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Abstract. The affine Birman—-Wenzl-Murakami algebras can be defined algebraically,
via generators and relations, or geometrically as algebras of tangles in the solid torus, mod-
ulo Kauffman skein relations. We prove that the two versions are isomorphic, and we show
that these algebras are free over any ground ring, with a basis similar to a well known
basis of the affine Hecke algebra.
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1. INTRODUCTION

The purpose of this paper is to establish an isomorphism between the
affine Birman—Wenzl-Murakami algebras (defined by generators and rela-
tions) and the algebras of (n,n)-tangles in the solid torus, modulo Kauffman
skein relations.

The Birman—Wenzl-Murakami (or BMW) algebras were conceived in [2]
and [11] as an algebraic framework for the Kauffman link invariant of [8].
The definition of these algebras by generators and relations was motivated
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by certain canonical elements, and relations satisfied by these elements, in
Kauffman tangle algebras in D? x I, that is, algebras of framed (n, n)-tangles
in D? x I, modulo Kauffman skein relations. It is therefore not surprising,
and is sometimes taken as evident, that the BMW algebras are isomorphic
to the Kauffman tangle algebras. A proof of the isomorphism was given by
Morton and Wassermann [10] in a paper from 1989 that unfortunately was
never published. (A related result is given by Kauffman [8, Theorem 4.4]. See
Remark 3.2 below.) Some aspects of the BMW algebras can be understood
more clearly in the Kauffman tangle picture; for example, the existence of
the Markov trace and conditional expectations is evident from the tangle
picture, and an argument of Morton and Traczyk [9] gives the freeness of
the Kauffman tangle algebras over an arbitrary ring.

The affine BMW algebras are related to the ordinary BMW algebras as
the affine Hecke algebras of type A are related to the ordinary Hecke al-
gebras of type A. The affine algebras have an “extra” generator x; which
satisfies the braid relation z1g1x191 = gi1x1g9121 with the first “ordinary”
braid generator g1. The extra generator of the affine algebras can be imag-
ined geometrically as a strand looping around the hole in A x I, where A
denotes the annulus S' x I. The full set of relations for the affine BMW
algebras (due to Héring-Oldenburg [5]) are modeled after relations which
hold in the Kauffman tangle algebras in A x I. So the affine BMW algebras
“should” be isomorphic to the Kauffman tangle algebras in A x I, assuming
that a sufficient list of relations has been discovered. This isomorphism is
our main result. On the way to proving the isomorphism, we also show that
the affine BMW algebras, over any ring, are free with a basis generalizing a
well known basis of the affine Hecke algebras.

As for the ordinary BMW algebras, certain properties of the affine BMW
algebras are most easily obtained from the Kauffman tangle picture—in
particular the existence of the Markov trace and conditional expectations.
Moreover, we require the tangle picture even to describe our basis of the
affine BMW algebras.

In proving our main theorems, we rely on the results of Morton and
Wassermann for the ordinary BMW and Kauffman tangle algebras, as well as
on techniques from their paper. Since their paper is not generally available,
we have reproduced their results in Section 5 of the present paper.

The outline of the paper is as follows. In Sections 2 and 3 we intro-
duce the ordinary and affine Birman—Wenzl-Murakami algebras and the
Kauffman tangle algebra and derive basic properties of these algebras. In
Section 4, we introduce an affine version of the Brauer centralizer algebra,
which is a homomorphic image of the Kauffman tangle algebra in A x I.
Section 5 is devoted to the Morton—Wassermann proof of the isomorphism
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of the ordinary BMW and Kauffman tangle algebras. Finally, in Section 6
we obtain the main results of the paper.

In a future paper, we intend to study the cyclotomic BMW algebras,
which are quotients of the affine BMW algebras in which the affine gen-
erator x; satisfies a polynomial relation. Cyclotomic BMW algebras have
previously appeared in [4], [5], [15].

Let us mention some additional antecedents for the algebras studied here.
The affine and cyclotomic Brauer algebras, which we use in Section 4, were
introduced by Héaring-Oldenburg [5], and the cyclotomic case was studied
in [18]. Formally similar algebras determined by weighted Brauer diagrams
are used in the approach of Olshanski and Okounkov to the representation
theory of the infinite symmetric group; see, for example, [14], [13]. Nazarov
introduced a “degenerate” affine BMW algebra, under the name “degener-
ate affine Wenzl algebra”, in [12]. The cyclotomic version of this algebra was
recently studied in [1]. Ram and Orellana [15] have studied certain repre-
sentations of the affine BMW algebras.

We would like to thank Hans Wenzl for finding a significant error in a
previous version of this paper.

2. THE AFFINE KAUFFMAN TANGLE ALGEBRA

In this section we introduce the geometric versions of the ordinary and
affine Birman—Wenzl-Murakami algebras.

2.1. Framed tangles. The objects considered in this subsection, namely
framed tangles in S x I, where S is an oriented surface, do not enter directly
into the definition of the Kauffman tangle algebra and its affine counterpart,
but they provide important motivation for the definition.

Let S be a smooth oriented surface (with boundary). Let I denote the
unit interval [0, 1]. Choose once and for all a countable family of mutually
disjoint oriented intervals {J; : i € N} in S.

DEFINITION 2.1. Fix integers k,n > 0. A framed (k,n)-tangle in S x I is
a family of non-intersecting embedded piecewise smooth rectangles (ribbons)
in S x I such that:

(1) with F' denoting the union of the ribbons,
FnoSxI)=Fn(Sx{0,1})
=J1 x{0,1}U---U Jx x {0,1},

(2) any ribbon in the family intersects the boundary of S x I transver-
sally.
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REMARK 2.2. Note that £ = 0, or n = 0, or both, are allowed in the
definition of tangles. If one of k or n is positive, then a (k,n)-tangle must
be a non-empty family of ribbons, but the empty tangle, with no ribbons,
is an allowable (0, 0)-tangle.

We will identify framed tangles which are isotopic via an isotopy fix-
ing the intersections of the curves with the boundary of S x I; so strictly
speaking, a tangle is an isotopy class of families of ribbons.

One can compose (k, n)-tangles and (n, m)-tangles by “stacking”. Namely,
the first tangle (the (k,n)-tangle) is placed above the second tangle (the
(n,m)-tangle), the n oriented intervals at which the ribbons intersect the
lower boundary of the first tangle are identified with the n oriented intervals
at which the ribbons intersect the upper boundary of the second tangle, and
the resulting family of ribbons is compressed into S x I.

Since composition of tangles is evidently associative, framed tangles in
S x I may be regarded as morphisms in a certain category. Namely, the
objects of the category are {0,1,...}, and the morphisms from & to n are
the (k,n)-tangles in S x I. In particular, the set of (n,n)-tangles forms a
monoid, whose identity is the tangle J; x TU---U J, x I.

We are interested here in two possibilities for S, namely the plane R?
and the annulus A% = {(z,y) € R? : 1/4 < 22 + y*}. We refer to tangles
in R? x I as “ordinary” framed tangles and tangles in A% x I as “affine”
framed tangles. For both cases we take our intervals J; to lie on the positive
z-axis and to be ordered by their order on the z-axis. For convenience, we
can take J; = [i,7 + 1/2] x {0}.

2.2. Tangle diagrams. Fix points a; in R, for ¢ > 0, with 0 = ag <
ap <ag---.

DEFINITION 2.3. An ordinary (k,n)-tangle diagram is a piece of a knot
diagram in R = R x [ such that:

(1) with F' denoting the union of the curves comprising the knot dia-
gram,

Fno(R)=Fn(Ix{0,1})
= {(CL(), 1)7 ceey (a/kfh 1)} U {(CI,0,0), ceey (an—lao)}v
(2) any curve in the family intersects the boundary of R transversally.
Recall that a knot diagram means a collection of piecewise smooth curves
which may have intersections and self-intersections, but only simple trans-

verse intersections. At each intersection or crossing, one of the two strands
(pieces of curves) which intersect is indicated as crossing over the other.
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DEFINITION 2.4. Two ordinary tangle diagrams are said to be ambient
isotopic if they are related by a sequence of Reidemeister moves of types I, 11,
and III, followed by an isotopy of R fixing the boundary. Two ordinary tangle
diagrams are said to be regularly isotopic if they are related by a sequence
of Reidemeister moves of types II and III only, followed by an isotopy of R
fixing the boundary. See the following figure for the Reidemeister moves of
types I, 11, and IIL.
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Tangle diagrams can be composed, similarly to tangles, and composition
respects ambient isotopy or regular isotopy. Thus one obtains a product on
ambient isotopy classes of tangle diagrams, respectively on regular isotopy
classes of tangle diagrams.

As is well known, isotopy classes of ordinary framed tangles correspond
bijectively to regular isotopy classes of ordinary tangle diagrams, by a framed
version of Reidemeister’s theorem. The correspondence is as follows: A repre-
sentative of an isotopy class of framed tangles (in (z,y, z)-space) can always
be chosen that lies close to and almost parallel with the xz plane; twists in
ribbons are converted to “kinks” (or almost planar loops) in such a repre-
sentative:

G

Replace each ribbon in such a representative by its “core”, a curve running
lengthwise along the center of the ribbon, and project the collection of these
curves in the xz plane. The result is a tangle diagram. Any two such projec-
tions are regularly isotopic tangle diagrams. Thus one has a well defined map
from isotopy classes of ordinary framed tangles to regular isotopy classes of
tangle diagrams. This map is bijective.

It follows that the monoid of (isotopy classes of) ordinary (n,n)-framed
tangles is isomorphic to the monoid of regular isotopy classes of (n, n)-tangle
diagrams.
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DEFINITION 2.5. An affine (k,n)-tangle diagram is an ordinary (k + 1,
n + 1)-tangle diagram which includes a distinguished curve P connecting
(ap,1) and (ap,0) such that the height coordinate (the second coordinate)
varies monotonically along the curve P.

Note that an affine tangle diagram is always equivalent by an isotopy of R
fixing the boundary to a diagram including the curve {ag} x I. We will draw
affine tangle diagrams with the distinguished curve drawn as a thickened
vertical segment. We refer to the distinguished curve as the “flagpole”. The
figure below shows some fundamental affine tangle diagrams from which
more complex affine tangle diagrams can be built by composition.

‘W \ N
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Two affine (k,n)-tangle diagrams are ambient (respectively regularly)
isotopic if they are ambient (resp. regularly) isotopic as ordinary (k+1,n+1)-
tangle diagrams. Note that in an ambient isotopy, no Reidemeister move
of type I is ever applied to the flagpole, as the flagpole is required to be
represented by a monotonic path.

The set of affine tangle diagrams, regarded as a subset of ordinary tangle
diagrams, is evidently closed under the composition of tangle diagrams. Thus
one obtains a product on ambient isotopy classes of affine tangle diagrams,
respectively on regular isotopy classes of affine tangle diagrams.

We can extend the correspondence between isotopy classes of ordinary
framed tangles and regular isotopy classes of ordinary tangle diagrams to a
correspondence between isotopy classes of affine framed tangles and regular
isotopy classes of affine tangle diagrams, as follows. First for each affine
(k,n)-framed tangle T in A? x I, we can consider T'U ({0} x I) in R? x I.
The latter projects to an ordinary (k + 1,n + 1)-tangle with distinguished
curve P = {0} x I.

It follows that the monoid of (isotopy classes of) affine (n,n)-tangles is

isomorphic to the monoid of regular isotopy classes of affine (n,n)-tangle
diagrams.

2.3. The ordinary Kauffman tangle algebras. Let U(k,n) denote
the family of ordinary (k,n)-tangle diagrams modulo regular isotopy. Like-
wise, let U (k,n) denote the family of affine (k,n)-tangle diagrams modulo
regular isotopy. Then U(n,n) and U (n,n) are monoids for each n.
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DEFINITION 2.6. Let R be any (commutative, unital) ring with distin-
guished elements A, z and §, with A and J invertible, satisfying the relation
A=A =200-1).

The (ordinary) Kauffman tangle algebra KT,, r over R is the monoid algebra
R U(n,n) modulo the following relations:

(1) (Kauffman skein relation)

(X0

Here, the figures indicate tangle diagrams which differ only in the
region shown and are identical outside this region.
(2) (Untwisting relation)

((Q = A and %} = ! .
(3) (Free loop relation)
Tu(Q =0T,

where T'U () is a tangle diagram consisting of the union of T' and
an additional closed loop having no crossing with 7" and no self-
crossings.

The generic Kauffman tangle algebra (as considered by Morton and Tra-
czyk [9] and Morton and Wassermann [10]) is the Kauffman tangle algebra
KT, 1 over the ring

A=ZAE 2,67/ N = =26 -1)).

Here A, z, § are indeterminates. For any ring R as above, there is a homo-
morphism from A to R determined by A — X, 2 — 2, and § — §. Thus
the specialization KT,, 1 ® 1 R makes sense. It follows from the freeness of
Kauffman tangle algebras [10] that for any R,

KT, r = KT, 4 ®4 R;

see Corollary 5.9 below. This is actually a special case of a general universal
coefficient theorem for skein modules due to J. Przytycki; see [17, Lemma 5].

REMARK 2.7. If R is a ring with distinguished elements A, z, and ¢ as
above, and S O R is a ring containing R, then the inclusion

RU(n,n) — S U(n,n)

induces an R-algebra homomorphism
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KT, r — KT, s.

This map is always injective; see Corollary 5.10.

2.4. The affine Kauffman tangle algebras. Let R be a ring with
distinguished elements A, z and § as above. Our preliminary definition of
the affine Kauffman tangle algebra over R is the monoid algebra R u (n,n)
modulo the Kauffman skein relation, the untwisting relation, and the free
loop relation, as for the ordinary Kauffman tangle algebras. Here it is under-
stood that none of the curves in the diagrams for these relations represent
a part of the flagpole. Denote this algebra temporarily by fn R

For r > 1, let O, (resp. ©_,) denote the (regular isotopy class of) the
closed curve with no self-crossings that winds r times around the flagpole
in the positive sense (resp. in the negative sense).

' |
5 P
I~ |

O3 O_3

It is not difficult to see that the curves ©, generate j(\[), Rr- A theorem of
Turaev [19] says that {©, : r > 1} is algebraically independent in K 4.

Hence ?07 A is the polynomial algebra over A in the infinitely many variables
O, for r > 1. . .

For any R, one has an algebra map from Kyr to Ko ®a R; since
the former is generated by {©, : » > 1} and the latter is the polynomial
algebra over R in the variables {©, : r > 1}, it follows that the map is an
isomorphism. Thus, k\O, R is the polynomial algebra over R in the variables
O, for r > 1.

We have ©&; = ©_7 in ff\o,R, but O, is not ambient isotopic to @_, for
r > 2. According to Turaev’s theorem, @_,. is a polynomial in the variables
O, k>1,

(2.1) O_, = £,(61,0,,...).

