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The Lindelöf property in Banach spaces

by

B. Cascales (Murcia), I. Namioka (Seattle, WA) and
J. Orihuela (Murcia)

Abstract. A topological space (T, τ) is said to be fragmented by a metric d on T
if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small
d-diameter. The basic theorem of the present paper is the following. Let (M,%) be a metric
space with % bounded and let D be an arbitrary index set. Then for a compact subset K
of the product space MD the following four conditions are equivalent:

(i) K is fragmented by dD, where, for each S ⊂ D,

dS(x, y) = sup{%(x(t), y(t)) : t ∈ S}.
(ii) For each countable subset A of D, (K, dA) is separable.

(iii) The space (K, γ(D)) is Lindelöf, where γ(D) is the topology of uniform conver-
gence on the family of countable subsets of D.

(iv) (K, γ(D))N is Lindelöf.

The rest of the paper is devoted to applications of the basic theorem. Here are some of
them. A compact Hausdorff space K is Radon–Nikodým compact if, and only if, there is
a bounded subset D of C(K) separating the points of K such that (K, γ(D)) is Lindelöf.
If X is a Banach space and H is a weak∗-compact subset of the dual X∗ which is weakly

Lindelöf, then (H,weak)N is Lindelöf. Furthermore, under the same condition span(H)
‖ ‖

and co(H)
w∗

are weakly Lindelöf. The last conclusion answers a question by Talagrand.
Finally we apply our basic theorem to certain classes of Banach spaces including weakly
compactly generated ones and the duals of Asplund spaces.

1. Introduction. The starting point of the present investigation is a
theorem by one of us in [25], namely that a Banach space X is an Asplund
space if and only if its dual X∗ is Lindelöf with respect to the topology of
uniform convergence on bounded countable subsets of X, the γ-topology. In
the present paper, we show that this result is a special case of a much more
general theorem on function spaces and that it has interesting consequences
including a solution to a question by Talagrand.
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This paper is organized as follows. After the introduction in Section 1,
the basic theorem and its important corollary are stated and proved in
Section 2.

In Section 3, a new characterization of Radon–Nikodým compact spaces
by the Lindelöf property relative to the γ-topology is derived from the basic
theorem. It will be shown that Meyer’s characterization of compact scattered
spaces [23] by the Lindelöf property with respect the Gδ-topology is also a
consequence of the basic theorem.

In Section 4, we use the Lindelöf property relative to the γ-topology to
study the weakly Lindelöf property of sets in dual Banach spaces. We show,
for instance, that the weak∗-closed convex hull of a weak∗-compact subset
which is weakly Lindelöf in a dual Banach space is again weakly Lindelöf.
This solves a problem of Talagrand in [32].

The theme of Section 4 is further expanded in Section 6 where it is
proved, in particular, that the norm-closed linear span of a weak∗-compact
subset in a dual Banach space that is weakly Lindelöf is a WLD Banach
space, as defined in Section 6. It should be noted here that each WLD
Banach space is weakly Lindelöf and more. Our approach depends on the
existence of “projectional generators” shown in Section 5. Our results on
projectional generators also give a unified approach to the existence of pro-
jectional resolutions of the identity for both weakly compactly generated
Banach spaces and duals of Asplund spaces.

In Section 7, we present several examples that illustrate the results of
Sections 5 and 6.

Our notation and terminology are standard and we take the books by
Engelking and Kelley, [10] and [20], as our references for topology. Compact
spaces are usually referred to by letters K, H, . . . and our normed spaces X,
Y , . . . are assumed to be real. Given a topological space Z we let C(Z) (resp.
Cb(Z)) denote the space of real continuous (resp. real continuous uniformly
bounded) functions defined on Z. For a Banach space X, BX denotes its
closed unit ball and X∗ denotes its dual space. When F is a subset of X∗, we
write σ(X,F ) to denote the locally convex topology (maybe non-Hausdorff)
on X of pointwise convergence on F ; σ(X,X∗) is the weak topology of X
and σ(X∗,X) is the weak∗ topology of X∗. We consider Cb(Z) as a Banach
space endowed with the supremum norm.

2. Fragmentability and the Lindelöf property for γ(D). We first
gather definitions of the terms and notation necessary for stating the main
theorem of the present paper, Theorem 2.1. Recall that a topological space
is said to be Lindelöf if each open cover of the space admits a countable
subcover. The following definition is due to Jayne and Rogers [19].
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Definition 1. Let (Z, τ) be a topological space and % a metric on Z. We
say that (Z, τ) is fragmented by % (or %-fragmented) if for each non-empty
subset C of Z and for each ε > 0 there exists a non-empty τ -open subset U
of Z such that U ∩ C 6= ∅ and %-diam(U ∩ C) ≤ ε.

It is easily checked that for (Z, τ) to be %-fragmented, it is sufficient
that each τ -closed non-empty subset of X has non-empty relatively τ -open
subsets of arbitrarily small %-diameter.

Let (M,%) be a metric space and let D be an arbitrary set. We shall write
τp(D) (only τp if no ambiguity is likely) to denote the product topology of
the space MD. Assume henceforth that % is bounded, which can always be
done without altering the uniformity of M . For any set S ⊂ D we define the
pseudo-metric dS on MD by the formula

dS(x, y) = sup{%(x(t), y(t)) : t ∈ S} for x, y ∈MD.(1)

The metric dD will be simply denoted by d; the topology associated to
d in MD is the topology of uniform convergence on D. Let γ(D) denote
the uniform topology on MD generated by the family of pseudo-metrics
{dA : A ⊂ D, A countable}, i.e. the topology of uniform convergence on the
family of countable subsets of D.

The following notation is used in the proof of the next theorem. Let 2N

be the space of all sequences of 0’s and 1’s and let 2(N) be the set of all finite
sequences of 0’s and 1’s. For a given t ∈ 2(N), let |t| denote the length of t;
for σ ∈ 2N and n ∈ N, we write σ|n = (σ(1), . . . , σ(n)) ∈ 2(N).

Theorem 2.1. Let (M,%) and D be as above, and let K be a compact
subset of (MD, τp). Then the following conditions are equivalent :

(a) The space (K, τp) is fragmented by d.
(b) For each countable subset A of D, (K, dA) is separable.
(c) The space (K, γ(D)) is Lindelöf.

Proof. (a)⇒(b). By Lemma 2.1 of [24], (K|A, τp(A)) is fragmented by dA.
Since MA is metrizable, (K|A, τp(A)) is compact metrizable; hence it has
a countable base. If (K, dA) is not separable, then there is an uncountable
subset Q of K|A and ε>0 such that dA(p, q)>ε whenever p, q∈Q and p 6=q.
We may assume that no point of Q is τp-isolated in Q since (K|A, τp(A))
has a countable base. Since (K|A, τp(A)) is fragmented by dA, there is a
τp(A)-open subset U of K|A such that U ∩Q 6= ∅ and dA-diam(U ∩Q) < ε.
Hence U ∩ Q is a singleton, contradicting the fact that no point of Q is
τp(A)-isolated in Q. Hence (K, dA) is separable.

(b)⇒(a). Suppose that (K, τp) is not fragmented by d. Then, for some
non-empty τp-closed subset C of K and ε > 0, each non-empty τp-open
subset of C has d-diameter greater that ε. By induction on n = |s|, s ∈ 2(N),
we construct a family {Us : s ∈ 2(N)} of non-empty relatively τp-open subsets
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of C and a family {ts : s ∈ 2(N)} of points of D, satisfying the following
conditions:

(α) U∅ = C.
(β) U

τp
s0 ∪ U

τp
s1 ⊂ Us for each s.

(γ) %(x(ts), y(ts)) > ε for each x ∈ U τp
s0 and y ∈ U τps1.

