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Extension of functions with small oscillation
by

Denny H. Leung and Wee-Kee Tang (Singapore)

Abstract. A classical theorem of Kuratowski says that every Baire one function on a
G subspace of a Polish (= separable completely metrizable) space X can be extended to
a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one
functions into small Baire classes. A Baire one function f is assigned into a class in this
hierarchy depending on its oscillation index B(f). We prove a refinement of Kuratowski’s
theorem: if Y is a subspace of a metric space X and f is a real-valued function on Y such
that By (f) < w®, @ < w1, then f has an extension F' to X so that 8x(F) < w®. We also
show that if f is a continuous real-valued function on Y, then f has an extension F' to X
so that Bx (F) < 3. An example is constructed to show that this result is optimal.

Let X be a topological space. A real-valued function on X belongs to
Baire class one if it is the pointwise limit of a sequence of continuous func-
tions. If X is a Polish (= separable completely metrizable) space, then a
classical theorem of Kuratowski [7] states that every Baire one function on
a Gy subspace of X can be extended to a Baire one function on X. In [6],
Kechris and Louveau introduced a finer gradation of Baire one functions
into small Baire classes using the oscillation index [, whose definition we
now recall.

Let X be a topological space and let C denote the collection of all
closed subsets of X. A derivation on C is a map D : C — C such that
D(P) C P for all P € C. The oscillation index (3 is associated with a fam-
ily of derivations. Let € > 0 and a function f : X — R be given. For any
P € C, let D°(f,e, P) = P and D!(f,e, P) be the set of all x € P such
that for any neighborhood U of z, there exist x1,22 € P N U such that
|f(x1) — f(x2)] > e. The derivation D'(f,e,-) may be iterated in the usual
manner. For all a < wq, let

D**(f,e, P) = D'(f,£,D%(f,e, P)).
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If « is a countable limit ordinal, set

D*(f,e,P)= ()| D(f.c,P).
<o
ED*(f,e, P) # (0 forall & < wy, let Bx(f,e) = wi. Otherwise, let Bx (f,¢) be
the smallest countable ordinal « such that D(f, e, P) = 0. The oscillation
index of fis Bx(f) = sup.soBx(f,€).

The main result of §1 is that if Y is a subspace of a metric space X
and f Y — R satisfies Oy (f) < w® for some a < wi, then f can be
extended to a function F' on X with Bx(F) < w®. It follows readily from
the Baire characterization theorem [2, 10.15] that a real-valued function on a
Polish space is Baire one if and only if its oscillation index is countable (see,
e.g., [6]). Also, a theorem of Aleksandrov says that a G5 subspace of a Polish
space is Polish [2, 10.18]. Hence our result refines Kuratowski’s theorem in
terms of the oscillation index. Let us mention that if X is a metric space,
then every real-valued function with countable oscillation index on a closed
subspace of X may be extended to X with preservation of the index [8,
Theorem 3.6]. (Note that the proof of [8, Theorem 3.6] does not require the
compactness of the ambient space.) More recent results on the extension of
Baire one functions on general topological spaces are found in [5].

It is well known that if a function is continuous on a closed subspace of
a metric space, then there exists a continuous extension to the whole space.
§2 is devoted to the study of extensions of continuous functions from an
arbitrary subspace of a metric space. It is shown that if f is a continuous
function on a subspace Y of a metric space X, then f has an extension
F to X with Bx(F) < 3. An example is given to show that the result is
optimal. The criteria for continuous extension from dense subspaces were
studied by several authors (see, e.g., [1], [4]).

1. Functions of small oscillation. Given a real-valued function de-
fined on a set S, let ||f|ls = supseg |f(s)|. Since we do not assume that
the function f is bounded, ||f||s may take the value +oo. For any topo-
logical space X, the support supp f of a function f : X — R is the closed
set {x € X : f(x) #0}. A family {¢, : @ € A} of nonnegative, continuous
real-valued functions on X is called a partition of unity on X if

(1) the supports of the ¢,’s form a locally finite closed covering of X,
(2) > geaPalr)=1forall z € X.

If {Ug : B € B} is an open covering of X, we say that a partition of unity
{¢p: B € B} on X is subordinate to {Ug : B € B} if the support of each @3
lies in the corresponding Ug. It is well known that if X is paracompact (in
particular, if X is a metric space [3, Theorem IX.5.3]), then for each open
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covering {Us : 8 € B} of X there is a partition of unity on X subordinate
to {Ug : B € B} (see, for example, [3, Theorem VIII.4.2]).

