Corrigenda to the paper "The number of zeros of polynomials in valuation rings of complete discretely valued fields"

(Fund. Math. 124 (1984), 41-97)

by

A. Schinzel (Warszawa)

The paper contains many misprints and minor mistakes: only the most harmful are indicated below.

Page & line	Correction
p. 60, line 8	after $d_0 = 1$ insert $f(\xi) = 0$
p. 67, line –3	for $\alpha' < \beta' \text{ read } \alpha' < \min\{\beta', \alpha''\}$
p. 72, line 9	for $\sum_{\mu=0}^{m} \alpha_{\mu}\mu = w(A)$ read $\sum_{\mu=0}^{m} \alpha_{\mu}(m-\mu) = m \deg A - w(A)$
p. 74, line 6	for 11, \mathscr{L} read 12, \mathscr{M}
p. 76, lines -10, -9	for the second \boldsymbol{u} read \boldsymbol{u}'
p. 80, line –5	for $[\boldsymbol{g}_1, \boldsymbol{g}_2, \dots, \boldsymbol{g}_{k_0}]$ read $[\boldsymbol{g}_1, \boldsymbol{g}_1, \boldsymbol{g}_2, \dots, \boldsymbol{g}_{k_0}]$
p. 86, formula (146)	for $N_{+}^{m-1} \times N_{+}^{m-1}$
	read $\boldsymbol{N}_{+}^{m-1} imes \boldsymbol{V}_{j-j'}^{m,m} imes \boldsymbol{N}_{+}^{(m-1)(i^0+2j^0i_{m-1})}$
p. 92, line 6	for $N^m_+N_{\varepsilon}$ read $N^m_+ imes N_{\varepsilon}$
p. 95, line 14	replace by: $m=1, i^*=2, R_i=a_{i-1}$ $(i=1,2) j^*=2; X_1=\{\infty\}^2,$
	$f = 0; \boldsymbol{X}_2 = \boldsymbol{N}_+^2 \setminus X_1, k_2 = 1, S_{211} = a_2 y_1 + a_1, \sigma_{211} = 0$
p. 95, lines -17, -5	for k_1 read f
p. 95, line –15	for $v_3 - v_2$ read 0
p. 95, line –11	for $y_1^2 - R_1$ read $2a_0y_1 + a_1$
p. 95, line –2	for $v_4 - v_3$ read 0
p. 96, line 2	for $v_3 - v_2$ read 0
p. 96, line 15	for $k_{12} = 1$ read $k_{12} = 2$
p. 96, line –15	for "constant" read "scalar"
p. 96, line –11	for α_4 read a_4
p. 96, line –10	for $a \text{ read } a_2$
p. 96, line –9	for 1 read 2, for $l_j = 2$ read $l_{j1} = l_{j2} = 2$
p. 96, line –8	for S_{j11} read S_{jk1} , for y_1 read y_1^2 , for σ_{j11} read σ_{jk1} $(k = 1, 2)$
p. 96, line –7	for $y_2^2 + (4a_0a_4 - a_2^2)$ read $2a_2y_2^2 + \frac{a_2^2 - 4a_0a_4}{4a_0}$,
	for $\frac{1}{2}v(a_2^2 - 4a_0a_4)$ read $\frac{1}{2}(v(a_2^2 - 4a_0a_4) - v(a_2))$
p. 96, lines -6 to -2	replace by $S_{j22} = a_0 y_2^2 + 4a_0 y_1 y_2 - 2a_2, \ \sigma_{j22} = \frac{1}{2}v(a_2)$