Construction. (α) starts the induction from n = 0. Next, for some n > 0,
assume that {Us : |s| < n} and {ts : |s| < n − 1} have been constructed.
Fix an s ∈ 2(N) with |s| = n − 1. By hypothesis, there are x, y ∈ Us with
d(x, y) > ε. Hence for some ts ∈ D, %(x(ts), y(ts)) > ε. By the τp-continuity
of the map

(x′, y′) 7→ %(x′(ts), y′(ts))

there are relatively τp-open neighborhoods Us0 and Us1 of x and y, respec-
tively, so that (β) and (γ) are satisfied. This completes the construction.
Note that (γ) implies that U

τp
s0 ∩ U

τp
s1 = ∅ for each s ∈ 2(N).

For each σ ∈ 2N, choose xσ ∈
⋂∞
n=1 U

τp
σ|n. If σ, σ′ ∈ 2N are two different

sequences, then for some n ∈ {0}∪N, σ|n = σ′|n and σ|(n+ 1) 6= σ′|(n+ 1).
Then by (γ) we have %(xσ(tσ|n), xσ′(tσ|n)) > ε. Letting A = {ts : s ∈ 2(N)}
we have dA(xσ, xσ′) > ε. Since 2N is uncountable, (K, dA) is not separable,
and therefore (b) does not hold.

(c)⇒(b). This is clear because the topology associated to dA is weaker
than γ(D) whenever A is a countable subset of D.

(a)&(b)⇒(c). Let U = {Uj : j ∈ J} be a γ(D)-open cover of K and let
C = {A : A ⊂ D and A is countable}. Without loss of generality we may
assume that each Uj is of the form

Uj = U(xj, Aj , εj) := {y ∈ K : dAj (xj , y) < εj},
where xj ∈ K, Aj ∈ C and εj > 0. For each A ∈ C, define

U(A) = {Uj : j ∈ J, Aj ⊂ A} and U(A) =
⋃
{Uj : Uj ∈ U(A)}.

Then we have

U =
⋃
{U(A) : A ∈ C} and K =

⋃
{U(A) : A ∈ C}.(2)

Also if A ⊂ A′ then U(A) ⊂ U(A′).
We claim that K = U(A) for some A ∈ C. Suppose for a moment this

is true. Then since each member of U(A) is dA-open and since (K, dA) is
separable by (b), there is a countable subfamily of U(A) (hence of U) that
covers K, which completes the proof.

The proof of the claim is by contradiction. So assume that U(A) 6= K
for each A ∈ C. For each A ∈ C, let

C(A) = K \ U(A) and C =
⋂
{C(A)

τp : A ∈ C}.
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We note that C(A) ⊃ C(A′) whenever A ⊂ A′. By compactness of (K, τp),
C 6= ∅, and now (a) tells us that (C, τp) is fragmented by d. So by Lemma
1.1 of [24], there is a point y ∈ C where the identity map (C, τp)→ (C, d) is
continuous. The second equality in (2) ensures us that y ∈ U(B) for some
B ∈ C. Since U(B) is dB-open, for some ε > 0, y ∈ U(y,B, ε) ⊂ U(B). Then
for each x ∈ C(B) = K \ U(B), x 6∈ U(y,B, ε) and so for some t ∈ B,
%(x(t), y(t)) ≥ 2ε/3. For each t ∈ B, let

Dt = {x ∈ C(B) : %(x(t), y(t)) ≥ 2ε/3}.(3)

Then from the above, C(B) =
⋃{Dt : t ∈ B}.

Let V be a τp-open neighborhood of y in K such that d-diam (V
τp∩C) ≤

ε/2. Then we claim that, for some t ∈ B, Dt∩V ∩C(A) 6= ∅ for each A ∈ C.
For, otherwise, for each t ∈ B there is an At ∈ C such thatDt∩V ∩C(At) = ∅.
Since B is countable, the set E := B ∪⋃{At : t ∈ B} is also countable, and
Dt ∩ V ∩ C(E) = ∅ for all t ∈ B. Hence

∅ =
(⋃
{Dt : t ∈ B}

)
∩ V ∩ C(E) = C(B) ∩ V ∩ C(E) = V ∩ C(E),

contradicting y ∈ C ⊂ C(E)
τp .

Now fix a t ∈ B so that Dt ∩ V ∩ C(A) 6= ∅ for each A ∈ C, and let

z ∈
⋂
{Dt ∩ V ∩ C(A)

τp : A ∈ C}.

Then z ∈ V τp ∩ C, and so

d(z, y) ≤ ε/2.(4)

On the other hand, since z ∈ Dt
τp , it follows by (3) that %(z(t), y(t)) ≥ 2ε/3,

which contradicts (4). This completes the proof of both the claim and the
theorem.

It is well known that the product of two Lindelöf spaces is not in general
Lindelöf again: indeed, let Z = R and endow it with the topology for which
a basis is given by all the intervals [x, r), where x, r ∈ R, x < r and r is a
rational number; then Z is a separable first-countable space that is Lindelöf
and is not second-countable; moreover Z × Z is not normal and therefore
not Lindelöf (see [10, pp. 248–249]).

Fortunately the Lindelöf property for the spaces (K, γ(D)) in Theo-
rem 2.1 is preserved under the countable power.

Corollary 2.2. Let K, M, D be as in Theorem 2.1. If K satisfies
one of the three conditions of the theorem, then (K, γ(D))N is Lindelöf. In
particular , (K, γ(D))n is Lindelöf for each n ∈ N.

Proof. We may assume that the metric % of the space M is bounded
by 1. Let ϕ : (MD)N → (MN)D be the map defined by ϕ(ξ)(t)(j) = ξ(j)(t)
for all ξ ∈ (MD)N, t ∈ D, j ∈ N. Clearly ϕ is a homeomorphism when the
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product topology is used throughout. Now the space MN is metrizable, and
we use the metric %∞(m,m′) :=

∑
j∈N 2−j%(m(j),m′(j)) for m,m′ ∈ MN.

Let d∞ be the metric on (MN)D given by

d∞(x, x′) := sup{%∞(x(t), x′(t)) : t ∈ D} for x, x′ ∈ (MN)D.

We now show that if K is fragmented by d then ϕ(KN) is fragmented by d∞.
Let ε > 0, let C be a non-empty subset of KN and let πi : KN → K
be the i-th projection. Then by induction we can construct a decreasing
sequence V1 ⊃ V2 ⊃ . . . of non-empty relatively open subsets of C such that
d-diam (πj(Vj)) < ε/2 for each j ∈ N. Choose k ∈ N so that 2−k < ε/2, and
let ξ, ξ′ ∈ Vk. Then for each t ∈ D,

%∞(ϕ(ξ)(t), ϕ(ξ′)(t)) ≤
∑

j≤k
2−j%(ξ(j)(t), ξ′(j)(t)) +

∑

j≥k+1

2−j

<
∑

j≤k
2−jd(πj(ξ), πj(ξ′)) +

ε

2
≤ ε

2
+
ε

2
= ε.

Thus ϕ(Vk) is a non-empty relatively open subset of ϕ(C) with d∞-diameter
not greater than ε.

Hence by Theorem 2.1, ϕ(KN) is γ(D)-Lindelöf. So we finish the proof by
showing that ϕ maps (MD, γ(D))N homeomorphically onto ((MN)D, γ(D)).
Let τ1, τ2 be the topologies of these two spaces respectively. Then a net ξα
in (MD)N τ1-converges to ξ ∈ (MD)N if and only if: (i) for each j ∈ N and
for each countable set A ⊂ D, %(ξα(j)(t), ξ(j)(t)) → 0 uniformly in t ∈ A.
On the other hand, the net ϕ(ξα) τ2-converges to ϕ(ξ) if and only if: (ii) for
each countable A ⊂ D,

%∞(ϕ(ξα)(t), ϕ(ξ)(t)) =
∑

j∈N
2−j%(ξα(j)(t), ξ(j)(t))→ 0

uniformly in t ∈ A. The equivalence of statements (i) and (ii) can be seen
by an easy calculation similar to the one given above. Hence ϕ is a τ1-τ2

homeomorphism.

