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Symplectic groups are N-determined 2-compact groups
by

Ales Vavpetié (Ljubljana) and Antonio Viruel (Mélaga)

Abstract. We show that for n > 3 the symplectic group Sp(n) is as a 2-compact
group determined up to isomorphism by the isomorphism type of its maximal torus nor-
malizer. This allows us to determine the integral homotopy type of Sp(n) among connected
finite loop spaces with maximal torus.

1. Introduction. The advent of p-compact groups in the celebrated
work of Dwyer and Wilkerson [10] is the culmination of a research program
that can be traced back to the work of Hopf and Serre on H-spaces and loop
spaces, and fits within the philosophy of Hilbert’s Fifth Problem: which are
the non-differential (here homotopy-theoretical) properties that characterize
compact Lie groups?

A p-compact group is a loop space (X,BX,e), i.e. e : X ~ 2(BX) for
a pointed space BX, such that H*(X;F)) is finite and BX is p-complete
in the sense of Bousfield and Kan [5]. As expected, examples of p-compact
groups are given by p-completion of compact Lie groups G for which moG
is a p-group, since Gg is homotopy equivalent to Q(BGQ). In this way a
p-compact torus 1" of rank n is the p-completion of an ordinary torus, hence
BT is the Eilenberg-MacLane space K((Z,)®",2). Further examples are
given by the realization of polynomial algebras, i.e. loop spaces 2B X, where
BX is p-complete and has polynomial mod p cohomology ([1], [6], [12], [28],
[33], [38]). The importance of p-compact groups lies in a dictionary (reviewed
in Section 2) that translates much of the rich internal algebraic structure
of compact Lie groups to the homotopy-theoretical setting of p-compact
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groups, so the challenge is then to give homotopy-theoretical proofs of clas-
sical algebraic Lie group theory results.

One of those challenges quoted above is the following: p-compact groups
admit maximal tori, Weyl groups and maximal torus normalizers in a way
that extends the classical concepts in Lie group theory [10, Theorem 8.13
and Proposition 9.5], so can we “reprove” the Lie group theoretical Curtis—
Wiederhold—Williams theorem [7] in the setting of p-compact groups? Recall
that Curtis—Wiederhold—Williams’ theorem states that two compact con-
nected semisimple Lie groups are isomorphic if and only if their maximal
torus normalizers are isomorphic, hence we are led to the following conjec-
ture [8, Conjecture 5.3]:

CONJECTURE 1.1. Let X be a connected p-compact group with mazimal
torus Tx. Then X 1is determined up to equivalence by the loop space NTx.

We shall say that a p-compact group X is N-determined if X satisfies
Conjecture 1.1 even if the “connected” hypothesis is dropped, i.e. X is IN-
determined if every p-compact group Y, with the normalizer of a maximal
torus isomorphic to that of X, is isomorphic to X.

Given an odd prime p > 2, p-compact groups are known to be N-
determined [2], which leads to the classification of p-compact groups for
p odd. But the situation is quite different at p = 2: there exist 2-compact
groups which are not N-determined. For example O(n)} and SO(n + 1))
are nonisomorphic 2-compact groups that have isomorphic maximal torus
normalizers. So at p = 2 we cannot drop the “connected” hypothesis in
Conjecture 1.1.

We say that a 2-compact group X is weakly N -determined if every 2-
compact group Y for which there exists a homotopy equivalence BNx =~
BNy between the maximal torus normalizers of X and Y, inducing an
isomorphism my X = mgY, is isomorphic to X. From the definitions it follows
that an N-determined 2-compact group is also weakly N-determined.

It has been shown that the 2-compact groups O(n)y, SO(2n + 1)) and
Spin(2n + 1)4 [26] are weakly N-determined 2-compact groups (and they
are not N-determined), and that U(n)} for n # 2 [24], (G2)% [35], (Fu)5
[34], and DI(4) [27] are N-determined (U(2)% is only weakly N-determined,
because the normalizer N of a maximal torus of U(2)% is also a 2-compact
group but N is not isomorphic to U(2)%). In this paper we prove that the
symplectic groups Sp(n)4 are N-determined 2-compact groups for n > 3.

THEOREM 1.2. Let n > 3 and let X be a 2-compact group with the
mazimal torus normalizer fx: N — X isomorphic to that of Sp(n)y. Then
X and Sp(n)j are isomorphic 2-compact groups.
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Proof. First in Section 3 we prove that X is connected. In Section 4 we
show that the mod 2 cohomology of BX is isomorphic to that of BSp(n) as
algebras over the Steenrod algebra, which implies that the Quillen categories
associated to X and Sp(n) are isomorphic. In Section 5 we describe the 2-
stubborn decomposition of the group Sp(n), which allows us to define a map
from BSp(n)y to BX that happens to be an equivalence. This is done in
Section 6. m

Notice that the hypothesis n > 3 is necessary as Sp(1)5 = SU(2)) and
Sp(2)4 = Spin(5)y are only weakly N-determined 2-compact groups.

The combination of the results in [2] and Theorem 1.2 shows that if G
is a connected compact Lie group, then BG is in the adic genus of BSp(n)
if and only if G = Sp(n), which in view of [31] characterizes the integral
homotopy type of BSp(n) as a loop space. Thus our final result is

THEOREM 1.3. Let L be a connected finite loop space with a mazimal
torus normalizer isomorphic to that of Sp(n). Then BL is homotopy equiv-
alent to BSp(n).

