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A Lagrangian representation of tangles II

by

David Cimasoni (Berkeley) and Vladimir Turaev (Strasbourg)

Abstract. The present paper is a continuation of our previous paper [Topology 44
(2005), 747–767], where we extended the Burau representation to oriented tangles. We
now study further properties of this construction.

1. Introduction. The Burau representation is a homomorphism from
the group of braids on n strands to the group of (n × n)-matrices over
the ring Λ = Z[t, t−1]. In our work [2], summarized below, we extended
this representation to oriented tangles in R3. Since oriented tangles do not
form a group, but a category, the result is a functor F from the category
of oriented tangles to some algebraically defined category: the category of
Hermitian modules and Lagrangian relations over Λ (see Section 2). For
braids, this functor is equivalent to the Burau representation. For string
links, it is equivalent to a construction of Le Dimet [5]. We refer to [6, 7]
and references therein for related work on invariants of tangles.

In the present paper, we study further properties of the functor F. The
article is organized as follows. In Section 2, we recall the construction of the
functor and the main results of [2]. In Section 3, we give a recursive method
for the computation of the Lagrangian relation F(τ) for any tangle τ with
no closed components. In Section 4, we discuss connexions between these
Lagrangian relations and the Alexander polynomial of the link obtained as
the closure of the tangle. (These connexions are traditionally studied in this
context, see e.g. [4, Section 6].) Finally, Section 5 deals with two families of
examples: rational tangles and 2-strand tangles.

2. The functor Tangles → LagrΛ. This section consists of a summary
of the main results of [2]. We refer to this article for the proofs and further
details.
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2.1. The category of Lagrangian relations. Fix throughout this subsec-
tion an integral domain Λ (i.e., a commutative ring with unit and without

zero-divisors) with ring involution Λ → Λ, λ 7→ λ̃. A non-degenerate skew-

hermitian form on a Λ-module H is a form ω: H × H → Λ such that:

(i) ω(λx + λ′x′, y) = λω(x, y) + λ′ω(x′, y) for all x, x′, y ∈ H and all
λ, λ′ ∈ Λ;

(ii) ω(x, y) = −ω̃(y, x) for all x, y ∈ H;
(iii) if ω(x, y) = 0 for all y ∈ H, then x = 0.

A Hermitian Λ-module is a finitely generated Λ-module H endowed with
a non-degenerate skew-Hermitian form ω. The same module H with the
opposite form −ω will be denoted by −H.

Hermitian Λ-modules are the objects of our Lagrangian category. To
define the morphisms, we need the following preliminary definitions. For a
submodule A ⊂ H, denote by Ann(A) the annihilator of A with respect
to ω, that is, the module {x ∈ H | ω(x, a) = 0 for all a ∈ A}. We say that
A is Lagrangian if A = Ann(A). Given a submodule A of H, set

A = {x ∈ H | λx ∈ A for a non-zero λ ∈ Λ}.

Note that for any Lagrangian A ⊂ H, we have A = A.

Let H1, H2 be Hermitian Λ-modules. A Lagrangian relation between H1

and H2 is a Lagrangian submodule of (−H1)⊕H2 (the latter is a Hermitian
Λ-module in the obvious way). For a Lagrangian relation N ⊂ (−H1)⊕H2,
we shall use the notation N : H1 ⇒ H2. Given a Hermitian Λ-module H, the
submodule

diagH = {h ⊕ h ∈ (−H) ⊕ H | h ∈ H}

of H ⊕ H is clearly a Lagrangian relation H ⇒ H. It is called the diagonal

Lagrangian relation. Given two Lagrangian relations N1: H1 ⇒ H2 and
N2: H2 ⇒ H3, their composition is defined by N2 ◦ N1 = N2N1: H1 ⇒ H3,
where N2N1 denotes the following submodule of (−H1) ⊕ H3:

N2N1 = {h1 ⊕ h3 | h1 ⊕ h2 ∈ N1 and h2 ⊕ h3 ∈ N2 for a certain h2 ∈ H2}.

Theorem 2.1. The Hermitian Λ-modules, as objects, and Lagrangian

relations, as morphisms, form a category.

We shall call this category the category of Lagrangian relations over Λ.
It will be denoted by LagrΛ. Lagrangian relations over Λ can be understood
as a generalization of unitary Λ-isomorphisms and unitary Q-isomorphisms,
where Q = Q(Λ) is the field of fractions of Λ. More precisely, let UΛ be the
category of Hermitian Λ-modules and unitary Λ-isomorphisms. Also, let U0

Λ

be the category of Hermitian Λ-modules, where the morphisms between H1

and H2 are the unitary Q-isomorphisms between H1 ⊗Λ Q and H2 ⊗Λ Q.
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Finally, given such a unitary Q-isomorphism ϕ, set Γ 0
ϕ = {h ⊕ ϕ(h) |

h ∈ H1, ϕ(h) ∈ H2} ⊂ H1 ⊕ H2.

Theorem 2.2. The maps f 7→ f ⊗ idQ and ϕ 7→ Γ 0
ϕ define embeddings

of categories

UΛ →֒ U0
Λ →֒ LagrΛ.

2.2. The category of oriented tangles. Let D2 be the closed unit disk
in R2. Given a positive integer n, denote by xi the point ((2i− n− 1)/n, 0)
in D2, for i = 1, . . . , n. Let ε and ε′ be sequences of ±1’s of respective length
n and n′. An (ε, ε′)-tangle is the pair consisting of the cylinder D2 × [0, 1]
and its oriented piecewise linear 1-submanifold τ whose oriented boundary

∂τ is
∑n′

j=1 ε′j(x
′
j , 1) −

∑n
i=1 εi(xi, 0). Note that for such a tangle to exist,

we must have
∑

i εi =
∑

j ε′j .

