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Some 2-point sets
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Abstract. Chad, Knight & Suabedissen [Fund. Math. 203 (2009)] recently proved,
assuming CH, that there is a 2-point set included in the union of countably many concentric
circles. This result is obtained here without any additional set-theoretic hypotheses.

A 2-point set is a subset of the plane R? that meets every line at ex-
actly 2 points. Mazurkiewicz [5] gave the first construction of a 2-point set.
There have been other constructions of 2-point sets such as in [3] where it
was shown that they exist in arbitrary vector spaces over arbitrary infinite
fields. Recently, Chad, Knight & Suabedissen [I] proved that the Contin-
uum Hypothesis implies that there is a 2-point set included in the union of
countably many concentric circles. Their conclusion is even stronger, being
precisely the statement of the Theorem below. Subsequent to [I], Miller [6]
constructed models of ZFC in which the continuum is arbitrarily large and
there is a 2-point set that is included in the union of wq circles.

If 0 <7 € R, then C, = {x € R?: ||z|| = r} is the circle of radius r cen-
tered at the origin. We prove the following theorem without any additional
set-theoretic hypotheses.

THEOREM. Letrg,T1,72,... be a strictly increasing, unbounded sequence
of positive real numbers. There is a 2-point set M C |J{C,, : 1 < w}.

Proof. By replacing the sequence rg,r1,72,... with one of its subse-
quences, we can assume that one of the following holds:

(A) {r; : i <w} is algebraically independent.

(B) Whenever i, j < w, then r; is algebraic over r;.
In the first part of this proof, Part I, we will give a proof of the Theorem

assuming (A). In Part II, we modify Part I into a proof of the Theorem
assuming (B).
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PART I: Assume (A). Let S = {r; : i <w}. Extend S to a transcendence
basis 7 O S for R over Q. If X CR, n < w and D C R", then we say that
D is X-definable if it is definable in the ordered field (R, +,-,0,1,<) by a
first-order formula that involves parameters only from X. By the Tarski—
Seidenberg Theorem (see [2]) on the elimination of quantifiers, if a € R,
then {a} is X-definable iff a is algebraic over X. If D C R” is R-definable,
then supp(D) (the support of D) is the unique smallest subset X C 7 such
that D is X-definable.

Let £ be the set of all lines £ C R?. For each i < w, define L; C L so
that ¢ € L; iff i is the least such that:

(1) NG =2,
(2) supp({) NS C {ro,r1,...,Ti—1}-
Clearly, each line is in exactly one L;. Recursively define M.; and M; so

that Mo; = Mo U M; U---UM,;_; and M; is the set of those points z € R?
such that there is a line ¢ € L; such that either:

B) tNMei=0and z € NC,;or
(4) £ N Mc; is a singleton and z is the first point of ¢ N Cy, in the
lexicographic ordering of R2.

Clearly, M; C C,, for each i < w. Let M = [J{M; : i < w}. Obviously,
M C|H{C, : i <w}. We will show that M is a 2-point set.

Consider an arbitrary line ¢ € £, and let ¢ < w be such that ¢ € L;.
We want to show that |[¢ N M| = 2. Clearly, (1), (3) and (4) imply that
0N Moi| + [N M;| > 2,50 [¢n M| > 2.

It remains to show that [N M| < 2. Suppose the contrary, and let j < w
be the least such that [¢ N M<;| > 3. [Notation: M<; = M; U M;.]

Suppose j = i. It follows from (3) and (4) that in order for [¢NM<;| > 3,
it must be that there are w € C,, and ¢ € L; such that ¢ N ¢ = {w}.
But then 7; is (supp(¢) U supp(¢'))-definable, so r; € supp(¥) U supp(¢),
contradicting (2).

Thus, j # i and, as in the previous paragraph, there are w € C,; and
¢ € Lj; such that £ N ¢ = {w}. Therefore, r; € supp(¢) U supp(¢’). Clearly,
(2) implies that j < ¢ and r; & supp(¢’), so r; € supp(¢). Since [{NM<;| > 3
and |¢ N M;| < 2, it must be that [¢ N M| € {1,2}.

First, suppose that [{NM;| = 2, and let y, 2 € £{NM_; be distinct. Then,
since r; € supp({), it follows that r; € supp({y, z}), so assume r; € supp(y).
Let k < j be such that y € Mj. Then there is £’ € Ly such that y € ¢"NC,,,
so rj € supp(¢”) U {ry}, contradicting (2).

Second, suppose that |[{ N M;| =1, and let £ N M.; = {x}. Then there
is k < j such that x € M. Let £NM; = {y, 2} and let ¢',¢" € L; be such
that y € £'NC,; and z € £" N C,,. It then follows from the following lemma
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that r; is (supp(¢') U supp(¢”) U supp(z))-definable, contradicting (2) and
thereby completing the proof assuming (A).

LEMMA 1. Suppose that ¢', 0" € L are distinct and x € R?\(('UL"). Then
there are at most finitely many r > 0 such that there are y € ¢/ N C, and
z € l"NC, with x,y, z being collinear.

Lemma 1 is Lemma 4.1 of [1]. As stated in [I], it says that there are at
most 23 possible r; this does not seem to be the optimal number.

Before starting Part II of this proof, we prove a simple lemma.

