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Abstract. An R-algebra A is called an E(R)-algebra if the canonical homomorphism
from A to the endomorphism algebra EndR A of the R-module RA, taking any a ∈ A to
the right multiplication ar ∈ EndR A by a, is an isomorphism of algebras. In this case

RA is called an E(R)-module. There is a proper class of examples constructed in [4].
E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they
were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19].
Despite some efforts ([14, 5]) it remained an open question whether proper generalized
E(R)-algebras exist. These are R-algebras A isomorphic to EndR A but not under the
above canonical isomorphism, so not E(R)-algebras. This question was raised about 30
years ago (for R = Z) by Schultz [21] (see also Vinsonhaler [24]). It originates from Problem
45 in Fuchs [9], that asks for a characterization of the rings A for which A ∼= EndZ A (as
rings). We answer Schultz’s question, thus contributing a large class of rings for Fuchs’
Problem 45 which are not E-rings. Let R be a commutative ring with an element p ∈ R

such that the additive group R+ is p-torsion-free and p-reduced (equivalently p is not a
zero-divisor and

⋂
n∈ω

pnR = 0). As explained in the introduction we assume that either

|R| < 2ℵ0 or R+ is free (see Definition 1.1).

The main tool is an interesting connection between λ-calculus (used in theoretical
computer science) and algebra. It seems reasonable to divide the work into two parts; in
this paper we work in V = L (Gödel’s universe) where stronger combinatorial methods
make the final arguments more transparent. The proof based entirely on ordinary set
theory (the axioms of ZFC) will appear in a subsequent paper [12]. However the gen-
eral strategy will be the same, but the combinatorial arguments will utilize a prediction
principle that holds under ZFC.

1. Introduction to generalized E(R)-algebras. Let S be a count-
able, multiplicatively closed subset of a commutative ring R with 1. An
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R-module M is S-reduced if
⋂

s∈S
sM = 0 and it is S-torsion-free if sm = 0,

m ∈ M , s ∈ S, implies m = 0. Suppose that R (as an R-module) is S-reduced
and S-torsion-free. Then R is called an S-ring (see [16]). In order to avoid
zero-divisors as in the case of Z-adic completion

∏
p Jp of Z we also as-

sume that S is cyclically generated , i.e. S = 〈p〉 := {pn : n ∈ ω} for some
p ∈ R. We will concentrate on S-cotorsion-free modules. An S-torsion-free
and S-reduced R-module M is S-cotorsion-free if Hom(R̂, M) = 0, where

R̂ denotes the S-completion of R. A submodule U ⊆ M is S-pure (we also
write U ⊆∗ M) if sM ∩U ⊆ sU for all s ∈ S. Note that R, being S-reduced,
is Hausdorff in the S-topology. In the proof of Step Lemma 5.3 we will also
use the following condition on the additive group R+ of R which implies
that R is S-cotorsion-free.

Definition 1.1. An R-module M is ΣS-incomplete if for any sequence
0 6= mn ∈ M (n ∈ ω) there are an ∈ {0, 1} with

∑
n∈ω pnanmn /∈ M . If

M = R+ we say that R is ΣS-incomplete.

All S-rings of size < 2ℵ0 are ΣS-incomplete, as shown in [11]. Thus it
follows easily that any S-ring which is a direct sum of S-invariant subgroups
of size < 2ℵ0 is ΣS-incomplete as well. So we deduce from [11]

Corollary 1.2. If an S-ring R is a direct sum of S-invariant subgroups

of size < 2ℵ0 , then R is ΣS-incomplete. In particular , if S generates the

ordinary p-adic topology (i.e. for 1 ∈ R there is p ∈ 〈1〉 and S = 〈p〉) and

the additive group R+ is free, then R is ΣS-incomplete.

We recall the main definition.

Definition 1.3. If A is an R-algebra, then δ : A → EndR A denotes
the homomorphism which takes any a ∈ A to the R-endomorphism aδ =
ar which is multiplication by a on the right. If this homomorphism is an
isomorphism, then A is called an E(R)-algebra and RA is called an E(R)-
module. By RA we denote the R-module structure of an R-algebra A.

E(R)-algebras can also be defined dually, assuming that the homomor-
phism

EndR A → A (ϕ 7→ 1ϕ)

is an isomorphism. It is easy to see that E(R)-algebras are necessarily com-
mutative.

For any S-ring (with S cyclically generated) that is ΣS-incomplete we
will construct non-commutative R-algebras with EndR A ∼= A. Hence these
As are generalized E(R)-algebras but not E(R)-algebras. If R = Z and RA
is an abelian group, then we do not mention the ring Z: e.g. E(Z)-modules
are just E-groups. The existence of generalized E-rings answers a problem
in [21, 24].
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If κ is a cardinal, then let κo = {α : cf(α) = ω, α ∈ κ}. We will
only need the existence of a non-reflecting subset E ⊆ κo for some regular
uncountable, not weakly compact cardinal κ such that the diamond principle
♦κE holds. It is well known (see e.g. Eklof–Mekler [6]) that ♦κE holds for
all non-reflecting subsets E of regular uncountable, not weakly compact
cardinals κ in Gödel’s universe (V = L). We indicate our (weaker) set-
theoretic hypothesis (which also holds in other universes) as ♦κE in our
following main result.

Theorem 1.4. Let R be a ΣS-incomplete S-ring for some cyclically

generated S. If κ > |R| is a regular , uncountable cardinal and E ⊆ κo

a non-reflecting subset with ♦κE, then there is an S-cotorsion-free, non-

commutative R-algebra A of cardinality |A| = κ with EndR A ∼= A. More-

over any subset of cardinality < κ is contained in an R-monoid-algebra of

cardinality < κ.

A similar result without the set-theoretic assumption will be shown
in [12]:

Theorem 1.5. Let R be a ΣS-incomplete S-ring for some cyclically

generated S. For any cardinal κ = µ+ with |R| ≤ µℵ0 = µ there is an

S-cotorsion-free, non-commutative R-algebra A of cardinality |A| = κ with

EndR A ∼= A.

It seems particularly interesting to note that the R-monoid A comes from
(classical) λ-calculus taking into account that elements of an E(R)-algebra
A are at the same time endomorphisms of A, thus the same phenomenon
appears as known in computer science and studied intensively in logic in
the thirties of the last century. The problems concerning the semantics of
computer science were solved four decades later by Scott [22, 23]. We will
describe the construction of the underlying monoid M explicitly. Since this
paper should be readable for algebraists with only basic background in model
theory, we will also elaborate the needed details coming from model theory.
The basic knowledge on model theory is in [20], for example. In Sections 4
and 5 the monoid M will be completed and become the algebra A.

2. Model theory of bodies and skeletons via λ-calculus

2.1. Discussion. We begin by defining terms for a skeleton and will
establish a connection with λ-calculus. Let R be any commutative S-ring
with S = 〈p〉. (ΣS-incompleteness will be added in Section 5.)

By definition of generalized E(R)-algebras A, endomorphisms of RA
must be considered as members of A. Hence they act on RA as endomor-
phisms while they are elements of RA at the same time. Thus we will in-
troduce the classical definitions from λ-calculus over an infinite set X of
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free variables and an infinite set Y of bound variables to represent those
maps. First note that we can restrict ourselves to unary, linear functions
because endomorphisms are of this kind. (The general argument to reduce
λ-calculus to unary functions was given by Schönfinkel; see [1, p. 6].) What
are the typical terms of our final objects, the bodies? If x1 and x2 are mem-
bers of the generalized E(R)-algebras A and a, b ∈ R, then also polynomials
like σn(x1, x2) = axn

1 + bx3
2 belong to the algebra A, so there are legitimate

functions pn(y) = λy.σn(y, x2) on A taking y 7→ σn(y, x2) and A must be
closed under such “generalized polynomials”. This observation will be de-
scribed in Definition 4.2 and taken care of in Proposition 2.20 and in our
Main Lemma 6.2. A first description of these generalized polynomials will
also be the starting point for our construction and we begin with its basic
settings.

2.2. The notion of terms. Let τ be a vocabulary with no predicates;
thus τ is a collection of function symbols with an arity function τ → ω
defining the places of function symbols. Moreover, let X be an infinite set
of free variables. Then unspecified (τ, X)-terms (briefly called “terms”) are
defined inductively as the closure of the atomic terms under these function
symbols (only), that is:

(i) Atomic terms are the 0-place functions: the individual constants (in
our case 1) and members x from X.

(ii) The closure: If σ0, . . . , σn−1 are terms and F is an n-place function
symbol from τ , then F (σ0, . . . , σn−1) is a term.

We also define the (usual) length l(σ) of a term σ inductively: Let
l(σ) = 0 if σ is atomic and l(σ) = k + 1 if σ derives from (ii) with k =
max{l(σi) : i < n}.

If σ is an unspecified (τ, X)-term, then we define (also by induction on
l(σ)) a finite subset FV(σ) ⊂ X of free variables of σ:

(a) If σ is an individual constant, then FV(σ) = ∅, and if σ ∈ X, then
FV(σ) = {σ}.

(b) If σ = F (σ0, . . . , σn−1) is defined as in (ii), then

FV(σ) =
⋃

i<n

FV(σi).

