Hence if
SHd

({x0}, α) has compact closure, then so does Sd(x0, α) because x 7→ {x} is
an isometric embedding and singleton subsets are closed in the hyperspace.
This proves ν({x0}) ≤ ν(x0). On the other hand, if cl({x : d(x, x0} < α}) is
compact in X, then for each β < α, {x : d(x, x0} ≤ β} is compact and so is
the set of all of its closed subsets [5, Theorem 3.2.4], which is nothing more
than {A ∈ C0(X) : Hd(A, {x0}) ≤ β}. But this contains the Hd-closure of
{A ∈ C0(X) : Hd(A, {x0}) < β}, and we conclude that ν({x0}) ≥ ν(x0).

Our description of ν(C) for a nonempty closed set C has as a point of
departure the negation of the criterion (?+

C) that Costantini, Levi and Pelant
gave [10, p. 587] for a set C ∈ C0(X) to satisfy ν(C) > 0, which is perhaps
easier to understand than the criterion itself. Structurally, their criterion
(?+
C) is of the form

∃ε̂ (P (ε̂) and Q(ε̂)),

whose negation structurally can be presented as

∀ε̂ (P (ε̂)⇒ ¬Q(ε̂)).
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With this in mind we can present the negation of the condition (?+
C) of

Costantini, Levi and Pelant in the following way:

¬(?+
C) Whenever ε̂ is a positive number such that inf{ν(x) : x ∈ C} ≥ ε̂,

there exist ε and δ with 0 < δ < ε < ε̂ and an infinite ε-discrete
subset D of C such that for all x ∈ D, Sd(x, ε) \ Sd(x, δ) 6= ∅.

This negation leads us to make the following definition.

Definition 3.2. By an ε-satellite system for a set C in a metric space
〈X, d〉 we mean the union of an infinite ε-discrete subset D of C and {yx : x ∈
D} ⊆ X such that for some δ ∈ (0, ε) and all x ∈ D we have δ < d(x, yx) < ε.

In the definition, D and {yx : x ∈ D} are automatically disjoint so that if
D0 is an infinite of subset of D then D0∪{yx : x ∈ D0} is again an ε-satellite
system. Note also that an ε-satellite system in a set C is again one in any
superset of C. We also observe that the set of satellites {yx : x ∈ D} in the
definition need not be infinite: if C ⊆ `2 consists of the standard orthonormal
base {en : n ∈ N}, then {en : n ∈ N} ∪ {θ} where θ is the origin of `2 is an
ε-satellite system for C whenever 1 < ε ≤

√
2 that has just one satellite.

Lemma 3.3. Let C be a nonempty closed subset of a metric space 〈X, d〉.
Then ν(C) ≤ inf{ε > 0 : C has an ε-satellite system}.

Proof. If no ε-satellite system for C exists for any ε, there is nothing to
prove as the infimum of the empty set is +∞. Otherwise, we show that if
there is some ε-satellite system for C, then ν(C) ≤ ε.

By our previous remarks, we may assume there is a countably infinite
ε-discrete subset {x1, x2, . . .} of C and for each n, yn ∈ X such that for
some δ > 0 independent of n, δ < d(xn, yn) < ε. Fix λ ∈ (0, δ); by Zorn’s
lemma there is a maximal λ-discrete subset Eλ of C containing {x1, x2, . . .}
and such that for all x ∈ C, d(x,Eλ) < λ. Now for each n ∈ N define
An(λ) ∈ C0(X) as follows:

An(λ) := {yn} ∪ (Eλ \ {xn}).
Since Hd(C,Eλ) ≤ λ and d(xn, yn) < ε, we get Hd(C,An(λ)) < λ+ ε for all
n ∈ N. Since xn ∈ Aj(λ) whenever n 6= j, we compute

Hd(Aj(λ), An(λ)) ≥ d(xn, An(λ)) = min{d(xn, yn), d(xn, Eλ \ {xn})}
≥ min{δ, λ} = λ.

Thus, 〈An(λ)〉 can have no Hd-Cauchy subsequence and so {A : Hd(A,C) <
λ+ ε} fails to have compact closure. This proves that ν(C) ≤ λ+ ε, and so
ν(C) ≤ ε as required.

Corollary 3.4. Let D ∪ {yx : x ∈ D} be an ε-satellite system for an
infinite uniformly discrete set D in a metric space 〈X, d〉. Then ν(D) ≤ ε.
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Proof. Let D = C in Lemma 3.3.