Notation. Here all spaces are assumed to have the homotopy type of a
CW-complex. Completion means Bousfield-Kan completion [5]. For a given
space X, we write H*X for the mod 2 cohomology H*(X;F2). For a prime
p, we write X, for the Bousfield-Kan p-completion ((Z;)so-completion in
the terminology of Bousfield and Kan) of the space X. We assume that the
reader is familiar with Lannes’ theory [19].

2. The dictionary. As announced in the introduction, this section is
devoted to a brief review of the dictionary translating constructions and
arguments from the algebraic theory of groups to the homotopical setting of
p-compact groups. The aim of the minimalist style of this section is to ease
the search of concepts by the reader who will find a more detailed exposition
in the original [10], or the reviews [8], [22] and [29] if needed.

Along this section X and Y denote p-compact groups whose classifying
spaces are BX and BY respectively. By T" we denote a p-compact torus, i.e.
BT ~ K(Zy,2) where n is the rank of T'. Finally, we define:

e Homomorphisms [10, §3.1]: A homomorphism X 4, Y of p-compact

groups is a pointed map BX 5{ BY. The homomorphism f is an
isomorphism if B f is a homotopy equivalence. It is a monomorphism if
the homotopy fiber Y/X of Bf is IF,-finite or equivalently if H*(BX,F))
is a finitely generated module over H*(BY,F,) via B f*.

e (Centralizers [10, §3.4]: For a homomorphism Y NS i p-compact
groups, the centralizer Cx (f(Y')) is defined by the equation BCx (f(Y))
= Map(BY, BX)Bf.
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e Mazimal tori [10, Definition 8.9]: A monomorphism 7" — X of a p-
compact torus into a p-compact group X is a maximal torus if Cx (T)
is a p-compact toral group and Cx(7T)/T is homotopically discrete.

Every p-compact group admits maximal tori [10, Theorem 8.13].

e Weyl group [10, Definition 9.2]: Let BT'x BIT BX be a maximal torus

of a p-compact group X. Assume that Bfr is already a fibration and
treat Wx as the space of self-maps of BTx over BX. Composition
gives Wx the structure of an associative topological monoid. It is
shown [10, Proposition 9.5] that Wx is homotopically discrete and
therefore Wy := moWx is a (finite) group. Moreover, if X is connected,
the action of Wx on BTx induces a faithful representation

Wx — GL(H*(BTx;Z) ® Q) = GL,(Q))

whose image is generated by pseudoreflections (elements of finite order
which fix a codimension 1 subspace of (Q))"), i.e. Wx is a pseudore-
flection group [10, Theorem 9.7].

o Maximal torus normalizers [10, Definition 9.8]: Let BTx BT BX be a
maximal torus of a p-compact group X. The normalizer of T'x, denoted
by NTx, or simply by Nx or N, is the loop space such that BNTx is
the Borel construction associated to the action of Wx on BTx.

All these concepts generalize the classical algebraic definitions. In par-
ticular, if G is a compact Lie group such that moG is a p-group, i: T — G is
a maximal torus of G, W is the Weyl group of G, and N is the normalizer
of the maximal torus 7', then the p-completion i),: ' — G} is a maximal
torus of the p-compact group G;\. The Weyl group W is naturally isomor-
phic to the Weyl group WGQ- The classifying space BN of the normalizer
N sits in the fibration BT — BN — BW, and a normalizer of the maximal
torus T, pA of GQ is isomorphic to the fiberwise p-completion BN, by [24,

Proposition 1.8], or [35, Lemma 6.1].

3. Connectedness. In this section we proceed with the first step in the
proof of Theorem 1.2 by proving the following proposition.

PropPoOSITION 3.1. Let X be a 2-compact group with the normalizer of
a mazimal torus isomorphic to that of Sp(n)%, where n > 3. Then X is
connected.

The proof requires calculating the Weyl group of some centralizer in the
connected component of X . This is done by means of the technics developed
by Dwyer and Wilkerson in [9] that we recall now.

An extended p-discrete torus P is an extension of a p-discrete torus
(Z/p>)"™ by a finite group. There is a unique normal p-discrete torus 7'
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in P such that P/T is finite. We will denote this unique p-discrete torus
by Py. A discrete approximation for an extended p-compact torus P is a ho-
momorphism f: P — P, where P is an extended p-discrete torus and f in-
duces an isomorphism P / ]50 — mo P and an isomorphism H*BPy — H *B]50.
Every extended p-compact torus has a discrete approximation [9, Proposi-
tion 3.13].

DEFINITION 3.2 ([9, Definition 7.3]). Let W C GL.(Q,) be a pseudore-
flection group. If s € W is a pseudoreflection of order ord(s), then

(1) the fized point set F(s) of s is the fixed point set of the action of z
on T by conjugation, where z € N(T) is an element which projects
on s by the natural projection N(T) — W,

(2) the singular hyperplane H(s) of s is the maximal divisible subgroup
of F(s) (s0 H(s) = (Z/p®)" 1),

(3) the singular coset K(s) of s is the subset of T given by elements of
the form 2°"9%) as 2 runs through elements of N (T'), which project
to s in W,

(4) the singular set o(s) of s is the union o(s) = H(s) U K(s).

Notice that there are inclusions H(s) C o(s) C F(s) [9, Remark 7.7].

Let A € T be a subgroup. Let Wx (A) denote the Weyl group of Cx (A),
and Wx(A)1 the Weyl group of the unit component Cx(A)y of Cx(A).
There are inclusions Wx(A); C Wx(A) C W, where the last follows from
[9, §4]. The next theorem tells us how to calculate Wx (A) and Wx (A);.