Later we will need a little more information about the polynomials f,.. For
a>1,b2>0,let O, be the curve with a positive windings around the
flagpole, and one positive crossing, and b negative windings, as in the first
of the following figures. Let @;b be the curve with the crossing reversed.
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In particular, ©, ¢ = A~16,; we interpret O as 4.

LEMMA 2.8. Letr,a,b>1.

(1) O_, = X\O1 1.

(2) Qa’b = )\2@,14_1,17_1 + Z(@a@_b — Qa—b)-

(3) fr(O1,09,...) = A" 20,4+ 2f/(O1,...,0,_1), where f! is a polyno-
mial in O1,...,60,_1.

Proof. Point (1) follows from introducing a twist at the top of O_,:

I A i
Pe P P
v %) g
| I |
The tangle obtained by smoothing the crossing in 6, horizontally is ©,6 _y,

and the tangle obtained by smoothing the crossing vertically is ©,_, while
O,,= )\29a+1,b_1. Thus the Kauffman skein relation gives

(2.2) Oub = NOui1p 1+ 2(040_p — Ou_y).
An induction based on points (1) and (2) yields (3). m

We now return to the definition of the affine Kauffman tangle algebra.
Because Ky g is a polynomial algebra over R and K, r is a Ko r module, it

makes sense to just absorb f(\o, R into the ground ring for the affine Kauffman
tangle algebra, and this is what we do.

DEFINITION 2.9. Let S be a ring containing distinguished elements A, z,
§, and ¢, (r > 1), with X\ and § invertible, such that the relation A=% — \ =
z(6 — 1) holds. The affine Kauffman tangle algebra

I/(ng = ﬁn,S(A, 2,0,q1,q2, - - )

is the monoid algebra SU(n,n) modulo the following relations:
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(1) The Kauffman skein relation, the untwisting relations, and the free
loop relation, as for the ordinary Kauffman tangle algebra.

(2) TUO, =T, where T'U O, is the union of a tangle T" and a copy
of the curve 6, such that there are no crossings between T and 6,..

REMARK 2.10. Note that ﬁo,s =S,

If R is a ring with distinguished elements A, z, and ¢ as above, and g,.,
r > 1, are indeterminates, we denote by R the polynomial ring R|q;,¢s, - - . ].

REMARK 2.11. Let R be a ring with distinguished elements A, z, and
6 as above, and S O R a ring with additional elements ¢1,q2,.... Adding
a flagpole to ordinary (n,n)-tangle diagrams induces a homomorphism of

R-algebras 1,, : KT, g — KT, 5. This homomorphism is always injective.
For the moment, we verify injectivity in two special cases.
(1) 4y : KTp 5 — I/(ng is injective. In fact the image of 7, is the span of
affine (n, n)-tangle diagrams having no intersection with the flagpole.
We can define a map o,, of such diagrams to ordinary (n,n)-tangle
diagrams by removing the flagpole. The map o,, induces an S-algebra
homomorphism inverse to i,; that is, 0, 01, is the identity on KT}, g.
(2) i : KT p — ﬁnﬁ is injective. In fact, removing the flagpole
from affine (n,n)-tangle diagrams and mapping g, — J determines
a homomorphism of R-algebras f, : ﬁn 7 — KTy, and f, oy is
the identity on KT, g.

Once we have verified that KT,, p imbeds in KT,, g (see Corollary 5.10), it
will follow from (1) that KT,, g imbeds in KT, g in general.

The generic affine Kauffman tangle algebra is the Kauffman tangle al-
gebra
= KTn,Z(/\,z,(S,ql,qQ, o)

over the ring A = Algy, ¢y, ... ].

Since for any ring S as above, we have a homomorphism Ato S , de-
termined by the assignments A — A\, z — 2, § — J, and q; — ¢;, the
specialization I/{Tn T® /TS makes sense. We will eventually show that

ﬁms = ﬁn/T@/TS’
see Corollary 6.14.

REMARK 2.12. We will use the following specialization below, in con-
nection with an affine version of the Brauer algebra: Set R = Z[0*1]. We
have a homomorphism of e : 4 — R determined by A — 1, z — 0, § — 0.
Then ﬁnﬁ is the quotient of R U(n,n) by the relations:
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(1) (Kauffman skein relation) K = X for a crossing of

strands neither of which represents a part of the flagpole.

(2) (Untwisting relation)

L/D B R
(3) (Removal of closed loops) T'U (O = 6T, where T U () is a tangle

diagram consisting of the union of 7" and an additional closed loop
having no crossings with the flagpole, and T'U 6, = ¢, T, for r > 1.

Since in this specialization, two tangle diagrams related by crossing changes
are equivalent, for any » > 1 and for any closed curve ¢ which loops r times
around the flagpole, c = 0, =gq,..

2.5. The elements X,. We define elements X, € I/{Tn,g for1<r<n
by
Xy = (Gro1---G2G1) X1 (G1G2 - - - Gr—1).

For example,

J

—

/|

|1
Xy = (/ and X' = Ql_\\

\\

ﬁ

2.6. Symmetries. The map on ordinary (respectively, affine) tangle
diagrams which flips diagrams top to bottom induces an anti-automorphism
a of KT, r (respectively, of I/{Tns) The anti-automorphism « fixes E;, G,
and X;.

There is an isomorphism 3 : KT, g(), 2,6) — KT, (A7, —2,9) deter-
mined by the map of ordinary tangle diagrams that reverses all crossings.

For r > 1, define ¢, = f.(q1,...,q,), where f,. is the polynomial of
equation (2.1). There is an isomorphism

ﬁ : ﬁn,S(Aaz757 q1,92, - - ) - I/<T‘n,5()‘_17 _2757 q4-1,49-2, - - )

determined by the map of affine tangle diagrams that reverses all crossings
(also crossings of ordinary strands with the flagpole).

The ordinary Kauffman tangle algebra KT,, g has an automorphism o,
which flips ordinary tangle diagrams left to right. The automorphism g,
satisfies Qn(Ez) = En—i—l—i and Qn(Gz) = Gn+1—i-
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2.7. Inclusions, conditional expectations, and trace. The obser-
vations in this section apply equally to the ordinary and affine Kauffman
tangle algebras. We fix a ring S containing distinguished elements A, z, 9,
and ¢, (r > 1) as above, and we let ﬁn denote ﬁn,s.

For n > 2, the map ¢ from affine (n — 1,n — 1)-tangle diagrams to affine
(n,n)-tangle diagrams that adds an additional strand on the right without
adding any crossings:

respects regular isotopy, composition of tangle diagrams, and the relations
of the affine Kauffman tangle algebras, so induces a homomorphism ¢ :
I/(Tn_l — ﬁn Note that oot = ¢ o @, where « is the anti-automorphism
of the affine Kauffman tangle algebras described in Section 2.6.

The map of affine (n,n)-tangle diagrams to affine (n — 1,n — 1)-tangle
diagrams that “closes” the rightmost strand, without adding any crossings:

cl, : —

respects regular isotopy and the relatlons of the affine Kauffman tangle
algebras so induces an S-linear map KT — KT _1. We define ¢, : KT —
KTn 1 by

Note that €, o a = «a o €,, where « is the anti-automorphism of the affine
Kauffman tangle algebras described above.
We have

enot(r)=x
for x € ﬁn_l. In particular, the map ¢ of I/(Tn_l into I/(Tn is injective.
Consequently, we will drop the notation ¢ and regard KT,,_1 as a subalgebra

of Iﬁn
More generally,

en(zy) = 2en(y), enl(yz) =cen(y)z
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for x € ﬁn_l and y € I/(Tn; that is, e, is a ﬁn_l-ﬁn_l—bimodule map,
or conditional expectation.
REMARK 2.13. One has the formula
E,zE, = cl,(2)E,

for  an (affine) (n,n)-tangle diagram. Equivalently, the idempotent E, /0
implements the conditional expectation:

(En/0)x(En/0) = en(x)(En/0)
for x € ﬁn
Wedeﬁnes:ﬁnﬂﬁog,gby
E=E€10: - 0€y.

Equivalently, if we define the closure of an affine (n, n)-tangle diagram to be
the affine (0, 0)-diagram obtained by closing all strands without introducing
any new crossings:

cl: —

then e(z) = 0 "cl(z). Note that
goL=¢g, cogy,=c¢.

We will show below that I/(Tn is generated as a unital algebra by X fﬂ,
G?ﬂ and F; (1 <i<n—1). In particular I/(Tl is generated by Xlﬂ, So is
commutative.

For n > 2, let €,,1 denote the map

€n71=EQO"'O€n:ﬁn—>ﬁ1.
Then ¢, is a conditional expectation, so for z € I/(Tn,
en,l(Xlilx) = Xlﬂen,l(m) = En,l(.%')Xitl = £n71(fo1).
Since € = €1 0 €y,1, We have
e(XF'z) = e(zXT).

For any affine (n,n)-tangle diagram 7" and any r < n — 1, the closure of
the affine tangle diagram FE,T is isotopic to the closure of the affine tangle
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diagram TE,, and similarly for E, replaced by G;*!. The following figure
illustrates this for G, 1:

It follows that for x € ﬁn and r <n —1,
e(Eyx) = e(zE,), e(GHlz) =e(aGEY)

PROPOSITION 2.14. ¢ : I/{Tn j\ﬁo =~ S is a trace. That is, € is S-linear
and £(zy) = e(yx) for all x,y € KT,,.

Proof. We have shown that the trace property

e(wy) = e(yx)

holds when y is arbitrary and x is one of X', G¥' and F; (1 <i <n—1).
It follows that the trace property also holds When T is any pr product of the

elements X Gil and FEj;. Since these elements generate KT as a unital
algebra, the property holds for all . =

REMARK 2.15. One easily checks by picture proofs that e, 1(TGE!) =
(A*1/8)T, and hence
e(TGEY) = ¢(T)NEL /5

for T € KT,. Likewise, er41(TE,) = (1/6)T, and hence
«(TE,) = £(T)/6

for T € KT,. Moreover, if X/, denotes

X =G q---G1X1Gy -G,
then for s > 1 and T € KT,, one has er+1(T(X])®) = ¢sT. Consequently,

e(T(X7)") = gse(T).

It follows from Lemma 2.8 that

e(T(X)7") = fla, - -, as)e(T).

A trace with these properties is usually called a Markov trace. The termi-
nology originated in [6].
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3. THE AFFINE BIRMAN-WENZL-MURAKAMI ALGEBRA

3.1. The Birman—Wenzl-Murakami algebra. The Birman-Wenzl-
Murakami algebras were introduced independently by Birman and Wenzl [2]
and by Murakami [11] as an algebraic setting for the Kauffman link invari-
ant [8]. These algebras are known to appear as centralizer algebras for the
quantum universal enveloping algebras of sp(2n, C) or so(n, C) acting on ten-
sor powers of the vector representation. They are deformations of Brauer’s
centralizer algebras (see [20]), and are extensions of the Hecke algebras of
type A, as will be explained below.

The presentation which we give here follows Morton and Wassermann [10].
The parameters differ slightly from those used by Birman and Wenzl.

As before, let R be a commutative unital ring with invertible elements
A and 0 and an element z satisfying

A= A=20-1).
DEFINITION 3.1. The Birman-Wenzl-Murakami algebra Wy, g is the R-
algebra with generators gl-il and e; (1 <7< n—1) and relations:

(1) (Inverses) gig; ' = g; 'g: = 1.

) (Idempotent relation) e? = de;.

3) (Braid relations) 9:9i+19i = Gi+19:i9i+1 and 9i9; = 959i if ”L —]’ > 2.

) (Commutation relations) ge; = ejg; and eje; = eje; if |i — j| > 2.
) (Tangle relations) eje;+1€; = €;, gigi+1€; = €;i+1€;, and €;gi+19; =
€iCit1.

(6) (Kauffman skein relation) g; — g; ' = z(e; — 1).

(7) (Untwisting relations) g;e; = e;g; = A~le;, and e;gir1€; = Ae;.

REMARK 3.2.

(1) If z is taken to be invertible, then

€; = 1 + 271(9;1 _gi)-
In this case, several of the relations are redundant. Moreover, the
algebra is a quotient of the braid group algebra.

(2) In the parametrization of [21], z is replaced by ¢ — ¢+, where ¢ is
another indeterminate, and ¢ — ¢~ ! is assumed to be invertible. The
Kauffman skein relation then becomes a cubic relation for the braid
generators g;.

(3) The main result of [10] is that the Birman—Wenzl-Murakami algebra
Whp,a defined over A is isomorphic to the Kauffman tangle algebra
KTy, 4.

In [8], Theorem 4.4, Kauffman gives a presentation for the algebra
of tangles generated by the F;’s, G;’s, and free loops. It is not clear
to us how this result is related to the Morton—Wassermann theorem.
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REMARK 3.3.

(1) The assignment e; — ¢;, g; — g¢; defines a homomorphism ¢ from
Wy.r to Wiyt R, since the relations are preserved. It is not evident
that ¢ is injective, but this will follow eventually from the isomor-
phism of W,, r with KT, g; see Theorem 5.41.

(2) Define S(z) : Wy, g — Wy41,r by

S(.Z‘) - Ad(gngn—l T gl)(l').
Then S is an injective homomorphism. It follows from the relations
that S(e;) = e;y1 and S(g;) = gi+1 for i < n—1. The map S is called
the shift endomorphism.

(3) The assignment e; — e,_;, g; — gn—; determines an automorphism
on of Wy, r, as the relations are preserved by this assignment. The
shift map S : Wy, p — W41 g satisfies S = p,41 0 0.

(4) The assignment g; — g¢; and e; — e; determines an anti-automor-
phism o of W, k.

(5) The assignment g; — g; ! e; — e; determines an isomorphism
from Wy, r(A, 2,6) to Wy rR(A7L, —2,0).

We have the following relation of the BMW algebras to the Hecke alge-
bras of type A:

PROPOSITION 3.4. Let J, g denote the ideal Wy, gren—1Wy r in Wy g.

(1) Jn,r is the ideal in W, g generated by {e1, ..., en—1}.

(2) Wy.r/Jn R is isomorphic to the Hecke algebra over A with generators
g;ﬂ (1 <i < n—1) satisfying the braid relations and the quadratic
relation 91’2 =1-— zg;.

Proof. For (1), it follows from the relation ejej;1e; = e; that all the e;’s

are elements of W, e,_1W,. Statement (2) is evident, since the e;’s are zero
in the quotient. m

REMARK 3.5. For w € G,, let w = s;, ---5;,. be a reduced expression
for w (in terms of the generators s; of the symmetric group). Let g, be
the corresponding word in the generators g; of W), g. It follows from the
proposition and well known facts concerning the Hecke algebra that g, is
well defined modulo J), r. In fact, g, is well defined in W,, r, not merely well
defined modulo the ideal J, r; see Proposition 5.14.