As an immediate consequence of the foregoing, we obtain the following
theorem, whose first part was mentioned in the introduction. It has been
stated in [25] as Theorems B and C. The original proof is quite different and
depends on the technique of projections in Banach spaces.

Theorem 2.3 ([25]). A Banach space X is an Asplund space if and only
if (X∗, γ(BX)) is Lindelöf. If this is the case, then (X∗, γ(BX))n is Lindelöf
for each n ∈ N.

Proof. Note that (X∗, γ(BX))n is Lindelöf if and only if (BX∗ , γ(BX))n

is Lindelöf, and X is an Asplund space if and only if (BX∗ ,weak∗) is frag-
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mented by the norm. Therefore the theorem follows from 2.1 and 2.2 by
regarding (BX∗ ,weak∗) as a compact subspace of ([−1, 1]BX , τp).

3. Applications to RN-compact spaces. Let K be a compact Haus-
dorff space and let D be a uniformly bounded subset of C(K) and A ⊂ D.
Then we define the pseudo-metric on K by

dA(x, x′) = sup{|f(x)− f(x′)| : f ∈ A} for x, x′ ∈ K.
We again write γ(D) to denote the uniform topology on K generated by the
family of pseudo-metrics {dA : A ⊂ D, A countable}. Observe that when
D separates the points of K, then K embeds in [−m,m]D for some m > 0.
Hence the topology γ(D) now defined is the one already given through the
embedding K ⊂ [−m,m]D, and γ(D) is stronger than the original topol-
ogy of K. In particular the equivalences we have seen in Theorem 2.1 and
Corollary 2.2 remain true.

Theorem 3.1. Let K be a compact Hausdorff space and let D be a uni-
formly bounded subset of C(K). Then the following statements are equiva-
lent :

(i) The space (K, dA) is separable for each countable A ⊂ D.
(ii) The space (K, γ(D)) is Lindelöf.

(iii) The space (K, γ(D))N is Lindelöf.

Proof. From the remark above, the theorem is clear in case D separates
the points of K. The general case can be reduced to this as follows. Let
m = sup{‖f‖ : f ∈ D} and let ϕ : K → [−m,m]D be the map given by
ϕ(x)(f) = f(x) for all x ∈ K and f ∈ D. Then K ′ := ϕ(K) is a compact
Hausdorff space. For each f ∈ D, let f̂ ∈ C(K ′) be the map given by
f̂(ϕ(x)) = f(x), and, for each A ⊂ D, let Â = {f̂ : f ∈ A}. Then clearly
f 7→ f̂ is a one-to-one map of D onto D̂ and dA(x, y) = dÂ(ϕ(x), ϕ(y)) for
all x, y ∈ K. It follows that (K, dA) is separable if, and only if, (K ′, dÂ) is
separable. The last equality also implies that, for each x ∈ K, {y ∈ K :
dA(x, y) < ε} = ϕ−1({z ∈ K ′ : dÂ(ϕ(x), z) < ε}). Hence a subset U of K is
γ(D)-open if and only if U = ϕ−1(U ′) for some γ(D̂)-open subset U ′ of K ′.
From this it is straightforward to check that (K, γ(D)) (resp. (K, γ(D))N)
is Lindelöf if, and only if, (K ′, γ(D̂)) (resp. (K ′, γ(D̂))N) is Lindelöf. Since
D̂ separates the points of K ′, the conclusion of the theorem is true for D̂
and K ′. Hence the theorem is proved in general.

A compact Hausdorff space is said to be Radon–Nikodým compact (or
RN-compact) if it is homeomorphic to a weak∗-compact subset of the dual
of an Asplund space, i.e. a dual Banach space with the RNP. It is shown
in [24] that a compact Hausdorff space is RN-compact if, and only if, it is
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fragmented by a lower semicontinuous metric on the space. When (M,%) is
a metric space (with % bounded) the metric d in Theorem 2.1 is clearly τp
lower semicontinuous. Therefore, Theorem 2.1 provides the following char-
acterization of RN-compact spaces.

Proposition 3.2. A compact Hausdorff space is RN-compact if , and
only if , it is homeomorphic to a pointwise compact subset K of [−1, 1]D for
some set D such that (K, γ(D)) is Lindelöf.

Proof. By Theorem 3.6 of [24] a compact space is RN-compact if, and
only if, K is homeomorphic to a pointwise compact subset K of [−1, 1]D for
some set D such that (K, dA) is separable for each countable subset A of D.
An application of Theorem 2.1 finishes the proof of the proposition.

In terms of spaces of continuous functions the proposition above can be
restated as follows.

Corollary 3.3. A compact Hausdorff space K is RN-compact if , and
only if , there is a bounded subset D of C(K) separating points of K such
that (K, γ(D)) is Lindelöf. Moreover , if this is the case, then (K, γ(D))N is
Lindelöf.

Proof. Assume K is RN-compact. By Proposition 3.2, we may assume
that K is a subspace of ([−1, 1]D, τp) for a certain set D with (K, γ(D))
Lindelöf; for every d ∈ D let πd : [−1, 1]D → [−1, 1] be the projection
defined by πd(x) = x(d), x ∈ [−1, 1]D. If we let D̂ = {πd : d ∈ D}, then
D̂ is a uniformly bounded subset of C(K) separating the points of K and
such that (K, γ(D̂)) is Lindelöf. The last part follows from Theorem 3.1.
A similar argument proves the converse.

For weakly compact subsets of C(K), we have the following.

Corollary 3.4. Let K be a compact Hausdorff space and let H⊂C(K)
be a weakly compact (i.e. bounded and τp-compact) set. Then (K, γ(H))N is
Lindelöf.

Proof. For a countable set A ⊂ H, A
τp ⊂ C(K) is τp(K)-metrizable and

thus the space (C(A
τp), dA τp ) is separable. Hence, (K|A τp , dA τp ) is separable

and so is (K, dA). In view of Theorem 3.1, the proof is complete.

We need the following easy lemma that appears in [5] in a more general
context.

Lemma 1. Let Z be a Lindelöf space, and let H ⊂ C(Z) be equicontin-
uous. Then (H, τp(Z)) is metrizable.

Proof. Let dH be the pseudo-metric on Z given by

dH(z, z′) = min{1, sup
h∈H
|h(z)− h(z′)|}.
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Since H is equicontinuous, the dH-topology is weaker than the given one
on Z. So (Z, dH) is Lindelöf and hence separable. Let D be a countable dH-
dense subset of Z. Then since H is dH-equicontinuous, on H the topologies
of pointwise convergence on D and on Z coincide. Therefore (H, τp(Z)) is
metrizable.

Given a subset D of RK , let

F (D) =
⋃
{A τp : A ⊂ D, A countable}.

Note that if B is a countable subset of F (D) then there is a countable
subset A of D such that B

τp ⊂ A
τp ⊂ F (D). In particular, F (F (D)) =

F (D).
Recall that a topological space Z is said to be countably tight (resp. to be

a Fréchet–Urysohn space) if for each set S ⊂ Z and each point x ∈ S there
is a countable set A ⊂ S (resp. sequence (xn)n in S) such that x ∈ A (resp.
(xn)n converges to x); see [2, pp. 5 and 7]. In applying the results of the
last section, the following theorem of Arkhangel’skĭı ([2, Theorem II.1.1]) is
very useful. We quote a special case.

Theorem A. Let T be a topological space such that T n is Lindelöf for
each n ∈ N. Then (C(T ), τp(T )) is countably tight.