THEOREM 3.3 ([9, Theorem 7.6]). Let X be a connected p-compact group
with mazimal torus T and Weyl group W . Suppose that A C T is a subgroup.
Then

(1) Wx(A) is the subgroup of W consisting of the elements which, under
the conjugation action of W on T, pointwise fix the subgroup A,

(2) Wx(A)1 is the subgroup of Wx(A) generated by those elements s €
Wx (A) such that s € W is a reflection and A C o(s).

Now we have all the ingredients needed for the proof of Proposition 3.1:

Proof of Proposition 3.1. Let Xy be the unit component of X, and let
Wx, be the Weyl group of Xy. Then Wy, is a normal subgroup of Wx of
index a power of 2 [23, Proposition 3.8]. The minimal normal subgroup of
Wx of 2 power index, usually denoted by O%(Wx), equals (Z/2)" ! x A,
i.e. the sequence

(Z/2)" " % A, = O*(Wx) — (Z/2)" x 5, - (Z)2)?,

where A, is the alternating group, is exact. The group (Z/2)? has five sub-
groups: the trivial subgroup 1, the first and the second factor Z; and Zs,
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the diagonal D, and the whole group (Z/2)%. Hence, there are five normal
subgroups of Wx of index a power of 2:

(1) 774(1) = (Z/2)"" » Ay,
(2) 7 1(Z) = (Z/2)" x A,
(3) 7 1(Zs) = (Z/2)"" x T,
(4) = 1(D),

(5) = ~L(Z/2)?) = Wx.

Because Wy, is the Weyl group of a connected 2-compact group, Wx, is a
pseudoreflection group. According to the Clark—-Ewing list [6], only the cases
(3) and (5) may be pseudoreflection groups (note that n > 3). We complete
the proof by showing that the case Wy, = (Z/2)""! x X, is not possible.

Suppose that X is disconnected, and let Xy be the unit component.
By the arguments above Wy, is (Z/2)"! x X,. Let V be the subgroup
of the maximal torus T of X (and also of X() generated by the elements
(-1,-1,1,...), (1,1,—-1,-1,1,...), and so on. Then V is an elementary
abelian 2-group of rank m = [n/2]. Write n = 2m + r where r is 0 or 1, and
let C' denote the centralizer C'x, (V). By Theorem 3.3(1), we get

We i=Wx, (V) = {s € Wx, | s|y =idv} = (Z/2)""! x (2/2)"™,
where the subgroup (Z/2)™ C X, is generated by the transpositions 7o;_1 2;
for i = 1,...,m. Let Cy be the unit component of C. By Theorem 3.3(2),
the Weyl group of Cj is

Wey = Wx, (V)1 = (s € We | s is a reflection and V' C o(s)).
An element s € Wg = (Z/2)" ! x (Z/2)™ is a reflection if and only if s
equals ((1,...,1),79i—12;) or ((1,...,1,—=1,—1,1,...,1),72_12;) for some i,
where the two “—1” entries are in the (2¢ — 1)th and (2¢)th positions. We
analyze both cases:

o If s = ((1, Ceey 1),’7’21‘,1721'), then F(S) = {(1‘1, .. ,ﬂj‘n) € (Z/2oo)n ’
x9i—1 = x9;} and H(s) = F(s). Therefore o(s) = F(s).

o If s =((1,...,1,-1,-1,1,...,1),7-1,2i), then F(s) = {(z1,...,2p)
€ (Z/2%°)" | x9i1 = x5, i = 1,...,m}. Hence also in this case
H(s) = F(s) =o0(s).

Since (—1)7! = —1 € Z/2°°, the group V is a subgroup of o(s) in both

cases, and by Theorem 3.3, we get
We, = (s € We | s is a reflection) = ((Z/2)*)™ = (Z/2)*™.

Hence the normalizer of a maximal torus of Cy has the form M™, where M is
the subgroup of the normalizer of the maximal torus of Sp(2)4 corresponding
to the subgroup (((1,1),712),((—=1,=1),712)) < (Z/2)*> x Z/2 = Wsp(2)s-
By [13, Theorem 6.1] and [11, Theorem 0.5B(5)], the 2-compact group Cp
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splits into a product Cy = X7 X - -- X X,,, where each X; is isomorphic to
(SU(2)?/E;)% for some subgroup E; < Z(SU(2)?) = (Z/2)?, and M is iso-
morphic to the maximal torus normalizer of X;. Among the five possibilities
for each X;:

(1) (SU(2) x SU(2)); = Spin(4)y,
(2) (SU(2)/(2/2) x SU(2))y = (SO(3) x SU(2))y,
(3) (SU(2) x SU(Q)/(Z/Q))Q = (SU(2) x SO(3))y,
( ) (SU(2) xz/2 SU(2))3 = 0(4)$,

(5) (

(
(SU(2) x SU(2))/(Z/2) = (S0(3) x SO(3))3,
(

only SO(4) produces a pseudoreflection group which is equivalent to that
given by M. But while the maximal torus normalizer of SO(4) is a split
extension 1" : (Z/2 x Z/2), M is not. Therefore there is no 2-compact group
X; whose maximal torus normalizer is M, which contradicts our initial as-
sumption of X being disconnected. m

4. Mod 2 cohomology of the 2-compact group X. In this section
we calculate the mod 2 cohomology of a 2-compact group X whose maximal
torus normalizer is isomorphic to that of Sp(n)%. This is done under the
induction hypothesis that Sp(m)) is N-determined for 2 < m < n. Notice
that we already know that Sp(1) and Sp(2) are weakly N-determined.