Two (ε, ε′)-tangles (D2 × [0, 1], τ1) and (D2 × [0, 1], τ2) are isotopic if
there exists an auto-homeomorphism h of D2 × [0, 1], keeping D2 × {0, 1}
fixed, such that h(τ1) = τ2 and h|τ1

: τ1 ≃ τ2 is orientation-preserving. We
shall denote by T (ε, ε′) the set of isotopy classes of (ε, ε′)-tangles, and by
idε the isotopy class of the trivial (ε, ε)-tangle (D2, {x1, . . . , xn}) × [0, 1].

Given an (ε, ε′)-tangle τ1 and an (ε′, ε′′)-tangle τ2, their composition is
the (ε, ε′′)-tangle τ2 ◦ τ1 obtained by gluing the two cylinders along the
disk corresponding to ε′ and shrinking the length of the resulting cylinder
by a factor 2 (see Figure 1). Clearly, the composition of tangles induces a
composition

T (ε, ε′) × T (ε′, ε′′) → T (ε, ε′′)

on the isotopy classes of tangles. The category of oriented tangles Tangles

is defined as follows: the objects are the finite sequences ε of ±1’s, and the
morphisms are given by Hom(ε, ε′) = T (ε, ε′). The composition is clearly
associative, and the trivial tangle idε plays the role of the identity endomor-
phism of ε.
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Fig. 1. A tangle composition
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An (ε, ε′)-tangle τ ⊂ D2 × [0, 1] is called an oriented braid if every com-
ponent of τ is strictly increasing or strictly decreasing with respect to the
projection to [0, 1]. The finite sequences of ±1’s, as objects, and the iso-
topy classes of oriented braids, as morphisms, form a subcategory Braids

of the category of oriented tangles. Finally, an (ε, ε′)-tangle τ ⊂ D2 × [0, 1]
is called an oriented string link if every component of τ joins D2 × {0} and
D2 × {1}. Oriented string links are the morphisms of a category Strings

which satisfies

Braids ⊂ Strings ⊂ Tangles,

where all the inclusions denote embeddings of categories.

2.3. The Lagrangian representation. We denote by N({x1, . . . , xn}) an
open tubular neighborhood of {x1, . . . , xn} in D2 ⊂ R2, and by S2 the
2-sphere R2 ∪ {∞}. Given a sequence ε = (ε1, . . . , εn) of ±1’s, let ℓε be the
sum

∑n
i=1 εi. We denote by Dε the compact surface

Dε =

{
D2 \ N({x1, . . . , xn}) if ℓε 6= 0,

S2 \ N({x1, . . . , xn}) if ℓε = 0,

endowed with the counterclockwise orientation, a base point z, and a gen-
erating family {e1, . . . , en} of π1(Dε, z), where ei is a simple loop turning
once around xi counterclockwise if εi = +1, clockwise if εi = −1. The same
space with the clockwise orientation will be denoted by −Dε.

The natural epimorphism π1(Dε) → Z, ei 7→ 1, gives an infinite cyclic

covering D̂ε → Dε. Choosing a generator t of the group of the covering
transformations endows the homology H1(D̂ε) with a structure of module
over Λ = Z[t, t−1]. If ℓε 6= 0, then Dε retracts by deformation on the wedge

of n circles representing e1, . . . , en, and one easily checks that H1(D̂ε) is a
free Λ-module with basis v1 = ê1 − ê2, . . . , vn−1 = ên−1 − ên, where êi is the
path in D̂ε lifting ei starting at some fixed lift ẑ ∈ D̂ε of z. If ℓε = 0, then
H1(D̂ε) =

⊕
i Λvi/Λγ̂, where γ̂ is a lift of γ = eε1

1 · · · eεn
n to D̂ε. Note that

in any case, H1(D̂ε) is a free Λ-module.

Let 〈 , 〉: H1(D̂ε) × H1(D̂ε) → Z be the (Z-bilinear, skew-symmetric)

intersection form induced by the orientation of Dε lifted to D̂ε. Consider
the pairing ωε: H1(D̂ε) × H1(D̂ε) → Λ given by

ωε(x, y) =
∑

k

〈tkx, y〉t−k.

It turns out that ωε is a non-degenerate skew-Hermitian form with respect
to the involution Λ → Λ induced by t 7→ t−1. Therefore, (H1(D̂ε), ωε) is a
Hermitian Λ-module.
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Given an (ε, ε′)-tangle τ = τ1 ∪ · · · ∪ τµ ⊂ D2 × [0, 1], denote by N(τ) an
open tubular neighborhood of τ and by Xτ its exterior

Xτ =

{
(D2 × [0, 1]) \ N(τ) if ℓε 6= 0,

(S2 × [0, 1]) \ N(τ) if ℓε = 0.

Note that ℓε = ℓε′ . We shall orient Xτ so that the induced orientation
on ∂Xτ extends the orientation on (−Dε) ⊔ Dε′ . If ℓε 6= 0, we have
H1(Xτ ) =

⊕µ
j=1 Zmj, where mj is a meridian of τj oriented so that its link-

ing number with τj is 1. If ℓε = 0, then H1(Xτ ) =
⊕µ

j=1 Zmj/
∑n

i=1 εiei.
The composition of the Hurewicz homomorphism and the homomorphism
H1(Xτ ) → Z, mj 7→ 1, gives an epimorphism π1(Xτ ) → Z which extends
the previously defined homomorphisms π1(Dε) → Z and π1(Dε′) → Z.

As before, it determines an infinite cyclic covering X̂τ → Xτ , so the ho-

mology of X̂τ is endowed with a natural structure of module over Λ =
Z[t, t−1].