PRrOPOSITION 1. Let X be a metric space and Y be a subspace of X.
Suppose that f : Y — R is a function such that By (f,e) < a for some e > 0,
o < wi. Then there exists a function f: X — R such that Bx(f) < a+1,
Ifllx < Iflly and |[f = flly <e.

In the following, denote D3(f,e,Y) by Y7 for all § < w;. Proposition 1

is proved by working on each of the pieces Y\ YP*! 3 < @, and gluing
together the results.

LEMMA 2. For all 0 < 3 < a, there exist an open set Zg in X such that
YA YPHL C Zg C (YA, and a continuous function fs : Zg — R such
that || f — follysys+r <€ and [[fallz, < || flly-

Proof. If 0 < B < a and y € YP  YPH!L there exists a set U, that is
an open neighborhood of y in X so that U, is disjoint from YB+1 and that

FU,NYP) C (f(y) —e, f(y) +e). Let
Zg= |J U,
yeYB\YBs+1

Each Zg is open in X. Clearly, Y# \ YA+ C Z5 C (YPH1)C. There exists
a partition of unity (¢y),cys.ys+1 on Zg subordinate to the open covering
U={U,:yeYPYPH]} Define f5: Z5 — R by
()= Y fWey(2).
yeYB\YB+1
Then f3 is well defined, continuous and || f3z, < [|f|ly. If z € Y# \YOFL

set V, = {y € YO N YPHL 1 o (2) # 0}. Then doyev, pylz) =1L Iy eV,
then € Uy; thus |f(z) — f(y)| < . Hence

@) = fa@)] = | D2 (@) = F)ey(@)| < D 1F(@) = Fwley(@) <&
yeVy yEVa
Therefore, || f — fallysys+1 <€, as required. =

Proof of Proposition 1. Define a function f: X — R by

s fo@) itz eZzg~U,.42y, B<a
f(m)_{o if:c§éU7<aZz.

Clearly, || fllx = supgeq |fallzs < Iflly. If @ € Y, then z € YP < YA+

for some # < a. In particular, € Zg \ U, .3 Z,. Hence |f(z) — f(2)] =
|f(x) = fa(x)| < ||f = fallysys+r < e according to Lemma 2. Since this is

true for all € Y, we have ||f — flly <e.
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It remains to show that Bx(f) < a -+ 1. To this end, we claim that
DP(f,6,X) N Zy =0 forall 6 >0,v < B < a We prove the claim by

induction. Let § > 0. Since fy is continuous on the open set Zj, we have
DY(f,6,X) N Zy = (. Suppose that the claim holds for all ordinals less

than §. By the inductive hypothesis, Df(f, 8, X)NU, ¢ Zy =0 forall £ < 3.
Therefore,

<€

D(F,6,X) N [Zﬁ < U ZV] = DE(F,6,X) N Z.
<€
Now ]7: [f¢ is continuous on this set, which is open in DE (]7, 9, X). Therefore
DETL(f, 8, X)NZe = 0. Also, since DP(f, 5, X) C D1HY(f, 6, X) for all ¥ < 3,
DO(f,6,X)NZy =0
for all v < B. This proves the claim. It follows from the claim that

p(f.6x)c(U2)

y<a
for any & > 0. Since f = 0 on the latter set, D™ (f, 5, X) =0. m

In order to iterate Proposition 1 to obtain an extension of f, we need
the following result.

PROPOSITION 3. LetY be a subspace of a metric space X. If By (f) < w&
and By (g) < w&, then By (f + g) < w¥.

Proposition 3 is proved by the method used in [6, Lemma 5]. This requires
a slight modification in the derivation D associated with the index (.

Given a real-valued function f : ¥ — R, ¢ > 0, and a closed subset
P of Y, define G(f,e, P) to be the set of all y € P such that for every
neighborhood U of y, there exists y' € PN U such that |f(y) — f(y)| > e.
Let G(f,e, P) = P and

g1(f7€7P) = G<f767P)7

where the closure is taken in Y. This defines a derivation G on the closed
subsets of Y which may be iterated in the usual manner. If o < wq, let

Gl (f.e, P) = G'(f,6.G°(f.&, P)).
If « < wq is a limit ordinal, let
G*(f,e,P)= () 9”(f, P).
a'<a
Clearly, the derivation G is closely related to D. The precise relationship
between D and G is given in part (c¢) of the next lemma.