First we need some information about the centralizers of elementary
abelian subgroups in Sp(n). It is well known that theses centralizers are
isomorphic to products Sp(ny) x - - - x Sp(ng), where nq +---+ni = n. The
next lemma shows that they are N-determined if each of their factors is.

LEMMA 4.1. Let X = Sp(ny)y x -+ x Sp(ng)5.

(1) If all factors Sp(n;)% are N-determined, then so is X.
(2) If all factors Sp(n;)5 are weakly N-determined, then so is X .

Proof. Let Y be a 2-compact group with maximal torus normalizer Ny
isomorphic to that of Sp(ny)5 x -+ x Sp(nk)4. If at least one factor is only
weakly N-determined, assume that Y is connected. Since Ny is a product
Ny X -+ X Ni, where N; is the normalizer of a maximal torus of Sp(n;)5, the
space Y is by [13, Theorem 6.1] isomorphic to a product Y7 x - - - X Yy, where
N; is the normalizer of a maximal torus of Y;. If Sp(n;)5 is N-determined,
the 2-compact group Y; is isomorphic to Sp(n;)5. If Sp(n;)5 is only weakly
N-determined, the space Y is connected by assumption and then also Y; is
connected. Hence Y; is isomorphic to Sp(nz) Therefore Y is isomorphic to
Sp(ny1)y x---xSp(ng)y. So Sp(ny)y x- - -xSp(ng)b is (weakly) N-determined
if all factors are (weakly) N-determined. m

As X and Sp(n)} “share” the same maximal torus normalizer N, they
both “share” the same maximal torus 7. Let Ep < T be the maximal
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toral elementary abelian 2-group of both X and Sp(n)}. Let fg, be the
monomorphism E7 — X. The next lemma shows that Er is in fact the
maximal elementary abelian subgroup of X (up to conjugation).

LEMMA 4.2. Let g: E — X be an elementary abelian subgroup of X.
Then g factors through fg,.

Proof. If g: E— X is central, then by [23, Lemma 4.1] or [9, Theorem 1.2]
the map g factors through fg,. (recall that X is connected by Proposition 3.1).

Now assume that g: F — X is not central, thus there exists a subgroup
V' < E of rank 1 which is noncentral. By [20, Proof of Theorem 1.3] there ex-
ists g: E — N such that Bg ~ fyBg, the centralizer Cy(g) is the maximal
torus normalizer of C'x(g), and g|y factors through fg,.. Because V is a toral
subgroup, the centralizer Cy (V') is the maximal torus normalizer of both
Cspnyy (V) and Cx (V) [20, Theorem 1.3]. So the calculation of Wx (V) and
Wx (V)1 by means of Theorem 3.3 amounts to the calculation of W2 (V)
and Wgp(n)a (V)1, which implies that Cx (V) is connected, and since by in-
duction, the centralizer Cgpnyy (V) = Sp(m)y x Sp(n —m)3, m > 0, is
weakly N-determined (Lemma 4.1), Cx (V) is isomorphic to Cigp(n)p (V).

The map g: F — X has a lift to a map ¢': E — Cy(X) = Sp(m)} x
Sp(n—m)%. Up to conjugacy every elementary abelian subgroup of Sp(m) x
Sp(n —m) is toral. Hence g is toral, i.e. factors through fg,. =

We can calculate the centralizer of E7 in X:

LEMMA 4.3. The centralizer Cx(ET) is isomorphic to the 2-compact
group (Sp(1)™)5.

Proof. As Er is toral, the centralizer C(Er) is the maximal torus nor-
malizer of both Cgy(n)p (E7) and Cx (Er) [21, Proposition 3.4(3)]. So the cal-
culation of Wx (Er) and Wx (Er)1 by means of Theorem 3.3 amounts to the
calculation of Wy ya (Br) and Weyya (E7)1 which implies that Cx (ET)
is connected. Since Cgyn)p (ET) = (Sp(1)™)% is weakly N-determined, the
centralizer Cx(Er) is isomorphic to Cgynys(Er) by Lemma 4.1, hence
Cx(Er) = (Sp(1)")3- =

The action of X, < WSp(n) = Wx on BE7 induces an action of X,, on
BCx(Er) = Map(BEr, BX)pf, = (Sp(1)4)™ that permutes the copies
Sp(1)%. Define BY = BCx(FEr) x5, EX, and consider the diagram

(BSp(1)™)3 BTY BY,
(BT)) Map(BT, BX) 5y, x5, EX, BY
(BT)3 Map (BT, BX) By X Wy EWspm) ——= BWsp(n)
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where all rows are fibrations. The space Map(BT, BX)pf, XWepim) EWsp(n)
is the normalizer of the maximal torus T in X, so it is isomorphic to
B(Ngp1)T x Xy,). Therefore the space Map(BT, BX)py, X, EX), is iso-
morphic to B(T x X},). This means that the middle row has a section, and
hence also the top row has a section. It follows that BY is homotopic to
B((Sp(1)5)™ x Xy,).

PROPOSITION 4.4. The cohomology H*BX is detected by elementary
abelian 2-subgroups.