Let iτ : H1(D̂ε) → H1(X̂τ ) and i′τ : H1(D̂ε′) → H1(X̂τ ) be the homo-

morphisms induced by the obvious inclusion D̂ε ⊔ D̂ε′ ⊂ X̂τ . Denote by

jτ the homomorphism H1(D̂ε) ⊕ H1(D̂ε′) → H1(X̂τ ) given by jτ (x, x′) =
i′τ (x

′) − iτ (x). Finally, set

K(τ) = ker(jτ ) ⊂ H1(D̂ε) ⊕ H1(D̂ε′).

It is proved in [2] that for any tangle τ , the module K(τ) is Lagrangian.
It can also be checked that K(τ2 ◦ τ1) = K(τ2)K(τ1) for any tangles τ1, τ2.
This leads to the following result.

Theorem 2.3. Given a sequence ε of ±1’s, denote by F(ε) the Her-

mitian Λ-module (H1(D̂ε), ωε). For τ ∈ T (ε, ε′), let F(τ) be the module

K(τ) ⊂ H1(D̂ε) ⊕ H1(D̂ε′). Then F is a functor Tangles → LagrΛ which

fits in the commutative diagram

Braids

��

�

� // Strings

��

�

� // Tangles

F

��
UΛ

�

� // U0
Λ

�

� // LagrΛ

where the horizontal arrows are the embeddings of categories given in Subec-

tions 2.1 and 2.2.

Corollary 2.4. Let β ∈ T (ε, ε′) be an oriented braid. Then there exists

a unitary Λ-isomorphism fβ: H1(D̂ε) → H1(D̂ε′) such that F(β) = K(β) is

the graph of fβ.
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3. The module K(τ). Clearly, any tangle τ can be written as a compo-
sition of the elementary tangles described in Figure 2, where the orientation
of the strands is determined by the signs ε and ε′. We now use this result
to study the freeness of K(τ), and to compute this module recursively.
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Fig. 2. The elementary tangles

3.1. Freeness of K(τ). In this subsection, we deal with the following
question: Given a tangle τ ∈ T (ε, ε′), is the module K(τ) free? Clearly, this

module is contained in the free module H1(D̂ε) ⊕ H1(D̂ε′). But since the
ring Λ = Z[t, t−1] is not a principal ideal domain, this is not sufficient to
conclude that K(τ) is free. Nevertheless, we have the following result. Let
us say that a tangle τ ∈ T (ε, ε′) is straight if it has no closed components,
and if at least one strand of τ joins Dε with Dε′ .

Proposition 3.1. If τ is a straight tangle, then the Λ-module K(τ) is

free.

We shall need the following lemma (see [2] for the proof).

Lemma 3.2. Consider an exact sequence of Λ-modules 0 → K →
P → F , where P and F are free Λ-modules. Then K is free.

Lemma 3.3. Let H, H ′ and H ′′ be finitely generated free Λ-modules.

Consider free submodules N1 ⊂ H ⊕ H ′ and N2 ⊂ H ′ ⊕ H ′′ such that

(N1⊕N2)∩(0⊕diagH′ ⊕0) = 0. Then N2N1 is a free submodule of H⊕H ′′.

Proof. Denote by f1 (resp. f ′
1) the homomorphism N1 ⊂ H ⊕ H ′ π

→ H

(resp. N1 ⊂ H ⊕ H ′ π′

→ H ′), where π and π′ are the canonical projections.
Similarly, denote by f ′

2 and f ′′
2 the homomorphisms N2 ⊂ H ′ ⊕ H ′′ → H ′

and N2 ⊂ H ′⊕H ′′ → H ′′. Let K be the kernel of (−f ′
1)⊕f ′

2: N1⊕N2 → H ′.
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Our assumptions and Lemma 3.2 imply that K is free. We have an exact
sequence

0 → (N1 ⊕ N2) ∩ (0 ⊕ diagH′ ⊕0) → K
f1⊕f ′′

2−−−→ N2N1 → 0.

Therefore, if (N1 ⊕ N2) ∩ (0 ⊕ diagH′ ⊕0) = 0, then N2N1 = K is free.

Lemma 3.4. Consider tangles τ1 ∈ T (ε, ε′) and τ2 ∈ T (ε′, ε′′) such that

τ2 ◦ τ1 is straight. Then

(K(τ1) ⊕ K(τ2)) ∩ (0 ⊕ diag
H1(D̂ε′ )

⊕0) = 0.

Proof. Denote by τ the tangle τ2◦τ1. We claim that H2(Xτ ) = 0. Assume
first that ℓε 6= 0. By excision,

H2(Xτ ) = H3(D
2 × [0, 1], Xτ ) = H3(τ × D2, τ × S1) = 0

since τ has no closed components. If ℓε = 0, consider the Mayer–Vietoris
exact sequence associated with the decomposition Xτ = ((D2 × [0, 1]) \
N(τ)) ∪ (D2 × [0, 1]):

0 → H2(Xτ ) → Zγ
i
→ H1((D

2 × [0, 1]) \ N(τ)),

where γ is a 1-cycle parametrizing ∂D2. Since one strand of τ joins Dε

to Dε′′ , we have i(γ) 6= 0 ∈ H1((D
2 × [0, 1]) \ N(τ)) = Zµ, where µ is the

number of components of τ . Therefore, i is injective, so H2(Xτ ) = 0 and the
claim is proved.

Since Xτ has the homotopy type of a 2-dimensional CW -complex and
H2(Xτ ) = 0, we have H2(X̂τ ) = 0. The decomposition Xτ = Xτ1

∪Xτ2
gives

the Mayer–Vietoris exact sequence

H2(X̂τ ) = 0 → H1(D̂ε′)
j
→ H1(X̂τ1

) ⊕ H1(X̂τ2
).

