Corrigenda to the paper
 "The number of zeros of polynomials in valuation rings of complete discretely valued fields"

(Fund. Math. 124 (1984), 41-97)
by

A. Schinzel (Warszawa)

The paper contains many misprints and minor mistakes: only the most harmful are indicated below.

Page \& line	Correction
p. 60, line 8	after $d_{0}=1$ insert $f(\xi)=0$
p. 67 , line -3	for $\alpha^{\prime}<\beta^{\prime}$ read $\alpha^{\prime}<\min \left\{\beta^{\prime}, \alpha^{\prime \prime}\right\}$
p. 72 , line 9	for $\sum_{\mu=0}^{m} \alpha_{\mu} \mu=w(A) \mathrm{read} \sum_{\mu=0}^{m} \alpha_{\mu}(m-\mu)=m \operatorname{deg} A-w(A)$
p. 74 , line 6	for $11, \mathscr{L}$ read 12, \mathscr{M}
p. 76, lines $-10,-9$	for the second \boldsymbol{u} read \boldsymbol{u}^{\prime}
p. 80, line -5	for $\left[\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{k_{0}}\right]$ read $\left[\boldsymbol{g}_{1}, \boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{k_{0}}\right]$
p. 86, formula (146)	$\begin{aligned} & \text { for } \boldsymbol{N}_{+}^{m-1} \times \boldsymbol{N}_{+}^{(m-1)\left(i^{0}+2 j^{0} i_{m-1}\right)+i_{m-1}} \\ & \text { read } \boldsymbol{N}_{+}^{m-1} \times \boldsymbol{V}_{j-j^{\prime}}^{m, m} \times \boldsymbol{N}_{+}^{(m-1)\left(i^{0}+2 j^{0} i_{m-1}\right)} \end{aligned}$
p. 92, line 6	for $\boldsymbol{N}_{+}^{m} \boldsymbol{N}_{\varepsilon} \mathrm{read} \boldsymbol{N}_{+}^{m} \times \boldsymbol{N}_{\varepsilon}$
p. 95, line 14	replace by: $m=1, i^{*}=2, R_{i}=a_{i-1}(i=1,2) j^{*}=2 ; \boldsymbol{X}_{1}=\{\infty\}^{2}$, $f=0 ; \boldsymbol{X}_{2}=\boldsymbol{N}_{+}^{2} \backslash X_{1}, k_{2}=1, S_{211}=a_{2} y_{1}+a_{1}, \sigma_{211}=0$
p. 95, lines $-17,-5$	for k_{1} read f
p. 95, line -15	for $v_{3}-v_{2}$ read 0
p. 95, line -11	for $y_{1}^{2}-R_{1}$ read $2 a_{0} y_{1}+a_{1}$
p. 95, line -2	for $v_{4}-v_{3}$ read 0
p. 96, line 2	for $v_{3}-v_{2}$ read 0
p. 96, line 15	for $k_{12}=1 \mathrm{read} k_{12}=2$
p. 96 , line -15	for "constant" read "scalar"
p. 96, line -11	for $\alpha_{4} \mathrm{read} a_{4}$
p. 96, line -10	for a read a_{2}
p. 96, line -9	for 1 read 2 , for $l_{j}=2 \mathrm{read} l_{j 1}=l_{j 2}=2$
p. 96, line -8	for $S_{j 11} \mathrm{read} S_{j k 1}$, for $y_{1} \mathrm{read} y_{1}^{2}$, for $\sigma_{j 11} \mathrm{read} \sigma_{j k 1}(k=1,2)$
p. 96, line -7	$\text { for } y_{2}^{2}+\left(4 a_{0} a_{4}-a_{2}^{2}\right) \text { read } 2 a_{2} y_{2}^{2}+\frac{a_{2}^{2}-4 a_{0} a_{4}}{4 a_{0}}$
	for $\frac{1}{2} v\left(a_{2}^{2}-4 a_{0} a_{4}\right)$ read $\frac{1}{2}\left(v\left(a_{2}^{2}-4 a_{0} a_{4}\right)-v\left(a_{2}\right)\right)$
p. 96 , lines -6 to -2	replace by $S_{j 22}=a_{0} y_{2}^{2}+4 a_{0} y_{1} y_{2}-2 a_{2}, \sigma_{j 22}=\frac{1}{2} v\left(a_{2}\right)$