Proof. The cohomology H*BSp(1)™ is detected by elementary abelian
2-subgroups, hence by [16], H*BY is detected by elementary abelian sub-
groups. The normalizer Bfy factors through the map Bfy. According to
[20, Theorem 1.2 and Lemma 3.1], the cohomology H*(Sp(n)/N) is finite
and the Euler characteristic x(Sp(n)/N) equals 1. Therefore the transfer
argument [10, Theorem 9.13] shows that Bf} is a monomorphism. So also
Bf; is a monomorphism. Hence H*BX is detected by elementary abelian
2-subgroups. =

We can now identify the algebra H*BX:

PROPOSITION 4.5. The cohomology H*BX is isomorphic to H*BSp(n)
as an algebra over the mod 2 Steenrod algebra.

Proof. By Proposition 4.4, the cohomology H*BX is detected by ele-
mentary abelian 2-subgroups, and by Lemma 4.2, every elementary abelian
subgroup of X factors through Ep. Therefore H*BX injects into H*BEr
and therefore into H*BCx (Er). If we take trivial action of X, on X, the
inclusion Cx(Er) — X is a X,-equivariant map. Hence the cohomology
H*BX is a subalgebra of (H*BSp(1)")*" = H*BSp(n). But H*(BX;Q) =
H*(BT;Q)"Wx = Qlxy, ..., T4,], hence the Bockstein spectral sequence asso-
ciated to H*BX C H*Sp(n) = Falzy, ..., z4yn] converges to Folzy, ..., x44),
and therefore H*BX = H*BSp(n). =

Recall that the Quillen category Q,(G) of a group G at a prime p is
the category with objects (V) «), where V' is a nontrivial elementary abelian
p-group and «: V — G is a G-conjugacy class of monomorphisms, and
Morg ) ((V, @), (V',a')) is the set of group morphisms f: V' — V' such
that o = o/ o f. By Lannes’ theory ([19]) and the Dwyer—Zabrodsky theorem
([15] and [30]), the set of G-conjugacy classes of monomorphisms a: V. — G
is in one-to-one correspondence with the set of morphisms Ba*: H*BG —
H*BYV of unstable algebras over the Steenrod algebra A, such that H*BV is
a finitely generated module over Ba*(H* BG). Hence, there is an equivalent
description of the Quillen category which can be used also for p-compact
groups [14, §2]: If X is a p-compact group, then Q,(X) is the category
with objects (V, «), where V is a nontrivial elementary abelian p-group and
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a: H*BX — H*BV is a morphism of unstable algebras over the Steenrod
algebra A, such that H* BV is a finitely generated module over a*(H*BX),
and Morg_ () ((V, @), (V' ') is the set of group morphisms f: V' — V' such
that o = Bf*d/. If X is the p-completion of a compact Lie group then both
definitions agree [14, Proposition 2.2].

Using the “cohomological” definition of the Quillen category and Propo-
sition 4.4 we obtain the following result.

PROPOSITION 4.6. The categories Q2(Sp(n)) and Q2(X) are isomorphic.

5. The 2-stubborn decomposition of Sp(n). A 2-stubborn subgroup
of a Lie group G is a 2-toral group P such that Ng(P)/P is a finite group
which has no nontrivial normal 2-subgroup. Let R2(Sp(n)) be the 2-stubborn
category of Sp(n), which is the full subcategory of the orbit category of Sp(n)
with objects Sp(n)/P, where P C Sp(n) is a 2-stubborn subgroup. Then
the natural map

N
ot P gty Z P/ = BSpln)
induces an isomorphism in homology with Z4)-coefficients [17, Theorem 4].
Therefore, although homotopy colimits are not colimits in a categorical
sense, in order to define a map f: BSp(n)) — X it is enough to define
a family of compatible maps {fp: ESp(n)/P ~ BP — X | Sp(n)/P €
ob(R2(Sp(n)))}-
We now proceed to recall the 2-stubborn subgroups of Sp(n) which are

calculated in [32]. Let the permutations o, ...,0r_1 in Xyr be defined by
s+2", s=1,...,2" mod 2",
or(s) = +1 +1
s—2" s=2"4+1,...,2"7  mod 2""".

Let Ao, ..., Ar_1 € Sp(2¥) be diagonal matrices with
(Ar)ss = (_1)[(5—1)/2*]’

where [—| denotes greatest integer, and let By, ..., Bx_1 be the permutation
matrices for og,...,0h_1.

DEFINITION 5.1. For every k > 0, the subgroups Eox C Xor and Ly, I'ox
C Sp(2F) are defined by

Eq. = (00,...,06-1) = (Z/2)*,
Iow = (ul, Ap, By | u e Q8),0<r<k),
Tox = (ul, Ay, By |u € SY(j), 0 <r < k),

where Q(8)={41, i, 4-j, £k} is the quaternion group and S'(j) = {a + bi,
aj + bk | a®> +b? = 1} is the normalizer of the maximal torus in Sp(1) = S3.
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REMARK 5.2. Let P be I'yi (resp. I'si), and Pp be the subgroup of all
diagonal matrices in P. Then Pp is Q(8) x Eor (resp. S'(j) x Fox) and the
extension Pp — P — (Z/2)" splits.

A subgroup P C Sp(n) is called irreducible if the induced P-representa-
tion in H" is irreducible. We have

THEOREM 5.3 ([32, Theorem 3]).

(1) An irreducible subgroup P C Sp(n) is a 2-stubborn subgroup if and

only if it is conjugate to either
P=Ty1Eyi - 1Eys or P =T lFEyi -1 FEars
and n = 2kHTittrs,
(2) An arbitrary subgroup P C Sp(n) is a 2-stubborn subgroup if and

only if it is conjugate to Py X --- X Ps, where P; is an irreducible
2-stubborn subgroup of Sp(n;) and n =ny + - - + ns.

