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New categorifications of the chromatic and

dichromatic polynomials for graphs
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Marko Stošić (Lisbon)

Abstract. For each graph G, we define a chain complex of graded modules over the
ring of polynomials whose graded Euler characteristic is equal to the chromatic polynomial
of G. Furthermore, we define a chain complex of doubly-graded modules whose (doubly)
graded Euler characteristic is equal to the dichromatic polynomial of G. Both constructions
use Koszul complexes, and are similar to the new Khovanov–Rozansky categorifications
of the HOMFLYPT polynomial. We also give a simplified definition of this triply-graded
link homology theory.

1. Introduction. In [3] Khovanov introduced the concept of categori-
fication of the Jones polynomial for links. For each link L in S3 he defined
a graded chain complex, with grading preserving differentials, whose graded
Euler characteristic is equal to the Jones polynomial of the link L. This
is done by starting from the state-sum expression for the Jones polyno-
mial (which is written as an alternating sum), then constructing for each
term a module whose graded dimension is equal to the value of that term,
and finally, constructing the differentials as appropriate grading preserving
maps, so that the complex obtained is a link invariant.

Using similar techniques by starting from the state-sum expression of
the chromatic polynomial for graphs, the authors of [2] defined, for every
graph G, a chain complex of graded modules whose Euler characteristic is
the chromatic polynomial of G. In [11] the present author defined an infinite
series of chain complexes of graded modules (one for each n ∈ N) whose Eu-
ler characteristics are specializations of the two-variable dichromatic poly-
nomial (and consequently the Tutte polynomial) of G. The specializations
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appear since we want to categorify a two-variable polynomial and the “stan-
dard” techniques of categorifying link (and graph) polynomials (see e.g. [7],
[5], [4], [1], [3]) work only for one-variable polynomials.

In this paper we define a chain complex of doubly-graded modules whose
doubly-graded Euler characteristic is equal to the whole two-variable dichro-
matic polynomial. The idea is partially inspired by the new version of
categorification of the HOMFLYPT polynomial by Khovanov and Rozan-
sky [8]. They defined a chain complex of doubly-graded modules whose
doubly-graded Euler characteristic is equal to the whole two-variable HOM-
FLYPT polynomial. In Section 2 we describe a simplified version of their
construction (this construction is also implicit in [6]).

Also, we give a new categorification of the chromatic polynomial for
graphs. We do this in a different way than in [2]. We define chain groups
(direct sums of modules corresponding to the vertices of the cube of resolu-
tions) as the cohomologies of certain chain complexes.

2. Triply-graded link homology

2.1. Introduction. In this section we introduce a parametrization of the
HOMFLYPT polynomial that we will categorify. It is very similar to the one
in [8]. Throughout this section we will consider only braid diagrams D of
a link L, i.e. regular diagrams which are the closures of (upwards) oriented
braids.

As is well known, every link can be represented by a braid diagram. Also,
the closures of two braid diagrams D1 and D2 are isotopic as oriented links
if and only if D1 and D2 are related by a sequence of Markov moves, which
are the following (see [9]):

(i) conjugation: DD′ ↔ D′D,
(ii) transformations in the braid group:

D ↔ Dσiσ
−1
i ,

D ↔ Dσ−1
i σi,

Dσjσi ↔ Dσiσj , |i − j| > 1,

Dσiσi+1σi ↔ Dσi+1σiσi+1,

(iii) transformations D ↔ Dσ±1
n , for a braid D with n strands.

In order to define the HOMFLYPT polynomial for a link L from its braid
diagram representation D, we will introduce a function F on braid diagrams
with values in the ring of rational functions in q and t defined uniquely by
the following axioms:

• F (D1) = F (D2) if D1, D2 are related by a Markov move (i).
• F (D1) = F (D2) if D1, D2 are related by Markov moves (ii).
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• F (Dσn) = F (D) if the braid D has n strands.
• F (Dσ−1

n ) = −t−1q−1F (D) if the braid D has n strands.
• Skein relation: for every braid diagram D with n strands and 0 < i < n,

q−1F (Dσi) − qF (Dσ−1
i ) = (q−1 − q)F (D).

• If U is the one-strand diagram of the unknot then F (U) = 1.

In order to obtain a link invariant we need to normalize the function F .
Let α = −t−1q−1 and let

(1) G(D) =
√

α
n+(D)−n

−
(D)−s(D)+1

F (D),

where n+(D), n−(D) and s(D) are the numbers of positive crossings, neg-
ative crossings and strands of D, respectively. We set

ω(D) = n+(D) − n−(D) − s(D) + 1.

