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Some 2-point sets
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Abstract. Chad, Knight & Suabedissen [Fund. Math. 203 (2009)] recently proved,
assuming CH, that there is a 2-point set included in the union of countably many concentric
circles. This result is obtained here without any additional set-theoretic hypotheses.

A 2-point set is a subset of the plane R2 that meets every line at ex-
actly 2 points. Mazurkiewicz [5] gave the first construction of a 2-point set.
There have been other constructions of 2-point sets such as in [3] where it
was shown that they exist in arbitrary vector spaces over arbitrary infinite
fields. Recently, Chad, Knight & Suabedissen [1] proved that the Contin-
uum Hypothesis implies that there is a 2-point set included in the union of
countably many concentric circles. Their conclusion is even stronger, being
precisely the statement of the Theorem below. Subsequent to [1], Miller [6]
constructed models of ZFC in which the continuum is arbitrarily large and
there is a 2-point set that is included in the union of ω1 circles.

If 0 < r ∈ R, then Cr = {x ∈ R2 : ‖x‖ = r} is the circle of radius r cen-
tered at the origin. We prove the following theorem without any additional
set-theoretic hypotheses.

Theorem. Let r0, r1, r2, . . . be a strictly increasing, unbounded sequence
of positive real numbers. There is a 2-point set M ⊆

⋃
{Cri : i < ω}.

Proof. By replacing the sequence r0, r1, r2, . . . with one of its subse-
quences, we can assume that one of the following holds:

(A) {ri : i < ω} is algebraically independent.
(B) Whenever i, j < ω, then ri is algebraic over rj .

In the first part of this proof, Part I, we will give a proof of the Theorem
assuming (A). In Part II, we modify Part I into a proof of the Theorem
assuming (B).
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Part I: Assume (A). Let S = {ri : i < ω}. Extend S to a transcendence
basis T ⊇ S for R over Q. If X ⊆ R, n < ω and D ⊆ Rn, then we say that
D is X-definable if it is definable in the ordered field (R, +, · , 0, 1,≤) by a
first-order formula that involves parameters only from X. By the Tarski–
Seidenberg Theorem (see [2]) on the elimination of quantifiers, if a ∈ R,
then {a} is X-definable iff a is algebraic over X. If D ⊆ Rn is R-definable,
then supp(D) (the support of D) is the unique smallest subset X ⊆ T such
that D is X-definable.

Let L be the set of all lines ` ⊆ R2. For each i < ω, define Li ⊆ L so
that ` ∈ Li iff i is the least such that:

(1) |` ∩ Cri | = 2,
(2) supp(`) ∩ S ⊆ {r0, r1, . . . , ri−1}.

Clearly, each line is in exactly one Li. Recursively define M<i and Mi so
that M<i = M0 ∪M1 ∪ · · · ∪Mi−1 and Mi is the set of those points x ∈ R2

such that there is a line ` ∈ Li such that either:

(3) ` ∩M<i = ∅ and x ∈ ` ∩ Cri ; or
(4) ` ∩ M<i is a singleton and x is the first point of ` ∩ Cri in the

lexicographic ordering of R2.

Clearly, Mi ⊆ Cri for each i < ω. Let M =
⋃
{Mi : i < ω}. Obviously,

M ⊆
⋃
{Cri : i < ω}. We will show that M is a 2-point set.

Consider an arbitrary line ` ∈ L, and let i < ω be such that ` ∈ Li.
We want to show that |` ∩ M | = 2. Clearly, (1), (3) and (4) imply that
|` ∩M<i|+ |` ∩Mi| ≥ 2, so |` ∩M | ≥ 2.

It remains to show that |`∩M | ≤ 2. Suppose the contrary, and let j < ω
be the least such that |` ∩M≤j | ≥ 3. [Notation: M≤j = M<j ∪Mj .]

Suppose j = i. It follows from (3) and (4) that in order for |`∩M≤i| ≥ 3,
it must be that there are w ∈ Cri and `′ ∈ Li such that ` ∩ `′ = {w}.
But then ri is (supp(`) ∪ supp(`′))-definable, so ri ∈ supp(`) ∪ supp(`′),
contradicting (2).