LEMMA 4. If f and g are real-valued functions on Y, € > 0, and P,Q
are closed subsets of Y, then
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(a) G'(f +9,6,P) CG'(f.e/2,P)UG (g,¢/2, P),

(b) G'(f.e,PUQ) S G'(f.e, P)UG!(f,5,Q),

(c) D!(f,2¢,P) C G (f,e, P) CD(f,, P).

We leave the simple proofs to the reader. Note that it follows from
part (c) that for all o < wy,

(d) D(f,2¢,P) C G*(f.e, P) S D*(f,e, P).

Proof of Proposition 3. Parts (a) and (b) of Lemma 4 correspond to
() and (*x*) in [6, Lemma 5] respectively. From the proof of that result we
obtain, for all n € N and ¢ < wq,

(1) G 9.8 Y) CGU(fe/2,Y) UG (g,2/2.Y).
Since By (f) < w® and By (g9) < w¥, there exist ¢ < £ and n € N such that
By (f) < wS-n and By (g) < wS - n. By (d), for any ¢ > 0,
G (f,e/2,Y) = G M (g,e/2,Y) = 0.
By (d) and (1),
D2 (f 4 g,2e,Y) = 0.
Since this is true for all € > 0, we have

ﬁy(f+g)§w<-2n<w5. n

THEOREM 5. Let X be a metric space and let Y be an arbitrary subspace
of X. If f:Y — R satisfies By (f) < w® for some o < wy, then there exists
F: X — R with Bx(F) <w® and Fy = f.

Proof. Applying Proposition 1 to f : ¥ — R with ¢ = 1/2, we obtain
g1: X — Rwith || f—g1]ly <1/2and Bx(g1) < w*. By Proposition 3 we see
that By (f —g1) < w®. Now apply Proposition 1 to (f —g1)y with e =1/22
We obtain g2 : X — R, with [|lga[|x < [[f=g1lly <1/2, [[f—g1—g2ly <1/2%,
and fx(g2) < w®. Continuing in this way, we obtain a sequence (g,) of
real-valued functions on X such that for all n € N,

(1) lgnsillx < IIf = 2ty gilly <1/27,
(i) Bx(gn) < w®™.

Let F =3 | gn. Note that the series converges uniformly on X and gy =1r
by (i). Finally, suppose that ¢ > 0. Choose N such that Y " \_ [lgnllx
< ¢/4. Then

N
’Dw"‘(F757X) C Dwa(Zgn,E/ZX) :@7
n=1

since ﬁX(Zivzl gn) < w® by Proposition 3. Thus Bx (F) < w®. =
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COROLLARY 6 (Kuratowski [7, §31, VI]). Let X be a Polish space and
Y be a Gs subset of X. Then every real-valued function of Baire class one
on'Y can be extended to a function of Baire class one on X.

REMARKS. 1. Kuratowski’s theorem holds for functions with arbitrary
Polish ranges. We do not know if our theorem is true in this more general
context.

2. In general, the condition By (f) < wy implies that f is of Baire class
one on Y, but not vice versa. Indeed, if Y is a subspace of a metric space X,
then Sy (f) < wy if and only if f has an extension f’ to a Gy subset Y’ of X
such that By (f") = By (f). The two conditions coincide if Y is Polish.

3. Theorem 5 may be viewed as follows: For any 8 < wq, there exists
o() < wy such that if f is a real-valued function defined on a subspace Y
of a metric space X with Oy (f) = [, then there exists F' : X — R with
Bx(F) < o(B) and Fjy = f. (In fact, Theorem 5 shows that if 3 = w,
then o(3) = w*"! works.) A natural question is to ask for the optimal
(i.e., minimal) value of o(f3). Theorem 14 and Example 15 together show
that (1) = 3 is optimal. We do not know the optimal value of o(3) for
1< 8 <wr.

2. Extension of continuous functions. In this section, we study the
extension of a continuous function on a subspace of a metric space to the
whole space. To begin with, we consider the extension of a continuous func-
tion from a dense subspace.