Therefore,

0 = ker(j) = {x ∈ H1(D̂ε′) | jτ1
(0 ⊕ x) = jτ2

(x ⊕ 0) = 0}
∼= (ker(jτ1

) ⊕ ker(jτ2
)) ∩ (0 ⊕ diag

H1(D̂ε′ )
⊕0)

and the lemma is proved.

Lemma 3.5. Let τ be an elementary tangle, as described in Figure 2.
Then K(τ) is a free Λ-module.

Proof. Note that Xτ has the homotopy type of a 1-dimensional con-
nected CW -complex Yτ (unless τ is one of the 1-strand tangles u and η, in

which case K(τ) = 0). Therefore, H1(X̂τ) is the kernel of ∂: C1(Ŷτ)→C0(Ŷτ ).

Since the latter two modules are free, Lemma 3.2 implies that H1(X̂τ ) is free.

Now, consider the exact sequence

0 → K(τ) →֒ H1(D̂ε) ⊕ H1(D̂ε′)
jτ
→ H1(X̂τ ).
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Since H1(D̂ε) ⊕ H1(D̂ε′) and H1(X̂τ ) are free, the conclusion follows from
Lemma 3.2.

Proof of Proposition 3.1. Any tangle τ can be written as a composition
of the elementary tangles given in Figure 2. Since K(τ2 ◦ τ1) = K(τ2)K(τ1),
the result follows from Lemmas 3.3–3.5.

Recall that for a Λ-module K, its rank rkΛ K is defined by rkΛ K =
dimQ(K ⊗Λ Q), where Q = Q(Λ) is the field of fractions of Λ.

Proposition 3.6. Consider τ ∈ T (ε, ε′) with ε of length n and ε′ of

length n′. Then the rank of K(τ) is given by

rkΛ K(τ) =





0 if n = n′ = 0,

(n + n′)/2 − 1 if ℓε 6= 0 or nn′ = 0 and (n, n′) 6= (0, 0),

(n + n′)/2 − 2 if ℓε = 0 and nn′ > 0.

Proof. Since K(τ) is a Lagrangian submodule of H1(D̂ε) ⊕H1(D̂ε′), we

have rkΛ K(τ) = 1
2 rkΛ(H1(D̂ε)⊕H1(D̂ε′)). If ε has length n, we know that

rkΛ H1(D̂ε) =





0 if n = 0,

n − 1 if ℓε 6= 0,

n − 2 if ℓε = 0 and n > 0.

The result follows.

3.2. Recursive computation of K(τ). Throughout this subsection, let
Ik denote the identity (k × k)-matrix. Consider two finitely generated free
Λ-modules H and H ′ with fixed bases. A homomorphism of Λ-modules
f : H → H ′ is canonically described by its matrix Mf , and the composi-
tion of homomorphisms corresponds to the product of matrices. What about
morphisms in the Lagrangian category? A free submodule N of H ⊕ H ′ is
determined by a matrix of the inclusion N ⊂ H ⊕H ′ with respect to a basis
of N . We will say that N ⊂ H ⊕H ′ is encoded by this matrix. For example,
the graph of an isomorphism f : H → H ′ is encoded by the matrix

(
I

Mf

)
.

Let H, H ′, H ′′ be finitely generated free Λ-modules with fixed basis.
Consider free submodules N1 ⊂ H⊕H ′ and N2 ⊂ H ′⊕H ′′. A choice of a basis

for N1 and N2 determines matrices
(
M1

M ′

1

)
and

(M ′

2

M ′′

2

)
of the inclusions N1 ⊂

H⊕H ′ and N2 ⊂ H ′⊕H ′′. By Lemma 3.3, if (N1⊕N2)∩(0⊕diagH′ ⊕0) = 0,
then N2N1 is free. A natural question is: how can we compute a matrix of

the inclusion N2N1 ⊂ H ⊕ H ′ from the matrices
(
M1

M ′

1

)
and

(M ′

2

M ′′

2

)
?

Lemma 3.7. If (N1 ⊕ N2) ∩ (0 ⊕ diagH′ ⊕0) = 0, then the inclusion of

N2N1 in H ⊕ H ′′ is encoded by the matrix
(

M1W1

M ′′

2
W2

)
, where

(
W1

W2

)
is a matrix

of the inclusion of K = {x ∈ N1 ⊕ N2 | (−M ′
1, M

′
2) · x = 0} in N1 ⊕ N2.
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Proof. We will assume the notation of the proof of Lemma 3.3. By def-
inition, M1, M ′

1, M ′
2 and M ′′

2 are the matrices of f1, f ′
1, f ′

2 and f ′′
2 with

respect to the bases of N1, N2, H, H ′ and H ′′. Furthermore, we saw in
the proof of Lemma 3.3 that K = ker((−f ′

1) ⊕ f ′
2) is free. Let

(
W1

W2

)
be a

matrix of the inclusion K ⊂ N1 ⊕ N2 with respect to a basis of K and
the fixed basis of N1 ⊕ N2. By definition, N2N1 = (f1 ⊕ f ′′

2 )(K). Clearly,
ker(f1 ⊕ f ′′

2 ) ∩ K = (N1 ⊕ N2) ∩ (0 ⊕ diagH′ ⊕0). Since the latter module
is assumed to be trivial, f1 ⊕ f ′′

2 restricted to K gives an isomorphism onto
N2N1. The lemma follows.

Lemma 3.7 gives the following recursive method for the computation of
K(τ), where τ is a straight tangle.