Recall that A denotes the ring
A=ZDN 2,85/ = A = 2(6 - 1),
where X, z, & are indeterminates. The generic Birman-Wenzl-Murakami

algebra is the BMW algebra W), 4 over the ring A. Given a ring R as above,
we have two possible specializations to an algebra over R, namely W, r
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and W, 4 ®1 R. We will show later that these are in fact isomorphic; see
Corollary 5.43.

3.2. The affine Birman—Wenzl-Murakami algebra. Let S be a
ring with distinguished elements A, z, and § as above, and with additional
elements g1, ¢qo, . . ..

DEFINITION 3.6. The affine BirmaanenzlfMumkami algebra I//I\/n,S is
the S-algebra with generators xlﬂ, 9; Land e; (1 <i<n-—1) and relations:

(1) (Inverses) gig; ' = g; 'gi =1 and zy27" = 27 2y = 1.

(2) (Idempotent relation) €? = Je;.
(3) (Affine braid relations)
(a) 9igi+19i = gi+19igi+1 and gig; = g;g if |i — j| = 2.
(b) 1917191 = grz1g121 and x1g; = gy if § > 2.
(4) (Commutation relations)
(a) gie; = ejg; and e;ej = eje; if |i — j| > 2.
(b) z1ej = ejxy if j > 2.
(5) (Affine tangle relations)
(a) €;€;+1€; = €;.
(b) gigix1€i = eix1e; and €;gix19;i = eieix1.
(c) For r > 1, eyzfe; = gre;.
(6) (Kauffman skein relation) g; —g; " = z(e; — 1).
(7) (Untwisting relations) gie; = e;g; = A~ 'e; and e;gixr1e; = Ae;.
(8) (Unwrapping relations) e;r1g171 = A\~ le; = x1g121€1.

REMARK 3.7. Let R be a ring with distinguished elements A, z, and ¢
as above, and S O R a ring with additional elements q1, ¢o, . . ..

(1) The assignment e; — ¢;, g; — g;, 1 — =1 defines a homomorphism

L Wn,S - Wn—&-l,Sv

since the relations are preserved. It is not evident that ¢ is injec-
tive, but this will follow from the isomorphism Wn,S &~ ﬁmg; see
Corollary 6.15.

(2) The assignment e; — e;, g; — g; defines an R-algebra homomor-
phism -

in: Whr— Wys.

This map is always injective as we will verify later. (For the moment
we verify that ¢, : W, p — W 7 Is injective. In fact, the assignment
e; — e, gZ —gi,r1— 1,9, — 5 defines an R-algebra homomorphism

from fn, : W5 — Wy g, and fy, o iy, is the identity on W, g. )
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Note that the following diagram commutes:

in

Wir —— Whs

in+l =
WnJrl,R - WnJrl,S

(3) The assignment g; — g¢;, e; — €;, ¥1 — x1 determines an anti-

automorphism « of W, s. One has o o4, = i, o o, where i, :
Wy r — Wiy s and « also denotes the anti-automorphism of W, g of
Remark 3.3.

(4) For r > 1, let g—» = fr(q1,...,q), where f, is the polynomial of
equation (2.1). The assignment g; — 9;17 e; — e, 1 — o7 " deter-
mines an isomorphism

ﬁ : WTL,S(Aaza(SHQMQ% e ) - TL,S(A_17_Z767 qd-1,9-2, .. )

The following diagram commutes:

Wn,R()\7 2, 5) L’ AR,S<)‘7 Z, 67 q1,4q2, - - )
B B

WA ! =2,0) = Wos(A ' =2,8,4-1,q-9,...)
LEMMA 3.8. The Kauffman skein relation implies
gz2 =1+ N tze; — zgi, 9;2 =1-—Aze; + zg;.
Proof. Multiply by g; or g;- L and simplify using the untwisting relation. m
LEMMA 3.9.

(1) g (9i19i) = (9i+1gz‘)9§5r11-
(2) ei(git19:) = (git19i)eir1-
(3) 9i9i+1€i€i+2 = §i4+29i+1€i€i42.
(4) If i < m, then
9 (GmGm—1- - 91) = (GmGm—1- - 91)g; 11,

gii—i-ll (9192 gm) = (9192 - 'Qm)gzil'
(5) If i < m, then

€i(9m9m71 o '91) = (gmgmfl - '91)€i+1,
ei+1(9192 - gm) = (9192 gm)é€i.-
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Proof. The first statement is just the braid relation. The second results

from two applications of the tangle relation (5b) from Definition 3.6:
€i(9i+19i) = €i€iv1 = (gi+19i)€i+1-
Statement (3) also results from two applications of the tangle relation (5b)
from Definition 3.6:
9i9i+1€i€i4+2 = €i41€i€i+2 = €i4+1€i4+2€i = Ji+29i+1€i+26;-

The first parts of statements (4) and (5) follow from statements (1) and
(2) and the commutation relations (3a) and (4a) of Definition 3.6. The

second parts of statements (4) and (5) follow by applying the anti-auto-
morphism . =

3.3. The elements z;. For 2 <r <n define
Tr = (gr—1---91)71(g1 "~ gr—1)-
ProposITION 3.10.

(1) For allr and j & {r,r — 1}, gjx, = x,9;.
(2) For allr and j & {r,r — 1}, ejx, = xre;.
(3) For allr and j, xjz, = x,x;.

Proof. For j < r — 1, relations (1) and (2) follow by applying Lemma

3.9(4, 5) and Definition 3.6(3b, 4b).

For j > r, relations (1) and (2) follow from Definition 3.6(3, 4).
For part (3), we first observe that x; commutes with z, for r > 2, by
the braid relations Definition 3.6(3b). Namely,

12 = 21(gr—1- - 9291)71(9192 -+ - Gr—1) = (Gr—1- - g2)T1917191(92 - * - Gr—1)
= (gr—1--g2)g1m19171(92 - 9r—1) = (gr—1" - 9291)71(9192 - - - Gr—1)71
= Typx1.

Finally, if j < r, then

riry = (gj-1- - g1)r1(g1- - gj—1)r = Tr(gj—1- -+ g1)T1(91 "~ gj—1) = Tp75,

since x, commutes with g; for ¢ < j — 1 and with z;. =

PROPOSITION 3.11.
(1) Forr <mn, grx, = xr—i—lg;l and g;lmr_,'_l = TrGr-
(2) Forr <n,
GrTryl = TpGr — 2Tp41 + 2N Ty 1,
gr_lxr = xr—i—lgr_l + 2Ty — Z€rTy.
(3) Forr <n, e,x, = )\_Qerm;}l and xre, = )\_er_iler.
(4) Forr <mn, ezt = Ne,wpy1 and x,te, = N2z, y 16,
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Proof. Statement (1) follows from the definition of z,. Statement (2)
uses the Kauffman skein relation, the quadratic relation of Lemma 3.8, and
part (1). Statement (3) is equivalent to

€r&yrLypy] = )\_Qer.
For r = 1, this follows from Definition 3.6(7, 8). The proof is completed by
induction on r. For r > 2, one has (using braid and tangle relations)
errri1 = er(gro1---91)21(91 -~ gr—2(9r—19r9r—1)gr—2- - - g1)x1(91 - - - 9r)
= er(gr—1---91)x1(91 "~ gr—2(9rgr-19r)gr—2- -~ g1)x1(91 - - gr)
= (ergr—19r)(gr—2---g1)21(91 - - Gr—29r—1Gr—2 - g1)
x1(91° 9r—2)(9rgr—19r)
= (erer—1)(gr—2--91)71(91" - gr—29r—19r—2" - G1)
x1(g1 9r—2)(9r—19rGr-1)
= €r€r—1Tr—1TrGrgr—1
= )\_Qe,«er_l grgr—1 by the induction assumption
=\ "2e,e,_16, = A %6y

Statement (4) follows from (3) by applying the isomorphism 5 of Remark
3.7. m

The next proposition contains general unwrapping and affine braid rela-
tions:

PROPOSITION 3.12. Foralln > 1 and all v > 1,

(1) InTngnTn = TndnTngn-

(2) EnTndnTn = )\_len.

(3) ez’ a1 _)\726 xT’*l -1
nLpdndn = nTy Gy -

(4) enzy gy wyt = Nepa, gy,

Proof. Statement (1) is equivalent to

Tnp4+1Tn = Tndn+1,

so follows from Proposition 3.10. Statement (2) follows from (3) and the
untwisting relation of Definition 3.6. For statement (3), we have

r —2 r—1,,—1
enxngnﬁn:)\ €nTy Lpi19ndn

1 r—1_-—1

_y-2, =1 1 1 _ y-2
=AN"“epx; g, T, Tn =\ "enx, G -

by Proposition 3.11. Statement (4) follows by applying the isomorphism [
to (3). m

COROLLARY 3.13. Forr > 1, e1zy"e1 = fr(qu,...,q )e1, where f, is the
polynomial of equation (2.1) in Section 2.4.
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Proof. For r > 1, set 1, = ejxfe1 = ¢re1, and ¢Y_, = ejz] e;. For
a > 1and b > 0, define 1,5 = elxl_bglx‘fel, and ¢, = elxl_bgl_lx‘fel. In
particular, 10 = e1g1z{er = A lgue1. We have

(3.1) Yor =er1z7"er = N terzy gy ter = AN,
and
(3.2) Vb = Nat1p-1,

using Proposition 3.12(4). Moreover, for a,b > 1,

oy = €127 "grater
= ey g7 e + z(eyxyPerader — ezt le)
= w;b + Z(w—an - wa—b)
= Yat1-1 + 2(V_pda — Ya—b),

by the Kauffman skein relation, and equation 3.2. Comparing the recursion
relations of equations 3.1 and 3.3 with those of Lemma 2.8 gives that ¢_, =
fr(QL ce 7QT)61- u

(3.3)

3.4. I//I\/n as a Wn,l—bimodule. W,.r has a simple structure as a
Wy —1,r-bimodule, described by the following proposition, which is Lemma
3.1 from [2].

PROPOSITION 3.14. W), g is the span of elements of the form axb, where
a,b € Wy 1.r and x € {gF', en_1,1}.

We generalize this result to the affine Birman—Wenzl-Murakami algebras
in this section. Fix S and let W,, denote W), s.

LEMMA 3.15.
(1) Forn >1 and s € Z, there exists an element b € Wn_l such that
enxyen = bey.

(2) Formn > 2, let a be an element of W, of the form

T2

— 1 Tk
a4 = 20T, _1”1Ly_1 """ Zk—1T,_ 1%k,

where z; € {€n—1,gn-1} for all i, and r; > 1. There exists b € I//[\/n,l
such that
enae, = be,,.
Proof. For n = 1, the first assertion follows from the relation (5c) of

Definition 3.6 and Corollary 3.13. We take this as the base for an inductive
proof of both assertions.
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For n > 2 and s > 1, the first assertion follows from the second, since
x5 = (gn—1Tn—19n—1)°. The assertion for s < —1 follows by applying the
symmetry (.

The proof of statement (2) is by induction first on n and then on the

number k of factors x:f_lzj in the expression for a. For n > 2 and k = 0,

the statement is immediate from the BMW relations. Fix n > 2, k£ > 1, and
a of the form above with k factors; assume inductively that

(1) emzsem € I//I\/'m_lem for m <mn and s > 1, and
(2) epd’e, € Wiy_qey, if @' is of the same form with fewer than k factors.

We consider several cases:
(a) Two successive z; are equal to e,_1. Then
a=de, 125 _jen_1a" = ad'be,_1d”,
where b € W, _o, by the induction hypothesis. Thus
enae, = bepd'e,_1a”e, € Wy_1ep,
since a’e,,_1a" has fewer than k factors.
(b) For some i, z; = e,—1 and z;4+1 = gn—1. Then
_ / r "
enden = end' en_1T, _1gn—10 €y
o )\—2 /! r—1 —1 —1 " b P t 3 12
= end'en_1%,_19,-1%,-1a ey  (by Proposition 3.12)
-2 / r—1 -1 n
=\ "“epd'en12]_[gn—1 + zen—1 — 2]z, 10" ey
=2 I r—1 -1 _n 117
=\ "“epaen_1%,_19n-1%,_,0 e, mod Wy_1e,,

using case (a) and the induction hypothesis. If a” = 1, then the final expres-
sion is equal to

A 2end en 12 Y gn-1nt; 1.
Repeating this step r times in all, we get

enaen = A_Qrena'en_lgn_lenm;ﬁl mod W,,_1e,,

-

_ y—2r—1
e A n_l.

/
€na €n_1enT

By the induction hypothesis, this is in Wy_1en. If @” # 1, then a” =
xS _1zivod"” | so we get

—y—2 / r—1 s—1 1 17
enden = N “€na €n_1T,_1Gn—1T,_1%i+2a e, mod Wy,_1e,.
If r > s, we repeat this step s times in all, obtaining finally

— y—2s ’ r—s 1 117
enaen = N Cena en_12;,_gn—1%2i4+20 e, mod W, _ie,.
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Now g¢n—12i+2 is a linear combination of e,_1, gn—1, and 1, so by the in-
duction hypothesis, the latter expression is in W,,_1e,. The cases r < s and
r = s are similar.

(c) For some i, z; = gp—1 and z;+1 = e,—1. This is essentially the same
as case (b).

(d) For all 4, z; = gpn—1. If a = gn—12],_19gn—1, then
€nen = €ngn—1T;_19n—1€n
= engn_lx;_lg;_llen mod I//I\/n_len (as in case (b))
= €ngn—19nT1 195 Gn16n
= enenflx:l_lenflen S anlenv
by case (a). Otherwise, a = gn—12]_;gn—125_19gn—1a’, and
EnaCn = engn—lxz—lgn—lxz—1gn—la/6n
= enggilxz_lgn_lel_1gn_1a’en mod Wn_len (as in case (b)).
The affine braid relation of Proposition 3.12 implies
Ty 19n-1Tn—19n—1 = Gn—1Tn—19n-1Tp_1,
or
g;_lll'z—lgnflxnfl = $n719n71$2_197ﬁ1-
Applying this, we get
€naen = enTn10n-12_10n 125 gn-10'e, mod Wy _1ey.

Now we can change the gg_ll to gn—1 while maintaining congruence mod

—~

Wy_1€n, as in case (b), so
_ r s—1 ! T Ta
€nlen = Tn—1€ngn—1Ty_19n—1T,_19n—10 €, mod Wy _1e,.
Repeating this step a total of s times, we get
_ .8 T 2 ! 17
enlen = T, _1€nGn—1%,,_19n_10 €, mod W, _1e,.