We fix some further notation. Let x = 〈x0, . . . , xn−1〉 be a finite sequence
of members xi from X without repetitions and Im(x) = {xi : i < n} (and
similarly x′). Then we define the (specified) (τ, X)-terms: A (τ, X)-term is
a pair σ = (σ, x) with σ an unspecified (τ, X)-term and x a finite sequence
from X with FV(σ) ⊆ Im(x). If there is no danger of confusion, then we will
also write σ = σ(x). If t(τ, X) is the set of all (τ, X)-terms, then t(τ) :=
{σ : σ ∈ t(τ, X)} is the set of all unspecified (τ, X)-terms. Furthermore
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observe that for x ⊆ x′ (as maps) with (σ, x) a (τ, X)-term also (σ, x′) is a
(τ, X)-term. For (τ, X)-terms we can define a natural substitution: if (σ, x) ∈
t(τ, X) with x = 〈x0, . . . , xn−1〉 and σ0, . . . , σn−1 ∈ t(τ), then substitution
is defined by

Sub
〈x0,...,xn−1〉
〈σ0,...,σn−1〉

(σ, x) := σ(σ0, . . . , σn−1),

replacing every occurrence of xi by σi. If we replace (if necessary) free vari-
ables of the σi, we can find a sequence x′ with (σ(σ0, . . . , σn−1), x

′) ∈ t(τ, X).
This is a good place for two standard notations: let b = 〈b0, . . . , bn′−1〉 be a
finite sequence of elements without repetition from a set B. If n = n′ and if
(σ, x) is as above, we say that b is a sequence from B (suitable) for x and
write σ(b) = Sub x

b
(σ, x).

A free variable x ∈ X is a dummy variable of (σ, x) if x ∈ Im(x) \
FV(σ), and we say that (σ, x) is X-reduced if it has no dummy variables, i.e.
FV(σ) = Im(x). Trivially, for any (σ, x) we get a natural X-reduced term
by removing those entries of x that correspond to dummy variables. In this
case x = 〈x0, . . . , xn−1〉 becomes x′ = 〈xi0 , . . . , xit−1

〉 for some 0 ≤ i0 < i1 <
· · · < it−1 ≤ n − 1 and we can use substitution to replace x′ by the more

natural sequence x′′ = 〈x0, . . . , xt−1〉: if σ′ := Sub
〈xi0

,...,xit−1
〉

〈x0,...,xt−1〉
(σ, x′), then

(σ, x′) = (σ′, x′′) (by an axiom below).

2.3. The vocabulary of a skeleton and its laws. Let Y be an infinite set
of so-called bound variables (used as variables for function symbols) and (as
before) let y = 〈y0, . . . , yn−1〉 be a finite sequence of elements from Y without
repetitions. Also in this particular case of the vocabulary τ sk of a skeleton

the collection τ sk will consist of an individual constant 1, of variables and
of function symbols (only), defined inductively as τ sk

k (k ∈ ω); moreover, let
τ sk
<k :=

⋃
m<k τ sk

m for k ≤ ω, τ sk
≤k :=

⋃
m≤k τ sk

m for k < ω and τ sk := τ sk
<ω.

(i) (Step k = 0) The vocabulary τ sk
0 consists of an individual constant

1, free variables x ∈ X and bound variables y ∈ Y . Moreover, we
need a particular “2-arity word product” function symbol F⊙ such
that F⊙(x0, x1) = x0x1 is concatenation.

(ii) (Step k = m+1) Suppose that τ sk
≤m is defined and (σ, x) ∈ t(τ sk

≤m, X)
is a specified term of length k with x = 〈x0, . . . , xn−1〉 and y =
〈y0, . . . , yn−1〉 suitable for x. Then Fσ(y0,...,yn−1) is an n-place function

symbol belonging to τ sk
k (but not to τ sk

<k).

For the collection of terms of the skeletons we will write t(τ sk
<k, X) (where

k ≤ ω is as above) and t(τ sk, X) := t(τ sk
<ω, X). Its members (σ, x) will also

be called (generalized) monomials (because they are expressed as products).

We now define inductively
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(2.1) The theory of skeletons, i.e. the axioms T sk
<k for τ sk

<k (k ≤ ω). In

the following let x = 〈x0, . . . , xn〉, put T sk
<k :=

⋃
m<k T sk

m and T sk := T sk
<ω.

(i) (Step k = 0) If x ∈ X, then 1x = x1 = x and 1 ·1 = 1 belong to T sk
0 .

(ii) (Step k = m + 1) T sk
k comprises the following laws:

(a) If (σ, x) ∈ t(τ sk, X), x0 ∈ FV(σ) and Fσ(y0,...,yn) is a function

symbol in τ sk
≤k \ τ sk

<k related to the term (σ, x), then

xFσ(y0,...,yn)(x1, . . . , xn) = σ(x, x1, . . . , xn).

(b) If (σ, x), (σ, x′) are (τ sk
≤k, X)-terms with x ⊆ x′ := 〈x0, . . . , xn′〉,

then

Fσ(y0,...,yn)(x1, . . . , xn) = Fσ(y0,...,y
n′)(x1, . . . , xn′).

(c) Ifπ is an injective map {1, . . . , n}→ ω\{0} and σ′(x0, x1, . . . , xn)
:= σ(x0, xπ(1), . . . , xπ(n)), then

Fσ(y0,...,yn)(x1, . . . , xn) = Fσ′(y0,...,yn)(xπ(1), . . . , xπ(n)).

(d) If (σi, x) ∈ τ sk
≤m for i = 1, 2 and T sk

≤m ⊢ (σ1, x) = (σ2, x), then

Fσ1(y0,...,yn)(x1, . . . , xn) = Fσ2(y0,...,yn)(x1, . . . , xn).

Remark 2.1.

(i) Recall that T ⊢ (σ, x) means that (σ, x) follows from the axioms T .
For convenience (as for free groups) we denote the empty product
by 1.

(ii) Using the notion of λ-calculus for the law (ii)(a), the unary function
Fσ(y0,...,yn)(x1, . . . , xn) is λy0.σ(y0, x1, . . . , xn) and it acts as

xλy0.σ(y0, x1, . . . , xn) = σ(x, x1, . . . , xn).

The axioms in T sk
<k (k ≤ ω) are equations; thus we have an immediate

important application from varieties.

Observation 2.2. The theories T sk
<k (k ≤ ω) are varieties with vocabu-

lary τ sk
<k. A model M of T sk

<k is an algebra satisfying the axioms of T sk
<k and

there are models generated freely by any given set.

Proof. See Grätzer [17, p. 167] or Bergman [2, Chapter 8].

We immediately derive one of our central definitions.

Definition 2.3. Let T sk := T sk
<ω and τ sk = τ sk

<ω be as in Observation
2.2. Any T sk-model (an algebra satisfying T sk) is called a skeleton, and two
skeletons are called isomorphic if they are isomorphic as T sk-models; see e.g.
[2, p. 262] or [20, p. 5].

For applications it is useful to recall the following
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Definition 2.4 ((Free) generators of a T sk
<k-skeleton).

(i) The T sk
<k-model M is generated by a set B ⊆ M if for any m ∈ M

there are (σ, x) ∈ t(τ sk
<k, X) and a sequence b in B suitable for x with

Fσ(y)b = m.

(ii) The T sk
<k-model M is freely generated by B ⊆ M (B is a basis of

M) if B generates M and if for any b and (σ, x), (σ′, x) ∈ t(τ sk
<k, X)

with b from B suitable for x, and Fσ(y)b = Fσ′(y)b, it follows from

T sk
<k that (σ, x) = (σ′, x).

For any set B we will construct a skeleton B freely generated by B. For
this we need

2.4. Reduction of terms. Freeness can easily be checked by the usual
rewriting process (as in group theory). Thus we define for each term (σ, x) ∈
t(τ sk

<k, X) its reduced form red(σ, x) := (σr, xr) ∈ t(τ sk
<k, X). Inductively we

apply the axioms (2.1) (in particular (ii)(a) which connect formulas with
function symbols) to shorten the length of a term; note that by the axioms
(2.1) terms remain the same; we arrive at an essentially unique reduced term.
We first consider the reduction of unspecified terms and find σr from σ:

(2.2) The reduction of terms.

(i) If σ = x ∈ X, then σr = x, and if σ = 1, then σr = 1.
(ii) If σ = σ′σ′′ and σ′, σ′′ are reduced, but σ′′ does not have the form

Fσ0(y0,...,yt)(σ1, . . . , σt), then σr = σ is reduced.
(iii) Suppose that σ′ and σi (i ≤ t) are reduced and that σ =

Fσ′(y0,...,yt)(σ1, . . . , σt), with (σ′, 〈x0, . . . xt〉) ∈ t(τ sk
<k, X) the corre-

sponding specified term. First we get rid of dummy variables: let
u := {i∈{1, . . . , t} : xi ∈ FV(σ′)}; say u = {1 ≤ i1 < · · · < i|u| ≤ n}
and x′ = 〈xi : i ∈ u〉. Then σr = Fσ′(y0,yi1

,...,yi|u|
)〈σi : i ∈ u〉. See

below for a normalization.
(iv) If σ = σ′σ′′ and σ′, σ′′ are reduced terms, but σ′′ is a unary function

of the form Fσ0(y0,...,yt)(σ1, . . . , σt), then σr = σ0(σ
′, σ1, . . . , σt).