Let R2(Sp(n)) be the full subcategory of Ra(Sp(n)) with objects
Sp(n)/P, where P is one of the representative 2-stubborn subgroups from
the previous theorem. The category Ra(Sp(n)) is equivalent to Ro(Sp(n)),
so the natural map

hocolim ESp(n)/P — BSp(n)
Sp(n)/PER2(Sp(n))

is also a homotopy equivalence up to 2-completion.

PROPOSITION 5.4. Let Sp(n)/P € Ra(Sp(n)) and define Pp = PN
Sp(1)" and Pr = P NTgy). Then

(1) CSp(n) (PT) = TSp(n) and CSp(n)(PD) = (Z/2)nv
(2) for any extension o: P — Sp(n) of i: Pr — Sp(n), we have
CSp(n)(a(P)) = Z<P)7
(3) the canonical map
wo(Map(BP, BSp(n)2) Balsp, =Bip, ) — Hom(H*BSp(n), H* BP)
18 an injection.

REMARK 5.5. By Map(BP, BSp(n)é\)Ba\BpT=BiPT
ponents of the mapping space Map(BP, BSp(n)%) given by maps Ba: BP
— BSp(n)j such that Ba|pp, ~ Bip,.

Proof. Part (1) is obvious for P = I'yn and P = I'yn. If P = QU Far, where
Q is an irreducible 2-stubborn subgroup of Sp(2"~"), then Cgpon)(Pr) =
Csp(Qn—T)(QT)2T, which is, by induction, (Tsp(2n—r))2r = Tspeny- If P =
[1;_, P; is a product of irreducible 2-stubborn subgroups, then Cgy, () (Pr) =
[1i=1 Cspn)((Pi)1) = T1iZ1 Tsp(n,) = Tsp(n)- Analogously we prove that
OSp(n)(PD) = (Z/2)".

we denote the com-
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Let P be an irreducible 2-stubborn subgroup of Sp(2") and let Ba: BP
— BSp(2")5 be a homomorphism such that Ba|gp, = Bip,. The ex-
tensions Ba|gp,: BPp — BSp(2™)) of Bip, are classified by obstruction
classes lying in

H™(Pp/Pr;mn(Map(BPr, BSp(2")3) Bip,))-

By [15] and [30], Map(BPr, BSp(2")})pip, is homotopy equivalent to
BClgp(amy(Pr)3, which is isomorphic to ((BS1)3)?", by part (1). Then

H"™(Pp/Pr; mm(Map(BPr, BSp(2")3)Bip, ) = H™ (Pp/Pr; mm(BS')?")
and the only possible nontrivial group appears when m = 2. And
H?(Pp/Pr;m(Map(BPr, BSp(2")3)pip, ) = H*(Z/2; (Z3)*"),

where the group Z/2 acts on (Z)?" by reflection on each component; this
action can be seen as a diagonal action of the Weyl group of Sp(1), i.e. Z/2,
on 2" copies of the maximal torus S*. By Shapiro’s lemma [4, ITI, Proposition
6.2], the group H%(Z/2; (Z4)*") is trivial, so all obstruction classes vanish.
Hence if Ba|gp, = Bip, then Ba|gp, = Bip,,.

First we will prove part (2) and (3) for the case of P being either In
or I'oyn. Let Ba: BP — BSp(2™)% be a map such that Ba|gp, = Bipp,.
Then by the paragraph above, Ba|gp,, is homotopic to Bip,. The exten-
sions Ba: BP — BSp(2")} of Bip, are classified by obstruction classes
lying in Hm(P/PD;Wm(Map(BPD,BSp(2”)§\)BiPD)). By [15], [30], and [3],
the mapping space Map(BPp, BSp(2")3) Bip,, is homotopy equivalent to
BClgy2ny(Pp)4, which is isomorphic to (BZ/2)?" (part (1)). Then the ob-
struction group

H™(P/Pp; mn(Map(BPp, BSp(2")3))pip, ) = H™(P/Pp; mm(B(Z/2)*"))

is nontrivial only possibly for m = 1. The group P/Pp is isomorphic to
the group generated by the permutation matrices By,..., B,—1 (Defini-
tion 5.1). So P/Pp = (Z/2)" and the action of P/Pp on m(B(Z/2)*") =
(Z./2)*" is given by the permutations oy, ..., 0, 1 which define the matrices
By, ..., By,—1. By Shapiro’s lemma [4, III, Proposition 6.2],
H'(P/Pp;m(Map(BPp, BSp(2")3)Bip, ) = H' (Ean; (Z/2)%")
=H0'1;z/2) =1,

so all obstruction groups vanish. Therefore Ba is homotopic to Bip and
Cspny() equals Z(P).

Now we will prove parts (2) and (3) for an irreducible 2-stubborn sub-
group P of Sp(2"). Write P = Q! Eor, where @ is an irreducible 2-stubborn

subgroup of Sp(2"~"). Let a, : P — Sp(2™) be two homomorphisms such
that Ba* = BB* and a|pp, = ip, = (|pp,. We have proved that a|pp, =
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ir, = BlBp,- Let &, 3: Q¥ — Sp(2") be the restrictions of a and 3. Be-
cause Z(Q*) = Z(Q)* = (Z/2)*, the homomorphisms @ and 3 factor
through homomorphisms

a,0: Q¥ — Csyom (Z(Q%)) = Sp(2" ")
The map Ba is homotopic to the map

BQ*

12

Map(BZ(Q?), BQ? )pi - Map(BZ(Q?'), BSp(2")) b
~ (BSp(2"™")*)3,

hence Ba* = (Bag)*. An analogous argument shows that BB* = (BBy)*.
By Lannes’ theory [19],

NS Z(Q? Z(Q? =\
(Bay) =T\ ) =127 = (BB,

so Ba* = BB*.