Lemma 3.5. Let C be a nonempty closed subset of a metric space 〈X, d〉.
Then ν(C) ≤ inf{ν(x) : x ∈ C}.

Proof. If ν(x) =∞ for all x ∈ C, there is nothing to show. Otherwise let
λ > inf{ν(x) : x ∈ C} be arbitrary and take x0 ∈ C such that cl (Sd(x0, λ))
is not compact. Let α > λ be arbitrary. It suffices to show ν(C) ≤ α.

Let D be a maximal α-uniformly discrete subset of C containing x0. Now
either Sd(x0, λ) contains a Cauchy sequence 〈wn〉 without a cluster point
in X, or Sd(x0, λ) is not totally bounded. In the first case 〈D ∪ {wn}〉 is a
sequence in the hyperspace without a cluster point where Hd(D ∪ {wn}, C)
≤ α for each n. In the second, there exists a positive µ < min{λ, α−λ} and
{x1, x2, . . .} ⊆ Sd(x0, λ) \ Sd(x0, µ) such that n 6= j ⇒ d(xn, xj) ≥ µ. Next
for all n ∈ N, let An = D ∪ {xn}. While Hd(An, C) ≤ α for all n, we have
n 6= j ⇒ Hd(An, Aj) ≥ µ because x0 ∈ D and µ < α − λ. This shows that
ν(C) ≤ α as required.

We now introduce a new set-functional γ : C0(X)→ [0,∞] defined by

γ(C) := sup{α > 0 : ∀δ ∈ (0, α), Cα \ Cδ is totally bounded},
where additionally we put γ(C) := 0 if no such positive α exists. Notice
that γ(C) = ∞ whenever X \ C is totally bounded; in particular, this is
true when C = X itself.

Lemma 3.6. Let C be a nonempty closed subset of a metric space 〈X, d〉.
Then ν(C) ≤ γ(C).

Proof. Take α > γ(C). We intend to produce a sequence of closed
sets 〈An〉 with no Hd-Cauchy subsequence but such that for all n ∈ N,
Hd(An, C) < α. To this end choose δ > 0 such that Cα \ Cδ fails to be
totally bounded. As a result we can find {an : n ∈ N} in the annulus and
ε > 0 such that whenever n 6= j, we have d(an, aj) > ε. Then if we put
An = C ∪ {an}, we have

(i) ∀n ∈ N, Hd(An, C) < α;
(ii) whenever n 6= j, Hd(An, Aj) ≥ min{ε, δ}.

This shows that {A ∈ C0(X) : Hd(C,A) < α} does not have compact
closure, and so ν(C) ≤ α, as required.

Our first theorem of this section may be viewed as a quantification of
Theorem 14 of [10].

Theorem 3.7. Let C be a nonempty closed subset of a metric space
〈X, d〉. Then ν(C) = min{inf{ε > 0 : C has an ε-satellite system}, γ(C),
inf{ν(x) : x ∈ C}}.
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Proof. That ν(C) is no larger than the minimum is established by the
conjunction of Lemma 3.3, Lemma 3.5, and Lemma 3.6. If the minimum is
zero, there is nothing further to show. Otherwise, let α and µ be arbitrary
positive scalars with

(1) α+ 2µ < min{inf{ε > 0 : C has an ε-satellite system},
γ(C), inf{ν(x) : x ∈ C}}.

We intend to show that {A ∈ C0(X) : Hd(A,C) ≤ α} is both complete and
totally bounded with respect to Hausdorff distance.

Completeness is rather obvious, for if Hd(A,C) ≤ α, then A is a subset
of the closed set E := {x : d(x,C) ≤ α}. For each x ∈ E, pick cx ∈ C with
d(x, cx) < α+µ. Since cl(Sd(x, µ)) ⊆ cl(Sd(cx, α+2µ)) and cl(Sd(cx, α+2µ))
is compact, E viewed as a metric subspace of X is uniformly locally compact
and is thus a complete metric space. Thus,

{A ∈ C0(X) : Hd(A,C) ≤ α} ⊆ C0(E)

and as such is effectively a closed subset of the complete metric space
〈C0(E), Hd〉.

For total boundedness, it suffices to show that the superset {A ∈ C0(X) :
Hd(A,C) < α + µ} is Hd-totally bounded. For this, we show that for each
δ ∈ (0, α), there exists a finite family D of closed sets such that whenever
Hd(A,C) < α+ µ, there exists D ∈ D with Hd(A,D) ≤ δ.