We are ready for

Definition 2.5. An unspecified term σ ∈ t(τ sk
<k) is reduced if σr = σ.

A term (σ, x) ∈ t(τ sk
<k, X) is reduced if σr = σ and (σ, x) has no dummy

variables, i.e. FV(σ) = Im(x). Thus red(σ, x) = (σ, x). Moreover, (σ, x) is
normalized if the free variables of σ are enumerated as 〈x0, . . . , xn−1〉.

It is now easy to extend the reduction inductively to t(τ sk
<k, X). Let

red(x, x) = (x, 〈x〉) and red(1, x) = (1, ∅). In (ii) we first ensure (by free
substitution) that the free variables of σ′ and σ′′ are disjoint and then or-
der their union. We want to normalize (σr, x′) in (iii): the sequence x′ is of
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the form 〈xi1 , . . . , xi|u|
〉 for some 1 ≤ i1 < · · · < i|u| ≤ n. We will replace

it by the more natural sequence x′′ = 〈x1, . . . , x|u|〉 and use the substi-

tution σ′′ = Sub
〈xi1

,...,xi|u|
〉

〈x1,...,x|u|〉
(σr, x′); thus T sk

<k implies (σr, x′) = (σ′′, x′′) by

(2.1)(ii)(b). In (iv) we order the union of the free variables FV(σi) (i ≤ t)
after making them pairwise disjoint by free substitutions.

Thus we have a definition and a consequence of the last considerations.

Definition-Observation 2.6. Every term (σ, x) can be reduced to a

(normalized) reduced term red(σ, x) with T sk
<k ⊢ red(σ, x) = (σ, x). Let

tr(τ sk
<k, X) be the family of reduced terms from t(τ sk

<k, X); moreover let tr(τ sk
<k)

= {σ : σ ∈ tr(τ sk
<k, X)}.

Thus we consider only elements from tr(τ sk
<k, X) (so in particular function

symbols Fσ have attached reduced terms (σ, x)). We want to discuss how
much reduced terms can differ if they represent the same element of a free
skeleton. We first give the definition which describes this.

Definition 2.7. Using induction, we say when two reduced elements
σ1, σ2 ∈ tr(τ sk

<k) are essentially equal ; we will write σ1
.
= σ2.

(i) If σ1 is atomic, then σ2 is atomic and σ1 = σ2.
(ii) If σ1 = σ′

1σ
′′
1 such that σ′

1, σ
′′
1 are reduced, then σ2 = σ′

2σ
′′
2 and

σ′
1

.
= σ′

2, σ
′′
1

.
= σ′′

2 .
(iii) If σi = Fσ′

i
(y0,...,ymi

)(σ
i
1, . . . , σ

i
mi

) for i ≤ 2, then m1 = m2 and there

is a permutation π of {1, . . . , m1} with σ1
j

.
= σ2

π(j) for all j ≤ m1

and also σ′
1

.
= σ′

2.

Observation 2.8.

(i) The relation
.
= is an equivalence relation on tr(τ sk

<k, X).

(ii) If F is an n-place function symbol in τ sk
<k and σi

.
= σ′

i ∈ tr(τ sk
<k, X)

for i < n, then F (σ0, . . . , σn−1)
r .
= F (σ′

0, . . . , σ
′
n−1)

r.

Proof. This is immediate by induction using (2.1).

Using normalization of x and b from Definition-Observation 2.6 we can
deduce

Proposition 2.9. If M is a T sk
<k-model and (σ, x) ∈ t(τ sk

<k, X) with

red(σ, x) = (σr, xr), then M ⊢ σ(b) = σr(br) for any sequence b from M
suitable for x with a sequence (br) obtained by normalization.

Note that reduction of terms is defined for each k ≤ ω, thus formally
it depends on k. Moreover, (τ sk

<h, X) ⊆ (τ sk
<k, X) for all h ≤ k ≤ ω. Next

we show that the reduction of terms in (τ sk
<h, X) is the same even if it takes

place in (τ sk
<k, X), i.e. tr(τ sk

<h, X) = tr(τ sk
<k, X)∩t(τ sk

<h, X). A similar argument
holds for freeness.
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Proposition 2.10. Let h ≤ k ≤ ω and (σ, x) ∈ t(τ sk
<h, X).

(i) red(σ, x) with respect to t(τ sk
<h, X) is the same as with respect to

t(τ sk
<k, X).

(ii) If Mz is freely generated by B with respect to t(τ sk
<z, X) for z ∈ {h, k},

then there is an embedding ι : Mh → Mk with ι↾B = idB.

(iii) If σ ∈ t(τ sk
<k), then T sk

<k ⊢ σ = σr.

Proof. (i) follows because reduction of elements from t(τ sk
<h, X) only uses

terms from t(τ sk
<h, X). In (ii) we can extend the identity id : B → B natu-

rally by induction to Mh → Mk, and (iii) follows from Definition-Observa-
tion 2.6.

The skeleton has the following important property.

Corollary 2.11. For σ1, σ2 ∈ τ sk the following are equivalent :

(i) T sk ⊢ σ1 = σ2.

(ii) σr
1

.
= σr

2.

Proof. (ii)→(i). From Definition-Observation 2.6 it follows that T sk ⊢ σ1

= σr
1, σ2 = σr

2 and Observation 2.8 gives T sk ⊢ σr
1 = σr

2, thus T sk ⊢ σ1 = σ2.

(i)→(ii). From (i) it follows that T sk ⊢ σr
1 = σr

2. Thus σr
1

.
= σr

2 by
Definition 2.7 and Observation 2.8.

2.5. The skeleton freely generated by X. Next we construct and discuss
free skeletons based on reduced terms. We will use the infinite set X of free
variables to construct a skeleton MX which is freely generated by a set which
corresponds by a canonical bijection to X.

By Observation 2.8(i) we have an equivalence relation
.
= on τ sk := τ sk

<ω

with equivalence classes [σ] for any σ ∈ τ sk. Let

MX = {[σ] : σ ∈ t(τ sk)}.

The equivalence classes [σ] of atoms σ are singletons by Definition 2.7(i). If
B = {[x] : x ∈ X}, then ι : X → B (x 7→ [x]) is a bijection and we see that
MX is a skeleton with basis B ⊆ MX . Moreover, [ ] is compatible with the
application of function symbols:

If F = Fσ ∈ τ sk with (σ, x) ∈ t(τ sk, X) and x = 〈x0, . . . , xn−1〉 is an
n-place function symbol and σi

.
= σ′

i (i < n), then F (σ0, . . . , σn−1)
r .

=
F (σ′

0, . . . , σ
′
n−1)

r by Observation 2.8(ii), thus

F ([σ0], . . . , [σn−1]) = [F (σ0, . . . , σn−1)] (σi ∈ tr(τ sk))

is well defined, as follows from Observation 2.8(ii).

We have the following



164 R. Göbel and S. Shelah

Theorem 2.12. If X is an infinite set (of free variables) and MX is

defined as above, then the following hold :

(a) MX = {[σ] : σ ∈ tr(τ sk)}.
(b) MX is a skeleton with n-place functions

[F ] : (MX)n → MX , ([σ0], . . . , [σn−1]) 7→ [F (σ0, . . . , σn−1)],

for each n-place function symbol F = Fσ(y0,...,yn−1) for (σ, x) ∈

tr(τ sk, X) with FV(σ) = {x0, . . . , xn−1}.
(c) MX is freely generated by B = {[x] : x ∈ X}, called the free skeleton

over X. Using ι above we identify B and X.

Proof. The axioms (2.1) are satisfied, e.g. the crucial condition (ii)(a)
follows by definition of [F ].

Remark 2.13. In the construction of the free skeleton MX we also used
an infinite set Y of bound variables. However, it follows by induction that
another infinite set Y ′ of bound variables leads to an isomorphic copy of MX .
Thus we do not mention Y in Theorem 2.12.

Lemma 2.14. Let B be a subset of the T sk
<k-model M for k ≤ ω. Then B

is a basis if and only if the following two conditions hold :

(i) If c ∈ M , then there are (σ, x) ∈ tr(τ sk
<k, X) and a sequence b for x

from B such that σ(b) = c.
(ii) If (σ, x), (σ′, x′)∈ tr(τ sk

<k, X) with x = 〈x0, . . . , xn〉, x′ = 〈x0, . . . , xn′〉

and b, b
′
are suitable sequences for x, x′, respectively from B, then

σ(b) = σ′(b
′
) implies n = n′ and there is a permutation π of {0, . . . , n}

such that σ(x) = σ′(xπ(0), . . . , xπ(n)) and b′i = bπ(i) for all i ≤ n.

Proof. If B is a basis of M , then by Definition 2.4 the two conditions of
the lemma hold; see Proposition 2.10(i) & (iii) for (i). Conversely, suppose
that (i) and (ii) hold. It is easy to extend inductively a bijection B → X
to an isomorphism between M and the free skeleton MX as in Proposition
2.10. Thus B is a basis.