Since g2_, is a linear combination of e,_1, gn_1, and 1, the last expression
is in W,,_1e, by the induction assumption. m

For the remainder of this section, we maintain the following notation:
A; denotes the linear span of #7 for r € Z. (Thus A; = W,.) For each n > 2,
A,, denotes the linear span of e,_1, gf}l, and z;, for r € Z.

The following proposition is the analogue for the W, of Lemma 3.1 in [2].
This result is due to Haring-Oldenburg [5].

PRrROPOSITION 3.16. FEwvery element of I//I\/n s a linear combination of ele-
ments of the form axb, where a,b € Wy,_1 and x € {en—1, gf_ll}u{xfb :TrE€L}.
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Proof. We have to show that for allm > 1, Wn = Wn 14, Wn 1. Since
Wn is generated as an algebra by Wn 1 and A,, it suffices to show that
A, W _14, C W _14, Wn 1.

The assertion is evident for n = 1. We assume it holds for a particular
n > 1 and | prove t. that An+1W Apt1 C W An+1W By the mductlon as-
sumption, Wy, = W 14n Wi 1,50 Api 1 W Ans1 = Ap it W 1 AnWo 14011
=W 1A4n11An An+1Wn 1. Thus it suffices to show that

An+1AnAn+1 - WnAn—l—an-
‘We consider several cases:

() XpXn-1Xy € WnAur1Wo, where Xp, Xy € {en, 92!} and xuo1 €
{en_1,9=1,}. This follows easily from the BMW relations.

(b) enxle, € Wn 165 C W wApi1. This follows from Lemma 3.15.

(c) gtlare, € W, nen C W wAni1, and e 2l gl € enﬁ\/n C An+1Wn. The
second statement follows from the first by applying the symmetry a. Note
that

9n —lgr ren = gnt,en mod Wyey,

by the Kauffman skein relation and case (b). Moreover, the assertion for
r < —1 follows from the assertion for » > 1 by applying the symmetry 3.
For r > 1, we have

lrl
L,

1

Xy €n = A2 x, en =, n:cr en, mod Wye,
n Y

by the unwrapping relation of Proposition 3.12. Repeating this step a total
of r times gives
InT€n = A_er,;Tgnen mod Wpe,

_\—2r—1_,—r
=A z,

(d) An+1Anm%+1 C WpA,+1 W, and folAnAnH C WpA+1Wy. The
second assertion follows from the first by applying the symmetry a. Since
ZH commutes with A, it suffices to show An+1xﬁb+1 C WA, 1 W,. Since

en-

n+1:17n+1 = :L‘f;_tl e w AnHI//[\/n, we only have to check that epal,,; €

W An+1Wn, and gil ¢ 41 S W An+1W
We have
en:cfﬂ_l = )\_Qtenavgt € WA, 1 Wy,

by Proposition 3.11. It follows from this and the Kauffman skein relation
that
gn:cfwl = g;lxzﬂ mod W, A, 1 W,,.

Moreover, for t > 1,

—1 t t—1
9n Tpy1 = TpndnT nt+l = CUngn ’VH—l mod W An+1W
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Repeating this step ¢ times gives
g, txt = abgyt mod W, A1 W,

Thus for t > 1,

+1,_t 117 117
9n Tpt1 € WnAn+1Wn,

and the same statement for ¢ < —1 follows by applying the symmetry 5. m

o~

PROPOSITION 3.17. Forn > 1, e,Wye, = Wo_1ey.

Proof. We only have to prove the containment enﬁ\/nen - I//[\/n,len. This
is obvious for n = 1. For n > 2, we have

eanen = eanflAanflen = I//1771716n14n6n‘/}[\/nfl-
But e, A,e, C Wn_len by the BMW relations and Lemma 3.15. =

COROLLARY 3.18. Forn > 1, e,Wye, = W, _1e,.
LEMMA 3.19. Forn > 1, gflﬁ\/nen - I//I\/nen and mZHWnen - Wnen.
Proof. Let x be one of 27, or g!. We have

xWhen = XWn—lAan—len = Wn—lXAnean—l-

But gflAnen C Wnen by the BMW relations and case (c) in the proof of
Proposition 3.16. Likewise, 7, 1 Anen, = Apzj, 160 = A rzTe, C Wyep.
Thus xWhen, € WypeaWih—1 = Wyey,. n

ProrosiTiON 3.20. Forn > 1, Wy 16, = Wyey,.

Proof. We have Wnﬂen = WnAnHWnen - Wnen, by Proposition 3.17
and Lemma 3.19. =

COROLLARY 3.21. Forn > 1, Wyyi1e, = When,.

Note that Corollaries 3.18 and 3.21 also follow directly from Proposition
3.14 by similar reasoning.

3.5. A homomorphism from I//I\/'n to ﬁn Let R be a ring with
distinguished elements A, z, and § as above, and .S O R a ring with additional
elements g1, qo, . . ..

Let X1, G;, and E; denote the affine tangle diagrams shown in the figure
following Definition 2.5, regarded as elements of the affine Kauffman tangle
algebra ﬁn,s-

PropoSITION 3.22. The assignment x1 — X1, g; — G4, and e; — E;
determines an S-algebra homomorphism ¢ from W, s to KT, g.
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Proof. One needs to check that X7, G;, and F; satisfy the relations of the
affine BMW algebra (Definition 3.6), using regular isotopy of affine tangles
and the relations of the affine Kauffman tangle algebra. The inverses of G;
and X; in KT, s are represented by the tangle diagrams with the crossings

‘J

reversed:
/
X;t= L\ Gl= 11/
\ .

1141

The verification that these elements are in fact inverses involves applications
of Reidemeister II.

The Kauffman skein relation for G; depends on point (1) of Definition
2.6. The relation E? = §F; results from point (3) of Definition 2.6. The
relation Ey X{E) = ¢, E; results from point (2) of Definition 2.9.

The affine braid relations result from applications of Reidemeister moves
II and III. The remaining commutation relations and the tangle relation
(6a) only use planar isotopy, while (6b) also uses Reidemeister move II. The
untwisting relations (7) follow from the untwisting relation (2) for ﬁn75.

Finally, the unwrapping relation follows from the following graphical
“computation”, which we give here for the sake of illustration. The first
equality of pictures is just isotopy, the second a Reidemeister III move, the
third an untwisting move, and the last two are Reidemeister II moves.

= J J

| U
=)\"! ‘ =\"! =\"'F;. u
| N

PRroOPOSITION 3.23. The assignment g; — G; and e; — E; determines
an R-algebra homomorphism ¢ from Wy g to KT, g.

Proof. One has to verify relations, as in the previous proof. =
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REMARK 3.24.

(1) The homomorphism ¢ : W,, — KT, gives us a trace e : W, — S
defined by € =0 .

(2) The following diagram commutes (see Propositions 3.22 and 3.23
and Remarks 2.11 and 3.7):

W, —— KT,
in in
W, —— KT,
(3) The following diagrams commute:
W, — KT, W, ———KT,

Qp —~ (p —
WnJrl - KTn+1 Wn+1 - KTnJrl

(4) The following diagrams commute (see Section 2.6, Remark 3.3, and

Remark 3.7):
w, —> +KT, W,—2 +KT, W, —2 +KT,
[e% « ﬁ /3 On On
w, —> +KT, W,—>+KT, W,—> KT,

(5) One has ¢(x,) = X, for all r.

We will eventually show ¢: I//I\/n s Hﬁn, s is an isomorphism for any S.

4. THE AFFINE BRAUER ALGEBRA

4.1. The Brauer algebra. The Brauer algebra D, is an algebra of
planar (n,n)-tangle diagrams in which crossings are ignored. The precise
definition follows.

Fix points a; in I, for i > 0, as in the description of (n,n)-tangles. For
convenience write i = (a;, 1) and 2 = (a;,0).

DEFINITION 4.1. An (n,n)-Brauer diagram (also called an n-connector)
consists of a collection of n curves in the rectangle R = I x I such that
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(1) The curves connect the points {1,...,n,1,... @} in pairs.
(2) For each curve C' in the collection, the intersection of C' with 9(R)
consists of the two endpoints of C.

Consider the free Z[6*']-module D,, with basis the set of (n,n)-Brauer
diagrams. The product of two Brauer diagrams is defined to be a certain
multiple of another Brauer diagram. Namely, given two Brauer diagrams
a, b, first “stack” b over a (as for tangle diagrams). Let r denote the number
of closed curves in the interior of R in the resulting planar “tangle”, and let
¢ be the Brauer diagram obtained by removing all the closed curves. Then

ab=146"c.

DEFINITION 4.2. The Brauer algebra D,, over Z[§%'] is the free Z[6=!]-
module with basis the set of (n, n)-Brauer diagrams, with the bilinear prod-
uct determined by the multiplication of Brauer diagrams.

The Brauer algebras were introduced by R. Brauer [3] as a device for
studying the invariant theory of orthogonal and symplectic groups. The
generic structure of the Brauer algebras, and conditions for semisimplicity
of Dy, @511 k, where k is a field, were determined by H. Wenzl [20].

Note that the Brauer diagrams with only vertical strands, that is, di-
agrams in which upper points are paired only with lower points, are in
bijection with permutations of {1,...,n}, and that the multiplication of
two such diagrams coincides with the multiplication of permutations. Thus

the Brauer algebra contains the group algebra of the permutation group &,
(over Z[6F)).

4.2. The affine Brauer algebra. We will define the affine Brauer al-
gebra as a sort of “wreath product” of Z with the Brauer algebra (containing
the wreath product of Z with &,,).

DEFINITION 4.3. A colored (n,n)-Brauer diagram, or colored n-con-
nector is a Brauer diagram in which each strand is labeled by an integer.

We will define the affine Brauer algebra over the ring
Z[Jil]/\ = Z[6i17Q1aq2a o '])

where ¢y, ¢, ... are indeterminates.

Order the points {1,...,m,1,.... A} byl < --- <nm <@ < --- <1
The colors on the strands of a colored Brauer diagram should be regarded
as assigning integer values to oriented strands of the Brauer diagram. If a
strand is colored by the integer r, then the strand endowed with the positive
orientation (i.e. the orientation from a lower numbered vertex to a higher
numbered vertex) takes the value r, but the same strand endowed with the
negative orientation takes the value —r.
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Consider the free Z[§¥!]"-module D,, with basis the set of colored (n, n)-
Brauer diagrams. The product of two colored Brauer diagrams is defined to
be a certain multiple of another colored Brauer diagram, determined as

follows.

Given two colored Brauer diagrams a,b, first “stack” b over a (as for
tangle diagrams and ordinary Brauer diagrams). In the resulting “tangle”
there are three types of curves:

(1)

Vertical strands. These are concatenations of one vertical strand
from b, an even number of horizontal strands from the bottom of
b and the top of a, and finally one vertical strand from a. Travers-
ing such a composite strand in its standard orientation (from lower
numbered vertex to higher numbered vertex) sum the integer values
of the oriented strands encountered. (We repeat for emphasis: if a
strand colored by r is traversed in the negative direction, then it
contributes —r to the sum.) Color the strand by the resulting sum.

Horizontal strands. These include horizontal strands remaining from
the original diagrams, namely horizontal strands from the top of b,
and from the bottom of a. These strands retain their original color-
ing from the original diagrams. The horizontal strands also include
concatenations of a vertical strand from b or a followed by an odd
number of horizontal strands from the bottom of b and the top of a,
and finally a second vertical strand from the same diagram as the
first vertical strand. The color of the composite strand is determined
as for composite vertical strands.

Closed strands. These are concatenations of an even number of hor-
izontal strands from the bottom of b and the top of a. There is no
preferred orientation on such a strand, so pick an orientation ar-
bitrarily, and obtain a color by summing the integer values of the
oriented strands encountered in traversing the curve, as for vertical
strands. For each ¢ € {0, 1,... }, let m; be the number of closed loops
with color +i.

Let ¢ be the colored Brauer diagram obtained by removing all the closed

curves.

Then
ab = (87" g5" - -+ )c.

DEFINITION 4.4. The affine Brauer algebra D, over Z[§*']" is the free

Z[&il]/\

-module with basis the set of colored (n,n)-Brauer diagrams, with

the bilinear product determined by the multiplication of colored Brauer
diagrams.
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One can easily check that the multiplication is associative. Note that the
subalgebra generated by colored Brauer diagrams with only vertical strands
is isomorphic to the wreath product of Z with &,,.

4.3. Conditional expectation and trace for the affine Brauer
algebras. Just as for affine Kauffman tangle algebras, one has a homomor-
phism ¢ of D, into D, by attaching an additional strand on the right of
an affine Brauer diagram (colored by 0).

Moreover, one has a conditional expectation &, : ﬁn — ﬁn_l defined as
follows: First define a map cl,, from colored n-connectors to colored (n —1)-
connectors by joining the rightmost pair of vertices m,n of a colored n-
connector d by a new strand, with color 0:

cl, : —

The new strand is part of a concatenated (vertical, horizontal or closed)
strand. If the concatenated strand is vertical or horizontal, orient it posi-
tively (from lower numbered vertex to higher) and obtain its color by adding
the colors of its (oriented) components. If the concatenated strand is closed
(which happens precisely if d contains a strand connecting n and 7 with
some color r) then remove the closed loop and multiply the resulting col-
ored (n — 1)-connector by g, if 7 # 0 or 4 if 7 = 0. For example:

||\/|| l%/' llé/l
754 A _

cl, : 1 _3 — 1™ 4 — }\

BER 1 BN

—

Define ¢, : ﬁn — ﬁn_l by
en(d) = 6! cl,(d).

One can check that ¢, is a conditional expectation. Since €, o 1(x) = x,
the map ¢ is injective; therefore, we consider Dy,_1 as a subalgebra of D,,.
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Define e = ej0---0¢, : D, — 150 = Z[Jﬂ]/\. Alternatively, define the
closure cl of a colored n-connector by closing all the strands:

cl: —

Compute the color of each (closed) strand in the resulting diagram as before,
and replace each closed strand by the appropriate factor g, or §. Then
e(d) =d8""cl(d).

Using this picture for ¢, one can check that ¢ is a trace.

We can define a symmetric Z[§] -bilinear form on D, by (z,y) —
e(zy). .

Define the reflection d of a colored n-connector d by reflecting the dia-
gram vertically and changing the color of each strand to its opposite:

Note that for colored n-connectors d,d’, the closure cl(dd') has at most n
(closed) strands, and that it has n precisely when the underlying diagrams
of d and d' are reflections of one another. Moreover, each of these closed
loops has color 0 precisely when d’ = d. Consequently, we have:

LEMMA 4.5.

(1) For colored n-connectors d,d’,
e(dd') =6 "m,
where m is a monomial in é,q,,qs, ... of total degree < n. The degree
of e(dd’) in & is strictly negative unless d' = d, while e(dd) = 1.
(2) Let S be a finite set of colored m-connectors that is closed under

the reflection d — d. Consider the matriz As = (£(dd'))gaes. The
determinant of Ag is non-zero.