Obviously G(D) is invariant under all Markov moves of braids and it satisfies
the HOMFLYPT skein relation

(q
√

α)−1G(Dσi) − q
√

α G(Dσi
−1) = (q−1 − q)G(D).

Hence, G(D) is equal to the HOMFLYPT polynomial of the link L, normal-
ized so that G(U) = 1. In Section 2.3, we will define a triply-graded chain
complex C(D) whose Euler characteristic is equal to F (D).

First of all note our slightly different convention compared to [8] on the
value of the unknot. This has the advantage that we can obtain the Alexan-
der polynomial directly by specializing t and q (t = −q), and the whole
sequence of n-specializations of the (reduced) HOMFLYPT polynomial (see
[7], [10]). Specifically, by taking t = −q1−2n we obtain polynomials Gn(D)
that satisfy the skein relation

q−nGn(Dσi) − qnGn(Dσi
−1) = (q−1 − q)Gn(D),

and whose value on the unknot is Gn(U) = 1. Hence by suitably collaps-
ing the tri-grading to a bi-grading we get a new categorification of the n-
specializations of the HOMFLYPT polynomial.

2.2. Graphs with wide edges. In order to define the function F (D) and
hence the HOMFLYPT polynomial G(D), we introduce trivalent graphs
with wide edges as resolutions of crossings. Apart from the crossings σi and
σ−1

i , we introduce wide edges Ei placed between the ith and (i+1)th strand
of the braid, as in the following picture:

· · · · · ·

1 i i + 1 p

Ei
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Then we can define the function F (D) by resolving the crossings by using
the following two relations:

F (Dσi) = F (DEi) − q2F (D),(2)

F (Dσi
−1) = q−2F (DEi) − q−2F (D).(3)

Here by F (D) we mean the value of the function F on the diagram that is
the closure of the braid diagram D, and we have extended the domain of
F to include trivalent graphs. Then F (restricted to braid diagrams) will
satisfy the axioms from the previous subsection if and only if the values of
F on completely resolved trivalent graphs satisfy

F (U) = 1,(4)

F (D ∪ U) =
1 + t−1q

1 − q2
F (D) if D is not an empty diagram,(5)

F (DEn) =
1 + t−1q3

1 − q2
F (D) if D is a diagram with n strands,(6)

F (DE2
i ) = (1 + q2)F (DEi),(7)

F (DEiEi+1Ei) + q2F (DEi+1) = F (DEi+1EiEi+1) + q2F (DEi).(8)

We will use (2) and (3) in resolving the crossings in the definition of
the triply-graded chain complex that categorifies the HOMFLYPT polyno-
mial.

2.3. Categorification of the two-variable HOMFLYPT polynomial. In
this subsection we will give an alternative, simpler and (essentially) equiv-
alent construction to the one in [8] (a similar simplification is also implicit
in [6]).

Essentially, we will set the variable a from [8] to be 0, but we will keep the
double grading of the ring of polynomials R′ = Q[x1, . . . , x2n]. Specifically,
to every arc (line between two crossings) we will assign a different variable xi,
i = 1, . . . , 2n, where n is the number of crossings of a given planar projection
D of a knot K. We define the bidegree of every xi to be (0, 2) and we put
the field of coefficients Q in bidegree (0, 0). Also, by {·, ·} we denote a shift
in bigrading.

Remark 1. Note that this corresponds to the case n = −1 in [7], but
with the introduction of a new grading direction.

Let L be a link and let D be its braid diagram presentation. Let I be the
ideal of R′ generated by the monomials x1 + x2 − x3 − x4 for every crossing
of D, and let R = R′/I (see the picture below for the notation).
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To each crossing we will assign 0- and 1-resolutions according to the
following picture:

0-res. 1-res. 0-res. 1-res.

x1 x1 x1 x1 x1

x4 x4 x4 x4 x4

x2 x2 x2 x2 x2

x3 x3 x3 x3 x3

Γ0 Γ0Γ1

We call the resolutions obtained Γ0 and Γ1, respectively, according to the
picture. To the resolution Γ0 we assign the complex

C(Γ0) : 0 → R{−1, 1} x2−x3−−−−→ R → 0

and to the resolution Γ1 (the one with the wide edge) the complex

C(Γ1) : 0 → R{−1, 3} (x2−x3)(x4−x2)−−−−−−−−−−→ R → 0.