Corollary 3.5. Let K be a compact space and let D be a bounded sub-
set of C(K) such that (K, γ(D)) is Lindelöf. Then the following properties
hold :

(a) For any countable set A ⊂ D, A
τp (closure taken in RK) is γ(D)-

equicontinuous and τp-metrizable.
(b) F (D) = C(K, γ(D)) ∩D τp , where the closure is taken in RK .
(c) (F (D), τp) is a Fréchet–Urysohn space.

Proof. (a) easily follows from the previous lemma: if A ⊂ D is countable
then A is γ(D)-equicontinuous; its τp-closure A

τp in RK is again γ(D)-
equicontinuous and therefore τp-metrizable by Lemma 1. This proves (a).

For (b), we first note that (a) implies F (D) ⊂ C(K, γ(D)) ∩D τp . Next
we note that (K, γ(D))n is Lindelöf for each n ∈ N by Theorem 3.1. This fact
implies that (C(K, γ(D)), τp) is countably tight according to Theorem A.
Therefore if f ∈ C(K, γ(D)) ∩D τp then there is a countable subset A of D
such that f ∈ A τp . Hence f ∈ F (D), which proves (b).

The proof of (c) is similar: Suppose that S ⊂ F (D) and f ∈ S τp ∩F (D).
Then by the countable tightness, there is a countable subset B of S such
that f ∈ B τp . Then as noted above, there is a countable subset A of D such
that B

τp ⊂ A
τp . In particular B

τp is τp-metrizable by (a). Therefore there
is a sequence in B (hence in S) that τp-converges to f . This proves (c).
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Recall that a topological space T is said to be scattered if each non-empty
subset of T has an isolated point, or equivalently T is fragmented by the
(necessarily lower semicontinuous) trivial metric %, where %(t, s) = 0 for
t = s and %(t, s) = 1 for t 6= s. It can be shown (cf. [30, Theorem 8.5.4])
that a compact Hausdorff space K is scattered if and only if there is no
continuous map from K onto [0, 1]. We remark that in the corollary above
if BC(K) ⊂ F (D) then K is scattered. For then, (BC(K), τp) is a Fréchet–
Urysohn space; on the other hand, (BC[0,1], τp) is not Fréchet–Urysohn (see
[2, Lemma II.3.5]), and consequently K cannot be continuously mapped
onto [0, 1].

Given a topological space (Z, T ), the Gδ-topology associated to T is the
topology on Z whose basis is the family of Gδ-sets, {⋂n Un : Un ∈ T }; when
no confusion is likely we simply write Z for the topological space and then
refer to its Gδ-topology.

Lemma 2. Let K be a compact Hausdorff space. Then the Gδ-topology
for K is identical with γ(BC(K)) on K.

Proof. Clearly the Gδ-topology is stronger than γ(BC(K)). Let a ∈ K,
and let G be a Gδ-set containing a. Then G =

⋂∞
n=1 Un where each Un is

open in K. For each n, let fn be a continuous function fn : K → [0, 1] such
that fn(a) = 0, and fn|K\Un ≡ 1. Write A = {fn : n ∈ N}. Then A is a
countable subset of BC(K), and x ∈ G whenever dA(a, x) < 1, i.e.

a ∈ {x ∈ K : dA(a, x) < 1} ⊂ G.
This shows that γ(BC(K)) is stronger than the Gδ-topology and we are
done.

Corollary 3.6 (Meyer, [23]). For a compact Hausdorff space K, let τδ
denote its Gδ-topology. Then the following statements are equivalent :

(a) K is scattered.
(b) (K, τδ) is Lindelöf.
(c) (BCb(K,τδ), τp) is a Fréchet–Urysohn space.

Proof. For (a)⇔(b), regarding K as a subset of ([−1, 1]BC(K) , τp), we
apply Theorem 2.1. In this case the metric d is twice the trivial metric
and the topology γ(BC(K)) is the Gδ-topology for K by the lemma above.
(a)⇔(b) now follows. Next assume (b), and we apply Corollary 3.5 to our K
and D := BC(K). The hypotheses are satisfied by (b). Since the τp-closure of
D is [−1, 1]K , (b) of Corollary 3.5 says that F (D) = BCb(K,γ(D)) = BCb(K,τδ)
and (c) of the same corollary says that (BCb(K,τδ), τp) is a Fréchet–Urysohn
space. This is (c). If (c) holds, then (BC(K), τp) is also a Fréchet–Urysohn
space. But as remarked above, this implies (a).
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We should comment here that topological spaces for which Gδ-sets are
again open are called P-spaces. It is a very easy exercise to prove that if
Z is a Lindelöf P-space then Zn is Lindelöf for n ∈ N and so (C(Z), τp)
has countable tightness; it also follows from Lemma 1 that for such a Z
the separable subsets of (C(Z), τp) are metrizable, and hence (C(Z), τp) is
Fréchet–Urysohn; see also [2]. Our argument also shows that, for K compact
and scattered, the space of all continuous functions on K endowed with its
Gδ-topology is B1(K), the space of τp-limits of sequences in C(K), and that
all classes of Baire functions on K are the same [22].

4. Pointwise Lindelöf subsets of spaces of continuous functions.
Let D be a dense subset of a compact Hausdorff space K and let H be a
bounded τp(D)-compact subset of C(K). In this section, we investigate the
τp(K)-Lindelöf property of H by means of the γ(D)-topology of the earlier
sections. As application we prove the results mentioned in the introduction.

The following simple proposition enables us to extract information on
(H, τp(K)) from that on (H, γ(D)).

Proposition 4.1. Let K be a compact Hausdorff space, D a dense sub-
set of K and H a subset C(K). If H is τp(K)-Lindelöf , then γ(D) is
stronger than τp(K) on H.

Proof. Let f ∈ H, ε > 0, x ∈ K, and

U = {g ∈ H : |g(x)− f(x)| < ε}.
Then U is a τp(K)-open neighborhood of f in H, and it is sufficient to show
that U is a γ(D)-neighborhood of f in H. For each d ∈ D, let

Dd = {g ∈ H : |g(d)− f(d)| ≤ ε/2}.
If g ∈ ⋂{Dd : d ∈ D}, then |g(x)− f(x)| ≤ ε/2 since x ∈ D, and therefore
g ∈ U . It follows that

⋂{Dd : d ∈ D} ⊂ U . Since each Dd is τp(K)-closed
andH is τp(K)-Lindelöf, there is a countable subset A ofD such that already⋂{Dd : d ∈ A} ⊂ U , i.e. {g ∈ H : supd∈A |g(d)−f(d)| ≤ ε/2} ⊂ U . Hence U
is a γ(D)-neighborhood of f in H and the proof is finished.

Corollary 4.2. Let K be a compact Hausdorff space, D a dense subset
of K and H a bounded τp(D)-compact subset of C(K). If (H, τp(K)) is
Lindelöf , then (H, τp(K))N is Lindelöf.

Proof. If H is τp(D)-compact and τp(K)-Lindelöf, then by [4, Theo-
rem B], H is fragmented by the supremum norm of C(K), i.e. as a compact
subset H of [−m,m]D for a suitable m, H is fragmented by d in the notation
of Theorem 2.1. According to Theorem 2.1 and Corollary 2.2, (H, γ(D))N is
Lindelöf. By Proposition 4.1, γ(D) is stronger than τp(K) on H and there-
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fore (H, τp(K))N is Lindelöf because it is a continuous image of the Lindelöf
space (H, γ(D))N.

In [2, Problem IV.11.11] Arkhangel’skĭı asks the following question. Let
K be a compact Hausdorff space. If there exists a τp-Lindelöf subset H
of C(K) that separates the points of K, is K countably tight? The next
corollary is an answer to this question under a rather strong restriction
on H.