Proof. The first statement follows from the preceding discussion. For
the second statement, each row and column of Ag has exactly one entry
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equal to 1. All other entries have strictly negative degree in §. Therefore,
det(Ag) = +1 4 & 'p, where p is a polynomial in 61 with coefficients in
Z[q17q2, .. ] | |

4.4. A homomorphism from KT 7 to D,,.. We wish to define a
map from affine tangle diagrams to colored Brauer diagrams which basically
forgets the sense of crossings of ordinary strands, but remembers the sense
of crossings of ordinary strands with the flagpole.

Define a map ¢ (the connector map) from affine (n,n)-tangle diagrams
to D, as follows. Number and order the 2n vertices of affine (n,n)-tangle
diagrams by the same convention as for colored Brauer diagrams. For each
strand of an affine (n,n)-tangle diagram a that connects two vertices, draw
a curve connecting the corresponding vertices in ¢(a). Determine the color
r of the curve as follows: with the strand oriented from the lower numbered
vertex to the higher numbered vertex, r is the number of clockwise rotations
of the strand around the flagpole, viewed from above (1).

Let d be the resulting colored n-connector. Give each closed strand of a
an arbitrary orientation, and determine the color of the strand as above; for
each r > 1, let m, be the number of closed loops in a with color £+r. Finally,
define

c(a) = (0™°q " gy - -+ )d.
The map c respects regular isotopy (1r1 fact, ambient isotopy), so induces

a map c : Ll(n n) — D,,. One can check that ¢ is a monoid map, so we
extend it linearly to a Z[éil]/\—algebra map

26 U(n,n) — D,
This algebra map respects the relations of ﬁn ZFEA (see Remark 2.12 at
the the end of Section 2.4), so induces a map

C: I/{-Tnjz[ail}/\ — ﬁn
Finally, we have the composition
¢: KT, 7= KT, g5010 — Dy

This map ¢ is given simply by the formula ¢(}° o, T;) = > e(ozl)c(Ti), where

a; € /1 the T; are affine tangles representing elements of KT — and e is

the homomorphism of A to Z[Jﬂ]A determined by A — 1, 2 — 0, § — 4,
and g; — g;.

(*) The color r can be determined combinatorially: traversing the strand from lower
numbered vertex to higher numbered vertex, list the over-crossings (4) and under-
crossings (—) of the strand with the flagpole. Cancel any two successive +’s or —’s in
the list, so the list now consists of alternating +’s and —’s. Then r is +(1/2) the length
of the list, + if the list begins with a +, and — if the list begins with a —.
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PROPOSITION 4.6. The following diagrams commute:

— c ~ — c ~
KT, ; D, KT - D,
En En & £

KT = ~—~+D,, A—"476"

Proof. Left to the reader.
The following proposition is adapted from [9] and [10].

PROPOSITION 4.7. For each colored n-connector d, let Ty be an affine
(n,n)-tangle diagram with ¢(Ty) = d. Then the set {T; : d a colored n-
connector} is linearly independent over A.

Proof. Let S be a finite set of colored n-connectors which is closed under
reflection d +— d. Consider the matrices By = (¢(TyTy))daes and Ag =
(e(dd'))g,aes- One has

e(det(Bg)) = det(e o e(TyTy)) = det(e o c(TyTy)) = det(e(dd’)) = det(Ag).

By Lemma 4.5, det(Ag) # 0, so det(Bg) # 0. Since Ais an integral domain,
Bg is invertible over the field of fractions of A. It follows that {T}; : d € S}
is linearly independent over A

Since S is arbitrary, it follows that {T,; : d a colored n-connector} is
linearly independent over A u

COROLLARY 4.8. For each ordinary n-connector d, let T,; be an ordinary
(n,n)-tangle diagram with c¢(Ty) = d. Then the set {Ty : d an n-connector}
18 linearly independent over A.

Proof. Use the injection ¢, : KT,, y — ﬁn 7 of Remark 2.11. m

5. ISOMORPHISM OF
ORDINARY BMW AND KAUFFMAN TANGLE ALGEBRAS

This section is devoted to exhibiting an R-basis of KT, g and to proving
that ¢ : W, g — KT, g is an isomorphism. The results and arguments of
this section are taken from [10].

All the tangle diagrams in this section will be ordinary (n,n)-tangle
diagrams for some n.

5.1. Totally descending tangles and freeness of KT,

LEMMA 5.1. KT, g is spanned by tangle diagrams without closed strands.
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Proof. The proof is by induction on the number of crossings.

If a tangle diagram T has no crossings, then, by Definition 2.6(3), T' =
S*T', where k is the number of closed loops of T'and T is the tangle diagram
obtained by removing all the closed loops of T'.

Let T be a tangle diagram with [ > 1 crossings. Assume that any tangle
diagram with fewer than [ crossings is in the span of tangle diagrams without
closed strands.

By the Kauffman tangle relation, if S is a tangle diagram which differs
from T only by reversing one or more crossings, then 7" and S are congruent
modulo the span of tangle diagrams with fewer crossings. Hence 7" and S
are congruent modulo the span of tangle diagrams without closed strands,
by the induction hypothesis.

Suppose T has a closed strand s. By changing crossings, one can sup-
pose that s has only over-crossings with other strands of T" and that s is
unknotted. Then T is ambient isotopic to a tangle diagram in which the
closed strand corresponding to s has no crossings with other strands and no
self-crossings. If 7" is the tangle diagram with s removed, then T' = SA\*T’
for some k, by Definition 2.6(2, 3). m

DEFINITION 5.2. An orientation of an affine or ordinary (n,n)-tangle
diagram is a linear ordering of the strands, a choice of an orientation of each
strand, and a choice of an initial point on each closed loop.

Order the boundary points {1,...,n,1,...,n} of (n,n)-tangle diagrams
by
1<2<---<n<m<---<2<1,

as in the discussion of colored n-connectors.

DEFINITION 5.3. A standard orientation of an ordinary or affine (n,n)-
tangle diagram is one in which

(1) each non-closed strand is oriented from its lower numbered endpoint
to its higher numbered endpoint,

(2) the non-closed strands are ordered according to the order of their
initial endpoints,

(3) the closed loops follow the non-closed strands in the ordering of the
strands.

If a tangle diagram has no closed loops, then it has a unique standard
orientation.

An orientation determines a way of traversing the tangle diagram;
namely, the strands are traversed successively, in the given order and ori-
entation (the closed loops being traversed starting at the assigned initial
point).
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DEFINITION 5.4. An oriented ordinary (n,n)-tangle diagram is totally
descending with respect to its orientation if, as the tangle diagram is tra-
versed, each crossing is encountered first as an over-crossing.

PROPOSITION 5.5. KT, g is spanned by ordinary (n,n)-tangle diagrams
without closed loops that are totally descending with respect to the standard
orientation.

Proof. We already know that KT, g is spanned by (n,n)-tangle dia-
grams without closed loops.

If a tangle diagram has no crossings, it is already totally descending.
Let T be a tangle diagram with [ > 1 crossings. Assume that any tangle
diagram with fewer than [ crossings is in the span of totally descending tangle
diagrams. The totally descending tangle diagram S which differs from 7" only
by reversing some number of crossings is congruent to 7' modulo the span
of tangle diagrams with fewer crossings, hence modulo the span of totally
descending tangle diagrams. =

COROLLARY 5.6. KT, r is spanned by the set of (n,n)-tangle diagrams
T without closed loops that are totally descending with respect to the standard
orientation, and such that no strand of T has self-crossings.

Proof. If T is a totally descending (n,n)-tangle diagram, then T is lay-
ered; that is, T' can be drawn with different strands in different levels above
the plane of R = Rx I. The individual strands are unknotted, so they can be
changed by level-preserving ambient isotopy to arcs without self-crossings.
Thus T = A\*T”, where T is a totally descending tangle whose strands have
no self-crossings. =

PROPOSITION 5.7. Suppose S and T are two (n,n)-tangle diagrams with-
out closed loops such that

(1) S and T have the same connector,

(2) S and T are both totally descending (with respect to the same orien-
tation),

(3) the strands of S and T have no self-crossings.

Then S and T are reqularly isotopic, so they represent the same element of
KT, gr.

Proof. Since S and T have the same connector and are both totally
descending with respect to the same ordering of the strands, they can be
layered, with the strands connecting corresponding endpoints in the two
diagrams lying at the same level above the plane of R. Each strand of S
can then be deformed by a level-preserving isotopy to coincide with the
corresponding strand of T'; this deformation corresponds to regular isotopy
of the diagrams. m
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For each n-connector d, let T;; be an (n, n)-tangle diagram without closed
loops such that

(1) e(Ta) = d,

(2) Ty is totally descending with respect to the standard orientation,

(3) the strands of Ty have no self-crossings.
By Proposition 5.7, Ty is unique up to regular isotopy. The tangle diagrams
Ty (or rather the regular isotopy classes which they represent) can be re-
garded as elements of KT, g for any R. For any R,

By = {T}; : d is an n-connector}
spans KT, g, by Corollary 5.6. By Corollary 4.8, By is linearly independent
in KT, 1. Thus we have:
THEOREM 5.8. KT, 4 is free over A with basis By.

COROLLARY 5.9. For each R, KT, g is free over R with basis By. More-
over, KT, g = KT, 1 ®4 R.

Proof. KT,, 1 ® R is free over R with basis By ® 1. On the other hand,
By spans KT, g by Corollary 5.6. There is an R-algebra homomorphism

from KT, g to KT,, 1 ®1 R which sends a tangle T to T'® 1. Since this map
takes a spanning set to a basis, it is an isomorphism. =

COROLLARY 5.10. Let R be a ring with distinguished elements A, z and 6,
and let S O R be a ring containing R. Then KT, g imbeds in KT, g.

COROLLARY 5.11. Let R be a ring with distinguished elements A, z,
and §, and S O R a ring with additional elements q1,qs,.... The R-algebra
homomorphism in : KT, g — KT, s of Remark 2.11 is injective.

Proof. This follows from the previous corollary and point (1) of Remark
211. =

5.2. Positive permutation braids

DEFINITION 5.12. An n-braid diagram is an (n,n)-tangle diagram all of
whose strands are monotone. That is, each strand decreases monotonically
from a top vertex to a bottom vertex.

DEFINITION 5.13. The (geometric) braid group B, is the group of n-
braid diagrams modulo ambient isotopy.

The group By, has the well known presentation (due to Artin) with gen-
erators o1, ...,0,_1 and relations

(1) 0i0i410i = 0i410i0i41,
(2) 0i0; = 04504 if |Z —]| > 2.
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The generator o; is the n-braid diagram with a single positive crossing be-
tween the ith and (¢ + 1)st strand,

I

7 1+ 1

Since the generators g; of the ordinary BMW algebra satisfy the braid re-
lations, 9 : 0; +— g¢; determines a group homomorphism from B,, into the
group of invertible elements of W,,. Denote by perm the homomorphism
from B,, to the symmetric group &,: perm(3)(i) = j if the braid diagram
connects the top vertex i with the bottom vertex j. In particular perm(o;)
is the adjacent transposition s; = (4,7 + 1). Note that perm = c o ¢ o 9,
where we identify permutations with their diagrams in the Brauer algebra,

perm : 0; — g; — G — c(G;) = s;.

PROPOSITION 5.14. The following are equivalent for an element B8 of the
braid group:

(1) Two strands of B cross at most once, and all crossings are positive
(that is, B is in the monoid generated by the o).
(2) [ is the product of r generators o;, where r is the length of perm([3).

Moreover, if B satisfies these conditions, and s;, ---S;, s any reduced ex-
pression for perm(3), then = o, -0y, .

Proof. Suppose that 8 = oy, ---0;,, but that two strands of [ cross
twice. Then perm(3) = s;, ---s;; has a subword s,mps, with the property
that mo(b) = a and mo(b+ 1) = a+ 1. But then mys, = 470, SO Sam0Sp = 70,
and the length of perm(f) is less than 7. This proves (2)=-(1).

Now suppose that 3 satisfies (1). Let perm(3) = s;,. - - - s, be a reduced
expression for perm(f) and set ' = o;.---0;. Then § and (' are two
braid diagrams both satisfying condition (1) with perm(3) = perm(3).
But a braid diagram satisfying condition (1) is totally descending (with
respect to the orientation in which the strands are oriented from top to
bottom and ordered in the reversed order of their top vertices). Therefore,
by Proposition 5.7, such a braid diagram [ is determined up to ambient
isotopy by its connector, that is, by perm(53). m

DEFINITION 5.15. A braid diagram satisfying the conditions of the pre-
vious proposition is called a positive permutation braid.

For each m € G,,, there is a unique positive permutation braid 3, € B,
with perm(8;) = 7. We write g, for the image of 8; in W,, and G, for
the image of 3, in KT,,. We also call these elements (which are determined
by m) positive permutation braids. Note that g,-1 = a(gx).
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For m € &, and 1 <4 < n, we have {(7s;) =l(m)+1 < 7(i) < m(i+1).
In this case, grs, = g=gi. Otherwise, (7s;) = €(m) — 1, w(i) > w(i + 1), and
Grs; = grg; |- Likewise, £(s;m) = £(r) + 1 < 771(i) < 77'(i + 1). In this
case, gs,» = gigr. Otherwise, {(ms;) = £(7) — 1, 771(i) > 7= 1(i + 1), and
Gsim = gi_lgw-

DEFINITION 5.16. An (a,b)-shuffle is an element m € &,y such that
i) <7m(j)ifl<i<j<aora+1<i<j<a+hb.

LEMMA 5.17. If 1 € G4y then m = mymy where w1 is an (a,b)-shuffle,
Ty € Gu X 6y C Syup, and () = £(m1) + £(me). It follows that gr = Gry Grs -

Proof. The proof is by induction on the length of 7. The result is evident
if 7 is the identity permutation. If 7 is not already an (a,b)-shuffle, then
there exists an ¢ with i # a such that 7 (i) > m(i+1). Consequently, 7 = 7’s;
with £(w) = ¢(7")+1. The result follows by applying the induction hypothesis
to . m

LEMMA 5.18. Let1 < i < n—1 and suppose 1 € &,, satisfies 71 (i+1) =
771(i) + 1. Then gigr = gngr—1(;) and €igrx = grlr-13;)-

Proof. Put j = n~1(i). We have s;m = s, and {(s;w) = ¢(m) + 1. Hence

9n95 = Gns; = Ys;m = Gigr-
The second equality is proved by induction on the length of 7. If £(7) = 0,
the assertion is trivial. Suppose that £(7) > 1. Choose k such that m = sg7,
and £(m) = £(m1) + 1. To prove the induction step, we consider three cases:

(1) k=14+1.Inthiscase 7 1(i+2) < 7 1(i+1) =7 (i) + 1. It follows
that 7=1(i + 2) < 771(7), and ® = s;, 18,7, with £(7) = £(7') + 2.
Therefore gr = gi119i9x and eigr = €igit19i9y = Yit+19i€it19x -
Since 7 ' (i+2) =j+1=7""(i+1) + 1, we have e, 19, = gr€;,
by the induction hypothesis.