Thus, j 6= i and, as in the previous paragraph, there are w ∈ Crj and
`′ ∈ Lj such that ` ∩ `′ = {w}. Therefore, rj ∈ supp(`) ∪ supp(`′). Clearly,
(2) implies that j < i and rj 6∈ supp(`′), so rj ∈ supp(`). Since |`∩M≤j | ≥ 3
and |` ∩Mj | ≤ 2, it must be that |` ∩M<j | ∈ {1, 2}.

First, suppose that |`∩M<j | = 2, and let y, z ∈ `∩M<j be distinct. Then,
since rj ∈ supp(`), it follows that rj ∈ supp({y, z}), so assume rj ∈ supp(y).
Let k < j be such that y ∈Mk. Then there is `′′ ∈ Lk such that y ∈ `′′∩Crk

,
so rj ∈ supp(`′′) ∪ {rk}, contradicting (2).

Second, suppose that |` ∩M<j | = 1, and let ` ∩M<j = {x}. Then there
is k < j such that x ∈ Mk. Let ` ∩Mj = {y, z} and let `′, `′′ ∈ Lj be such
that y ∈ `′ ∩Crj and z ∈ `′′ ∩Crj . It then follows from the following lemma
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that rj is
(

supp(`′) ∪ supp(`′′) ∪ supp(x)
)
-definable, contradicting (2) and

thereby completing the proof assuming (A).

Lemma 1. Suppose that `′, `′′ ∈ L are distinct and x ∈ R2\(`′∪`′′). Then
there are at most finitely many r > 0 such that there are y ∈ `′ ∩ Cr and
z ∈ `′′ ∩ Cr with x, y, z being collinear.

Lemma 1 is Lemma 4.1 of [1]. As stated in [1], it says that there are at
most 23 possible r; this does not seem to be the optimal number.

Before starting Part II of this proof, we prove a simple lemma.

Lemma 2. Let ϕ(y0, y1, . . . , ym−1, u0, u1, . . . , un−1, x) be a formula in
the language of ordered fields, and let a0, a1, . . . , am−1 ∈ R. Then there
are only finitely many b ∈ R that are algebraic over {a0, a1, . . . , am−1} for
which there are t0, t1, . . . , tn−1 ∈ R that are algebraically independent over
{a0, a1, . . . , am−1} such that ϕ(a, t, x) defines b in R.

Proof. This lemma is a consequence of the o-minimality of R consid-
ered as an ordered field. (See [2, Chapter 2].) Let f : D → R, where
D ⊆ Rn, be the {a0, a1, . . . , an−1}-definable function such that whenever
d0, d1, . . . , dm−1, b ∈ R are such that ϕ(a, d, x) defines b, then d ∈ D and
f(d) = b. If t0, t1, . . . , tn−1 ∈ R are algebraically independent over {a0, a1,
. . . , am−1}, t ∈ D and f(t) = b is algebraic over {a0, a1, . . . , am−1}, then f is
constantly b on some neighborhood U of t. If b0, b1, b2, . . . are infinitely many
distinct such possibilities for b, then there are corresponding neighborhoods
U0, U1, U2, . . . ⊆ D such that f is constantly bi on Ui. But this is impossible
by o-minimality.

Part II: Assume (B). If r0 is algebraic, let S = ∅, and if r0 is tran-
scendental, let S = {r0}. As in Part I, extend S to a transcendence ba-
sis T . With Lemma 2 in mind, we make the following ad hoc definition. If
A ⊆ {r0, r1, r2, . . .} and i < ω, then Def(A, i) is the set of all R-definable
D ⊆ Rn, for some n < ω, such that D is (T ∪ A)-definable by a formula
having length at most i.

We now recursively get a subsequence rk0 , rk1 , rk2 , . . . that is sufficiently
fast growing. To be definitive, let k0 = 0, and then let ki+1 be the least
k > ki such that the following hold, where A = {rj : j ≤ ki}:

(5) If `, `′ ∈ L ∩ Def(A, i + 1), ` ∩ `′ = {w}, r = ‖w‖ and r is algebraic
over {r0}, then rk > r.