Corollary 4.3. Let K be a compact Hausdorff space, and H a τp(K)-
Lindelöf bounded subset of C(K) separating the points of K. If H is τp(D)-
compact for some dense subset D ⊂ K, then K is countably tight.

Proof. An application of Corollary 4.2 allows us to conclude that
(H, τp(K))n is Lindelöf for n ∈ N. Hence the space (C(H, τp(K)), τp(H))
is countably tight by Theorem A. The space K is homeomorphic to a subset
of C(H, τp(K)) because H separates the points of K, and so the proof is
done.

If X is a Banach space, then BX∗∗ is always assumed to have the weak∗-
topology (= σ(X∗∗,X∗)) unless other topology is specified. Also X and BX
are considered as subspace/subset of X∗∗ and BX∗∗ , respectively, by means
of the canonical embedding. Thus (X∗,weak∗) is a subspace of (C(BX∗∗),
τp(BX)) and (X∗,weak) is a subspace of (C(BX∗∗), τp(BX∗∗)). For a subset
S of X∗, the weak and weak∗ closures of S are respectively denoted by S

w

and S
w∗

. A particular case of Corollary 4.2 is the following:

Corollary 4.4. Let X be a Banach space and let H be a weak∗-compact
subset of X∗ which is weakly Lindelöf. Then (H,weak)N is Lindelöf.

The next result gives an affirmative answer to a question posed by Ta-
lagrand that appears in [32] as Problème 4.5.

Theorem 4.5. Let X be a Banach space and let H be a weak∗-compact
subset of X∗ which is weakly Lindelöf. Then:

(a) co(H)
w∗

= co(H)
‖ ‖

.

(b) co(H)
w∗

is weakly Lindelöf.

Proof. If H is a weak∗-compact subset of X∗ which is also weakly Lin-
delöf, then (H,weak∗) is fragmented by the dual norm by Corollary E in [4].
The equality in item (a) now follows from Theorem 2.3 in [24].

Let us prove (b). As noted in the proof of (a), (H,weak∗) is fragmented

by the norm. Therefore if we let W = co(H)
w∗

, then W is weak∗-compact
and (W,weak∗) is fragmented by the norm by [24, Theorem 2.5]. By em-
bedding W into [−m,m]BX for a suitable m > 0, we see that (W,γ(BX))
is Lindelöf by Theorem 2.1. Therefore the proof is finished once we show
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that γ(BX) is stronger than the weak topology on W , or equivalently each
member x∗∗ of BX∗∗ is continuous on (W,γ(BX)). So fix an element x∗∗

in BX∗∗ . By Corollary 4.4, (H,weak)N is Lindelöf, and therefore, by Theo-
rem A, (C(H,weak), τp(H)) is countably tight. Since BX |H is τp(H)-dense in
BX∗∗ |H ⊂ C(H,weak), there is a countable subset A ⊂ BX such that x∗∗|H
is in the τp(H)-closure of A|H . Let G be the convex hull of H. Then by the
linearity, x∗∗|W is in the τp(G)-closure of A|W . By (a), G is norm-dense in
W and BX∗∗ |W is an equicontinuous family of functions on (W, ‖ ‖). Hence
τp(W ) and τp(G) coincide on BX∗∗ |W , and so x∗∗|W is in the τp(W )-closure
of A|W . Finally, A|W is an equicontinuous family on (W,γ(BX)) and hence
x∗∗|W , being in the pointwise closure of A|W , is γ(BX)-continuous on W .

Remark. In the theorem above as well as in the next corollary, the

weak∗-closed convex hull of H (= co(H)
w∗

) can be replaced by the weak∗-
closed absolutely convex hull of H. The proof is almost identical as above
since [24, Theorem 2.5] is actually stated for the weak∗-closed absolute con-
vex hull case.

Corollary 4.6. Let X be a Banach space, H a weak∗-compact subset
of X∗ and W its weak∗-closed convex hull. The following statements are
equivalent :

(a) (H, weak) is Lindelöf.
(b) (H, weak)N is Lindelöf.
(c) (W, weak) is Lindelöf.
(d) (W, weak)N is Lindelöf.

Proof. The implications (a)⇒(b) and (c)⇒(d) both follow from Corol-
lary 4.4. The implications (b)⇒(a), (d)⇒(c) and (c)⇒(a) are obvious. And
finally, the implication (a)⇒(c) is Theorem 4.5.

5. Banach spaces generated by RN-compact subsets. If X is
either a weakly compactly generated Banach space or the dual of an Asplund
space, then X is generated by an RN-compact subset in the weak or the
weak∗ topology. We shall deal in this section with the class of Banach spaces
generated by RN-compact subsets with respect to a topology weaker than
the weak topology. To be more concrete, our framework is the following: for
a Banach space (X, ‖ ‖) we consider a norming subset F ⊂ X∗ (also called
1-norming subset) for X, that is, a Q-linear set F satisfying

‖x‖ = sup{|〈x, f〉| : f ∈ F ∩BX∗}.(5)

If a bounded set H ⊂ X is σ(X,F )-compact and fragmented by the norm,
then (H,σ(X,F )) is an RN-compact set since the norm is σ(X,F )-lower
semicontinuous, and we will study the space generated by it, that is, the
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space Y = span(H)
‖ ‖

. The Banach space Y thus obtained will be called a
Banach space generated by an RN-compact subset. In Section 7, we exhibit
several examples of such Banach spaces. In order to show the main proper-
ties of spaces generated this way we shall first see that these spaces admit
projectional generators as defined below. Here our main reference is [11]. If
A is a non-empty subset of a Banach space X, then A⊥ denotes the subset
{f ∈ X∗ : f(x) = 0 for all x ∈ A} of X∗.

Definition 2. Let X be a Banach space. A projectional generator on
X is a countable-valued map ϕ : F → 2X on a norming subset F ⊂ X∗ such
that whenever B ⊂ F is a Q-linear set, we have

ϕ(B)⊥ ∩B ∩BX∗ w∗
= {0}(6)

According to the method developed in [27], [25] and [11], the existence of
a projectional generator leads to the existence of a projectional resolution of
identity (PRI for short) in the sense that follows. Given a Banach space X,
the density character of X (denoted by densX) is defined to be the least
cardinality of a dense subset of X. Let µ be the least ordinal such that
|µ| = densX, where |µ| denotes the cardinality of the ordinal µ. A PRI on
X is a transfinite sequence {Pα : ω0 ≤ α ≤ µ} of linear projections in X
satisfying the following conditions, where α and β are arbitrary ordinals in
[ω0, µ]:

(a) ‖Pα‖ = 1.
(b) densPα(X) ≤ |α|.
(c) PαPβ = PβPα = Pmin{α,β}.
(d) For each x ∈ X and each limit ordinal α, Pβ(x)→ Pα(x) in the norm

as β ↑ α.

The next proposition gathers the main properties of spaces with a projec-
tional generator. In what follows, “LUR norm” stands for “locally uniformly
rotund (or convex) norm”.

Each part of the following theorem is known, but they are not usually
stated in the form we prefer in the present paper. We record it here for later
reference.

Theorem 5.1. Let X be a Banach space with a projectional generator
ϕ : F → 2X . Then the following statements hold :

(a) X admits a PRI {Pα : ω0 ≤ α ≤ µ} such that Pα(X) has a projec-
tional generator for each ω0 ≤ α < µ.

(b) X admits an equivalent LUR norm.
(c) There is a linear continuous one-to-one operator T : X → c0(Γ ) for

some set Γ .
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(d) The Banach space X is γ(X,F )-Lindelöf , where γ(X,F ) is the topol-
ogy on X of uniform convergence on bounded countable subsets of F .