2.6. The vocabulary of bodies and their laws. Recall that R is an S-ring
of size < κ with S = 〈p〉 ⊆ R as explained in the introduction. Also recall
that τ sk

<k is the vocabulary of skeletons from the last section, so in particular

τ sk = τ sk
<ω with similar notations for the axioms T sk

<k.

We now extend the vocabulary τ sk
<k of skeletons to the vocabulary τbd

<k of

bodies: Let τbd
<k comprise all function symbols from τ sk

<k (so τ sk
<k ⊆ τbd

<k) and
choose additional function symbols:

(0) An individual constant 0 (for 0 of an R-module).
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(1) Let F+ be a binary function symbol (in charge of addition in R-
modules). Thus we will write F+(y0, y1) = y0 + y1, as usual.

(2) For each a ∈ R let Fa be a unary function symbol (for scalar mul-
tiplication by a on the left). Thus we will write Fa(y) = ay, also as
usual.

Repeated application of (1) and (2) leads to finite sums like
∑n

i=1 aiyi

and we will write τbd := τbd
<ω and call this the vocabulary of the bodies. Again

terms can be written as (σ, x) with σ ∈ τbd (or in τbd
<k as for skeletons) with

FV(σ) = Im(x) for reduced terms. The collection of terms of the bodies will
be t(τbd

<k, X) (where k ≤ ω is as above). Its members (σ, x) will also be called
(generalized) polynomials, because we will show (Lemma 2.18) that they can
be expressed as linear combinations of generalized monomials (terms from
t(τ sk

<k, X) or from tr(τ sk
<k, X), respectively).

As in the case of skeletons we now derive the axioms of the bodies in
order to see that they build a variety as well.

(2.3) The theory T bd
k of bodies for k ≤ ω.

(i) T sk
k ⊆ T bd

k .
(ii) Linearity: If F ∈ τ sk

<k is an n-place function symbol, ai ∈ R (i ≤ t)
and 1 ≤ l ≤ n, then

F
(
x1, . . . , xl−1,

t∑

i=1

aixli, xl+1, . . . , xn

)

=

t∑

i=1

aiF (x1, . . . , xl−1, xli, xl+1, . . . , xn).

(iii) The usual module laws: Let a, b ∈ R and w, y, z ∈ M (with M
a T bd

k -model). Then

(a) 0 + y = y, z + y = y + z, w + (y + z) = (w + y) + z.
(b) 1y = y, a(by) = (ab)y, a(z + y) = az + ay, (a + b)y = ay + by,

y + (−1)y = 0.

Observation 2.15. The theories T bd
<k (k ≤ ω) are varieties with vocabu-

lary τbd
<k. A model M of T bd

<k is an algebra satisfying the axioms of T bd
<k and

there are models freely generated by any given set.

Proof. See Grätzer [17, p. 198, Theorem 3] or Bergman [2, Chapter 8].

Definition 2.16. Let T bd := T bd
<ω and τbd := τbd

<ω be as in Observation
2.15. Any T bd-model (an algebra satisfying T bd) is called a body , and two
bodies are isomorphic if they are isomorphic as T bd-models; see e.g. [2,
p. 262] or [20].

Observation 2.17. Any (generalized) E(A)-algebra is a body.
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Proof. Generalized E(A)-algebras satisfy EndR A = A. Thus any func-
tion symbol Fσ of τbd can be interpreted on A as a function and the axioms
(2.1) and (2.3) hold.

But note that only free bodies come from skeletons (see Section 3.2).

2.7. Linearity of unary body functions from t(τbd
<k, X). We will first show

that terms in t(τbd
<k, X) are linear combinations of terms in t(τ sk

<k, X), thus

every polynomial (in t(τbd
<k, X)) is a linear combination of monomials (in

t(τ sk
<k, X)).
We will show the following

Lemma 2.18. Let x = 〈x0, . . . , xm−1〉 and (σ, x) ∈ t(τbd
<k, X). Then there

is
∑

l<t alσl(x) with

(i) (σl, x) ∈ t(τ sk
<k, X) for l < t,

(ii) al ∈ R for l < t,
(iii) T bd

<k ⊢ σ =
∑

l<t alσl.

Proof. (We will now suppress the index ‘< k’.) We let (σ, x) ∈ t(τbd, X)
and prove the lemma by induction on the length of σ. If σ is atomic, then
(σ, x) is a monomial and there is nothing to show.

If F is an m-place function symbol from τbd and σ = F (σ0, . . . , σm−1)
with FV(σl) ⊆ FV(σ), then by induction hypothesis for σl there are poly-
nomials σl =

∑
i<tl

aliσli(x) with ali ∈ R and σli monomials (terms in

t(τ sk, X)). We substitute these sums into F and apply axiom (2.3)(ii) (the
linearity) for functions in the theory of bodies. Thus also σ is as required.

If σ = F+(σ1, σ2) = σ1 + σ2 comes from (1) and if σ = aσ1 comes from
(2) the linearity follows from (2.3)(iii). Thus the lemma is shown.

Lemma 2.19. If x = 〈x0, . . . , xm〉 and (σ, x) is a monomial (a term in

t(τ sk, X)), then σ(
∑

l<t x0lal, x1, . . . , xm) =
∑

l<t alσ(x0l, x1, . . . , xm).

Proof. This is an easy induction on the length of σ:

If σ = 1 and σ = x0, then the claim holds trivially.

If σ = F (σ0, . . . , σm), then the claim follows from axiom (2.3)(ii) of T bd.
Similarly, if σ = F+(σ1, σ2) and σ = Fa(σ1), then the linearity follows by
definition of these functions and induction hypothesis.

Recall the notion from λ-calculus in Remark 2.1(ii).

Proposition 2.20 (Weak completeness of bodies). Let M be a body

and (σ, x) a polynomial (a term in t(τbd, X)) with x = 〈x0, . . . , xm〉 and

d1, . . . , dm ∈ M . Then there is (σ′, 〈x1, . . . , xn〉) ∈ t(τbd, X) and the follow-

ing hold :

(i) M is an R-module.
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(ii) The unary function λ.zσ(z, d1, . . . , dm) : M → M defined by z 7→
σ(z, d1, . . . , dm) is the R-endomorphism λy.yσ′(z, d1, . . . , dm) ∈
EndR(M) given by y 7→ yσ′(d1, . . . , dm).

Remark. We will show here that there is a function symbol (σ′, x) ∈
t(τbd, X) such that σ(d, d1, . . . , dm) = dσ′(d1, . . . , dm) for all d ∈ M ; see
axiom (2.1)(ii)(a) of the skeletons.

Proof of Proposition 2.20. By axioms (2.3) of T bd it is clear that M
is an R-module. It remains to show (ii). Let (σ, x′) ∈ t(τbd, X) with x′ =
〈x0, . . . , xm〉 and x = 〈x1, . . . , xm〉. By Lemma 2.18 there are monomials
(σl, x

′) ∈ t(τ sk, X) and al ∈ R such that

σ =
∑

l<t

alσl.

From the construction of τ sk we also have function symbols Fσl(y0,...,ym)

satisfying axioms (2.1) and (2.3). Thus

σl(x
′) = x0Fσl(y0,...,ym)(x)

and we put

σ′(x) =
∑

l<t

alFσl(y0,...,ym)(x).

For (ii) it remains to show σ(d, d1, . . . , dm) = dσ′(d1, . . . , dm) for all
d ∈ M , which will follow from σ(x0, x) = x0σ

′(x). We use the three displayed
formulas and calculate

σ(x0, x) =
∑

l<t

alσl(x0, x) =
∑

l<t

al(x0Fσl(y0,...,ym)(x))

= x0

( ∑

l<t

alFσl(y0,...,ym)(x)
)

= x0σ
′(x).

Hence (ii) follows.

3. From the skeleton to the body

3.1. The monoid structure of skeletons. Recall from Theorem 2.12 that
the skeleton on an infinite set X of free variables is the set MX = {[σ] : σ ∈
tr(τ sk)} with n-place functions

[F ] : (MX)n → MX , ([σ0], . . . , [σn−1]) 7→ [F (σ0, . . . , σn−1)],

for each n-place function symbol F = Fσ(y0,...,yn−1) with (σ, x) ∈ tr(τ sk) and
FV(σ) = {x0, . . . , xn−1}. For simplicity we will also write Latin letters for
the members of MX , e.g. m = [σ] ∈ MX . The set MX has a distinguished
element 1 = [1] and m1 = 1m = m holds for all m ∈ MX (thus MX is an
applicative structure with 1). In order to turn MX into a monoid, we first
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represent MX as a submonoid of Mono(MX), the injective maps on MX ,
say ι : MX → Mono(MX).