(6) [cf. Lemma 1] If `′, `1, `2 ∈ L ∩ Def(A, i + 1), w ∈ `′, ‖w‖ ∈ A,
w 6∈ `1 ∪ `2, y ∈ `1, z ∈ `2, w, y, z are collinear, ‖y‖ = ‖z‖ = r and r
is algebraic over r0, then rk > r.

Lemma 2 guarantees that ki+1 is well defined. For notational convenience
and without loss of generality, we will assume that rki

= ri for all i < ω.
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For each i < ω, define Li ⊆ L so that ` ∈ Li iff i is the least such that
(1) and the following hold:

(7) ` ∈ Def({r0, r1, . . . , ri−1}, i).
Clearly, each line is in exactly one Li. Notice that the set L ∩Def(A, i + 1)
occurring in (5) and (6) is L0 ∪ L1 ∪ · · · ∪ Li+1. Define M<i and Mi just as
in (3) and (4) in Part I, and then define M the same way.

Again, Mi ⊆ Cri , so M ⊆
⋃
{Cri : i < ω}. We will show that M is a

2-point set by an argument that parallels the one in Part I.
Consider some i < ω and an arbitrary ` ∈ Li. As in Part I, |` ∩M | ≥ 2,

so it remains to show that |`∩M | ≤ 2. Suppose the contrary, and let j < ω
be the least such that |` ∩M≤j | ≥ 3.

Suppose j = i. It follows from (3) and (4) that in order for |`∩M≤i| ≥ 3,
it must be that there are w ∈ Cri and `′ ∈ Li such that ` ∩ `′ = {w}. But
this contradicts (5).

Thus, j 6= i and there are w ∈ Crj and `′ ∈ Lj such that `∩ `′ = {w}. So
again by (5), it cannot be that j > i. Thus j < i, w ∈ Crj and |`∩Mj | ≤ 2,
so it must be that |` ∩M<j | ∈ {1, 2}.

First, suppose that |`∩M<j | = 2, and let {y, z} = `∩M<j . Let k1, k2 < j,
`1 ∈ Lk1 and `2 ∈ Lk2 be such that y ∈ `1 ∩Crk1

and z ∈ `2 ∩Crk2
. Clearly,

this contradicts (6).
Second, suppose that |`∩M<j | = 1, and let `∩M<j = {x}. Then, there

is k < j such that x ∈ Mk. Let ` ∩Mj = {y, z} and let `1, `2 ∈ Lj be such
that {y} = ` ∩ `1 and {z} = ` ∩ `2. Clearly, this contradicts (6), completing
Part II and the proof of the Theorem.

A long-standing open problem (see [4]) is whether there is a Borel 2-point
set. Very closely related to this is the question: Can the existence of a 2-point
set be proved in ZF (that is, ZFC with the Axiom of Choice deleted). In the
absence of a positive answer to this last question, one can ask for weak
consequences of AC that imply the existence of a 2-point set. The following
is an example of such a consequence, although I am unable to say what its
strength is relative to other consequences:

(>) There is a real-closed subfield F ⊆ R such that the transcendence
degree of R over F is ℵ0.

The following is a consequence of Part I of the proof of the Theorem.

Corollary. (ZF) If (>), then there is a 2-point set.

Proof. Let F be as in (>). Let S = {r0, r1, r2, . . .} be a transcendence
basis for R over F such that r0, r1, r2, . . . is a strictly increasing, unbounded
sequence of positive real numbers. In Part I of the proof of the Theorem,
we would extend S to a transcendence basis T ⊇ S for R over Q. We see
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that the construction in the proof is independent of the actual choice of T .
In the absence of AC, it may be impossible to get any such T ; however, if
we modify the definition of support so that supp(D) is X ∪ F, where X is
the smallest subset X ⊆ S such that D is (X ∪ F)-definable, then the proof
still works.
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