The homomorphisms & and B are matrices of dimension 2" x 2", where the
entries are &; j, ;. ;: Qi — Sp(2"7");. The indices i and j mdlcate the com-
ponents in the products. By induction, Ba;,; and Bﬁ“ are homotopic and
therefore a; ; and Bz ; are conjugate [19, Théoreme 3.4.5]. We can assume that
Qi = ﬁl i- Because @); and @; commute for ¢ ;é J, the homomorphisms o ;
and ﬂ” factor through homomorphisms a”,ﬁ” Qi — Cgpan—r)(@,;(Q)).
By induction, the centralizer Cg,on-—r)(a;,;(Q)) equals Z(Q;) = (Z/2);. Be-
cause a|p, = = 3 Pp, the homomorphism «; ; ﬁz_ 1 Qi — (Z/2); factors

through a homomorphism ~; ;: (Q/@p)i — (Z/2);. Then ﬂm equals the
composition

Qi 2 Qi x (Q/Qp)s 22 Sp(2nr); x (2/2); £ Sp(2");,

where A is the diagonal map composed with the quotient map and p is the
multiplication in Sp(2"~"). Because Baj; = Bﬁ”, the map B~; ; induces a
trivial map in mod 2 cohomology. Because Q/Qp is an iterated wreath prod-

uct of elementary abelian groups, the map +; ; is constant [25, Lemma 6.10].
Hence o j = 5” and so @ = 3, and the centralizer Csp(any (@) is given by the
fixed-point set Cp(any(@) = (Cgpian-ryer (@))% = ((Copn-—n)(Q))*") " =
((z/2)?")F>r = 7,/2 = Z(P), which proves part (2).

The extensions Ba: BP — BSp(2")) of Ba are classified by the ob-
struction groups H™(P/Q?"; T, (Map(BQ? , BSp(2™)5)Ba)). By [17], the
mapping space Map(BQ?", BSp(2"),)pa is homotopy equivalent to
BC’Sp(Qn)(QQT)Q = (Z/2). Hence the obstruction groups are

H™(P/Q* ;7 (Map(BQ?* , BSp(2™)))a)) = H™(P/Q* ;7 (BZ/2)).
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The only possible nontrivial obstruction group is for m = 1. The group
P/Q? = FEy acts on BC’SP(Qn)(QT) = (BZ/2)?" permuting the factors,
hence IndEQT (Z/2)?" = (Z/2), by Shapiro’s lemma [4, 111, Proposition 6.2].
Therefore

H'(K 1 Eyr; (Z/2)") = H'(K; (2/2)*" ).
Thus all obstruction groups vanish, so Ba is homotopic to Bip.

Finally, let P = P; x --- X Ps, where P; is an irreducible 2-stubborn
subgroup of Sp(n;). Let a,3: P — Sp(n) be two homomorphisms such
that Ba® = Bf* and a|p, = (|p,. Both homomorphisms factor through
a,B: P — Cgpn)(Z(P)) = Cspn)((Z/2)?) = Sp(n1) x - -+ x Sp(ns). In the
same way as in the case of P belng an irreducible 2-stubborn group, we
can show that Ba* = BB*. The maps & and (3 are matrices of dimension
s X s with entries maps &; j, Bi,j: P; — Sp(n;). As before we can show that
@ j = (i, so Ba~ Bf. The equality Z(P) = Z(P1) X --- x Z(Ps) finishes
the proof. =

6. The map from Sp(n)) to X. For every object Sp(n)/P in R(Sp(n))
we define a 2-compact group morphism fp: P — X as the composition of
the two inclusions ip: P — N and fy: N — X. We will prove that for
every morphism c,: Sp(n)/P — Sp(n)/Q in R(Sp(n)), the diagram

T
~ BX
commutes up to homotopy.

Let us define a = fy oip and B = fy oig o cg. Then Ba™ = BB*. The
group Pr = P N Tgy,) is 2-toral. The restrictions a|p, and 3|p, are conju-
gate in Sp(n), and hence by [24, Proposition 4.1], they are also conjugate in
the normalizer N of the maximal torus. So Ba|gp, ~ Bf|pp,. By the next
proposition, Ba ~ Bf.

Let K — G — H be an exact sequence of groups. Then H acts freely
on BK = EG/K ~ BK, and BK/H equals BG. For any space BX with
trivial action of the group H, we have

(2) Map(BG, BX) = Map(BK/H, BX) = Mapy(BK, BX)
~ Mapy (EH x BK, BX)
— Mapy (EH, Map(BK, BX)) = Map(BK, BX )"

PROPOSITION 6.1. For every Sp(n)/P € ob(R(Sp(n))), the canonical
map

(1) Bcgl N

mo(Map(BP, BX)

18 an injection.