Let a = [σ] ∈ MX and σ′ ∈ t(τbd). We will use induction. If a = [1] then
[σ′]a = σ′; if a = [x], then [σ′]a = σ′x; and if a = [Fσ(y0,...,yn−1)〈x1, . . . , xn−1〉]
is a unary function as above, then [σ′]a = σ(σ′, x1, . . . , xn−1) (so aι =
[λy.yσ]). Thus aι maps any m = [σ′] ∈ MX to m(aι) = m(λy.yσ) =
[mσ] ∈ MX , which can be represented by a reduced element using (2.2). If
a 6= b ∈ MX , then 1(aι) = a 6= b = 1(bι), thus ι : MX → Mono(MX) ⊆ MX

is an embedding. We define multiplication of elements a, b ∈ MX as com-
position of functions (aι)(bι) = (ab)ι. This is to say that from a = [σ],
b = [σ′] we get the product as the equivalence class of λy.((yσ′)σ). We will
write a · b = ab and will often suppress the map ι. From the definition
of Mono(MX) it follows that also MX is a monoid. Note furthermore that
[x][x′] 6= [x′][x] for any free variables x, x′ ∈ X. We get

Observation 3.1. The free skeleton (MX , ·, 1) with composition of func-

tions as product is a non-commutative (associative) monoid with multi-

plication defined as above by the action on MX : If [σ], [σ′] ∈ MX , then

[σ′] · [σ] = [λy.((yσ′)σ)].

3.2. Free bodies from skeletons. Finally, we will associate with any skele-
ton M its (canonical) body BRM . Let BRM be the R-monoid algebra RM
of the monoid M . Moreover, any n-place function F : Mn → M extends
uniquely by linearity to F : BRMn → BRM . We deduce

Lemma 3.2. If R is a commutative ring as above and M is a skeleton,
then the R-monoid algebra BRM of the monoid M is a body. If the skeleton

MX is freely generated by X, then also BRM is freely generated by X as a

body. Moreover RBRMX =
⊕

m∈M mR.

Proof. It is easy to see that BRM (with the linear n-place functions) is a
body. We first claim that X, viewed as {[x] : x ∈ X} ⊆ BRMX , is a basis. In-
deed, apply Lemma 2.18 to the R-monoid BRMX : Any (σ, x) ∈ t(τbd, X) can
be written as a polynomial σ =

∑
l σlal with monomial (σl, x) ∈ t(τ sk, X).

Moreover, any σl is viewed as an element of Mono(MX), so axiom (2.1)(ii)(a)
applies and σl becomes a product of elements from X. Thus X generates
BRMX . The monomials of the skeleton M extend uniquely by linearity to
polynomials of the free R-module RBRMX =

⊕
m∈M mR from its basis M .

We will also need the notion of an extension of bodies.

Definition 3.3. Let B and B
′ be two bodies. Then B ≤ B

′ (B′ extends B)
if and only if B ⊆ B

′ as R-algebras and if (σ, x) ∈ t(τbd, X) and Fσ is a
function symbol with corresponding unary R-linear function F of B

′, then
its natural restriction to B is the function for B corresponding to Fσ.
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Example 3.4. Let X ⊆ X ′ be sets of free variables and B, B′ be the free
bodies generated by the free skeletons obtained from X and X ′, respectively.
Then B ≤ B

′. In this case we say that B
′ is free over B.

4. The technical tools for the main construction. The endomor-
phism ring EndR BRMX of the R-module RBRMX has natural elements as
endomorphisms: these are the (generalized) polynomials interpreted by the
terms in σ ∈ t(τbd, X) acting by scalar multiplication on BRMX as shown
in Proposition 2.20(ii). The closure under these polynomials is dictated by
the properties of E(R)-algebras. Thus we would spoil our aim to construct
generalized E(R)-algebras if we “lose these R-linear maps” on the way.

Definition 4.1. Let (σ, x) ∈ t(τbd, X) with x = 〈x0, . . . , xn〉. If B is
a body and d = 〈d1, . . . , dn〉 with d1, . . . , dn ∈ B, then we call sd(y) =

λy.σ(y, d) the (generalized) polynomial over B with coefficients d.

Note that σd(y) is a sum of products of elements di and y. Here we
must achieve (full) completeness of the final body, thus showing that any
endomorphism is represented. By a prediction principle we kill all endomor-
phisms that are not represented by t(τbd, X)—thus the resulting structure
will be complete: Any R-endomorphism of an extended body BRMX will
be represented by a polynomial q(x) over BRMX , so BRMX is complete or
equivalently an E(R)-algebra.

The fact that BRMX is not just the R-linear closure (or A-linear closure
for some algebra A) makes this final task, to get rid of undesired endo-
morphisms, harder than in the case of realizing algebras as endomorphism
algebras (where the closure is not that floppy).

Definition 4.2. Let B be a body and G = RB. Then ϕ ∈ EndR G is
said to be represented (by q(y)) if there is a generalized polynomial q(y)
with coefficients in B such that gϕ = q(g) for all g ∈ G.

If all elements from EndR G are represented, then B is a generalized
E(R)-algebra.

As for other algebraic structures, we have

Lemma 4.3. Let R be an S-ring as above and B be a body generated by B.

Then B is a basis of B if one of the following equivalent conditions holds:

(i) If B′ = BRMX is the body generated by the free skeleton MX and

X → B is a bijection, then this map extends to an isomorphism

B
′ → B.

(ii) B is independent in B, i.e. if (σ1, x), (σ2, x) ∈ tr(τbd, X) and the

sequence b from B is suitable for x such that σ1(b) = σ2(b), then

T bd ⊢ σ1(x) = σ2(x).
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(iii) For all bodies H and maps ϕ : B → H there is an extension ϕ :
BRMX → H as T bd-homomorphism.

Proof. The proof is well known for varieties (see Grätzer [17, p. 198,
Theorem 3] or Bergman [2, Chapter 8]), so it follows from Observation
2.15.

Freeness Proposition 4.4. Let R be an S-ring as above and X ⊆ X ′

be sets of variables and BRMX ⊆ BRMX′ the corresponding free bodies. If

u ∈ B := BRMX and v ∈ X ′ \ X, then w := u + v ∈ B
′ := BRMX′ is free

over B, i.e. there is a basis X ′′ of B
′ with w ∈ X ′′ ⊇ X.

Proof. We will use Lemma 4.3(iii) to show that the set X ′′ := (X ′ \{v})
∪{w} is a basis of B

′. First note that X ′′ also generates B
′, thus B

′ = BRMX′′ .
Given ϕ : X ′′→H for a body H, we must extend this map to ϕ : B

′ → H.
Let ϕ′ := ϕ↾(X ′ \ {v}) and note that the set X ′ \ {v} = X ′′ \ {w} is
independent. Thus if B0 := BRMX′\{v}, then ϕ′ extends to ϕ′ : B0 → H

by freeness, and from u ∈ B0 follows the existence of uϕ′ ∈ H. We now
define ϕ: if ϕ↾B0 := ϕ′, then ϕ↾(X ′ \ {v}) = ϕ′ = ϕ↾(X ′ \ {v}). Thus it
remains to extend ϕ′ to ϕ : B

′ → H in such a way that wϕ = wϕ. If
wϕ =: h ∈ H, then we must have h = wϕ = (u + v)ϕ = uϕ + vϕ. Hence
put vϕ := h − uϕ = h − uϕ′. Now ϕ : B

′ → H exists, because X ′ is free,
ϕ′ ⊆ ϕ and wϕ = (u + v)ϕ = uϕ + h − uϕ = h = wϕ, thus ϕ ⊆ ϕ holds as
required.

The following corollaries (used several times for exchanging basis ele-
ments) are immediate consequences of the last proposition.

Corollary 4.5. Let X be a basis for the body B, let v ∈ X and let B
′ be

the subbody of B generated by X\{v} and w ∈ B
′. Then X ′ = X\{v}∪{v+w}

is another basis for B.

Corollary 4.6. If X ⊆ X ′ and BRMX ⊆ BRMX′ , then any basis of

BRMX extends to a basis of BRMX′ .

Proof. If X ′′ is a basis of BRMX , then it is left as an exercise to show
that (X ′ \ X) ∪ X ′′ is a basis of BRMX′ .

The last corollaries have another implication.

Corollary 4.7. Suppose that Bα (α ≤ δ) is an ascending , continuous

chain of bodies such that Bα+1 is free over Bα for all α < δ. Then Bδ is free

over B0, and if B0 is free, then Bδ is free as well.

The proof of the next lemma is also obvious. It follows by application of
the distributive law in T bd and collection of summands with p.

Lemma 4.8. Let q(y) be a generalized polynomial and r ∈ R. Then there

is a polynomial q′(y) such that q(y1 + ry2) = q(y1) + rq′(y1, y2).
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Proof. By Lemma 2.18 we can write σ =
∑

l<t alσl with (σl, x)∈ t(τ sk, X)

for any specified term (σ, x) ∈ t(τbd, X). Thus it is enough to show
q(y1 + ry2) = q(y1) + rq′(y1, y2) for generalized monomials q, and this is
obvious by iterated use of axiom (2.3)(ii).

Lemma 4.9. Let X0, X1, X2 be pairwise disjoint infinite sets, B0 := B(X0)
⊆ B := B(X0∪X1∪X2) and q(y), q1(y), q2(y) polynomials over B0 such that

q(g + v1 + v2) = q1(v1) + q2(v2)

for some g ∈ B0, v1 ∈ X1, v2 ∈ X2. Then the following hold :

(i) q(y) is a linear polynomial in y, i.e. y appears at most once in every

monomial.

(ii) q1(y) − q2(y) does not depend on y.