Assume that there are no free circles in the diagram D. If we resolve all
the crossings of D we obtain a trivalent graph with wide edges. There are 2n

such resolutions Γ of D and to each we assign the tensor product of C(Γ0)
and C(Γ1), over all crossings c(D), depending on the type of resolution that
appeared. In this way we obtain a complex C(Γ ) and to each resolution Γ
we will assign its cohomology H(Γ ) = H(C(Γ )).

As in [8], we can show that H(Γ ) categorifies the relations (5)–(8). For
example, the relation (5) becomes

H(Γ ∪ unknot) ∼= (H(Γ ) ⊗ Q[xi]) ⊕ (H(Γ ) ⊗ Q[xi]{−1, 1}),
where xi is the label assigned to the circle (unknot). Note that in all defini-
tions only the differences xi−xj appear. Thus we can work with the smaller
ring of polynomials R′′ = Q[x2 − x1, . . . , x2n − x1] instead of R′ (as in [8]).

If we have free circles in D, we introduce a new variable y with
deg y = (0, 2), extend the ring of polynomials to R[y] and replace R by
R[y] in the complexes C(Γi), i = 0, 1. Finally, to every free circle we assign
the complex

0 → R′[y]{−1, 1} y−→ R′[y] → 0,

and we tensor these complexes with C(Γ ). In this way we obtain a good
value of the unknot (4), i.e. H(U) ∼= Q.

We again organize the 2n total resolutions Γ of the diagram D in the
same cubic complex as in the standard categorifications. To each vertex
of the cube (i.e. to each total resolution Γ ) we assign the graded vector
space H(Γ ).
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We will introduce the differentials between those cohomology groups as
the maps induced by the (grading preserving) homomorphisms between the
corresponding complexes C(Γ ). Since these complexes are built as the tensor
products of C(Γ0) and C(Γ1) it is enough to specify the homomorphisms be-
tween these two complexes. For a positive crossing c we define the following
complex of complexes:

(9) Cc : 0 → C(Γ0){0, 2} χ0→ C(Γ1) → 0,

where C(Γ1) is in cohomological degree 0, and the map χ0 is given by

0 −−−−→ R{−1, 3} x2−x3−−−−→ R{0, 2} −−−−→ 0

1





y





y

x4−x2

0 −−−−→ R{−1, 3} (x2−x3)(x4−x2)−−−−−−−−−−→ R −−−−→ 0

For a negative crossing c we define the following complex of complexes:

(10) Cc : 0 → C(Γ1){0,−2} χ1−→ C(Γ0){0,−2} → 0,

where C(Γ1) is in cohomological degree 0, and the map χ1 is given by

0 −−−−→ R{−1, 1} (x2−x3)(x4−x2)−−−−−−−−−−→ R{0,−2} −−−−→ 0

x4−x2





y





y
1

0 −−−−→ R{−1,−1} x2−x3−−−−→ R{0,−2} −−−−→ 0

Define C(D) as the tensor product of Cc over all crossings c(D). It is a
complex built up from the Koszul complexes C(Γ ), over all the total reso-
lutions Γ of the diagram D, and the differential preserves the bigrading of
each term Cj(D). Every Cj(D) decomposes as a direct sum of contractible
two-term complexes and its cohomology H(Cj(D)), which is denoted by
CHj(D). The differential induces grading preserving maps δ from CHj(D)
to CHj+1(D) and we denote the complex obtained in this way by CH(D).
The cohomology H(D) = H(CH(D), δ) is triply-graded:

H(D) =
⊕

j,k,l

Hj
k,l(D).

Here j is the cohomology degree, and k and l come from the internal bi-
grading of the chain groups.

In complete analogy with [8] we find that H(D) does not depend on
the choice of the braid presentation D of a link L, up to an overall shift
in the triple grading. Also, since H(Γ ) categorifies the relations (4)–(8)
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and since the differentials are induced by the grading preserving maps
(9) and (10) which obviously categorify the relations (2) and (3), the bi-
graded Euler characteristic of CH(D) is equal to F (D). Finally, by intro-
ducing half-integral shifts as in [12] (in order to compensate the powers of
α from (1)) by

H(D) = H(D)[ω(D)/2]{−ω(D)/2,−ω(D)/2},
we obtain a triply-graded homology theory, which does not depend on
the choice of the braid presentation D of the link L and whose bi-graded
Euler characteristic is equal to the two-variable HOMFLYPT polynomial
of L.