Consider a metric space X with a dense subspace Y. Suppose that f :
Y — R is continuous on Y. An obvious way of extending f to X (if f is
locally bounded) is to consider the upper limit (or lower limit) of f, i.e.,

f(z) = limsup f(y) =inf sup f(y).

y—x,yey d(z,y)<d
yey

The extended function, which is upper semicontinuous (lower semicontin-
uous in the case of liminf), is not optimal as far as the oscillation index
is concerned. In fact, the limsup extension f of the continuous function
f in Example 15 below has oscillation index Bx(f) = w. The following
is an alternative algorithm that produces an extension with the smallest
possible oscillation index. If A C dom f, then osc(f, A) is defined to be
sup{|f(xz) — f(2')| : z,2’ € A}. If x belongs to the closure of dom f, then
define
osc(f,z) = %i_r}rll)osc(f, B(z,0) Ndom f).

We first define layers of approximate extensions inductively. Precisely,
for each k > 0, we will choose open sets S; and X}, such that Y C S, C X,
nonnegative integers (ny(s))ses, and a function Fj : X — R. Let Sp = X
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and ng(s) = 0 for all s € Sy. Assume that Sy has been chosen and ng(s) is
defined for all s € Si. Let Uy, = {B(s,27)) : s € S} and X}, = JUy.
Choose a partition of unity (cp’;) ses, on Xj subordinate to Uy. For each
s € S, choose y* € Y N B(s,27™)). Define Fj, : X;, — R by Fy(z) =
> ses, ¥ (z) f(yF). For each € Xi, let Sp(z) = {s € S : = € supp ¢~}
and i (z) = max{ng(s) : s € Sp(z)} + 1. Note that Sk(z) is a finite set since
(supp ¢*)ses, is locally finite. Let Sy11 be the set of all z € X}, such that
osc(f,z) < 275%@) If & € Sy, choose nyy1(x) > Ip(z) so that

(1) osc(f, Bz, 2"~ +1®))nY) < 27 k(@)

(2) B(z,27™+1(®) C B(s,27™)) for all s € Si(z),

(3) B(z, 2"+ @) nsupp ¥ = 0 if s € S}, \ Sy ().
The extension F' (defined after Lemma 8) is obtained by pasting the layers
(Fy) one after another. Observe that X;,1 C X because of condition (2).

LEMMA 7. Suppose that s € Si, t € Sy, for some m > k, and that
supp ¥ Nsupp @} # 0. Then B(t,27"m(®) C B(s,27 ™).

Proof. Let x € supp¢® N supp ). Then z € X for all j < m. In
particular, if m > j > k, then there exists s; € S; such that = € supp gogj.
Thus it suffices to prove the lemma for m = k+41. Assume that 2 € supp ¢¥N
supp gof“. Note that s € Si(t). For otherwise, B(t, 2=+ 1)) Nsupp p* = )
by (3). Since = belongs to this set, we have reached a contradiction. It now
follows from (2) that B(t,2~+1()) C B(s,27™()), u

LEMMA 8. Suppose that x € X, and m > k > 1. Then there exists
s € Sk(x) such that |Fy(x) — Fp(z)] < 21"%-10) . Moreover, if x € Y, then
|Fip(z) — f(z)] < 27%1) for some s € Si(z).

Proof. Denote by S the set of all ¢ € Sy, such that ¢}*(z) > 0 and choose
apoint y € (,eg B(t,27"®)NY. Let s be an element where I;_; (s) attains
its minimum over Si(z). By Lemma 7, B(t,2 ")) C B(s,27™()) for all
t € S. Hence |f(y) — f(y/™)| < 27%1() for any t € S. By Lemma 7 again,
y e B(t, 27" ") C B(s,27™()) for all t € S and all §' € Sy,(x). Hence

1f(y) — F(y5)] < 27510 < 9=l (®)
for all s € Sk(x). Therefore

[Fy(z) = Fin(2)| < [Fr(z) — f(9)] + | f(y) — Fn(2)]
< 27 l=1(8) L 9=lk—1(s) — 9l=lk—1(s),

Moreover, if € Y, then the above applies for y = z. Hence |Fj(z) — f(z)| <
2 lk-1(5) g

Observe that lx(s) > k+1 for all s € S, k > 0. It follows from Lemma 8
that (F) converges pointwise on [ X and that the limit is f on Y. Define
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F:X —Rby
F(z) = .
Fk(.%') lfxEXk\XkJrl’ k> 0.
Then F is an extension of f to X.