Proof. (i) Write q(y) =
∑n

i=1 mi(y) as a sum of minimal length of gen-
eralized R-monomials and suppose for contradiction that y appears n times
in m1(y) with n > 1. Also let, without loss of generality, n be maximal for
the chosen monomial m1(y).

By the distributive law the monomials of the polynomial q(g + v1 + v2)
include those monomials induced by m1(y) replacing all entries of the vari-
able y by arbitrary choices of v1 and v2. Let m′

1 be one of these monomials.
If there are further such monomials m′

i (i ≤ k) like m′
1 coming from this

substitution into monomials mi(y) of q(y) with
∑k

i=1 m′
i = 0, then replacing

all v1s and v2s by ys gives
∑k

i=1 mi(y) = 0, contradicting the minimality of
the above sum. Thus m′

1 represents a true monomial (not canceled by oth-
ers) of q(g + v1 + v2), and as n > 1 we may also assume that v1 and v2 both
appear in m′

1. This monomial does not exist on the right-hand side of the
equation in the lemma—a contradiction. Thus (i) holds.

(ii) First substitute in the given equation v1 := y, v2 := 0 and v1 := 0,
v2 := y, respectively. Thus q(g+y) = q1(y)+c and q(g+y) = q2(y)+c′, where
c := q2(0), c′ := q1(0) ∈ B0. Subtraction now yields 0 = q1(y)−q2(y)+(c−c′),
thus q1(y) − q2(y) = c′ − c does not depend on y, as required.

In order to establish the Step Lemmas below, we next prepare some
preliminary results. Let Xω =

⋃
n∈ω Xn be the union of a strictly increasing

sequence of infinite sets Xn of variables and fix a sequence vn ∈ Xn \ Xn−1

of elements (n ∈ ω). Moreover, let Mα = MXα
be the skeleton and Bα :=

B(Xα) be the body generated by Xα for α ≤ ω, respectively. Note that
by our identification B(Xα) is an R-algebra and, restricting to the module
structure, Gα := RB(Xα) is an R-module, which is free by Lemma 3.2.
Recall that S = {pn : n ∈ ω} for some p ∈ R (with

⋂
n∈ω pnR = 0) generates

the S-topology on R-modules. Thus the S-topology is Hausdorff on Gα and
Gα is naturally an S-pure R-submodule of its S-completion Ĝα; we write
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Gα ⊆∗ Ĝα and pick particular elements wn ∈ Ĝω. If ai ∈ {0, 1} and ln ∈ N

is increasing, then we define

(4.1) wn(vn, ln, an) := wn :=
∑

k≥n

plk−lnakvk ∈ Ĝω

and easily check that

wn − pln+1−lnwn+1 = anvn ∈ Gn for all n ∈ ω.(4.2)

Proposition 4.10. Let an ∈ {0, 1} and ln ∈ N be as above. If Xω+1 =
Xω\{vn : an = 1, n > 0}∪W with W = {wn : n > 0} and Bω+1 := B(Xω+1),
Gω+1 = RBω+1, then the following hold :

(i) Gω ⊆∗ Gω+1 ⊆∗ Ĝω.

(ii) Gω+1/Gω is p-divisible, thus an S
−1R-module.

(iii) Xω+1 is a basis of the (free) skeleton Mω+1 = MXω+1
.

(iv) The R-algebra Bω+1 is freely generated by the skeleton Mω+1, thus

Bω+1 = RMω+1 and Gω+1 =
⊕

m∈Mω+1
Rm.

(v) B(Xω+1) is free over B(Xn) (as body).

Proof. (i) Clearly Gω ⊆∗ Ĝω and Gω+1 ⊆ Ĝω. From wn, wn+1 ∈ Xω+1,
an = 1 and (4.2) it follows that vn ∈ Gω+1. Hence vn ∈ Gω+1 for all n ∈ ω

and Gω ⊆ B(Xω+1) = Gω+1 follows at once. Thus Gω+1/Gω ⊆ Ĝω/Gω and

purity (Gω+1 ⊆∗ Ĝω) follows if Gω+1/Gω is p-divisible. This is the content
of part (ii).

(ii) By definition of the body B(Xω+1), any element g ∈ Gω+1 is a sum
of monomials in Xω+1. If wn, wn+1 are involved in such a monomial, then we
apply (4.2) and get wn = pwn+1 + anvn, which is wn ≡ pwn+1 mod Gω. Let
m be the largest index of the wns which contributes to g. We can remove
all wi of smaller index i < m and also write wm ≡ pwm+1 mod Gω. Thus
g + Gω is divisible by p and Gω+1/Gω is an S

−1R-module.
(iii) It is enough to show that Xω+1 is free, because Xω+1 generates

Mω+1 by definition of the skeleton. First we claim that

X ′ = (Xω \ {vn}) ∪ {wn} is free.

We apply the characterization of a basis by Lemma 4.3(ii). Let (σ1, x), (σ2, x)
∈ tr(τbd, X) (x = 〈x1, . . . , xk〉) be such that

σ1(y1, . . . , yk) = σ2(y1, . . . , yk)

for some yi ∈ X ′ and suppose that y1 = wn (there is nothing to show if
wn does not appear among the yi’s, because they are free; otherwise we
relabel the yi’s such that y1 = wn). Now we consider the above equation

as an element in Ĝω and note that the support [yi] ⊆ Xω of the elements
yi (i > 1) is finite, while wn has infinite support {vk : k > n} ⊆ [wn]. Thus
we project σi(y1, . . . , yk) onto a free summand from [wn] \

⋃
1<i≤k[yi] and
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y1 can be replaced by a free variable v (over y2, . . . , yk) and σ1(v, y2, . . . , yk)
= σ2(v, y2, . . . , yk) are the same. Hence the first claim follows.

By the first claim and induction it follows that

(Xω \ {v1, . . . , vn}) ∪ {w1, . . . , wn} is free.(4.3)

Finally let y1, . . . , ym be any finite subset of Xω+1. We may assume that
y1, . . . , yk ∈ Wn = {wi : i ≤ n} and yk+1, . . . , ym ∈ Xω+1 \ W . Hence

y1, . . . , ym ∈ Wn ∪ Xω \ {v1, . . . , vn},

which is free by (4.3), thus Xω+1 is free and (iii) follows.
(iv) is a consequence of (iii) and the definitions.
(v) We note that (by (iii)) the body B(Xω+1) is freely generated by

Xω+1 and also (using (4.2)) by the (free) set X ′ = (Xω+1 \ {w1, . . . , wn}) ∪
{v1, . . . , vn}. However, Xn ⊆ X ′, which generates B(Xn), hence (v) also
follows.

Throughout the remaining part of this section and Section 5 we use the
notations from Proposition 4.10. Moreover, we assume the following, where
we view Bω as an R-algebra:

Let ϕ ∈ EndR Gω \ Bω, with Gnϕ ⊆ Gn for all n ∈ ω.(4.4)

Lemma 4.11. Let ϕ be as in (4.4). If w0ϕ ∈ Gω+1, then the following

hold :

(i) There exist m ∈ ω and a generalized polynomial q0(y) over Bω such

that w0ϕ = q0(wm).
(ii) There exists an n∗ > m such that q0 is a polynomial over Bn∗.

Proof. (i) If w0ϕ ∈ Gω+1, then there exists some m ∈ ω such that
w0ϕ ∈ BRMXω∪{w0,...,wm}. Using wi ≡ pwi+1 mod Gω it follows that

w0ϕ ∈ BRMXω∪{wm},

and there is a generalized polynomial q0(y) over Bω such that w0ϕ = q(wm).
(ii) The coefficients of q0 are in some Bn∗ for some n∗ > m.

5. The three Step (or Stop) Lemmas. We will use the notations
from Proposition 4.10 and (4.4).

We begin with our first Step Lemma, which will stop ϕ becoming an
endomorphism of our final module.

Step Lemma 5.1. Let ϕ ∈ EndR G be an endomorphism as in (4.4) such

that for all n ∈ ω there is gn ∈ Xn+1 \ Gn with gnϕ /∈ BRMXn∪{gn}, and

let Gω+1 be defined with wn = wn(gn, ln, 1) as in (4.1) for suitable elements

ln ∈ ω. Then ϕ does not extend to an endomorphism in EndR Gω+1.

Proof. We define inductively an ascending sequence ln ∈ ω. If C ⊆ Gω

is a submodule, then the p-closure of C is defined by C =
⋂

n∈ω(pnGω +C).
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It is the closure of C in the S-adic topology, which is Hausdorff on Gω (i.e.⋂
n∈ω pnGω = 0). In particular C = C if C is a summand of Gω (e.g. C = 0

is closed).

By hypothesis we have gnϕ /∈ BRMXn∪{gn} and BRMXn∪{gn} is a sum-
mand of Gω, so it is closed in the S-topology. There is an l ∈ ω such that
gnϕ /∈ BRMXn∪{gn} + plGω. If ln−1 is given, we may choose l = ln such that
ln > 3ln−1. We will ensure (just below) that Gω ⊆∗ Gω+1 is S-pure, thus
plnGω+1 ∩ Gω ⊆ plnGω, and hence:

(5.1) There is a sequence ln ∈ ω with ln+1 > 3ln and

gnϕ /∈ BRMXn∪{gn} + plnGω+1.