3. New categorifications of the chromatic and dichromatic

polynomials for graphs

3.1. Introduction. In this section we will define a complex of doubly-
graded modules whose doubly-graded Euler characteristic is equal to the
whole two-variable dichromatic polynomial. The idea is partially inspired by
the categorification of the HOMFLYPT polynomial described in the previ-
ous section. Also, we give a new categorification of the chromatic polynomial
for graphs.

A graph G is specified by a set of vertices V (G) and a set of edges E(G).
If e is an arbitrary edge of G, then by G − e we denote the graph G with
the edge e deleted, and by G/e the graph obtained by contracting e (i.e. by
identifying the vertices incident to e and deleting e).

3.2. The chromatic polynomial. If q is a positive integer, the chromatic

polynomial PG(q) is defined as the number of ways to color the vertices of G
by using at most q colors, so that any two vertices which are connected by an
edge receive different colors. It is well known that the chromatic polynomial
can be equivalently defined by the following two axioms:

PG = PG−e − PG/e,(C1)

PNk
= qk,(C2)

where Nk is the graph with k vertices and no edges. By using these axioms,
we can obviously assume that the domain of the chromatic polynomial is
the set of complex numbers. Furthermore, instead of q in axiom (C2) we
will put 1/(1 − q) (with |q| < 1).

By repeated use of (C1) (which is the famous deletion-contraction rule)
we will obtain the value of the chromatic polynomial as a sum of contribu-
tions from all spanning subgraphs of G (subgraphs that contain all vertices
of G), which we will call states. Furthermore, if for each subset s ⊂ E(G)
we denote by [G : s] the graph whose set of vertices is V (G) and set of
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edges is s, then the contribution of the graph [G : s] is (−1)|s|(1 − q)−k(s),
where |s| is the number of elements of s and k(s) is the number of connected
components of [G : s]. Hence, we obtain the expression

PG(q) =
∑

s⊂E(G)

(−1)|s|(1 − q)−k(s) =
∑

i≥0

(−1)i
∑

s⊂E(G), |s|=i

(1 − q)−k(s),

which is called the state-sum expansion of the polynomial PG(q).

In Subsection 3.4 we will define a graded chain complex C(G) of modules
whose graded Euler characteristic is equal to PG(q).

3.3. The dichromatic polynomial. The dichromatic polynomial PG(q, v)
of the graph G is a two-variable generalization of the chromatic polynomial
given by the following two axioms:

PG = PG−e − qPG/e,(D2)

PNk
= vk,(D2)

where Nk is the graph with k vertices and no edges.

From (D1) we have a recursive expression for the dichromatic polynomial
in terms of the value of the polynomial on graphs with a smaller number of
edges. Indeed, as in the case of the chromatic polynomial, the contribution
of the state [G : s] is (−1)|s|q|s|vk(s). Hence, we obtain the expression

PG(q, v) =
∑

s⊂E(G)

(−1)|s|q|s|vk(s) =
∑

i≥0

(−1)iqi
∑

s⊂E(G), |s|=i

vk(s),

which is called the state-sum expansion of the polynomial PG(q, v). However,
we will use a slightly different parametrization, given by

DG(t, q) = (1 + t−1q)mPG

(

q,
1 + t−1q

1 − q

)

,

where m is the number of edges of G.

In Subsection 3.5 we will define a chain complex D(G) of doubly-graded
modules whose doubly-graded Euler characteristic is equal to DG(t, q).

3.4. The categorification of the chromatic polynomial. Let n denote the
number of vertices of the graph G. Let R be the ring of polynomials in
n variables over Q, i.e. R = Q[x1, . . . , xn]. We introduce a grading in R
by giving degree 1 to every xi. Order the set of vertices of G and assign
the variable xi to the ith vertex. Finally, to every edge e ∈ E(G) with
endpoints ie and je, assign the monomial me = xie − xje (the ambiguity of
the sign does not affect the later construction).

3.4.1. The cubic complex construction. Let s ⊂ E(G) be a subset of the
set of edges of G, and let [G : s] be the corresponding state of G. Consider
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the ideal Is in R generated by the monomials me for all edges e ∈ s. Finally,
to the state [G : s] assign the module Rs = R/Is.

Proposition 1. The quantum graded dimension of Rs is equal to

(1 − q)−k(s), where k(s) denotes the number of connected components

of [G : s].