Proposition 3.8. Let τ1 ∈ T (ε, ε′) and τ2 ∈ T (ε′, ε′′) be tangles such

that τ2 ◦ τ1 is straight. Then K(τ1), K(τ2) and K(τ2 ◦ τ1) are free. Further-

more, if the inclusions K(τ1) ⊂ H1(D̂ε) ⊕ H1(D̂ε′) and K(τ2) ⊂ H1(D̂ε′) ⊕

H1(D̂ε′′) are encoded by matrices
(
M1

M ′

1

)
and

(M ′

2

M ′′

2

)
, then K(τ2◦τ1) ⊂ H1(D̂ε)⊕

H1(D̂ε′′) is encoded by the matrix
(

M1W1

M ′′

2
W2

)
, where

(
W1

W2

)
is a matrix of the in-

clusion {x ∈ K(τ1) ⊕ K(τ2) | (−M ′
1, M

′
2) · x = 0} ⊂ K(τ1) ⊕ K(τ2).

Therefore, the computation of K(τ) for any straight tangle τ boils down
to the computation of this module for the elementary tangles u, η, σi

and σ−1
i . Let us state the result and refer to [2] for the easy proof.

Proposition 3.9. Let τ ∈ T (ε, ε′) be an elementary tangle with ℓε 6= 0.

The inclusion K(τ) ⊂ H1(D̂ε)⊕H1(D̂ε′) with respect to the canonical basis

of H1(D̂ε) ⊕ H1(D̂ε′) is encoded by the matrix
(
M
M ′

)
, where

• M = (0 In−3) and M ′ =
(
1
0

)
⊕ In−3 if τ = u;

• M =
(1
0

)
⊕ In−3 and M ′ = (0 In−3) if τ = η;

• M = In−1 and M ′ = M ε
fi

if τ = σε
i , for ε = ±1 and 1 ≤ i ≤ n − 1,

with

Mf1
=

(
−tε2 1

0 1

)
⊕ In−3, Mfn−1

= In−3 ⊕

(
1 0

tεn −tεn

)
,

Mfi
= Ii−2 ⊕




1 0 0
tεi+1 −tεi+1 1

0 0 1


 ⊕ In−i−2 for 2 ≤ i ≤ n − 2.

4. The Alexander polynomial. Let τ ⊂ D2 × [0, 1] be an (ε, ε)-
tangle, with ε of length n. The closure of τ is the oriented link τ̂ ⊂ S3

obtained from τ by adding n oriented parallel strands in S3 \ (D2 × [0, 1])
as indicated in Figure 3. The orientation of these strands is determined by
ε in order to obtain a well defined oriented link τ̂ . In this section, we show



20 D. Cimasoni and V. Turaev

how the Alexander polynomial ∆τ̂ of τ̂ is related to the module K(τ) ⊂

H1(D̂ε) ⊕ H1(D̂ε).

... τ̂τ

Fig. 3. The closure τ̂ of an oriented tangle τ

4.1. Basics. Let Λ be a unique factorization domain. Consider a finite

presentation Λr f
→ Λg → M → 0 of a Λ-module M . We will denote by

∆(M) the greatest common divisor of the (g × g)-minors of the matrix
of f . It is well known that, up to multiplication by units of Λ, the ele-
ment ∆(M) of Λ only depends on the isomorphism class of M . Further-
more, if 0 → A → B → C → 0 is an exact sequence of Λ-modules, then
∆(B) =̇ ∆(A)∆(C), where =̇ denotes equality up to multiplication by units
of Λ.

We briefly recall the definition of the 1-variable Alexander polynomial
of an oriented link L ⊂ S3. Denote by XL the exterior of L in S3, and
consider the epimorphism π1(XL) → Z given by the total linking number

with L. It induces an infinite cyclic covering X̂L → XL. The Z[t, t−1]-module

H1(X̂L) is called the Alexander module of L and the Laurent polynomial

∆L(t) = ∆(H1(X̂L)) is the Alexander polynomial of L. It is defined up to
multiplication by ±tν , with ν ∈ Z.

4.2. A factorization of the Alexander polynomial. Throughout this sub-
section we use the notation of Section 2.

Lemma 4.1. For τ ∈ T (ε, ε) with ℓε 6= 0,

(tℓε − 1)∆τ̂ (t) =̇ (t − 1)∆(A),

where A is the cokernel of i′τ − iτ : H1(D̂ε) → H1(X̂τ ).

Proof. Consider the compact manifold Yτ obtained by pasting Xτ and
Xidε

along Dε ⊔ Dε. The epimorphisms π1(Xτ ) → Z and π1(Xidε
) → Z

extend to an epimorphism π1(Yτ ) → Z, which defines a Z-covering Ŷτ → Yτ .
Hence, we have the Mayer–Vietoris exact sequence

H1(D̂ε) ⊕ H1(D̂ε)
α1→ H1(D̂ε) ⊕ H1(X̂τ )

β
→ H1(Ŷτ )

∂
→ H0(D̂ε) ⊕ H0(D̂ε)

α0→ H0(D̂ε) ⊕ H0(X̂τ ),
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where α1(x, y) = (x+y, iτ (x)+ i′τ (y)). Since H0(D̂ε) = H0(X̂τ ) = Λ/(t−1),
the module Im(∂) = ker(α0) is equal to Λ/(t − 1). This and the equality
A = Im(β) lead to the exact sequence

0 → A →֒ H1(Ŷτ ) → Λ/(t − 1) → 0.

Hence, ∆(H1(Ŷτ )) =̇ (t − 1)∆(A).
Clearly, Xτ̂ is the union of Yτ and D2 × S1 along a torus T ⊂ ∂Yτ .

The epimorphism π1(Xτ̂ )→Z given by the total linking number with τ̂ ex-
tends the previously defined epimorphism π1(Yτ ) → Z. Therefore, the exact

sequence of the pair (X̂τ̂ , Ŷτ ) gives

0 → H2(Ŷτ ) → H2(X̂τ̂ ) → Λ/(tℓε − 1) → H1(Ŷτ ) → H1(X̂τ̂ ) → 0.