Hence Gω+1 is well defined and Proposition 4.10 holds; in particular Gω ⊆∗

Gω+1 and Gω is dense in Gω+1 (Gω = Gω+1). Suppose for contradiction
that ϕ ∈ EndR Gω extends to an endomorphism of Gω+1; this extension is
unique, and we call it also ϕ ∈ EndR Gω+1. In particular w0ϕ ∈ Gω+1; by
Lemma 4.11 there is a polynomial q0(y) with coefficients in Bn∗ for some
n∗ ∈ ω and with w0ϕ = q0(wm) for some m ∈ ω. We choose n > max{n∗, m}
and use (4.1) to compute w0:

w0 =
n∑

i=1

pli−l0gi + pln+1−l0wn+1.

Application of ϕ gives

w0ϕ ≡
n−1∑

i=1

pli−l0(giϕ) + pln−l0(gnϕ) mod pln+1−l0Gω+1.

If i < n, then gi ∈ Gn and giϕ ∈ Gn by the choice of ϕ. The last equality
becomes w0ϕ ≡ pln−l0(gnϕ) mod pln+1−l0Gω+1 + Gn, hence

q0(w0) ≡ pln−l0(gnϕ) mod (pln+1−l0Gω+1 + Gn).

Finally, we determine pln−l0(gnϕ) in terms of BRMXn∪{gn}. From w0ϕ =
q0(wm), n > m and the definition of wm in (4.2) we get

wm =

n−1∑

i=m

pli−lmgi + pln−lmgn + pln+1−lmwn+1,

thus

q0(wm) ≡ q0

( n−1∑

i=m

pli−lmgi + pln−lmgn

)
mod pln+1−lmGω+1,
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and

pln−l0(gnϕ) ≡ q0(wm)

≡ q0

( n−1∑

i=m

pli−lmgi + pln−lmgn

)
mod (pln+1−lmGω+1 + Gn).

Now we use (again) the fact that gi ∈ Gn for all i < n. The last equa-
tion reduces to pln−l0(gnϕ) ∈ BRMXn∪{gn} + pln+1−lmGω+1, hence gnϕ ∈

B(Gn, gn) + pln+1−lm−lnGω+1. Note that ln+1 > 3ln by the choice of the lns,
hence ln+1 − lm − ln > ln, so we get a formula

gnϕ ∈ BRMXn∪{gn} + plnGω+1

that contradicts (5.1) and Step Lemma 5.1 follows.

Step Lemma 5.2. Let ϕ ∈ EndR G be an endomorphism as in (4.4).
Moreover suppose there are elements un, gn ∈ Xn+1 \ Gn (for each n ∈ ω)
with unϕ = q1

n(un) and gnϕ = q2
n(gn), where q1

n, q2
n are polynomials over B0

such that

q1
n(y) − q2

n(y) /∈ B0, i.e. y appears in the difference.

If Gω+1 is defined with wn = wn(gn + un, ln, 1) as in (4.1) for suitable

elements ln ∈ ω, then ϕ does not extend to an endomorphism in EndR Gω+1.

Proof. Let ck := gk+uk. The set X ′ := (Xω\{uk : k < ω})∪{ck : k < ω}
is now a basis of Bω by Corollary 4.5, thus Proposition 4.10 applies and Gω+1

is well defined. By definition of wn and (4.2) we have pln+1−lnwn+1+cn = wn,
and as in the proof of Step Lemma 5.1 we get

w0ϕ = q0(wm) ⇒
∑

k≥0

plk−l0(ckϕ) = q0

( ∑

k≥m

plk−lmck

)

for n∗, m, q0(y) as in Step Lemma 5.1. Furthermore,

ckϕ = (gk + uk)ϕ = gkϕ + ukϕ = q1
k(gk) + q2

k(uk).

Thus ∑

k≥0

plk−l0(q1
k(gk) + q2

k(uk)) = q0

( ∑

k≥m

plk−lm(gk + uk)
)
,

where q1
k(gk) ∈ RBX0∪{gk} and q2

k(uk) ∈ RBX0∪{uk}, and arguments similar
to Lemma 4.9 apply: in every monomial of q0(y) the variable y appears at
most once as there are no mixed monomials on the left-hand side, and the
same holds for q1

k(y), q2
k(y). Furthermore, the variable y does not appear in

q1
k(y) − q2

k(y), which contradicts our assumption on the qi
ks.

The next lemma is the only place where we will use the fact that R is
ΣS-incomplete in order to find a sequence an ∈ {0, 1} (see Definition 1.1).
Recall that this condition follows by Corollary 1.2 if the S-ring is a direct
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sum of S-invariant subgroups of size < 2ℵ0 . Hence it will be sufficient if R+

is free and S defines the usual p-adic topology on R.

Step Lemma 5.3. Let R be a ΣS-incomplete S-ring , let ϕ ∈ EndR G be

an endomorphism as in (4.4) and let q = q(y) be a polynomial in y with

coefficients in B0 such that gϕ− q(g) ∈ G0 for all g ∈ G. Moreover , suppose

that for all n ∈ ω there are elements

gn ∈ Xn+1 \ Gn such that gnϕ − q(gn) 6= 0.

If Gω+1 is defined with wn = wn(gnϕ − q(gn), ln, 1) as in (4.1) for suitable

elements ln ∈ ω, then ϕ does not extend to an endomorphism in EndR Gω+1.

Proof. Choose gn ∈ Xn+1 as in the lemma, and put hn = gnϕ−q(gn) 6= 0.
By assumption on ϕ and q it follows that hn ∈ G0. Let wn = wn(gn, n, an)
be defined as in (4.1) for a suitable sequence of elements an ∈ {0, 1} and
ln = n for all n ∈ ω. We define again Gω+1 as in Proposition 4.10 using
the new choice of elements wn. Note that G0 is a free R-module. By the
assumption that R is ΣS-incomplete there is a sequence an ∈ {0, 1} with∑

k∈ω pkakhk /∈ G0. However,
∑

k∈ω pkakhk ∈ Ĝ0 by the choice of hn, hence∑
k∈ω pkakhk /∈ Gω+1 by definition of Gω+1. Recall w0 =

∑
k∈ω pkakgk and

suppose that w0ϕ ∈ Gω+1. We compute

w0ϕ =
( ∑

k∈ω

pkakgk

)
ϕ =

∑

k∈ω

pkak(gkϕ)

and
∑

k∈ω

pkakhk =
∑

k∈ω

pkak(gkϕ − q(gk)) =
∑

k∈ω

pkakgk −
∑

k∈ω

q(gk)p
kak

= w0 −
∑

k∈ω

pkakq(gk).

From
∑

k∈ω pkakhk /∈ Gω+1 follows
∑

k∈ω pkakq(gk) /∈ Gω+1. However, by
the definition of the bodies Bα, the map taking g 7→ q(g) for any g ∈ Gω+1

is an endomorphism of Gω+1, and also w0 =
∑

k∈ω pkakgk ∈ Gω+1, hence∑
k∈ω pkakq(gk) ∈ Gω+1 is a contradiction. We deduce w0ϕ /∈ Gω+1 and

ϕ does not extend to an endomorphism of Gω+1.

6. Constructing generalized E(R)-algebras

Lemma 6.1. Let κ be a regular , uncountable cardinal and B =
⋃

α∈κ Bα

a κ-filtration of bodies. Also let Gα = RBα and G = RB. Then the following

holds for any ϕ ∈ EndR G:

(i) If there is g ∈ G such that gϕ /∈ (Bα){g}, then there is also h ∈ G
free over Bα such that hϕ /∈ (Bα){h}.
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(ii) If there are g ∈ G and a polynomial q(y) over Bα such that gϕ −
q(g) /∈ (Bα){g}, then there is also h ∈ G free over Bα such that

hϕ − q(h) /∈ (Bα){h}.

Proof. If g ∈ G satisfies the requirements in (i) or (ii), respectively,
then choose any element h′ ∈ G which is free over Bα. If h′ also satisfies
the conclusion of the lemma, then let h = h′ and the proof is finished.
Otherwise let h = h′ + g, which is also free over Bα by Proposition 4.4. In
this case h′ϕ ∈ (Bα){h′} or h′ϕ − q(h′) ∈ (Bα){h′}, respectively. It follows
that hϕ /∈ (Bα){h} or hϕ − q(h) /∈ (Bα){h}, respectively.

The next lemma is based on results of the last section concerning the
Step Lemmas and Lemma 6.1. We will construct first the κ-filtration of Bαs
for applications using ♦κE for some non-reflecting subset E ⊆ κo. Recall
that ♦κE holds for all regular, uncountable, not weakly compact cardinals
κ and non-reflecting subsets E in V = L.

Construction of a κ-filtration of free bodies. Let {ϕ̺ : ̺ ∈ E} be the
family of Jensen functions given by ♦κE. The body B and the R-module

RB will be constructed as a κ-filtration B =
⋃

α∈κ Bα of bodies. We choose

|Bα| = |α| + |R| = |Bα+1 \ Bα|

and fix for each α ∈ E a strictly increasing sequence

αn ∈ α \ E with sup
n∈ω

αn = α.