Proof. Let i and j be arbitrary two vertices of G. They obviously belong
to the same connected component of [G : s] if and only if there exists a
sequence of edges belonging to s which connects i and j, which obviously
happens if and only if xi − xj belongs to Is. Hence, all the variables corre-
sponding to the vertices from the same component must be the same in Rs.
In other words, Rs is isomorphic to the ring of polynomials (over Q) in k(s)
variables, and hence

q dim Rs =
(

∑

i≥0

qi
)k(s)

= (1 − q)−k(s).

Denote by m the number of edges of G, and fix an ordering on the set
E(G), denoted by (e1, . . . , em). Now we define the chain complex C in a
standard way, by “summing over columns” of our cubic complex: for each i
with 0 ≤ i ≤ m, we define the ith chain group Ci(G) as the direct sum of
Rs over all s ⊂ E(G) such that |s| = i.

Now, let us turn to the differential. We define the map di from Ci(G)
to Ci+1(G) as a sum of maps between the direct summands of the chain
groups. The only nonzero maps are the maps from Rs to Rs∪{e} with e /∈ s
(which are exactly the ones that correspond to the edges of the cube), and
we set them (up to a sign) to be the identity (i.e. the map that sends f + Is

to f + Is∪{e} for every f ∈ R).

We now introduce signs in a standard way in order to make the cube
anticommutative, and hence to make the square of the differential equal
to 0. Namely, we put minus signs exactly for those maps Rs → Rs∪{e} with
an odd number of edges in s which are ordered before e.

In this way we have obtained a chain complex, C(G), of graded R-
modules with grading preserving differential. Its homology groups obviously
do not depend on the ordering of the vertices of G, and also do not de-
pend on the ordering of the edges (as in [2, Section 2.2.3]), and hence we
obtain

Theorem 2. The homology groups of the chain complex C(G) are in-

variants of the graph G, and the graded Euler characteristic of C(G) is equal

to the chromatic polynomial PG(q).

3.4.2. Alternative description. Now we will give an equivalent definition
of the chain complex C(G) in terms of Koszul complexes.



240 M. Stošić

To each edge e ∈ E(G) we assign two complexes, Ce− and Ce+, defined
in the following way:

Ce− : 0 → R
0−→ R → 0,

Ce+ : 0 → R
xi−xj−−−−→ R → 0,

where i and j are the endpoints of e. Now, to every subset s ⊂ E(G) we
assign a complex Cs which is the tensor product of Ce±, where we take + if
e ∈ s and − if e /∈ s. Finally, to the state [G : s] we assign the cohomology
of Cs at the rightmost position.

To build the differentials, we introduce the (grading preserving) maps de

as the maps induced on cohomology by the following homomorphism from
Ce− to Ce+:

(11)

0 −−−−→ R
0−−−−→ R −−−−→ 0

0





y





y
1

0 −−−−→ R
xi−xj−−−−→ R −−−−→ 0

Here we put the upper row in cohomological degree 0, and the lower one in
cohomological degree 1.

Now, in order to define the differentials, just tensor all the chain com-
plexes and maps (11) between them over all edges e of E(G). If we take
the cohomology only at the rightmost position in each “horizontal” complex
(the ones in the same cohomological degree with respect to the definition
after (11)), and as the differentials are the induced maps between them, we
obtain a complex C′(G) which is isomorphic to the complex C(G) from the
previous subsection.

3.5. The categorification of the dichromatic polynomial. In order to cat-
egorify the dichromatic polynomial we will have to introduce a new grading
direction, and we will use the whole Koszul complex (actually a slightly
modified one) that we have used in the previous subsection.

We order the vertices of G, and to the ith one (1 ≤ i ≤ n = ♯V (G)) we
assign the variable xi. We define the bidegree of all xi as (0, 1). Define the
bigraded ring R by R = Q[x1, . . . , xn], where we put the field Q in bidegree
(0, 0).

To each edge e whose endpoints are the ith and jth vertex, we can asso-
ciate two resolutions of the graph G: the first one with the edge e contracted
(i.e. we identify the vertices i and j), and the second one with the edge e
deleted. To the first resolution we assign the complex

D(e+) : 0 → R{−1, 1} xi−xj−−−−→ R → 0,
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and to the second the complex

D(e−) : 0 → R{−1, 1} 0−→ R → 0.