Note that both H2(Ŷτ ) and H2(X̂τ̂ ) are free Λ-modules. (This follows from
the fact that Xτ̂ and Yτ have the homotopy type of a 2-dimensional CW -
complex, and from Lemma 3.2.) If H2(X̂τ̂ ) = 0, then we have ∆(H1(Ŷτ )) =̇

(tℓε − 1)∆(H1(X̂τ̂ )) = (tℓε − 1)∆τ̂ (t) and the lemma holds. If H2(X̂τ̂ ) 6= 0,

then H2(Ŷτ ) 6= 0 so both modules have positive rank. By an Euler character-

istic argument, the rank of H1(X̂τ̂ ) and H1(Ŷτ ) is also positive. Therefore,

∆(H1(X̂τ̂ )) = ∆(H1(Ŷτ )) = 0, and the lemma is proved.

Theorem 4.2. Let τ ∈ T (ε, ε) be a tangle with ℓε 6= 0, such that K(τ)
is free. Then

tℓε − 1

t − 1
∆τ̂ (t) =̇ det(M ′ − M)∆(coker(jτ )),

where
(
M
M ′

)
is a matrix of the inclusion K(τ) ⊂ H1(D̂ε) ⊕ H1(D̂ε).

Proof. Since K(τ) = ker(jτ ), we have the exact sequence

0 → K(τ) →֒ H1(D̂ε) ⊕ H1(D̂ε)
jτ
→ H1(X̂τ )

π
→ coker(jτ ) → 0.

The module A defined by the exact sequence H1(D̂ε)
i′τ−iτ
−−−→ H1(X̂τ )

p
→ A

→ 0 fits in the sequence

K(τ)
α
→ H1(D̂ε)

β
→ A

γ
→ coker(jτ ) → 0,

where α(x, y) = y−x for x, y ∈ H1(D̂ε), β = p◦ iτ = p◦ i′τ , and γ(ζ) = π(z)

for ζ = p(z) ∈ A, z ∈ H1(X̂τ ). We leave to the reader the proof that this
sequence is exact. It then splits into two exact sequences

K(τ)
α
→ H1(D̂ε)

β
→ Im(β) → 0, 0 → Im(β) →֒ A → coker(jτ ) → 0.

The latter sequence implies that ∆(A) =̇ ∆(coker(jτ ))∆(Im(β)). By Lem-
ma 4.1, we get (tℓε − 1)∆τ̂ (t) =̇ (t − 1)∆(Im(β))∆(coker(jτ )). The former
sequence is just a finite presentation of the module Im(β). Furthermore, if

a matrix of the inclusion K(τ) ⊂ H1(D̂ε) ⊕ H1(D̂ε) is given by
(
M
M ′

)
, then
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a matrix of α is given by M ′ − M . Since K(τ) is a Lagrangian submodule

of H1(D̂ε)⊕H1(D̂ε), its rank is equal to the rank of H1(D̂ε). Therefore, M
and M ′ are square matrices and ∆(Im(β)) =̇ det(M ′ − M).

We have the following generalization of [1, Theorem 3.11]. (There, all
the strands of the braid must be oriented in the same direction.)

Corollary 4.3. If β ∈ T (ε, ε) is an oriented braid with ℓε 6= 0, then

tℓε − 1

t − 1
∆

β̂
(t) =̇ det(Mfβ

− I),

where Mfβ
is a matrix of fβ: H1(D̂ε) → H1(D̂ε) (cf. Corollary 2.4) and I is

the identity matrix.

Proof. By Corollary 2.4, K(β) is the graph of fβ . Therefore, its inclusion

in H1(D̂ε) ⊕ H1(D̂ε) is given by the matrix
(

I
Mfβ

)
. Furthermore, D̂ε is a

deformation retract of X̂β, so the homomorphism jβ is onto. The equality
then follows from Theorem 4.2.

A tangle τ ∈ T (ε, ε′) is said to be topologically trivial if the oriented pair
(D2 × [0, 1], τ) is homeomorphic to the oriented pair (D2 × [0, 1], idε′′) for
some ε′′. For instance, the oriented braids are topologically trivial, as are the
elementary tangles described in Figure 2. Note that a topologically trivial
tangle with ℓε 6= 0 is always straight. Therefore, K(τ) is a free module if
ℓε 6= 0.

Corollary 4.4. Consider a topologically trivial tangle τ ∈ T (ε, ε) with

ℓε 6= 0, and let
(
M
M ′

)
be a matrix of the inclusion K(τ) ⊂ H1(D̂ε)⊕H1(D̂ε).

Then there is a divisor δ ∈ Λ of (tℓε − 1)/(t − 1) such that

δ∆τ̂ (t) =̇ det(M ′ − M).

Proof. Let h be the homeomorphism between (D2 × [0, 1], τ) and
(D2× [0, 1], idε′′). The induced isomorphism h♯: π1(Xτ ) → π1(Xidε′′

) is com-
patible with the epimorphisms π1(Xτ ) → Z and π1(Xidε′′

) → Z. Therefore,

h lifts to a homeomorphism ĥ: X̂τ → X̂idε′′
.