(2) k=14 — 1. This case is similar.

(3) |k—i| > 2. Then e;gr = €igrgm; = Gr€igm,- Now m 1(i+1) = j+1 =
717 1(i) + 1, so by the induction hypothesis, €;gr, = gr,€;j. m

5.3. Surjectivity of ¢ : W,, — KT,,. We will prove that KT, i is gen-
erated as a unital algebra by {E;, G?El : 1 <i<n—1}, which is equivalent
to the surjectivity of ¢ : W, p — KT}, .

The tensor product 77 @ T» of a (k, k)-tangle diagram and an (I, [)-tangle
diagram is the (k + [,k + [)-tangle diagram obtained by placing 77 and T,
side by side.

The tensor product of tangle diagrams clearly extends to a bilinear prod-
uct KT, g xKT; rp — KTy g. If 71 and T5 are both in the unital subalgebra
generated by the E;’s and G;’s, then so is T1 ® T5.
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LEMMA 5.19. Any element of KT, r which is represented by an n-braid
diagram is in the group generated by {GF':1 <i<n—1}.

Proof. Induction on the number of crossings. =

THEOREM 5.20. ¢ : W, g — KT, g 1s surjective.

Proof. For n = 0 and n = 1, KT, g = R by Corollary 5.9, and the
statement is trivially valid.

Fix n > 2. We have to show that KT,, g is generated as a unital algebra
by {E;,G' : 1 < i < n —1}. By Theorem 5.8, it suffices to show that
each totally descending (n,n)-tangle diagram 7" whose strands have no self-
crossings is in the unital subalgebra generated by the E;’s and G;’s.

If the connector ¢(T') is a permutation diagram (i.e. top vertices are
connected only to bottom vertices), then T is regularly isotopic to an n-braid
diagram, and thus T is in the monoid generated by {G’Z:-tl 1<i<n-—1}.

Otherwise, for some k > 1, the connector of T has k horizontal strands
connecting pairs of vertices at the top and k& horizontal strands connecting
vertices at the bottom. In this case there exist n-braid diagrams B; and Bs
and an (n — 2k)-braid diagram B such that

T = Bi[(ErE3 -+ Egp—1) ® B|Bo.

Since each of By, By, and B are in the group generated by the {Glil}, it
follows that 7' is in the monoid generated by {E;, GF'}. u

5.4. The elements f;, and a filtration of W,,. Fix a ring R and write
Wy, for W, r and KT, for KT,, r.

Consider the element Fj, € KT, represented by the tangle diagram with
no crossings, in which the points 2 and 2k +1 — 4 at the top of the diagram
are connected, and likewise the points ¢ and 2k + 1 — 4 at the bottom of the
diagram are connected. For example

NS4

Fy =

The element F}, is evidently fixed by the symmetries a, 3, and g9p of KTo.
The following proposition is from [10] and is easily verified by picture
proofs.

PROPOSITION 5.21.

(1) For all i < k, Gzile = Gil_iFk and Fszil = FkG2ik1—z"
(2) For alli < k, EiFk = Egk_iFk and FkEi = FkEQk_Z'.

(3) Fi, = (G1G2 - - Gak—1)Fr—1E2%-1(Gop—1 - - - G2G1).
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Following [10], we recursively define elements fi of Wy such that ¢(f)
= F},, as follows:

DEFINITION 5.22. Define f; = e; and

fe = (9192 - gok—2) fr—1€2k—1(g2k—2 - - g291)
for k > 2.
We want to find an expression for f; that does not involve the g;’s
(since the corresponding tangle diagrams have no crossings), and that makes

manifest the symmetries o(fx) = B(fx) = 02k (fx) = frx (which the definition
does not).

LEMMA 5.23.
(9192 gor)(ereg - - -ear—1) = (ezeq---egi)(e1€3 - €2k-1),
(ere3---ear—1)(g2k -~ g291) = (e1e3 - - e25—1)(€2€4 - - - €2%).

Proof. The second equation follows from the first by applying the anti-
automorphism «. To prove the first equation, rewrite the left hand side as

(g192e1)(9394€3) - - - (92r—192k€2k—1),
which equals
(e2e1)(eses) - - - (eanear—1),

by use of (5b) of Definition 3.6. Finally, the even terms can be shuffled to
the left. m

PROPOSITION 5.24. For k > 1,
Jr = (ex)(ex—1€p+1) - (e1e3---€ap—1) - (€p—1€r+1)(€k).
For example,

f1 = es(eses)(eaese)(e1eseser)(e2eqes)(eses)eq.

Proof. The proof goes by induction on k, the assertion being evident for
k = 1. Consider k > 2. We have

fe = (9192~ gok—2) fe—1€2k—1(g2k—2 - g291)
= (9192~ gar—2)[er—1(ex—2er) -~ (e1e3- - - eap_3) -+ (er—2ex)er_1)]
~eak—1(92k—2" " 9201)
by the induction hypothesis. Move esr_1 to the left to get
fe = (9192 - - gor—2)[en—1(exp—2ex) -~ (e1€3- - - €ap_3€2k 1) - - - (€x—2er)ep—1)]

: (92k;—2 e '9291)-
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Now move all of the e;’s, except those in the product (ejes---egx_1), to the
left or right past a string of g;’s, making use of Lemma 3.9; this yields
fr = ex(ex—1er41) - - - (e3e5- - - eap—3)(9192 - - - gor—2)(e1€3 - - - €ar_3€21—1)
(g2r—2---9291)(ese5 - - - €ap—3) - - - (€h—_1€k41)Ck-
Both strings of g¢;’s in the middle of the expression can be replaced by
egey4 - - - €gk_9, by the previous lemma, and this gives the desired expression. =

REMARK 5.25. The elements in each group (indicated by parentheses)
commute. It can be helpful to view the entire expression as a diamond-
shaped grid, for example

€1
€2 €2
fs=e€3 es3 €3
€4 €4
es

This is read from left to right by columns, with the elements in each column
commuting. This expression for f; makes evident the invariance of f; under
the maps 0ok, 0, and § of Woy.

Analogous elements in the Temperley—Lieb algebras were introduced in
subfactor theory by M. Pimsner and S. Popa [16] to study iterations of the
Jones basic construction; see also [7]. The diamond grid representation of
these elements is due to A. Ocneanu (personal communication).

Note that one can also read the diamond grid by diagonals, so we have

Jr = (€k€k+1 te €2k—1)(€k—1€k s €2k—2) T (6162 . 'ek)-
Moreover, f; satisfies
fr = (exer+1- - eap—2) fr—1€2k—1(€26—2 - - €+1€k)-

The following proposition from [10] establishes the analogue of Propo-
sition 5.21 for the elements f;. In points (3) and (4), S denotes the shift
homomorphism (see Remark 3.3).

PROPOSITION 5.26.

(1) Fori<k, g fr. = g5 ifx and frg:™ = fugzi .-

(2) Fori <k, e;fi = ean—ifr and fre; = frean—_i.

(3) For 2 < i < k+1, g7'S(fi) = aiia_iS(fx) and S(fu)gi" =
S(fk)gzilieri-

(4) For 2§’i<k—|—1, eiS(fk):engrg,iS(fk) and S(fk)eiZS(fk)€2k+2,i.

Proof. The second part of each assertion follows from the first part by
applying the anti-automorphism .
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Note that ¢ and 2k — ¢ have the same parity, so g; and gor_; commute.
Therefore, multiplying the equality

(5.1) 9ifx = 92k—i Sk
by g, ! g;klii gives
(5.2) 97 e = 9o ife-

Thus, for statement (1), it suffices to prove equation (5.1).

We prove statement (1) by induction on k (following the proof in [10]).
For k = 2, the only instance to check is ¢ = 1. Using Lemma 3.9(3), we get
g1f2 = g1(g192€1€3)9291 = g1(g3g2e3e1)g291 = g3(g192e1€39291) = g3 fi-

Consider k£ > 2. If 2 < i < k, then, using Lemma 3.9, we have

gifr = 9i(9192 - gar—2) fe—1€26—1(g2k—2 " - 9291)
= (9192 - 92k—2)Gi—1fr—1€2k—1(g2k—2 - - - 9291)
= (9192 - g2k—2)92k—i—1fk—1€2k—1(g2k—2 - - 9291),
which by the induction hypothesis equals

92k—z‘(9192 - '92k—2)fk—1€2k—1(92k—2 e '9291) = G2k—ifk-
The last case to check is £k > 2 and ¢ = 1. We have

g1fe = 91(g192 - - - Gok—2) fr—1€2k—1(g2k—2 - - - g291)
= g91(9192 - gox—2)((9192 * - - Gor—a) fr—2€2k—3(92k—4 " - - 9291))

- eap-1(92k—2" - g291)

= 91(9293 - - g2k —3)(9192 - - 92r—2) fr—2€2k—3(g2k—a " - - G291)

- ear—1(g92k—2" " 9291),
by repeated use of Lemma 3.9(4). Moving eg;_3 and egx_1 to the left and
applying Lemma 3.9(3), we get

91(9293 - - 92k—3)(9192 * - - Gor—4(g2r—392k—2€2k—3€2k—1))
“fr—2(g2k—a- - 9291)(g2k—2 " - 9291)
= 91(9293 " - - gok—3)(9192 - - - 92— a(92k— 192k —2€2k—3€2%—1))
fre—2(gor—a- - 9291)(g2r—2 " 9291)-
Now gor_1 and gop_o can be moved to the left and egr_1 and egp_3 to the
right to yield
92k-191(9293  * - Gok—392k—2) (9192 - - - 92k—a) fr—2(e2k—3€2k 1)
(926—4" - 9291)(g2k—2 - - - 9291)
= gok—1Jk-
This completes the proof of (1).
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Statement (2) is also proved by induction on k. For k =2 and i = 1, we
have

e1fo = ejeaerezes = ejezes,

and similarly eg fo = ejeges.
For 2 < i < k, exactly the same induction step can be used as in the
proof of statement (1). The only remaining case to check is £ > 2 and i = 1.
We claim that e fi is the word wy in the e;’s obtained by deleting the
two columns to the left of the middle column in the diamond expression

for fj. For example,

€1 el
€2 €2 €9
€3 €3 €3 es es
e1fi=e1 | €4 €4 €4 €4 = e €4 €4
€5 €5 €5 es es
€6 €6 €6
L er ] | e7 |

This claim can be proved by induction on k. Moreover, both f; and wj are
invariant under the automorphism g9 of Wo. Applying this automorphism
to the equation e; fr, = wy gives

eok—1fk = Wk = €1 fk.
This completes the proof of (2).

Statements (3) and (4) follow from (1) and (2) by applying the shift
homomorphism .S, for example

eiS(fr) = Slei—1fr) = S(eant1-ifi) = eanr2-iS(fi). =

REMARK 5.27. One can give a similar explicit expression for e; fi for all
1 < k. One obtains ep_1 fr by deleting the leftmost e; from the diamond
expression for f;,. Moreover, if i < k — 1, then e; fj is the word in the e;’s
obtained by deleting the two columns just to the left of the first column
beginning with e; in the diamond expression for fi. For example,

_ e1 -
€9 €9
€3 €3
eafy = | €4 €4 €4
€5 €5
€6 €6
L er J
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The proof of statement (2) in the previous proposition can be based entirely
on this observation.

PROPOSITION 5.28.

(1) For all k, Waor fr, = Wi fr, and frWar = fiWi.

(2) For all k, W2k+1S(fk) = Wk+1S(fk) and S(fk)W2k+1 = S(fk)Wk_H

Proof. The second part of each statement follows from the first part by
applying the symmetry a.

To prove (1), it suffices to show that Wy fi is a left ideal in Wy, For
this, it is enough to show that e;Wj fi € Wi fr and gZ?Hkak C Wy fi for
k<1 <2k—1.For k <1i<2k—1, this follows from Proposition 5.26, since
e; and gl?IEI commute with Wy. Finally, by Proposition 5.24, we can write
fr = ey for some 7y, € Woi. Hence for x € {ek,gfl},

XWifie = xWiegry, € Wipiegry = Wiegry = Wi f,
using Corollary 3.21. The proof of part (2) is similar. =

DEFINITION 5.29. Let n > 2k and put » = n — 2k. Define qur) to be
the ideal in W,, generated by ejes---eop_1.

Evidently, one has
WO cw®c...cw™=w, ifnis even,
whcw® c...cw® =w, ifnisodd.
Morton and Wassermann show that cp(WT(Lr)) is the ideal K Ty(f) in KT,
spanned by tangle diagrams of rank no more than r, that is, tangle diagrams

of the form ST, where T is an (n, r)-tangle diagram and S is an (r, n)-tangle
diagram. We will not need this observation, but it provides the motivation

for the definition of WT(LT).
LEMMA 5.30. Let n > 2k and put r =n — 2k.

(1) WT(LT) is the ideal in W, generated by fi.

(2) If n > 2k then W) is the ideal in W, generated by S(fr)-

Proof. 1t follows from the definition of fj, and induction on k, that
fr = aleiez - - egp—1)b where a and b are in the monoid generated by {g;},

and in particular are invertible. Likewise, if n > 2k, then S(fx) = Ad(a)(fx)
where a is invertible. u

COROLLARY 5.31.

(1) W = Wi i, W

(2) Wz(ill = Wi 1S(fi) W1

Proof. Immediate from Proposition 5.28 and Lemma 5.30. =
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5.5. Injectivity of ¢ : W,, — KT,,. Fix a ring R and write W,, for
Wiy, r and KT, for KT,, r. This section contains Morton and Wassermann’s
proof of the injectivity of ¢ : W,, — KT,,. The strategy is to show that ¢ is
injective on WT(LT) for all n and r, by double induction.

PROPOSITION 5.32. Suppose p|w,,_, is injective for some n. Then g0|W(o)

is injective if n is even, and 90|W(1> is injective if n is odd.
n

Proof. Consider the case that n = 2k. By Corollary 5.31, Wéo) =
Wi fxWg. By Theorem 5.8, KTy has a basis {T. : ¢ a k-connector} con-
sisting of totally descending tangle diagrams with distinct connectors. Since
by hypothesis, ¢ : W, — KT}, is an isomorphism, it follows that {p=(T,) :
¢ a k-connector} is a basis of Wj. Therefore WY(LO) is spanned by the set

{o YT fro N (Ty) : ¢, d k-connectors}.