LEMMA 9. Suppose that x € Xy, for some k > 1. There exists an open
neighborhood U of = and s € Sy(x) such that |F(z) — F(x)| < 23~ %-1() for
allz € U.

Proof. Let s be an element where ;1 (s) attains its minimum over Sk (z).
Note that Fj is continuous on the open set X. Hence there is an open
neighborhood U of z such that

(1) osc(Fy, U) < 27 k-10s),

(2) U C Xy,

(3) Unsuppy? =0 if s € Sp ~ Si(x).
We claim that Sk(z) C Si(z) for all z € U. Indeed, if z € U and s €
Sk(2) N Sk(z), then z € U Nsuppp® = 0, a contradiction. Now if z € U,

then either z € X, for all m or z € X;;, \ Xy41 for some m > k. In either
case, |Fi(z) — F(z)| < 2'%-1(5) by Lemma 8. Therefore,

[F(2) = F(2)] < |F(2) = Fie(2)| + [Fi(2) = Fi(2)| + [Fi(z) — F(2)|
< 21—lk_1(s) + 2—lk_1(s) + 21—lk_1(s) < 23—lk_1(s)‘ -

The next proposition is an immediate consequence of Lemma 9.

PROPOSITION 10. Every x € (| Xy is a point of continuity of F.

PROPOSITION 11. If x € DY(F,27™,X) N X}, k > 1, then there exists
s € Si(z) such that l_1(s) < m+ 3.

Proof. Since x € X}, by Lemma 9, there exist an open neighborhood U
of z and s € Sy(x) such that |F(z) — F(z)| < 23~%-1() for all z € U. Hence
|F(21) — F(z)] < 247 %-10) for all 21,29 € U. As & € DY(F,2™™, X), we sce
that —m < 4 — lx_1(s). Thus lx_1(s) <m+3. =

PROPOSITION 12. Suppose that x € X, N D?(F,27™,X), k > 0. Then
ng(s) < m+2 for all s € Sy, such that o¥(x) > 0.

Proof. Choose an open neighborhood U; of x such that U; C {¢* > 0}
for all s € Sy such that ©¥(x) > 0. Note that, in particular, U; C Xj. Then
choose an open neighborhood Us of z such that osc(Fj,Us) < 27™. Let
U = U; N Us. There exist 21,22 € U NDYF,27™ X) such that |Fj(z1) —
Fk(Zz)’ >27M If 21, 29 §é Xk+1, then F(Zl) = Fk(Zi), 1 = 1,2. This leads to
a contradiction with the fact that osc(F,Us) < 27™. Thus at least one of
21, 72 belongs to Xj41. Denote it by z. By the previous proposition, there
exists t € Sgy1(2) such that I,(t) < m+3. Let s € Sy, be such that ¥ (z) > 0.
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We claim that s € Sy (t). For otherwise, B(t, 2'~™+1(")) N supp p* = (. This
is absurd since the intersection contains the point z. It follows from the
claim that [;(t) > nk(s) + 1. Hence ng(s) < m+ 2, as required. m

PROPOSITION 13. (x(F) < 3.

Proof. Suppose that z € D3(F,2™™,X) for some m. Then there ex-
ists k such that z € Xj ~ Xi41. Choose a neighborhood U of x such
that U C B(x,27""2) N X}, and osc(Fy,U) < 27™. There exist 21,22 €
UND?F,27™, X) such that |F(z1) — F(2)| > 27™. If 21,22 ¢ X1, then
F(z;) = Fy(z;), i = 1,2. This contradicts the fact that osc(Fy,U) < 27™.
Hence there exists z € U N X1 N D?(F,27™,X). By Proposition 12,
npy1(t) < m+ 2 for all t € Sy such that ¢F™(z) > 0. Fix such a t.
Note that

d(-%t) S d(l‘, Z) + d(Z,t) < 2—m—2 4 2—nk+1(t) S Ql—nk+1(t)_
Thus
osc(f,z) < osc(f, B(t, 21—nk+1(t)) nY) < o—lk(t).