Denote by Bε the compact surface (∂D2 × [0, 1]) ∪ (Dε × {0, 1}). Since

X̂idε′′
retracts by deformation on D̂ε′′ ⊂ B̂ε′′ , the manifold X̂τ retracts by de-

formation on Ĉ = ĥ−1(D̂ε′′) ⊂ B̂ε. This leads to the following commutative
diagram of inclusion homomorphisms:

H1(D̂ε) ⊕ H1(D̂ε)

i

��

j◦i // H1(X̂τ )

H1(B̂ε)

j
77

n
n

n
n

n
n

n
n

n
n

n
n

H1(Ĉ)
koo

j◦k

OO
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where j ◦ k is an isomorphism. Denote by π: H1(X̂τ ) → coker(j ◦ i) and

π′: H1(B̂ε) → coker(i) the canonical projections. Consider the homomor-
phism ϕ: coker(j ◦ i) → coker(i) given by

ϕ(π(x)) = π′ ◦ k ◦ (j ◦ k)−1(x)

for x ∈ H1(X̂τ ). We easily check that ϕ is a well defined injective homomor-
phism. Therefore, ∆(coker(jτ )) = ∆(coker(j ◦ i)) divides ∆(coker(i)). The

exact sequence of the pair (B̂ε, D̂ε ⊔ D̂ε) gives

H1(D̂ε) ⊕ H1(D̂ε)
i
→ H1(B̂ε) → Λ/(tℓε − 1) → Λ/(t − 1) → 0.

Therefore, ∆(coker(i)) =̇ (tℓε − 1)/(t − 1). The result now follows from
Theorem 4.2.

5. Examples. Given a topologically trivial tangle τ ∈ T (ε, ε) with
ℓε 6= 0, Propositions 3.8, 3.9 and Corollary 4.4 provide a method for the
computation of the Alexander polynomial ∆τ̂ . We now give several exam-
ples of such computations.

5.1. Rational links. For integers a1, . . . , an, denote by σ(a1, . . . , an) the
following unoriented 3-strand braid:

σ(a1, . . . , an) =

{
σa1

2 σ−a2

1 σa3

2 · · ·σan

2 if n is odd,

σa1

2 σ−a2

1 σa3

2 · · ·σ−an

1 if n is even.

Consider the unoriented 3-strand tangle τ(a1, . . . , an) = τn ◦ σ(a1, . . . , an),
where

τn =

{
u ◦ η if n is odd,

u ◦ η ◦ σ2 ◦ σ1 if n is even.

(Recall Figure 2 for the definition of the tangles u, η and σi.) Finally, denote
by C(a1, . . . , an) the unoriented link given by the closure of τ(a1, . . . , an).
Such a link is called a rational link or a 2-bridge link (see [3] and Figure 4
for examples).

(2,2,2)σ C(2,2,2)C(3,2)(3,2)σ

Fig. 4. Rational tangles and rational links
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Consider the oriented link L obtained by endowing C(a1, . . . , an)
with an orientation. (Note that there is no canonical way to do so:
L is not uniquely determined by the integers (a1, . . . , an).) This turns
σ(a1, . . . , an) into an oriented braid β. Using Proposition 3.9, one easily
computes the associated matrix Mfβ

=
(

m11

m21

m12

m22

)
, where mij ∈ Λ for

i, j = 1, 2.

Proposition 5.1. The Alexander polynomial of L is given by

∆L(t) =̇

{
m21 if n is odd ,

m11 if n is even.

Proof. Assume first that n is odd. Consider the decomposition τ =
τn ◦ β. In the canonical bases v1, v2 of H1(D̂ε) and v′1, v

′
2 of H1(D̂ε′),

the inclusion K(τn) ⊂ H1(D̂ε′) ⊕ H1(D̂ε) is encoded by the matrix
(
M ′

M

)

with M ′ =
(1

0
0
0

)
and M =

(0
0

1
0

)
. Furthermore, the inclusion K(β) ⊂

H1(D̂ε) ⊕ H1(D̂ε′) is encoded by the matrix
(

I
Mfβ

)
. Since Mfβ

is inver-

tible, the solutions of the system (−Mfβ
, M ′) · x = 0 are given by

(
W1

W2

)
=

(M−1

fβ
M ′

I

)
. By Proposition 3.8, K(τ) is encoded by

(M−1

fβ
M ′

M

)
. By

Corollary 4.4,

∆L(t) =̇ det(M − M−1
fβ

M ′) =̇ det(Mfβ
M − M ′)

= det

( (
m11 m12

m21 m22

)(
0 1
0 0

)
−

(
1 0
0 0

) )
=̇ m21.

If n is even, we have M ′ =
(

0
1

0
0

)
and M =

(
0
0

1
0

)
. This leads to ∆L(t)

=̇ m11.

For example, consider an oriented knot K obtained by orienting the
knot C(3, 2) described in Figure 4. The corresponding oriented braid β is
the composition of five elementary braids, leading to

Mfβ
=

(
−tε 1
0 1

)−2 (
1 0
tε −tε

)(
1 0

t−ε −t−ε

)(
1 0
tε −tε

)

=

(
2t−2ε − 3t−ε + 2 t−ε − 1

2tε − 1 −tε

)
,

where ε is ±1 according to the orientation of K. By Proposition 5.1, we
have ∆K(t) =̇ 2t − 3 + 2t−1.

Let L be an oriented link obtained by orienting C(2, 2, 2) so that the
linking number of the components is +2. Here, we get
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Mfβ
=

(
1 0
tε −tε

)2 (
−tε 1
0 1

)−1 (
−t−ε 1

0 1

)−1 (
1 0
tε −tε

)2

=

(
t2ε − 2tε + 2 tε − t2ε

2(tε − t2ε)(t2ε − tε + 1) 2t4ε − 2t3ε + t2ε

)
,

where the sign ε = ±1 is given by the global orientation of L. Therefore,
∆L(t) =̇ 2(t − 1)(t − 1 + t−1). Finally, if we orient C(2, 2, 2) so that the
linking number of the components is −2, the resulting oriented link L′ has
Alexander polynomial ∆L′ =̇ (t − 1)(t − 4 + t−1).