As α + µ < γ(C) implies that Cα+µ \ Cδ/2 is totally bounded, we can
choose a finite subset B0 of the annulus with Cα+µ \ Cδ/2 ⊆ Bδ

0. By Zorn’s
lemma C has a maximal (α + µ)-discrete subset L such that C ⊆ Lα+µ.
Since C has no (α+ µ)-satellite system,

L̃ := {x ∈ L : Sd(x, α+ µ) \ Sd(x, δ/2) 6= ∅}

is finite. Since for each c ∈ C, α + µ < ν(c), whenever x ∈ L̃, Sd(x, α + µ)
contains a finite δ/2-net Fx. We intend to show that the finite family D of
closed subsets of Cα+µ defined by

D :=
{
L \ L̃ ∪ F ∪B : F ⊆

⋃
x∈eL

Fx and B ⊆ B0

}
is an adequate approximating family.

Fix A with Hd(A,C) < α + µ. There are two possibilities for a point
a ∈ A: either a ∈ Cδ/2, or a ∈ Cα+µ \ Cδ/2. In the first case, pick ca ∈ C
with d(a, ca) < δ/2. If ca ∈

⋃
x∈eL Sd(x, α+µ), pick x ∈ L̃ and wa ∈ Fx with

d(wa, ca) < δ/2, from which d(wa, a) < δ. Otherwise, pick x ∈ L \ L̃ with
ca ∈ Sd(x, α+µ); by the definition of L̃, d(ca, x) < δ/2 so that d(a, x) < δ. In
the case that a lies in the annulus Cα+µ\Cδ/2, pick ba ∈ B0 with d(a, ba) < δ.
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Since Hd(C,A) < α+µ implies L\L̃ ⊆ Aδ/2, it now follows that DA ∈ D

defined by DA := L\L̃∪{wa : a ∈ A∩Cδ/2 and ca ∈
⋃
x∈eL Sd(x, α+µ)}∪{ba :

a ∈ A ∩ (Cα+µ \ Cδ/2)} satisfies Hd(A,DA) ≤ δ.
We note that if C has totally bounded complement, then ν(C) is the

minimum of the first and third quantities, whereas if C itself is totally
bounded, then ν(C) is the minimum of the second and third quantities.

In the context of uniform spaces, Burdick showed that if X has a compact
neighborhood in the hyperspace, then the hyperspace is uniformly locally
compact [8] (see also Corollary 15 of [10]). This fact falls out of our formula
for ν(C) as we next show.

Corollary 3.8. Let 〈X, d〉 be a metric space such that X is a point of
local compactness of 〈C0(X), Hd〉. Then the hyperspace is uniformly locally
compact.

Proof. As we have observed, γ(X) =∞, and so with

ζ(C) := min{inf{ε > 0 : C has an ε-satellite system}, inf{ν(x) : x ∈ C}},
we have ν(X) = ζ(X) > 0. Choose µ > 0 such that 3µ < ν(X). We intend to
show that for all C ∈ C0(X), we have ν(C) ≥ µ. Since ζ(C) ≥ ζ(X) = ν(X)
and ν(C) = min{γ(C), ζ(C)}, it suffices to show that γ(C) ≥ µ. We show
that each annulus of the form Cµ \Cδ, where δ ∈ (0, µ), is totally bounded.

To this end, let x1 be an arbitrary point of the annulus and choose c1 ∈ C
with δ < d(x1, c1) < µ. Now either Cµ \Cδ ⊆ Sd(c1, 3µ) or not. If not, take
x2 in the annulus with d(x2, c1) ≥ 3µ, i.e., x2 /∈ {c1}3µ. There exists c2 ∈ C
with δ < d(x2, c2) < µ such that d(c2, c1) ≥ 2µ. Suppose we have chosen
x1, . . . , xn in the annulus and c1, . . . , cn in C with the following properties

(i) ∀j ≤ n, δ < d(xj , cj) < µ;
(ii) whenever i 6= j, d(ci, cj) ≥ 2µ;
(iii) {c1, . . . , cn}3µ fails to contain Cµ \ Cδ.