We claim that Sg(x) C Si(t). For otherwise, there exists s € Si(z) ~\ Sk(t).
Then B(t,2'~"+11) N supp p® = (). This is absurd since the intersection
contains the point z. It follows from the claim that [ (t) > lx(x). Hence
osc(f,z) < 27%@)_ Then z € Sy € Xi11, a contradiction. =

THEOREM 14. Let X be a metric space and Y be a subspace of X. FEvery
continuous function f on Y can be extended to a function F on X with

Bx(F) < 3.

Proof. Applying the preceding lemmas and propositions, we obtain an
extension f of f to Y such that fy-(f) < 3. By [8, Theorem 3.6], there is

a further extension F' of f to X such that Ox(F) = ﬂy(f) < 3. (Note that
the proof of [8, Theorem 3.6] does not require the compactness of X.) m

The following example shows that Theorem 14 is optimal.

EXAMPLE 15. There is a subspace Y C {0,1}* = X and a continuous
real-valued function f on'Y such that Bx(F) > 3 for any extension F of f
to X.

Proof. For any integer n, denote n (mod2) by 7. Let
Y ={(&) € X : g; =0 for infinitely many ¢’s}.
We denote elements in X of the form

(1,...,1,0,1,...,1,0,...,1,...,1,0,...)
N N——— N——

ni ng ng
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by (1™,0,172,0,...,1™.,0,...). Also write (e1,...,ex,&,&,...) as (e1,...,
€k, €Y), €5, € {0,1}. Define g : Y — X by
g(1™,0,12,0,...,1™,0,...) = (N1,N2,...), ni,ng,--- € NU{0},

and let h : X — R be the canonical embedding of X into R, h(ey,e2,...) =
> %2, 2¢x/3%. Then the function f = hog:Y — R is continuous. Suppose
that F' is an extension of f to X such that Sx(F) < 2. First observe that
for any ni,...,nr € NU{0} and all n € N,

|F(1™,0,...,1™,0,1%" 0¥) - F(1™,0,...,1",0, 12"—1,0,1,0,1,...)1:37.

Hence (1™,0,...,1%,0,1¥) € DY(F,1/3%, X). Let F(1¥) = a. Either |a| >
1/2 or |1 —a| > 1/2. We assume the former; the proof for the latter case is
similar. Since (1¢) ¢ D?(F,1/3, X), there exists a neighborhood U of (1¢)
such that |F(z) —a| < 1/3 if z € U N DY(F,1/3,X). In particular, there
exists n1 € N such that

1
|F(17",0,1%) —a| = 3 0 for some ¢ > 0.

Similarly, using the fact that (12™,0,1%) ¢ D?(F,1/32, X), we obtain some
ny € N such that
1
|F(1%™,0,1%"2,0,1¥) — F(1?™,0,1%)| < 35
Continuing, we choose ni,no,... € N such that

1

|F(12n1707"-712nk+1707 1w) - F(12n1707'”712nk707 1w)| < W’

k e N.

In particular,

11 1
|F(12”1,0,...,12”k,0,1w)—a!§§+§+---—5:§—5, ke N.

Since |a| > 1/2, we have |F(12"1,0,...,1?™ 0,1¥)| > ¢ for all k € N. But
F(1%™,0,...,1%™ 0,1%",0¥) = f(1*",0,...,1%" 0,1?",0%) = 0

for all n € N. Hence (12™,0,...,12" 0,1¥) € DY(F,§,X) for all k € N.
However, note that the sequence ((1271,0,...,12" 0,1%))zen converges to
the point (12™,0,...,1%%,0,12%+1,0,...) and

|F(1%7,0,...,1%™,0,1) — F(1%2™,0,...,1%%,0,12%+1,0,...)|
= |F(1%,0,...,1%™ 0,1¥) — f(1%?™,0,...,1%%,0,12%+1,0,...)]
= |F(1%™,0,...,1%2™,0,1)| > §

for all n € N. Therefore, (12™,0,...,1%7%0,12%+1,0,...) € D?(F,§, X),
contrary to the assumption that Sx(F) < 2. =
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REMARK. With regard to the question raised in Remark 3 of §1, we
have been able to show that if Y is a subspace of a countable ordinal X (not
necessarily compact), and f : Y — R satisfies By (f) < 3, then there is an
extension F': X — R of f such that Bx(F) < By (f) + 1.
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