Proof. (a) With the projectional generator ϕ in X, a PRI {Pα : ω0 ≤ α
≤ µ} can be constructed, based on pairs (Aα, Bα) of Q-linear subsets, Aα ⊂
X and Bα ⊂ F with ϕ(Bα) ⊂ Aα and Bα norming for Aα (see Proposition
6.1.7 and Remark 6.1.8 of [11]); so, we have Bα ∩BX∗ w∗ ∩ A⊥α = {0} and

Pα is the projection from X onto A
‖ ‖
α with kernel B⊥α . The space P ∗α(X∗) =

B
w∗

α is identified with the dual of Pα(X) = A
‖ ‖
α and therefore Pα(X) also

has a projectional generator defined on Bα by ϕα(f) = Pα(ϕ(f)), f ∈ Bα.
These observations complete the proof of (a).

(b) and (c). Here we use the induction argument encapsulated in [7,
Theorem VII.1.8]. Let P be the class of Banach spaces that admit a projec-
tional generator. Then (a) shows that the hypothesis on P in [7, Theorem
VII.1.8] is satisfied. Therefore each member X of P admits an equivalent
LUR norm. If, in the proof of [7, Theorem VII.1.8], one uses [11, Proposition
6.2.2] instead of Proposition VII.1.6 of [7], then one can also conclude that
each member X of P has property (c).

(d) The proof of Theorem A in [25] gives us this result.

What remains of this section is devoted to proving that a Banach space
generated by an RN-compact subset has a projectional generator and there-
fore enjoys the properties listed in Theorem 5.1.

First we recall Simons’ lemma [31].

Lemma 3. Let (zn)n be a uniformly bounded sequence in `∞(C) and
let W be its convex hull. If B is a subset of C such that for every sequence
(λn)n of positive numbers with

∑∞
n=1 λn = 1 there is b ∈ B such that

sup
{ ∞∑

n=1

λnzn(y) : y ∈ C
}

=
∞∑

n=1

λnzn(b),(7)

then
sup
b∈B
{lim sup

n→∞
zn(b)} ≥ inf{sup

C
w : w ∈W}.(8)

A subset of X∗ is said to be total if its linear span is weak∗-dense in X∗.
Clearly a norming subset for X is a total subset of X∗.

Definition 3. Let X be a normed space, C ⊂ X a set and F a total
subset in X∗. A subset B ⊂ C is said to be an F -boundary for C if for every
f in F there is a b ∈ B such that f(b) = sup{f(x) : x ∈ C}.

In what follows, when F is a total norm-closed subspace of X∗ we con-
sider the norm associated to F given by

pF (x) = sup{|〈x, f〉| : f ∈ F ∩BX∗},
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for x ∈ X. Then the unit ball of (X, pF )∗ is the set F ∩BX∗ w∗
and (X, pF )∗

is the subspace H =
⋃∞
n=1 n(F ∩BX∗)

w∗
of X∗. Clearly F ⊂ H.

Proposition 5.2. Let X be a normed space and let F be a total norm-
closed subspace of X∗. Let C be a bounded subset of X and B ⊂ C an
F -boundary for C such that (B, pF ) is separable. Then

co(B)
pF = co(C)

σ(X,F )
.(9)

Proof. The proof is based on the ideas in [13] (see also [12]). As we
remarked, the dual of (X, pF ) is the subspace H =

⋃∞
n=1 nG

w∗
of X∗, where

G = BX∗ ∩ F , and F ⊂ H. Hence

co(B)
pF ⊂ co(C)

pF = co(C)
σ(X,H) ⊂ co(C)

σ(X,F )
.

Assume that the conclusion of the proposition is false. Then there exists an

element x0 ∈ co(C)
σ(X,F ) \co(B)

pF . Then by the separation theorem, there
is a functional f ∈ H = (X, pF )∗ such that

f(x0) > α > sup{f(b) : b ∈ B}.

By scaling we may assume that f ∈ Gw∗
. Let U = {g ∈ X∗ : g(x0) > α}.

Then U is convex weak∗-open and f ∈ Gw∗ ∩ U ⊂ G ∩ U w∗
. Now G

w∗
is

equicontinuous on (X, pF ) and B contains a countable pF -dense subset D.
Therefore in G

w∗
the topology of pointwise convergence on B is identical

with the topology of pointwise convergence on D, and the latter is pseudo-
metrizable. It follows that there is a sequence {zn : n ∈ N} in G∩U such that
limn zn(b) = f(b) for each b ∈ B. Our assumption of F being norm-closed
and B being an F -boundary of C implies that the sequence (zn)n satisfies
the hypothesis of Lemma 3. Hence by (8),

α > sup
b∈B

f(b) ≥ inf{sup
c∈C

w(c) : w ∈ co({zn})}.

It follows that α > supC w for some w ∈ co({zn}) ⊂ G ∩ U . In par-
ticular, since w ∈ U , w(x0) > α > supC w. On the other hand, since

x0 ∈ co(C)
σ(X,F )

and, being in F , w is σ(X,F )-continuous,w(x0) ≤ supC w,
contradicting the previous inequality. This proves the proposition.

The pointwise limit of a sequence of real-valued continuous functions is
called a function of the first Baire class. More generally a function f from a
topological space M into a normed space X is said to be of the first Baire
class if there is a sequence of continuous functions fn : M → X such that
(fn)n converges to f in (XM , τp). A multi-valued map ϕ from the topological
space M to the space of subsets of a topological space T is said to be usco
if ϕ(m) is a compact non-empty subset of T for each m ∈ M and if ϕ is
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upper semicontinuous in the sense that, whenever U is an open subset of T ,
{m ∈M : ϕ(m) ⊂ U} is open in M .

Ideas in [14] (see also [29]) allow us to modify Jayne–Rogers’ selection
theorem, [19], to our situation below.

Theorem 5.3. Let M be a metric space, X a normed space and F a to-
tal norm-closed subspace of X∗. Let H be a norm-bounded σ(X,F )-compact
subset of X which is fragmented by the norm pF . If ψ is an usco map
from M to subsets of (H,σ(X,F )), then ψ has a first Baire class selector
f from M into (X, pF ).

Proof. If we identify (X, pF ) with a subspace of `∞(F ∩ BX∗) and H
with a weak∗-compact subset there, then we can apply Remark 17 in [18] to
obtain a selector f of ψH which is σ-discrete and of the first Borel class from
F to `∞(B ∩BX∗) (see Corollary 7 in [18]). Such a selector as a map from
F into (X, pF ) is also σ-discrete of the first Borel class, and by Theorems 1
and 2 of [29], f is of the first Baire class from F into (X, pF ) (see also [14]
and the remarks in the introduction of [29]).

We are now ready to prove one of the main properties of the selectors
obtained above: the result that follows is a counterpart to the one stated
as Theorem 26 in [18], and it is in the setting of topologies of pointwise
convergence on total sets.

Theorem 5.4. Let X be a normed space and let F be a total norm-closed
subspace of X∗. Let H be a norm-bounded σ(X,F )-compact subset of X.
Let ψH : F → 2H be the multi-valued map given by

ψH(f) = {x ∈ H : f(x) = sup
H
f}.