) — Hom(H*BX, H*BP)

Ba|pp,=Bfp;
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Proof. Consider the diagram
Map(BPr, BY ) pi,

® T

Map(BPT,BSp( )5) Biy Map(BPr, BX)g#,

By [30], the mapping space Map(E\P;, BSp(n)5) iy is homotopy equivalent
to BC’Sp(n)(BPT)QA and by Proposition 5.4, the latter is homotopy equiva-
lent to (BTgp(,))y- Analogously Map(E\P;,BY) Bip 18 homotopy equiva-
lent to (BTSp(n))é\. The mapping space Map(EVPT, BX)py, is the classify-
ing space of a 2-compact group [10]. Its Weyl group is Iso(Bfx o Bip,) =
{w € Wx | wo Bfy o Bip, ~ Bfn o Bip,} [35, Proposition 4.3]. By the
construction of the map fy, the group Iso(Bfy o Bip,) equals Iso(Biy o
Bi pT) Because Iso(Biy o Bip,) is the Weyl group of the mapping space
Map(BPT, BSp( )2)Bir = (BTsp(n))?, the group Iso(B fy o Bip,) is trivial,
hence Map(BPT7 BX)pj; =~ (BTgpn))y- Therefore both maps in diagram
(3) are homotopy equivalences.
Taking homotopy fixed points we obtain the diagram

Map(BPr, BY ) /™)

/\

Map(BPr, BSp(n)y) ) Map(BPr, BX)/ ")

where both maps are mod 2 equivalences, since an equivariant mod 2 equiv-
alence between 1-connected spaces induces a mod 2 equivalence between the
homotopy fixed-point sets.

By Proposition 5.4, the components of Map(BPT, BSp(n)j )B(Zi/PT) are

distinguished by mod 2 cohomology. Any map in Map(BPT, BX ) (P/ Pr) has
a lift to BN and therefore to BY. The obstruction group Wh1ch classiﬁes
the extensions is

H?(P/Pp; 7 Map(BPr, BX) ;)
~ H2(P/Pr; m Map(BPr, BSp(n)})siy,),
so the components of Map(BPT, BX)g; (P/PT) ~ Map(BP, BX)BQ\BPT=BZ'FT
are also distinguished by mod 2 cohomology. "

Diagram (1) establishes a map from the 1-skeleton of the homotopy
colimit {BP}fé2 (Sp(n)) O BX. The obstruction groups for extending a map
defined on the 1-skeleton of the homotopy colimit to a map on the total
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homotopy colimit are

_ lim"™" 7; Map(BP, BX) gy,
Rz (Sp(n))

for i > 2, where lim® is the ith derived functor of the inverse limit functor
([5] and [37]).
Let Ab be the category of abelian groups and let
¥, 17" Ry(Sp(n)) — Ab
be functors defined by
IIX(Sp(n)/P) = mj Map(BP, BX) gy,
S n
O Sp(a) ) = 7; Map(BP, BSp(n)}) piy.
Note that Map(BP BSp(n)3) ip is homotopic to BZ(P)% [17, Theorem 3.2]

and therefore I1] 5P (n)(Sp( )/ P) is well defined. By the next proposition, also
II{¥(Sp(n)/ P) is well defined.

PROPOSITION 6.2. There exists a natural transformation
T U].Sp(n) — U]X
which is an equivalence.
Proof. For every 2-stubborn group P we have homotopy equivalences
(4)  Map(BP, BSp(n)5)gip — Map(BP, BY )p;,, — Map(BP, BX)g¢,

which depend on the chosen lift Bip: BP — BY of the map Bip: BP —
BSp(n)y. Denote by Ps, < P the subgroup of 2-elements. Because the
inclusion Py, < P induces a mod 2 equivalence, and Rep(Px, Sp(n)) —
[BP, BSp(n)4] is a bijection [18, Theorem 1.1(i)], any two lifts differ by a
conjugation Begy. Since Bfp ~ Bfp o Beg, the equivalence (4) induces well
defined isomorphisms

137" (Sp(n)/ P) — I1¥ (Sp(n) /P)
which commute with maps induced by morphisms in Ra(Sp(n)). =

PROPOSITION 6.3. For all i,j5 > 1,

hm 7j Map(BP, BX)gf, = 0.
Ra(Sp(n)
Proof. By the previous lemma,
lim* 7;Map(BP, BX)pys, = lim’ ; Map(BP, BSp(n)y) i,
Ra(Sp(n) R2(Sp(n))
and the right side is 0 [17, Theorem 4.8]. m
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Because all obstructions vanish, there exists a map

f: hocolim BP — BX.
Ra(Sp(n))

By the construction of the map we have a commutative diagram
BY

7\

hocolim ESp(n)/P
Ra(Sp(n) BX

where the diagonal maps induce monomorphisms in cohomology and there-
fore also the map f* is a monomorphism. Since H*BSp(n) = H*BX, f* is
an isomorphism and therefore f is a homotopy equivalence.

7. Sp(n) as a loop space. The normalizer conjecture can be stated
also for finite loop spaces with maximal torus normalizers as a weak version
of Wilkerson’s conjecture (see [36]).

THEOREM 7.1. Let L be a connected finite loop space with a mazimal
torus normalizer isomorphic to that of Sp(n). Then BL is homotopy equiv-
alent to BSp(n).

Proof. To prove BL ~ BSp(n) is equivalent to showing that BL and
BSp(n) lie in the same adic genus [31]. The loop spaces BL and BSp(n)
have the same rational genus. Since BL is finite and connected, L{D\ is a
p-compact group. The maximal torus normalizer of Lz/v\ is just the fiberwise
p-completion of N by the fibration BT — BN — BW/,. Hence LI/,\ and
Sp(n);, have isomorphic normalizers of the maximal torus. By [2], BSp(n);,
is N-determined if p is an odd prime, and by the main theorem of this paper,
BSp(n)y is (weakly) N-determined. So BLj and BSp(n), are homotopy
equivalent. m
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