LEMMA 2. Let ©(Yo, Y1y -+ s Ym—1,%0, UL, - -, Un—1,2) be a formula in
the language of ordered fields, and let ag,a1,...,am—1 € R. Then there
are only finitely many b € R that are algebraic over {ag,a1,...,am—1} for
which there are tg,t1,...,tn—1 € R that are algebraically independent over
{ag,a1,...,am-1} such that p(a,t,z) defines b in R.

Proof. This lemma is a consequence of the o-minimality of R consid-
ered as an ordered field. (See [2 Chapter 2].) Let f : D — R, where
D C R", be the {ag,a1,...,an—1}-definable function such that whenever
do,d1,...,dm_1,b € R are such that ¢(a@,d, ) defines b, then d € D and
f(d) = b. If tg,t1,...,tn,_1 € R are algebraically independent over {ao, a1,
ceyam-1},t € D and f(t) = b is algebraic over {ag, ai,...,am—1}, then f is
constantly b on some neighborhood U of t. If by, by, bo, . . . are infinitely many
distinct such possibilities for b, then there are corresponding neighborhoods
Up,U1,Us, ... C D such that f is constantly b; on U;. But this is impossible
by o-minimality. m

PART II: Assume (B). If rqg is algebraic, let S = 0, and if r( is tran-
scendental, let S = {ro}. As in Part I, extend S to a transcendence ba-
sis 7. With Lemma 2 in mind, we make the following ad hoc definition. If
A C {rg,r1,72,...} and i < w, then Def(A,17) is the set of all R-definable
D C R"™, for some n < w, such that D is (7 U A)-definable by a formula
having length at most 1.

We now recursively get a subsequence ry,, 7%, , Tk, - - - that is sufficiently
fast growing. To be definitive, let kg = 0, and then let k;11 be the least
k > k; such that the following hold, where A = {r; : j < k;}:

(5) If £, € LNDef(A,i+ 1), N = {w}, r = |Jw|| and r is algebraic
over {ro}, then ry > r.

(6) [cf. Lemma 1] If ¢/,¢1,0y € LN Def(A4,i+ 1), w € ¢, ||w|| € A,
weliUly, y €ly, z €4y, w,y,z are collinear, ||y|| = ||z|| = r and r
is algebraic over rg, then r, > r.

Lemma 2 guarantees that k;y; is well defined. For notational convenience
and without loss of generality, we will assume that ry, = r; for all ¢ < w.
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For each i < w, define L; C L so that ¢ € L; iff 7 is the least such that
(1) and the following hold:

(7) le Def({rg,rl, .. .,Ti_l},i).

Clearly, each line is in exactly one L;. Notice that the set £LNDef(A,i+ 1)
occurring in (5) and (6) is Lo U Ly U---U L;+1. Define M.; and M; just as
in (3) and (4) in Part I, and then define M the same way.

Again, M; C C,,, so M C |H{C,, : i < w}. We will show that M is a
2-point set by an argument that parallels the one in Part I.

Consider some ¢ < w and an arbitrary ¢ € L;. As in Part I, [¢ N M| > 2,
so it remains to show that [N M| < 2. Suppose the contrary, and let j < w
be the least such that |[¢ N M<;| > 3.

Suppose j = i. It follows from (3) and (4) that in order for [¢NM<;| > 3,
it must be that there are w € C,, and ¢’ € L; such that /N ¢ = {w}. But
this contradicts (5).

Thus, j # i and there are w € C,; and £’ € L; such that £N¢" = {w}. So
again by (5), it cannot be that j > 4. Thus j < i, w € C,; and [£N M;| < 2,
so it must be that |¢ N M.;| € {1,2}.

First, suppose that [{NM.;| = 2, and let {y, 2} = ¢NM_;. Let k1, ko < j,
0y € Ly, and ¢y € Ly, be such that y € £1 N Crk1 and z € {5 N Crk2- Clearly,
this contradicts (6).

Second, suppose that [¢ N M.;| =1, and let N M.; = {x}. Then, there
is k < j such that x € Mj. Let £N M; = {y, 2} and let ¢1,¢y € L; be such
that {y} = ¢N¥; and {z} = £ N ¢y. Clearly, this contradicts (6), completing
Part II and the proof of the Theorem. =

A long-standing open problem (see [4]) is whether there is a Borel 2-point
set. Very closely related to this is the question: Can the existence of a 2-point
set be proved in ZF (that is, ZFC with the Axiom of Choice deleted). In the
absence of a positive answer to this last question, one can ask for weak
consequences of AC that imply the existence of a 2-point set. The following
is an example of such a consequence, although I am unable to say what its
strength is relative to other consequences:

(%) There is a real-closed subfield F C R such that the transcendence
degree of R over F is Ng.

The following is a consequence of Part I of the proof of the Theorem.
COROLLARY. (ZF) If (), then there is a 2-point set.

Proof. Let F be as in (). Let S = {rg,r1,72,...} be a transcendence
basis for R over [F such that rg,rq,72, ... is a strictly increasing, unbounded
sequence of positive real numbers. In Part I of the proof of the Theorem,
we would extend S to a transcendence basis 7 O S for R over Q. We see
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that the construction in the proof is independent of the actual choice of 7.
In the absence of AC, it may be impossible to get any such 7; however, if
we modify the definition of support so that supp(D) is X UF, where X is
the smallest subset X C S such that D is (X UTF)-definable, then the proof
still works. m
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