Then we can pick xn+1 in the annulus outside {c1, . . . , cn}3µ and then
cn+1 ∈ C with δ < d(xn+1, cn+1) < µ, and it easily follows that for all
j ≤ n, d(cj , cn+1) ≥ 2µ. Thus unless at some index we obtain Cµ \ Cδ ⊆
{c1, . . . , cn}3µ, the principle of mathematical induction yields a 2µ-satellite
system for C and hence for X, which contradicts the choice of µ. We con-
clude that for some n, Cµ \ Cδ is contained in a union of n balls of radius
of 3µ, and since each ball is totally bounded, so is the annulus. This shows
that γ(C) ≥ µ, completing the proof.

Theorem 3.9. For a metric space 〈X, d〉, the following conditions are
equivalent:

(1) X is a point of local compactness of 〈C0(X), Hd〉;
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(2) the hyperspace 〈C0(X), Hd〉 is uniformly locally compact;
(3) the hyperspace 〈C0(X), Hd〉 is cofinally complete.

Proof. (1)⇒(2) is Corollary 3.8, and (2)⇒(3) is well-known and easy to
show. Thus only (3)⇒(1) requires proof.

Assume that the hyperspace is cofinally complete. Since a closed sub-
space of a cofinally complete space is also cofinally complete and x 7→ {x}
is an isometric embedding of 〈X, d〉 into 〈C0(X), Hd〉, the underlying space
is cofinally complete. If it is compact, then the hyperspace is also and there
is nothing to show. Otherwise, we next claim that nlc(X) = ∅.

If this is not the case, since X is complete but noncompact, we conclude
that X must fail to be totally bounded. From this it easily follows from the
compactness of nlc (X) that for some ε0 > 0, {x : d(x,nlc(X)) > ε0} fails to
be totally bounded. Fix p ∈ nlc(X) and for some positive λ let {x1, x2, . . .}
be an infinite uniformly λ-discrete subset of {x : d(x,nlc(X)) > ε0}. Then
with δ = min{ε0, λ}, we see that {p, x1, x2, . . .} is δ-uniformly discrete. For
each n ∈ N, put An = {p, xn}. By Lemma 3.5, we have ν(An) = 0 and clearly
{An : n ∈ N} is a uniformly Hd-discrete set in the hyperspace. This means
that nlc(C0(X)) fails to be compact, contradicting cofinal completeness of
the hyperspace.

It remains to show that if X is not totally bounded and 〈X, d〉 is uni-
formly locally compact and the hyperspace is cofinally complete, then ν(X)
is positive. If not, then since

inf{ν(x) : x ∈ X}} > 0,

by Theorem 3.7 we must have

inf{ε > 0 : X has an ε satellite system} = 0.

Next choose λ > 0 such that for each x ∈ X, cl(Sd(x, λ)) is compact and
then let {x1, x2, . . .} be an infinite λ0-uniformly discrete subset of X for
some λ0 < λ. Pick k ∈ N with 1/k < λ0, and choose, for each n ≥ k, an
εn-satellite system Dn ∪ {yx(n) : x ∈ Dn} where εn ≤ 1/n. By Corollary
3.4, we have ν(Dn) ≤ 1/n for all n ≥ k.

Whenever k ≤ j < n define F (j, n) ⊆ Dn as follows:

F (j, n) := Dn ∩ Sd
(
xj ,

1
2
λ0

)
.

Since Sd(xj , 1
2λ0) is totally bounded and Dn is uniformly discrete, each

F (j, n) is finite, and again by Corollary 3.4,

ν
(
Dn \

⋃
k≤j<n

F (j, n)
)
≤ 1
n
,
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because Dn \
⋃
k≤j<n F (j, n), being an infinite subset of Dn, has an εn-

satellite system, too.
Next, set Ak = Dk ∪ {xk} and for each n > k, put

An :=
(
Dn \

⋃
k≤j<n

F (j, n)
)
∪ {xn}.

Clearly, we have ν(An) ≤ 1/n for all n ≥ k. Further whenever k ≤ j < n, by
the form of each F (j, n), we have d(xj , An) ≥ 1

2λ0 and so Hd(Aj , An) ≥ 1
2λ0.

Thus the sequence Ak, Ak+1, Ak+2, . . . has no Hd-cluster point, which by [6,
Thm. 3.4] contradicts cofinal completeness of the hyperspace. We conclude
that ν(X) > 0, finishing the proof.

Acknowledgements. The authors are indebted to Bruce Burdick for
his many helpful comments on cofinal completeness, uniform paracompact-
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Facoltà di Scienze
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