The image of this spanning set under ¢ is {T.F;Ty : ¢,d k-connectors}.
This set of (n,n)-tangle diagrams has distinct connectors, and therefore is
linearly independent by Corollary 4.8. It follows that ¢ is injective on quo)‘
The proof for the case n = 2k + 1 is similar. =

" i Wi,

DEFINITION 5.33. Let n > 2k and put r = n — 2k. Then VTST) is the

span of {g-[w ® g-]a(gs,)}, where w € WQ(,S), 7w and o are (2k,r)-shuffles,
T is an r-permutation, and ¢, g,, and g, are the corresponding positive
permutation braids.

Next we introduce a linear complement of qu

LEMMA 5.34. Assume that @|w, , is injective for a particular n.

(1) ¢l is injective for v > 0.

@) Vi i = (0).

Proof. By assumption, <p|W2(2) is injective, and moreover, WQ(IS) has a ba-

sis consisting of elements = (T..) fre ™' (Ty), where T, and T vary indepen-

dently over a set of totally descending (k, k)-tangle diagrams with distinct

connectors. Thus Vrfr) has a spanning set

{9x [8071 (TC)ka"il (Ta) ® grle(go) }-
The image of this set,
{GRTLF Ty @ Grla(Gy)}s
is a family of tangle diagrams with distinct connectors w[cFd®7]c !, and is
therefore linearly independent by Corollary 4.8. This proves statement (1).

For (2), gp(qur_m) is spanned by totally descending tangle diagrams
with no more than r — 2 through strands (i.e. strands connecting top to
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bottom), while @(VTET)) is spanned by totally descending tangle diagrams
with exactly r through strands. By Corollary 4.8, QD(VTET)) ﬂgo(Wff_Q)) = (0),
so also Vnr) N W}f‘” =(0). m

COROLLARY 5.35. If ¢ is injective on Wy,_1 and also on Wy(f_z), then

© 1s injective on WT(LT_Q) @ Vn(r).

The remainder of the proof consists of showing that WT(LT_Q) &) Vé’”) =

,ST). Since ejez---egp_1 € VTST), it suffices to show that WT(LT_2) @ VTET)
is an ideal in W,. Because of the invariance of WT(LT_Q) @ VTST) under the
anti-automorphism «, it is enough to show that qur_m @ Vnr) is a left ideal.
It suffices to show that XV,gT) C qur—2) & Vnr) for x a generator of W,

because WT(LPQ) is already an ideal. Moreover, since gl._l = g; — ze; + z, it
suffices to show this for x € {e;,¢;: 1 <i <n—1}.
Note that Vn(n) is the span of {g, : 7 € &,,} and Wén_m = W,e1W,, so

a particular case of our assertion is that Vnn) ® WpeaW,, = W,.

LEMMA 5.36. Let n > 2k and r = n — 2k.

1) Vi @ Wher Wy, = W

@) Wi ow, c W + W o v c w4y,

(3) gﬂ(WQ(Z)Q@Wr)gU C WT(LT_2)+Vn(T) for any positive permutation braids

gﬂ'? gO"

Proof. For (1), we have to show that xg, € Vn(n) + WheiW, for x €
{ei,g9i : 1 < i < n—1}. We have e;g, € Wype;W,, = W,e1 W, for all i. If
l(s;m) = L(m) + 1, then ¢g;gr = gs;x € Vn(n); on the other hand, if ¢(s;m;) =
¢(m) — 1, then gr = ¢igs,, and

9igr = (97)9six = Gsir — 29n + 2A " eigsin € VI + Wiea W,

Applying (1) to W,., we get W, = W,e1 W, + V,«(r), SO

Wi @ Wy = W) @ Weea W, + Wiy @ VO c W= + v
This shows (2).

Using Lemma 5.17, the positive permutation braid g, can be written
as gr,wi, where 7 is a (2k,r)-shuffle and w; € Wy, @ W,.. Applying the
same result to a(g,), we get g, = waa(ge, ), where o7 is a (2k, r)-shuffle and
wo € Wor ® W,.. Thus

0 0
QW(WQ(k) ® Wr)ga - gm(Wz(k) ® Wr)a(gal)-

By statement (2), this lies in
W™ 4 gr, (W) © V)alge) €W + V7.
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Lemma 5.37. e,V € WD 1 v and Vi € WP L v for
1< <n—1.

Proof. Consider z = g-[w ® g-|a(gs), where m and o are (2k, r)-shuffles,
w E Wg(g), and 7 € G,.. We have to show that e;x and g;x lie in W,Y‘Q) —i—Vn(T)
foralll1 <i<n-—1.

Suppose that 7=1(i) > 771(i + 1). Then g, = gigr,, where m (i) <
wfl(i + 1), and 7 is also a (2k,7)-shuffle. Thus e;gr = €;gigr, = A\~ €ign, -
Likewise, g;gr = (gi)ng = Gr, — 29r + z)\_le,-gm. We are therefore reduced
to considering the case that 7=1(i) < 7= 1(i + 1).

If 771(i) < 771(i + 1), then

gix = gsiﬂ'[w & gT]a(ga) c WnT_Q) + Vrgr)v

by Lemma 5.36.

It remains to consider e;z when 771(i) < 7= (i + 1).

If 7= +1) <2k or 771(i) > 2k + 1, then 7~ 1(i + 1) = 7 1(i) + 1. By
Lemmas 5.18 and 5.36,

et = gren—1([w @ grlalgs) € gx[Way ® Wrlalgs) € W™ + V(0.

The remaining case to consider is 771(i) < 2k and 7= 1(i + 1) > 2k + 1.
Define a permutation ¢ by

j if j <7 (i),
j+1 if 771(i) < j < 2k,
, 771(4) if j =2k,
=Y 1) i) =2k 41,
j—1 if2k+1<j<ml(i+1),
J if j>7 716 +1).

Since ¢ € Gy, X &, (o) = £(m) + £(0) and gr, = grg,- The permutation
7o has the following properties: mo(2k) = i; mp(2k+1) =i+ 1;if 1 <a <
b<2k—1lor2k+2<a<b<n,then mp(a) < mo(b). We have
€igr = €iGrGod, = €iGnoly " = roC2kd, -
Therefore
;T € gﬂ'Qe2k’(W2(2) & Wr)a(go)'

We concentrate on egk(WQ(]g) ® W,).

LEMMA 5.38. Suppose @ is injective on Wég). Then Wég)

elements of the form

18 spanned by

ImGm+1 - §2k—2€2k—1W,

where 1 < m < 2k — 2 andwEWQ(lg).
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Proof. By assumption, ¢ is an isomorphism from WQ(,? to the ideal KT. 2(,2)

of KTy spanned by tangle diagrams of rank 0. Now, KT 2(2) is spanned by

totally descending tangle diagrams, and we can choose the order of the
strands so that the strand incident with the vertex 2k lies above all other
strands. Such a totally descending tangle diagram is isotopic to a tangle

diagram of the following form:
| |

U

il

m 2k

Such a tangle diagram has the factorization T' = G, - - - Gog_oFop_1T". =

LEMMA 5.39. gro€2k9mGm—+1 - - 92k—2€2k—1 = Gn'€2k—1 for some positive
permutation braid g, .

Proof. First, egr can be moved to the right of gmgm+1---9gor—o and
eoreok_1 can be written as gop_1gor€or_1 Or as g;kl_lggklegk_l. Therefore

Irno€2kImGm+1 * * " 92k—2€2k—1 = gwg(gmgm—i-l “ - gok—2)(g2r—192k ) €281

-1 -1
= gro(GmIm+1 - '921{72)(9%—19% )eak—1-

Since mo(a) < mo(b) if 1 < a < b < 2k — 1, groGmGm+1- - gok—2 is the
positive permutation braid corresponding to the permutation wgs,, - - - s9x_9.

Moreover,

TOSm - - - Sok—2(2k — 1) = mwo(m),
WQSm...SQk_Q( k) = mo(2k) =1,
TOSm - - Sok—2(2k +1) =mp(2k + 1) =i + 1.
(

It follows that if ﬂg(m) < i, then gro(gmgm+1 - - 92k—2)(g2k—192k) is a posi-
tive permutation braid, while if mo(m) > i + 1, then gro(gmgm+1- - g2r—2) -

(9271371 g;kl) is a positive permutation braid. In either case, the desired con-
clusion follows. m

End of the proof of Lemma 5.37. We have to show that
groear (W) @ Wy)alge) € W2 + V(7).
By Lemma 5.38, it is enough to show
Gro€2k(gm - '921@72)621@71(W2(;2) @ W,)a(gs) C W2 4 v,
But by Lemmas 5.39 and 5.36,
Gro2k(Gm - '92k72)62k71(W2(2) ® Wr)a(gs)
= gﬂ/egk_l(Wég) &® W,n)a(ga) g qur—2) + Vn(r) [ ]
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PROPOSITION 5.40. If ¢ is injective on Wy,_1 then
Vn(T) @ W'r(LT_Q) — Wér)

Proof. We have shown that Vn(r)@WT(LT_Q) is an ideal containing e;- - - egp_1.
Therefore Vn(r) &) Wr(f_Q) = ,ST). n

THEOREM 5.41. For all n, ¢ : W,, — KT,, is an isomorphism.

Proof. Surjectivity was shown in Theorem 5.20. Injectivity is evident for
n = 0,1. We show ¢ is injective on all ideals qur) by double induction on n
and r. By Proposition 5.32, if ¢ is injective on Wy, _1, then ¢ is injective on
A (if n is even) or on Wil (if n is odd). By Corollary 5.35 and Proposition
5.40, if ¢ is injective on W, _; and on W,E’”‘z), then ¢ is injective on qur). "

COROLLARY 5.42. For all R and n, W, gr is a free R-module with basis
{o~X(T.) : ¢ is an n-connector}.

COROLLARY 5.43. For all R and n, W,, p = W,, 4 ® R.

Proof. Wy, r = KTy, gr and Wy, 4 = KT, 4. But KT, g = KT,, 1 ®4 R,
by Corollary 5.9. m

COROLLARY 5.44. If R is a ring with distinguished elements A, z and 9,
and S O R is a ring containing R, then Wy g imbeds in Wy, g.

COROLLARY 5.45. If S is a ring with distinguished elements A, z, §, and
qr (r > 1), then iy : Wy, g — Wy, s is injective.

Proof. Consider the commuting diagram

—

sp —
Wi, —— KTy s

7
Wn,S - KTn,S

Since ¢ : W, s — KT, ¢ is an isomorphism, i/, = ¢ 04, o L. But i, is
injective by Remark 2.11, and therefore ¢, is injective as well. u

COROLLARY 5.46. For all R and n,

(1) There is a conditional expectation €, : Wy g — Wy_1 g such that
enzen = 0ep(z) for x € Wy g.

(2) The map ¢ : Wy_1.r — Wy R is injective (and e, o 1(z) = x for
S WH*LR)‘

(3) There is a trace € : Wy, g — R such that € o epq1(x) = e(x) for
x € Whi1r and € o 1(z) = e(x) for v € Wy_1 R.
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Proof. This follows from the isomorphism W, rp = KT, r and the cor-
responding properties of KT, . =

6. ISOMORPHISM OF AFFINE BMW
AND KAUFFMAN TANGLE ALGEBRAS

This section contains our main result, the isomorphism of Wms and
KT, s for any ring S with distinguished elements \, z, 6, and ¢, (r > 1).
We also give a basis of KT,, g over S.

6.1. Surjectivity of ¢ : I//I\/n — I/{Tn Fix a ring S with distinguished
elements A, z, §, and ¢, (r > 1).

DEFINITION 6.1. A simple winding is a piece of an affine tangle diagram
with one ordinary strand, without self-crossings, regularly isotopic to the
intersection of one of the affine tangle diagrams X; or X ! with a small
neighborhood of the flagpole, as in the following figure:

F

DEFINITION 6.2. An affine tangle diagram is in standard position if:

(1) It has no crossings to the left of the flagpole.

(2) There is a neighborhood of the flagpole whose intersection with the
tangle diagram is a union of simple windings.

(3) The simple windings have no crossings and are not nested. That
is, between the two crossings of a simple winding with the flagpole,
there is no other crossing of a strand with the flagpole.

piniy

LEMMA 6.3. Any affine tangle diagram is regqularly isotopic to an affine
tangle diagram in standard position.
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Proof. An affine (n,n)-tangle can be viewed as the union of

(1) an ordinary tangle diagram Tywith 2n + 2] boundary points to the
right of the flagpole,
(2) an ordinary tangle diagram 75 with 2] boundary points to the left
of the flagpole, and
(3) 2l horizontal strands connecting 77 and T and crossing above or
below the flagpole.
| [

TQ T1

From each horizontal strand crossing over the flagpole, pull a finger over
the tangle diagram T5.

S

T Ty

[

=
| T

Now slide T1 and 75 to the right, with the diagram 75 sliding under the
flagpole. The result is a diagram in standard position.

L1 1]
Agx

TQ Tl

==

We give each affine tangle diagram in standard position a standard ori-
entation (see Section 5.1).

In the oriented diagram, the simple windings are of the four possible
types pictured below:
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LEMMA 6.4. Let T be an affine tangle diagram in standard position and
with a standard orientation. Suppose T has | simple windings and K cross-
ings of ordinary strands. If T has a simple winding on a non-closed strand,
then T can be written as T = ATy + B or T = Ty A + B, where A is in the
monoid generated by {Xlil, Gfﬁl}, T is an affine tangle diagram in standard
position with | —1 simple windings, and B is in the span of affine tangle dia-
grams in standard position with fewer than K crossings of ordinary strands
and at most | simple windings.

Proof. Let s be a non-closed strand of T' with a simple winding. Suppose
that the initial endpoint of s is on the top boundary of R, say the jth vertex
on the top boundary. (Otherwise, the final endpoint of s is on the bottom
boundary of R, and this case can be handled similarly.) Consider the first
simple winding on s.

If the simple winding is of type (a) or (d), then consider the affine tangle
diagram T" obtained from T by reversing crossings of s as necessary so that
all crossings of s with other ordinary strands are over-crossings, and all
self-crossings of s are encountered first as over-crossings. By the Kauffman
skein relation, T' and T’ are congruent modulo the span of affine tangle
diagrams in standard position with fewer than K crossings (and at most I
simple windings). Consider the diagram Ty = T” G;l x -Gle 1 L 1t has two
simple windings, one of type (c) and the other of type (a) or (d), connected
by an unknotted arc which has only over-crossings with other arcs; thus Ty
is regularly isotopic to an affine tangle diagram in standard position with
[ — 1 simple windings:

-/

|

nis
JC

o

We have T' = T' + B = Ty X1G1 - --G; + B, where B is in the span of
affine tangle diagrams in standard position with fewer than K crossings and
at most £ simple windings.