Then ψH has a selector of the first Baire class from (F, ‖ ‖) into (X, pF )
if , and only if , (H,σ(X,F )) is fragmented by pF . Moreover , if f : F → H
is such a selector of ψH , then

co(H)
σ(X,F )

= co(f(F ))
pF
.(10)

Proof. The arguments here are similar to the ones in [18, Theorem 26].
First it is easy to check that ψH is an usco map from (F, ‖ ‖) into compact
subsets of (H,σ(X,F )). If (H,σ(X,F )) is fragmented by pF , then, by Theo-
rem 5.3, ψH has a first Baire class selector f : (F, ‖ ‖)→ (X, pF ). Conversely
assume that such a selector f exists. Let S be a ‖ ‖-closed and ‖ ‖-separable
subspace of F , and consider the quotient normed space (X/S⊥, ‖ ‖S). Re-
call that the dual of (X/S⊥, ‖ ‖S) is isometric with S

w∗
and hence S is a

norm-closed total subspace of (X/S⊥, ‖ ‖S)∗. Let πS : X → X/S⊥ be the
canonical quotient map and let pS be the norm on X/S⊥ given by

pS(πS(x)) = pS(x) := sup{|g(x)| : g ∈ S ∩BX∗}(11)
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for each x ∈ X. Then πS(H) is a ‖ ‖S-bounded, σ(X/S⊥, S)-compact subset
of X/S⊥, and πS(f(S)) is an S-boundary for πS(H). Now let fk : F → X be
a sequence of ‖ ‖-pF continuous maps such that for each g ∈ F, fk(g)→ f(g)
in pF . For each subset A of F , let

Φ(A) =
∞⋃

k=1

fk(A).

Then f(A
‖ ‖

) ⊂ Φ(A)
pF and Φ(A) is countable whenever A is. If D is a ‖ ‖-

dense countable subset of S, then f(S) = f(D
‖ ‖

) ⊂ Φ(D)
pF . Hence f(S) is

pF -separable and so πS(f(S)) is pS-separable. It follows from Proposition 5.2
that

co(πS(f(S)))
pS = co(πS(H))

σ(X/S⊥,S)
.(12)

This shows in particular that, whenever S is a ‖ ‖-separable ‖ ‖-closed sub-
space of F , πS(H) is pS-separable and hence H is pS-separable. Regarding
H as a τp-compact subset of [−m,m]F∩BX∗ with an appropriate m > 0, we
see from Theorem 2.1 that (H,σ(X,F )) is fragmented by pF .

Finally we show that (10) is a consequence of (12). For this it is sufficient
to prove that for each u ∈ X, there is a ‖ ‖-separable ‖ ‖-closed subspace S
of F such that

pS-dist(πS(u), co(πS(f(S)))) ≥ pF -dist(u, co(f(S))).(13)

For if u ∈ co(H)
σ(X,F )

and if S is chosen as above, then since

πS(u) ∈ πS(co(H))
σ(X/S⊥,S)

we have, by (12), 0 = pS-dist (πS(u), co(πS(f(S))) ≥ pF -dist (u, co(f(S))).
Hence u ∈ co(f(S))

pF ⊂ co(f(F ))
pF . This shows that the left side of (10)

is contained in the right side. The reverse inclusion is obvious.
To prove (13), let u ∈ X. For each countable subset M of X, let α(M)

be a countable subset of F ∩BX∗ such that, for each x ∈M ,

pF (u− x) = sup{|g(u− x)| : g ∈ α(M)}.
Inductively we define a sequence A1 ⊂ A2 ⊂ . . . of countable subsets of F
as follows: let g0 be an arbitrary non-zero element of F and let A1 = {qg0 :
q ∈ Q}. Assuming that An has been defined, let

An+1 = spanQ(α(coQ(Φ(An))) ∪ An),

where spanQ(C) (resp. coQ(C)) denotes the set of all linear (resp. con-
vex) combinations of elements of C with rational coefficients. Let S =
⋃∞
n=1An

‖ ‖
.

Before showing this S satisfies (13), we note that if y ∈ coQ(Φ(An)) then

pF (u− y) = sup{|g(u− y)| : g ∈ α(coQ(Φ(An)))} ≤ pS(u− y) ≤ pF (u− y).
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Hence pF (u− y) = pS(u− y). Now by the definition of Φ,

co(f(S)) ⊂ co(Φ(
⋃∞
n=1An)

pF )

⊂ coQ(
⋃∞
n=1 Φ(An))

pF =
⋃∞
n=1 coQ(Φ(An))

pF
.

Let x ∈ co(f(S)) and ε > 0 be arbitrary. Then there is a y ∈ coQ(Φ(An))
for some n such that pS(x− y) ≤ pF (x− y) < ε. Then

pS(πS(u)− πS(x)) = pS(u− x) ≥ pS(u− y)− ε = pF (u− y)− ε
≥ pF (u− x)− 2ε ≥ pF -dist(u, co(f(S)))− 2ε.

Since x ∈ f(S) and ε > 0 are arbitrary, we obtain (13).

Remark. In the setting of Theorem 5.4, (12) is now true whenever S
is a ‖ ‖-closed subspace of F . This can be seen by applying Theorem 5.4
to the normed space X/S⊥, the total subspace S of (X/S⊥)∗ = S

w∗
, the

σ(X/S⊥, S)-compact set πS(H) and the selector πS ◦ f |S for the usco map
ψS : S → 2πS(H). This remark is important in the proof of the next theo-
rem.

Theorem 5.5. Let X be a Banach space, F a norming subset of X∗,
and let H be a bounded σ(X,F )-compact subset of X fragmented by the

norm of X. Then the Banach space Y = span(H)
‖ ‖

has a projectional
generator.

Proof. We first prove the case X = Y . Since H is bounded, σ(X,F )

and σ(X,F
‖ ‖

) coincide on H. Hence we may assume that F is a ‖ ‖-
closed norming subspace. Let ψH : F → 2H be the set-valued map given by
ψH(g) = {x ∈ H : g(x) = supH g} for each g ∈ F . Then by Theorem 5.4,
ψH admits a selector f : F → H of the first Baire class from (F, ‖ ‖) into
(X, ‖ ‖). Let {fk} be a sequence of continuous maps (F, ‖ ‖) → (X, ‖ ‖)
such that fk(g) → f(g) in the norm for each g ∈ F , and we define the
countable-valued map ϕ : F → 2X by ϕ(g) = {fk(g) : k ∈ N}. We prove
that ϕ is a projectional generator (cf. Definition 2). So let B be a Q-linear
subset of F , and let g ∈ ϕ(B)⊥ ∩B ∩BX∗ w∗

. We must show that g = 0.

Let S = B
‖ ‖ ⊂ F , let πS : X → X/S⊥ be the quotient map and let

pS be the norm defined on X/S⊥ by (11). Since g ∈ S ∩BX∗ w∗
, g defines a

pS-continuous linear functional g on X/S⊥ by the formula g(πS(x)) = g(x)

for each x ∈ X. Now by the definition of ϕ, f(S) = f(B
‖ ‖

) ⊂ ϕ(B)
‖ ‖

.
Since g vanishes on ϕ(B), it also vanishes on f(S), and hence g vanishes
on πS(f(S)). By the remark following the last theorem, (12) is valid for S
and hence πS(H) ⊂ co(πS(f(S))

pS . Therefore by continuity g vanishes on
πS(H), i.e. g vanishes on H. Since X is the norm-closed span of H, g = 0.
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The general case is proved by applying the special case above to the
Banach space Y and the norming subspace F |Y for Y . Note that H is a
σ(Y, F |Y )-compact subset of Y and it is fragmented by the norm of Y .

Corollary 5.6. Let X be a Banach space, F a norming subset of X∗,
H a bounded subset of X which is σ(X,F )-compact and fragmented by the

norm of X, and let Y = span(H)
‖ ‖

. Then:

(a) (Y, γ(X,F )) is Lindelöf.
(b) Y has a PRI.
(c) Y has an equivalent LUR norm.

Proof. This is a straightforward consequence of Theorems 5.1 and 5.5.

Another property of spaces generated by RN-compact sets is the follow-
ing. For this, we need one more definition. Let (Z, τ) be a topological space
and % a metric on Z. Then (Z, τ) is said to be σ-fragmented by % if for
each ε > 0, Z can be written as Z =

⋃{Zn : n ∈ N} with each Zn having
the property that, whenever C is a non-empty subset of Zn, there exists a
τ -open subset U of Z such that U ∩ C is non-empty and of %-diameter less
than ε.