This is possible, because E consists of limit ordinals cofinal to ω only and
we can pick αn as a successor ordinal. We will use the same Greek letter for
a converging sequence and its limit, so the elements of the sequence only
differ by the suffix.

As E is non-reflecting, we may also choose a strictly increasing, contin-
uous sequence αν , ν ∈ cf(α), with

sup
ν∈cf(α)

αν = α and αν ∈ α \ E

if cf(α) > ω. This is crucial, because the body Bα of the (continuous) κ-
filtration of B must be free in order to proceed by a transfinite construction.
This case does not occur for κ = ℵ1.

Using Step Lemmas 5.1–5.3 inductively, we define the body structure
on Bν . We begin with B0 = 0, and by continuity of the ascending chain
the construction reduces to an inductive step passing from Bν to Bν+1. We
will carry over our induction hypothesis of the filtration at each step. In
particular, the following three conditions must hold:

(i) Bν is a free body.
(ii) If ̺ ∈ ν \ E, then Bν is a free body over B̺.
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(iii) If ̺ ∈ E then let ̺n (n∈ω) be the given sequence with supn∈ω ̺n =̺.
Suppose that the hypothesis of one of the three Step Lemmas holds
for Gn = RB̺n

(n ∈ ω). We identify B̺+1 with Bω+1 from the Step
Lemmas (so ϕ̺ does not extend to an endomorphism of B̺+1).

Following these rules we step to ν + 1: If the hypotheses of condition
(iii) are violated, for instance, if ν /∈ E, we choose Bν+1 := (Bα){vα} adding
any new free variable vν to the body. However, next we must check that
these conditions (i) to (iii) can be carried over to ν + 1. If the hypotheses
of condition (iii) are violated, this is obvious. In the other case the Step
Lemmas are designed to guarantee our inductive requirements:

Condition (i) is the freeness of Bω+1 in Proposition 4.10. Condition (ii)
requires that Bν+1 is a free body over B̺. However, B̺ ⊆ Bνn

for a large
enough n ∈ ω. Hence (ii) follows from freeness of Bνn

over B̺ (inductively)
and of Bν+1 over Bνn

(by Proposition 4.10 and Corollary 4.7).
In the case of limit γ we have two possibilities: If cf(γ) = ω then

supn∈ω γn = γ, hence Bγ =
⋃

n∈ω Bγn
and Bγ is a free body with the help of

(i) and (ii) by induction (see Corollary 4.7). If cf(γ) > ω, then by our set-
theoretic assumption (E is non-reflecting) we have a limit supα∈cf(γ) γα = γ
of ordinals not in E. The union of the chain Bγ =

⋃
α∈cf(γ) Bγα

by (i) and

(ii) is again a free body (see Corollary 4.7). Thus we proceed and obtain
B =

⋃
ν∈κ Bν , which is a κ-filtration of free bodies. It remains to show

Main Lemma 6.2. Assume ♦κE. Let κ be a regular , uncountable car-

dinal and B =
⋃

α∈κ Bα be the κ-filtration of bodies just constructed. Also

let Gα = RBα and G = RB. Suppose that ϕ ∈ EndR G does not satisfy

the following conditions (i) or (ii) for any α ∈ κ and any polynomial q(y)
over Bα:

(i) There is g ∈ G such that gϕ /∈ R(Bβ){g}.
(ii) There is g ∈ G such that gϕ − q(g) /∈ R(Bβ){g}.

Then ϕ is represented in B.

Proof. Suppose for contradiction that ϕ is not represented in B. Let
E ⊆ κo be given from ♦κE, let {ϕδ : δ ∈ E} be the family of Jensen
functions and define a stationary subset E′

ϕ = {δ ∈ E : ϕ↾Gδ = ϕδ}. Note
that C = {δ ∈ κ : Gδϕ ⊆ Gδ} is a cub, thus Eϕ := E′

ϕ ∩C is also stationary.
As a consequence we see that there is δ ∈ Eϕ satisfying one of the

following conditions:

(i) For every α < δ ∈ Eϕ there is g ∈ Gδ such that gϕ /∈ R(Bα){g}.
(ii) There is α < δ ∈ Eϕ such that gϕ ∈ R(Bα){g} for all g ∈ Gδ

(not case (i)) but for every α < δ and every polynomial q(y) over
Bα represented by an endomorphism of G there is g ∈ Gδ with
gϕ − q(g) /∈ Gα.
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(iii) There is α < δ ∈ Eϕ such that gϕ ∈ R(Bα){g} and there is a
polynomial q(y) over Bα with gϕ−q(g) ∈ Gα for all g ∈ Gδ (neither
(i) nor (ii) holds), but ϕ is not represented by B. Thus there are a
sequence δn < δ (n ∈ ω) with supn∈ω δn = δ and gn ∈ Gδn

such that
gnϕ − q(gn) 6= 0 for all n ∈ ω.

By Lemma 6.1 we may assume that the elements g existing by (i) and
(ii), respectively, are free over Bα. Moreover, if g ∈ G, then by cf(κ) > ω we
can choose δ ∈ Eϕ such that g ∈ Gδ.

If (i) holds, then we can choose a proper ascending sequence δn ∈ Eϕ

with supn∈ω δn = δ and elements gn ∈ Gδn+1
such that gn is free over Bδn

and

gnϕ /∈ R(Bδn
){gn} for all n ∈ ω.

We identify Gδn
with Gn in Step Lemma 5.1 and note that (since

δn ∈ Eϕ) ϕ↾Gn is an endomorphism with Gnϕ ⊆ Gn which is predicted
as a Jensen function. By construction of Gδ+1 (as a copy of Gω+1 from Step
Lemma 5.1), the endomorphism ϕ↾Gδ does not extend to EndR Gδ+1. How-
ever ϕ ∈ EndG, thus Gδ+1ϕ ⊆ Gα for some α < κ. Finally, note that Gδ+1

is the S-adic closure of Gδ in G because Gδ is S-dense in Gδ+1 and Gδ+1 is
a summand of Gα, hence S-closed in Gα. We derive the contradiction that
indeed ϕ↾Gδ+1 ∈ EndR Gδ+1. Hence case (i) is discarded.

Now we turn to case (ii). Suppose that (ii) holds (so condition (i) is
not satisfied). In this case there is an ascending sequence δn ∈ Eϕ with
supn∈ω δn = δ as above and there are free elements gn, un ∈ Gδn+1

(also free
over Bδn

) and polynomials q1
n, q2

n over Bδ0 such that unϕ = q1
n(un) 6= gnϕ =

q2
n(gn). Moreover, the polynomials q1

n(y) − q2
n(y) are not constant over Bδ0 .

Step Lemma 5.2 applies and we get a contradiction as in case (i). Thus also
case (ii) is discarded.

Finally, suppose for contradiction that (iii) holds (so (i) and (ii) are
not satisfied). There are α < κ and q(y) a polynomial over Bα such that
gϕ − q(g) ∈ Gα for all g ∈ G. The polynomial q(y) is represented by an
endomorphism of Gα. Moreover (from (iii)) we find gn ∈ Gδn+1

free over Gδn

for a suitable sequence δn with supn∈ω δn = δ such that gnϕ − q(gn) 6= 0.
We now apply Step Lemma 5.3; the argument from case (i) gives a final
contradiction. Thus the Main Lemma holds.

Proof of Main Theorem 1.4. Let B be the body over the S-ring R con-
structed at the beginning of this section using E as in Theorem 1.4; moreover
let G = RB. Thus |B| = κ and by the construction and Proposition 4.10 any
subset of size < κ is contained in an R-monoid-algebra of cardinality < κ;
the algebra B is the union of a κ-filtration of free bodies Bα. By Main Lem-
ma 6.2 every element ϕ ∈ EndR G is represented (by a polynomial q(y) with
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coefficients from B); see Definition 4.2. Thus gϕ = q(g) for all g ∈ G and
ϕ = q(y) ∈ B. It follows that B = EndR G is the R-endomorphism algebra
of G.

Finally, recall that there is Bα ⊆ B which is an R-monoid-algebra over a
non-commutative monoid from Observation 3.1. Thus B cannot be commu-
tative either and Theorem 1.4 is shown.

References

[1] H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, Stud. Logic
Found. Math. 103, North-Holland, Amsterdam, 1984.

[2] G. M. Bergman, An Invitation to General Algebra and Universal Constructions,
Helson, Berkeley, 1998.
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[16] R. Göbel and J. Trlifaj, Endomorphism Algebras and Approximations of Modules,
de Gruyter, Berlin, 2006.

[17] G. Grätzer, Universal Algebras, Van Nostrand, Toronto, 1968.
[18] R. S. Pierce, E-modules, in: Contemp. Math. 87, Amer. Math. Soc., 1989, 221–240.
[19] R. S. Pierce and C. I. Vinsonhaler, Classifying E-rings, Comm. Algebra 19 (1991),

615–653.
[20] P. Rothmaler, Introduction to Model Theory, Gordon and Breach, Amsterdam, 2000.
[21] P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math.

Soc. 15 (1973), 60–69.



Generalized E-algebras via λ-calculus I 181

[22] D. S. Scott, Some philosophical issues concerning theories of combinators, in:
λ-Calculus and Computer Science Theory, C. Böhm (ed.), Lecture Notes in Comput.
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