If the first simple winding on s is of type (b) or (¢), then take 7" to be the
diagram obtained from 7" by changing crossings of s so that all crossings of s
with other ordinary strands are under-crossings, and all self-crossings of s
are encountered first as under-crossings, and take Ty = T” Gj---G1X1. Now
To has two simple windings, one of type (a) and the other of type (b) or (c),
connected by an unknotted arc which has only under-crossings with other
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arcs; again, T is regularly isotopic to an affine tangle diagram in standard
position with [ — 1 simple windings. =

Say that the oriented affine tangle diagram T is totally descending if, as
T is traversed in accordance with the orientation, each crossing of ordinary
strands is encountered the first time as an over-crossing. By the inductive
argument of Proposition 5.5, KT, is spanned by totally descending affine
tangle diagrams in standard position.

THEOREM 6.5. ¢ : ng — ﬁms 18 surjective.

Proof. We have to show that each totally descending oriented affine
tangle diagram 7T in standard position is in the subalgebra of I/(Tn gen-
erated by X' and {FE;, GF'}.

The proof is by induction first on the number [ of simple windings of T’
on non-closed strands, and then on the number K of crossings of ordinary
strands of T'.

Suppose that T has no simple windings on non-closed strands. Because
T is totally descending and all simple windings are located on closed loops
of T', T is regularly isotopic to a diagram in which the closed loops are
confined to a neighborhood of the flagpole and the non-closed strands do
not enter this neighborhood. It follows that T' € I/{TO,S ® KT, s, which is
isomorphic to KT, g by Turaev’s theorem [19]. By Theorem 5.20, T is in
the subalgebra generated by {F;, Gfﬁl}.

Suppose T has [ > 1 simple windings on non-closed strands and that
any totally descending affine tangle diagram in standard position with fewer
than [ simple windings on non-closed strands is in the subalgebra of ﬁms
generated by X 1i1 and {E;, Gzil}. If the number K of crossings of ordinary
strands is zero, then by Lemma 6.4, T' = ATy or T = Ty A, where A is in
the monoid generated by {X fﬂ, Glil}, and Tj is an affine tangle diagram in
standard position with [ — 1 simple windings. By the induction assumption
on [, the affine tangle Ty and hence T is in the subalgebra of ﬁms generated
by Xi! and {E;, GF'}.

Now suppose T has | > 1 simple windings on non-closed strands and
K > 1 crossings of ordinary strands. Then, by Lemma 6.4, T' can be written
as T = ATy + B or T = TyA + B where B is has fewer than K crossings,
Ty has fewer than [ simple windings, and A is in the monoid generated by
{X lil, Gz?tl}. It follows from the induction assumptions on [ and K that T’
is in the subalgebra of KT, generated by de and {E;, Giﬂ}. "

6.2. Freeness of I//[\/ and injectivity of ¢ : I//[\/ — I/{Tn Fix a ring
S with dlstmgulshed elements A\, z, 4, and g, (r > 1). Write W, for W, g,
KT, for KT, g, W for Wn .5, and KT for KTn S-
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We can identify W,, with KT, via ¢, and we can regard W,, as imbedded
in W, by Corollary 5.45 and KT,, imbedded in KT,, by Remark 2.11.

LEMMA 6.6. Let T" € KT, be a totally descending (n,n)-tangle diagram
whose strands have no self-crossings. Suppose that T' has a strand connecting
a top vertex a with a bottom vertex b, and that this strand lies above all
other strands (i.e. has only over-crossings with other strands). Let T" be the
otherwise identical tangle diagram in which the strand connecting a and b
lies under all other strands. Then

Ty H(T') = o 1Tz,
Proof. If T' is a braid diagram, then the assertion follows from Proposi-

tions 3.10 and 3.11 and induction on the number of crossings.
Otherwise, T” is regularly isotopic to a tangle diagram of the form

T = Bl[(ElEg o Bop 1) ® B]BQ,
where Bi, By, and B are totally descending braid diagrams, as described
in the proof of Theorem 5.20. The x, can be successively passed through
0 1(B1), o~ Y(B), and p~(By), by the result for braid diagrams. m
REMARK 6.7. Applying ¢, we get
X, T'=T"X,.

This statement can also be verified by the following picture proof (which
provides the motivation for Lemma 6.6):

— 1=

T —

R

LEMMA 6.8. Let T € KT, be a totally descending (n,n)-tangle diagram
whose strands have no self-crossings. Suppose that T’ has a strand connecting
a bottom vertexr @ with a bottom vertex b, and that this strand lies above all
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other strands (i.e. has only over-crossings with other strands). Let T" be
the otherwise identical tangle diagram in which the strand connecting @ and
b lies under all other strands. Then

xagpfl(T/) — )\72:1:1)—18071(]1//).

Proof. Assume without loss of generality that a < b. As in the proof of
Lemma 5.38, T” has a factorization 7" = G,Gqy1 - Gp_oFEy_1Ty. Thus

2o (T') = xaga -~ Go—2ep-19~ " (T0)
= g2 gy hre1ev_19 (Th)
= \"2gt.. -95_1236;161,_“071(%)
=222 g gy e (T0)
=222, o (T u
REMARK 6.9. Applying ¢, we get
X T =\"2X, 1T

This statement can also be verified by the following picture proof (which
provides the motivation for Lemma 6.8):

L L]

T/

= 1]
[ I I
—~

iEmpine

1 TN

In the following we write z# = z/"

commuting elements x;.

-+~ xkn for a Laurent monomial in the

LEMMA 6.10 (Transport Lemma). Let T € KT,, be an ordinary (n,n)-
tangle diagram.

(1) Supposg T has a strand connecting a top vertexr a with a bottom
vertex b. Then

zpp  (T) = @ H(Dza, ' H(T) = (T,
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modulo the span of elements of the form z*o = (To)zY, where Ty is
an ordinary (n,n)-tangle diagram with fewer crossings than T
(2) Suppose T has a strand connecting two bottom vertices @ andb. Then

xagofl (T) = )\72%—1@71 (T)

modulo the span of elements of the form z*o =Y (To)zY, where Ty is
an ordinary (n,n)-tangle diagram with fewer crossings than T'.
(3) Suppose T has a strand connecting two top vertices a and b. Then

e N (T)ae = A 27 (T)ay !

modulo the span of elements of the form z*o~(To)zY, where Ty is

an ordinary (n,n)-tangle diagram with fewer crossings than T'.

Proof. By the Kauffman skein relation, if 7" is an ordinary (n,n)-tangle
diagram which differs from T by changing one or more crossings, then T
and T" are congruent modulo the span of (n,n)-tangle diagrams with fewer
crossings.

Let T” be a diagram obtained from T by changing crossings, in which the
strand connecting @ and b has only over-crossings with other strands, and
let 7" be the otherwise identical diagram in which the strand connecting
a and b has only under-crossings with other strands. Then T = T' = T"
modulo the span of tangle diagrams with fewer crossings. By Lemma 6.6,
20 Y T") = o 1 (T")z,, and the first assertion in statement (1) follows.
The second assertion results from multiplying the congruence on the left
by .Z'b_l and on the right by x, 1.

Statement (2) follows similarly using Lemma 6.6, and statement (3) is
obtained from (2) by applying the anti-automorphism «. =

ProposiTION 6.11. Wn is spanned by elements of the form zHwz”,
where x, ¥ are Laurent monomials in the elements x; and w € W,.

Proof. Let M denote the span of elements of the form z#wzx" . Because
M contains the identity element, it suffices to show that M is a left ideal
in I//[\/n

Since Wn is generated as a unital algebra by .T}itl and {giﬂ, ei}, it suffices
to show that M is invariant under left multiplication by these generators. In-
variance under left multiplication by ! is obvious (since the z;’s commute).
Because of Propositions 3.10 and 3.11, invariance under left multiplication
by gl?|E1 will follow from invariance under left multiplication by e;.

For k > 0, let M} be the span of elements of the form zto~(T)x",
where z#, x¥ are monomials in the elements z; and T is an ordinary (n,n)-
tangle diagram with no more than k crossings. Let M_; = (0). We show by
induction first on ¢ and then on k that e; M C M.
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Suppose T is an ordinary (n,n)-tangle diagram with no more than k
crossings and b and a are connected by a strand of 7. Then, by Lemma
6.10, zppH(T) = ¢~ YTz, and x, '™ H(T) = ¢~ Y(T)x;! modulo Mj_;.
In particular, if & = 0, then zp 1(T) = ¢ Y (T)x, and z;, ' YT) =
@ 1 (T)x; . Likewise, if b and @ are connected by a strand of T, then
0 Y (T) = A 22, o~ Y(T) modulo Mj_1, and in particular, if k¥ = 0, then
oo H(T) = A2t H(T).

It follows from these observations that, for any ¢,

2o YT = pa* o (T)z" mod Mj,_1,
where p € S and

(1) ifé and % + 1 are not connected by a strand of T, then p = pj,; =0,
(2) if % and ¢ + 1 are connected by a strand of T', then pf, ; = 0.
For all 4, if 4 and 4 + 1 are not connected by a strand of T, then
(6.1) ezt (T = oeia™ ¢ 1 (T)x" = ot e (T)x" mod e;Mj,_;.
Suppose ¢ and 7 + 1 are connected by a strand s of 7. We have
(6.2) eirto ™ (T) = pesa” 2f o~ (T) mod e;My_y = oz el (T),

where i = pi = 0. Modulo the span of diagrams with fewer crossings, T is
congruent to a totally descending tangle diagram T”. Moreover, T = E;T"
(where T” may have more than k crossings). In fact, 7" must have a strand
s’ connecting two points on the top boundary of R x I. By regular isotopy,
s can be contracted and s’ pulled down so that the minimum on s’ lies just
above the maximum on s and both lie below any other crossing or local
extremum of the tangle diagram. Thus

(6.3) eixto (T) = gzt ejat e (T") mod e; My,
= o' bejp (T,
where b € I//I\/nfl, by Proposition 3.17. It follows from equations (6.1) and
(6.3) that for all ¢ and k,
(6.4) eiMy C My + eiMy_q + AW;_1 M,

where A is the algebra of Laurent polynomials in {z; : 1 < j < n}. For
1 =1, we have
erMy © My, + e Mj—y.

It follows by induction on k that e; My C My for all k; that is, e;M C M.
Now fix 4 > 1 and assume that e;M C M for all j < i; it follows that

o~

W;_1M C M, and thus from (6.4), for all k,
eiMk CM+ €iMk_1.
By induction on k, e; My C M for all k. =
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Let By = {1y : d is an n-connector} be the common basis of KT,, g for
all R, as described at the end of Section 5.1. Let B be the set of elements
XHPTXY, where T € By and v; = 0 unless T has a strand with initial point 2,
and p; = 0 unless T has a strand with initial point j. The set B may be
regarded as a subset of ﬁms for any S.

For any S, we lift B to a subset of Wn,S as follows: ¢ : Wy, ¢ — KT, 5 is
an isomorphism. We take A = A(n, S) to be the set of elements of ng of
the form x#p~1(T)x", where T € By and v; = 0 unless T has a strand with
initial point ¢, and p; = 0 unless 7" has a strand with initial point j.

PROPOSITION 6.12. For every S and n,

(1) A(n,S) spans Wn,g.
(2) B spans KT,, g.

Proof. Because of Proposition 6.11, to prove statement (1) it suffices to
show that every element of the form x#p~(T)x”, where T is an ordinary
(n,n)-tangle diagram, is in the span of A = A(n,S). The basis By has the
following triangular property: any ordinary (n,n)-tangle diagram is congru-
ent to a multiple of an element of By modulo the span of diagrams with
fewer crossings. Combining this with the Transport Lemma 6.10, we can
prove that x#¢~!(T)x" is in the span of A by induction on the number of
crossings of T'.

Statement (2) follows from statement (1) by applying the surjective map
@ Wn,S — I/{T,Ls. ]

THEOREM 6.13. For all n,

(1) Wn/T is a free A-module with basis A.

(2) ﬁnﬁ is a free A-module with basis B.

(3) p: I//[\/n T I/(Tn 1 4s an isomorphism.

Proof. A= A(n, /T) spans Wn 1 and B = p(A) spans ﬁn > by Propo-
sition 6.12. Since ¢ is injective on B, Proposition 4.7 implies that B is linearly
independent over A. All the conclusions follow. =

COROLLARY 6.14.

(1) ﬁms is a free S module with basis B and I/{Tn,s = I/(Tn
(2) ¢ Wn,s — I/(ng s an isomorphism. 7
(3) Was =W +©:5.

n,

/T®/TS'

Proof. By Proposition 6.12, B spans ﬁn,& On the other hand, B ® 1
is a basis of KT +®7: 5. Moreover, we have an S-algebra homomorphism
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from ﬁms to I/(Tn /T®/TS which takes a tangle T to T'® 1. Since this map
takes a spanning set to a basis, it is an isomorphism. This proves (1).
Once we know that B is a basis of KT, g, it follows at once that ¢ :

—

Wyps — Iﬁms is an isomorphism. Namely, ¢ carries the spanning set
A(n, S) to the basis B, and so is an isomorphism.
Finally, (3) follows by combining the isomorphisms

Wn’sgﬁmg, ﬁn’sgﬁ A®AS, I//I\/ A®AS%’KT X@/TS. n

COROLLARY 6.15. The map ¢ : Wn 1,8 — Wn .5 15 injective.

COROLLARY 6.16.

(1) 1/7\’07’ each n > 1, there is a conditional expectation e, : Wy g —
Wy—1,5 satisfying
enxen, = dep(x)e,
forz € Wn,s- .
(2) There is a trace € : W, g — S defined by
E=€10- - 0¢&y.
(3) The trace € has the Markov property: for b € anl,Sa
(2) e(bgp’y) = (A\F!/0)e(x),
(b) (ben_ 1) (1/6)e(x),
(c) 5(6(33' )’”) = qre(b) and e(b(z7,)™") = fr(qr, ..., qr)e(b) forr = 1,
where !, = (gn_1---91)x1(g97 -~ g, ")
Proof. All /st\atements follow from the isomorphism Wn 5 = I/(Tn and the
properties of KT, g discussed in Section 2.7. =

REMARK 6.17. The trace ¢ is the unique trace on Wn,s satisfying (1) =1
and the Markov properties enumerated in statement (3) of the previous
corollary. To prove this uniqueness statement, one needs an analogue of
Proposition 3.16 with z,, replaced by x/,.

COROLLARY 6.18. For x € Wnﬂ,
xen = dent1(xen)en.

Proof. By Proposition 3.20, there exists a y € T//I\/n such that ze, = ye,.
Applying the conditional expectation &, to both sides gives &,11(xey,) =
yenti(en) =61y, m

COROLLARY 6.19. FEwvery element of I/{Tn,s is a linear combination of
elements of the form axb, where a,b € KT,,_1 g and

X €{En 1,GEL JU{X! :r e 7).
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Proof. This follows from the isomorphism Wms = ﬁn’s and Proposi-

tion 3.16. =
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