Let s be an arbitrary subset of E(G) and let [G : s] be the corresponding
state of G. To [G : s] we assign the (Koszul) complex D′(s) of bigraded R-
modules obtained by tensoring the complexes D(e+), where e runs over all
edges in s, and D(f−), where f runs over all edges in E(G)\s. We denote its
(bigraded) cohomology by H ′(s) (the direct sum of the cohomology groups
of D′(s)).

Proposition 2. The quantum bigraded dimension of H ′(s) is equal to

(1 + t−1q)
m−n

(

1 + t−1q

1 − q

)k(s)

,

where k(s) is the number of connected components of [G : s], and n and m
are the numbers of vertices and edges of G, respectively.

Proof. As in the proof of Proposition 1, we find that the cohomology
at the rightmost position of D′(s) is isomorphic to the ring of polynomials
in k(s) variables. However, here we will also have the cohomology at the
leftmost position in each of the D(e±), which is isomorphic to the same ring
of polynomials in k(s) variables, but shifted by the bidegree {−1, 1}, for all
D(e−) and for a certain number of the D(e+). We show by induction on |s|
that the total number of such e’s, denoted by c(s), is equal to k(s)−n + m.

If |s| = 0 then we have the tensor product of m complexes with all the
mappings equal to zero, and hence the number of edges which contribute
with nontrivial cohomology at the leftmost position is equal to m = k(s) −
n + m (note that in this case k(s) = n). Now suppose that the formula is
true for some subset s and consider the state [G : (s ∪ e)] with e ∈ E(G)\ s.
Denote the endpoints of e by i and j, and set s′ = s ∪ e. This means that
D′(s′) is formed by the tensor product of the same complexes as D′(s) with
D(e+) instead of D(e−). Now, D(e+) will have nontrivial cohomology at
the leftmost position if and only if xi − xj belongs to the ideal generated
by the monomials defined by the edges of s, i.e. if and only if the vertices i
and j belong to the same connected component of [G : s]. In other words,
we have c(s′) = c(s) if k(s′) = k(s), and c(s′) = c(s) − 1 if k(s′) = k(s) − 1.
So we have c(s) = k(s) − n + m as desired.

Hence the total bigraded dimension of H ′(s) is equal to

(1 + t−1q)
k(s)−n+m

(1 − q)−k(s).

Furthermore, to every vertex v of the graph G, we assign the same com-
plex as D(e−). Now, if we tensor these complexes over all vertices of G and
tensor the complex obtained with D′(s), we obtain the complex D(s). We
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denote the cohomology of D(s) by H(s), and that is the space we will assign
to the state [G : s]. Obviously, we have

q dimH(s) = (1 + t−1q)
m

(

1 + t−1q

1 − q

)k(s)

.

In order to introduce the differentials between the cohomologies H(s), we
will define the (grading preserving) homomorphism d(e) from D(e+){0, 1}
to D(e−), and then for the differentials we take the induced mappings on
cohomology. We define d(e) by

0 −−−−→ R{−1, 2} xi−xj−−−−→ R{0, 1} −−−−→ 0

xi−xj





y





y
0

0 −−−−→ R{−1, 1} 0−−−−→ R −−−−→ 0

We put the upper row in cohomological degree −1, and the lower row in
cohomological degree 0. We denote this complex of complexes by De.

For the graph G define the complex of (Koszul) complexes by tensoring
De over all edges e of G. By taking the cohomology Hj(G), −m ≤ j ≤ 0, in
each “horizontal” complex and defining the differentials between them to be
the ones induced by the tensor product of d(e)’s, we obtain a triply-graded
complex D(G).

From the definition we have

Theorem 3. The homotopy class of the complex D(G) is an invariant of

the graph G whose bigraded Euler characteristic is equal to the dichromatic

polynomial DG(t, q) of the graph G.

References

[1] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9
(2005), 1443–1499.

[2] L. Helme-Guizon and Y. Rong, A categorification for the chromatic polynomial ,
Algebr. Geom. Topol. 5 (2005), 1365–1388.

[3] M. Khovanov, A categorification of the Jones polynomial , Duke Math. J. 101 (2000),
359–426.

[4] —, Categorifications of the colored Jones polynomial , arXiv:math.QA/0302060.
[5] —, sl(3) link homology, Algebr. Geom. Topol. 4 (2004), 1045–1081.
[6] —, Triply-graded link homology and Hochschild homology of Soergel bimodules,

arXiv:math.GT/0510265.
[7] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, arXiv:

math.QA/0401268.
[8] —, —, Matrix factorizations and link homology II , arXiv:math.QA/0505056.
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