5.2. 2-strand tangles. In this subsection, we use the techniques intro-
duced above to define an invariant of (2, 2)-tangles formed by two arcs and
having no closed components. This invariant is a pair of elements of Λ defined
up to simultaneous multiplication by a unit of Λ. We study the behavior of
this invariant under the basic transformations of (2, 2)-tangles introduced
by Conway [3].

Consider a tangle τ ∈ T (ε, ε′) with no closed components, where ε and ε′

are sequences of ±1’s of length 2. By bending τ , we get a tangle τ b ∈ T (∅, µ)
where ∅ is the empty sequence and µ = (ε′1, ε

′
2,−ε2,−ε1). This is illustrated

in Figure 5.

2− ε1−ε1 ε2

ε1 ε2

ε ε

bττ

’
21 ε’ ’ ’

Fig. 5. The tangle τ
b obtained by bending τ

Lemma 5.2. The submodule K(τ b) of H1(D̂µ) is free of rank one.

Proof. One can write τ b as a composition τ b = τ ′ ◦ u, where u ∈ T (∅, ε̃)
is the elementary 1-strand “cup” tangle and τ ′ ∈ T (ε̃, ε) is a straight tangle.

Since H1(D̂∅) = H1(D̂ε̃) = 0, we have K(u) = 0. Now, K(τ b) = K(τ ′),
which is free by Proposition 3.1. Its rank is one by Proposition 3.6.

Recall from Subsection 2.3 that H1(D̂µ) = (Λv1⊕Λv2 ⊕Λv3)/Λγ̂, where

vi = êi− êi+1 and γ = eε1

1 · · · eε4

4 . Therefore, H1(D̂µ) is free with basis v1, v2.

Using this fact and Lemma 5.2, the inclusion K(τ b) ⊂ H1(D̂µ) is given by
a matrix

(
m1

m2

)
with m1, m2 ∈ Λ, unique up to multiplication by ±tν with

ν ∈ Z. We denote this fact by τ ∼ (m1, m2).
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For concreteness, we shall assume throughout the rest of the discussion
that ε = ε′ = (−1, +1) as for the tangle τ in Figure 6. (The other five cases
can be treated similarly.) Consider the tangles τ1, τ2, τ3 and τ4 shown in
Figure 6: τ1 is obtained from τ by a horizontal reflexion, τ2 by a rotation to
the angle π/2, τ3 by addition of a twist to the right, and τ4 by addition of
a twist to the top.

τ D

τ1

τ Nτ

τ2
τ3 τ4

Fig. 6. Tangles with two strands

Proposition 5.3. If τ ∼ (m1, m2), then τ1 ∼ (m1,−m2), τ2 ∼
(m2,−m1), τ3 ∼ (tm1, m1 − m2) and τ4 ∼ (m2 − tm1, m2).

Proof. We have τ b ∈ T (∅, µ) with µ = (−1, +1,−1, +1), while τ b
1 , τ b

2 ∈

T (∅, µ′) where µ′ = (+1,−1, +1,−1). Hence, H1(D̂µ′) = (Λv′1 ⊕ Λv′2 ⊕

Λv′3)/Λ(v′1+v′3). The horizontal reflexion induces an isomorphism H1(D̂µ) →

H1(D̂µ′) given by v1 7→ −v′3 = v′1 and v2 7→ −v′2. Hence, τ1 ∼ (m′
1, m

′
2) with(m′

1

m′

2

)
=

(1
0

0
−1

)(
m1

m2

)
=

(
m1

−m2

)
. Similarly, the rotation to the angle π/2 in-

duces an isomorphism H1(D̂µ) → H1(D̂µ′) given by the matrix
(

0
−1

1
0

)
. Thus,

τ2 ∼ (m2,−m1). Note that τ b
3 ∈ T (∅, µ′′), where µ′′ = (−1,−1, +1, +1). The

transformation from τ b to τ b
3 can be understood as a composition τ b

3 = σ◦τ b,
where σ is a spherical braid. By the results of Subsection 3.2, the isomor-
phism H1(D̂µ) → H1(D̂µ′′) corresponding to σ is given by v1 7→ v′′1 + t−1v′′2
and v2 7→ −t−1v′′2 . Therefore, τ3 ∼ (m1, t

−1(m1 − m2)), which is equivalent
to (tm1, m1 − m2). The case of τ4 is similar.

Proposition 5.4. If τ is topologically trivial and τ ∼ (m1, m2), then

the oriented links τD and τN described in Figure 6 have the Alexander

module

H1(X̂τD) = Λ/(m1) and H1(X̂τN ) = Λ/(m2).

In particular , ∆τD(t) =̇ m1 and ∆τN (t) =̇ m2.
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Proof. Since τ is topologically trivial, H1(X̂τb) = H1(X̂τ ) = Λ and the

inclusion homomorphism j: H1(D̂µ) = Λv1 ⊕Λv2 → H1(X̂τ ) is onto (cf. the
proof of Corollary 4.4). Therefore, the greatest common divisor of j(v1) and
j(v2) is 1. Hence, the kernel K(τ b) of j is generated by j(v2)v1 − j(v1)v2, so
m1 = j(v2) and m2 = −j(v1). Since the exterior of τD in S3 can be written
XτD = Xτ ∪ Xid, we have the Mayer–Vietoris exact sequence

H1(D̂µ)
ϕ
→ H1(X̂τ ) ⊕ H1(X̂id) → H1(X̂τD) → 0.

Clearly, H1(X̂id) = Λv1 and a matrix of ϕ is given by
(

j(v1)
1

j(v2)
0

)
. It is

equivalent to (j(v2)) = (m1), so H1(X̂τD) = Λ/(j(v2)) = Λ/(m1). With the
notation of Figure 6, we have τN = (τ2)

D. Hence, the formula for τN follows
from the formula for τD and from Proposition 5.3.
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