Theorem 5.7. Let X be a Banach space, F a norming subset of X∗, H
a bounded subset of X which is σ(X,F )-compact fragmented by the norm

of X, and let Y = span(H)
‖ ‖

. Then (Y, σ(X,F )) is σ-fragmented by the
norm.

Proof. The proof is analogous to the one given for weakly compactly

generated spaces in [15]. Indeed, W := co(H)
σ(X,F )

= co(H)
‖ ‖

is σ(X,F )-
compact and fragmented by the norm [6, 4.1, 5.2 and 5.3]. Lemmas 2.1 and
2.2 of [24] entail that W −W is again σ(X,F )-compact and fragmented by

the norm. We now have Y =
⋃∞
n=1 n(W −W )

‖ ‖
and because F is norming,

the norm in Y is σ(X,F )-lower semicontinuous and Lemma 2.3 in [15] gives
us the conclusion.

We can gather all the information that we have obtained so far in the
following:

Theorem 5.8. Let X be a Banach space, F a norming subset of X∗, H

a bounded subset of X which is σ(X,F )-compact , and let Y = span(H)
‖ ‖

.
The following statements are equivalent :

(a) (H,σ(X,F )) is fragmented by the norm.
(b) (Y, σ(X,F )) is σ-fragmented by the norm.
(c) (H, γ(X,F )) is Lindelöf.
(d) (Y, γ(X,F )) is Lindelöf.
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Proof. (a)⇒(b) is the previous result. (b)⇒(a) follows from Lemma 3.1.1
in [16]. (a)⇒(d) is the item (a) of Corollary 5.6. (d)⇒(c) is obvious and
(c)⇒(a) is also the implication (c)⇒(a) in Theorem 2.1.

In terms of compact sets embedded in cubes, the theorem above can be
rephrased as:

Theorem 5.9. Let K ⊂ [−1, 1]D ⊂ `∞(D) be a τp-compact set. The
following statements are equivalent :

(a) (K, τp) is fragmented by the norm.

(b) (span(K)
‖ ‖
, τp) is σ-fragmented by the norm.

(c) (K, γ(D)) is Lindelöf.

(d) (span(K)
‖ ‖
, γ(D)) is Lindelöf.

6. Banach spaces generated by Lindelöf subsets. In this section we
study Banach spaces which are Lindelöf in the weak topology. Main tools are
again the projectional generators. Beyond Theorem 6.1 below, which gives
quite a general way of deciding when a Banach space is weakly Lindelöf,
here we take advantage of the scope of the results in Section 4 and the
main results in [4] to prove that a Banach space X generated by a weakly
Lindelöf subset which is σ(X,F )-compact with respect to some norming
subspace F ⊂ X∗ is weakly Lindelöf. We need the following definition. For
each set Γ , let Σ(Γ ) be the subspace of `∞(Γ ) consisting of all u ∈ `∞(Γ )
with {γ : u(γ) 6= 0} at most countable. A compact Hausdorff space K is said
to be Corson if, for some Γ , K can be embedded in Σ(Γ ) as a pointwise
compact subset.

Definition 4 ([1]). A Banach space X is said to be weakly Lindelöf
determined (WLD for short) if there is a bounded one-to-one linear map
T : X∗ → `∞(Γ ), for some set Γ , which is σ(X∗,X)-pointwise continuous
and such that T (X∗) ⊂ Σ(Γ )

It was established in [26] that a Banach space is WLD if, and only if,
its dual unit ball with the weak∗ topology is Corson compact. Note that
WCG Banach spaces and hence separable Banach spaces are WLD. It is
known that a WLD Banach space is γ(BX∗)-Lindelöf ([25]) and renormable
by a LUR norm ([34] and [21]). A Banach space X, or more generally a
convex subset M of X, is said to have property C (after Corson) if each col-
lection of relatively closed convex subsets of M with empty intersection has
a countable subcollection with empty intersection. If (M,weak) is Lindelöf,
then M has property C since closed convex sets in X are also weak-closed.
It is shown in [28] that the Banach space X has the property C if and only
if, whenever A ⊂ X∗ and f ∈ A

w∗
, there is a countable subset C of A
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such that f ∈ co (C)
w∗
. This fact is crucial in the proof of the next theo-

rem.

Theorem 6.1. Let X be a Banach space with a projectional generator.
If X has property C, then X is WLD , i.e. (BX∗ ,weak∗) is Corson compact.

Proof. Let ϕ : F → 2X be a projectional generator on X, where F
is a norming subspace for X. Then X admits a PRI constructed as we
have recalled in Theorem 5.1. Let {Pα : ω0 ≤ α ≤ µ} be this PRI. Since
property C is stable under taking closed subspaces, each Pα(X) has property
C and a projectional generator. Now, by a standard induction process on the
density character of the Banach space, we may assume that X admits a PRI
{Pα : ω0 ≤ α ≤ µ}, with µ a limit ordinal, such that, for each ω0 ≤ α < µ,
Pα(X) is WLD; that is, there is a one-to-one norm one operator

Tα : P ∗α(X∗)→ `∞(Γα) with Tα(P ∗α(X∗)) ⊂ Σ(Γα)

which is weak∗-pointwise continuous. Assume that {Γα : ω0 ≤ α < µ} is a
disjoint family. Then we define

Γ = Γω0 ∪
⋃
{Γα+1 : ω0 ≤ α < µ}

and T : X∗ → `∞(Γ ) by the formulas

(Tf)(n) = Tω0(P ∗ω0
(f))(n) if n ∈ Γω0 = N,

(Tf)(γ) = Tα+1(P ∗α+1(f)− P ∗α(f))(γ) if γ ∈ Γα+1, ω0 ≤ α < µ.

Clearly T is bounded linear and weak∗-pointwise continuous. We claim that
T (X∗) ⊂ Σ(Γ ). To prove it, we will see that the set {α ∈ [ω0, µ) : P ∗α+1(f)−
P ∗α(f) 6= 0} is at most countable for each f ∈ X∗. Assume on the contrary
that this is not the case and take f ∈ X∗ so that this set is uncountable.
Recall that the family {Bα : α < µ} is a long sequence of increasing Q-
linear subsets of F with P ∗α(X∗) = B

w∗

α for each α < µ. Also for each limit
ordinal β ≤ µ and f ∈ X∗, weak∗-limα↑β P ∗α(f) = P ∗β (f), and P ∗µ = Id. Let
∆ = {α ∈ [ω0, µ) : P ∗α+1(f)−P ∗α(f) 6= 0}. Then ∆ is an uncountable subset
of [ω0, µ) which is well-ordered under the inherited ordering. Therefore there
is an order-isomorphism ϕ from [0, ω1) onto an initial segment of ∆. Let
η = supϕ([0, ω1)) ≤ µ. Then P ∗η (f) = weak∗-limγ↑ω1 P

∗
ϕ(γ)(f) and therefore

P ∗η (f) ∈ ⋃γ<ω1
P ∗ϕ(γ)(f)

w∗
.

Since X has property C, there is a sequence γ1 < γ2 < . . . in [0, ω1) such
that

P ∗η (f) ∈ co(
⋃∞
i=1 P

∗
ϕ(γi)

(f))
w∗
.

Let ξ = ϕ(supi γi) ∈ ∆. Then ξ < η ≤ µ. Since for each i, Pϕ(γi)(f) ∈
B

w∗

ϕ(γi) ⊂ B
w∗

ξ , we have P ∗η (f) ∈ B w∗

ξ . It follows that P ∗η (f) is a fixed point of
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P ∗α for all α ≥ ξ. Hence if ξ ≤ α < η, then P ∗η (f) = P ∗αP
∗
η (f) = P ∗α(f) by the

property of PRI: PηPα = Pmin{η,α}. In particular, P ∗ξ+1(f) = P ∗η (f) = P ∗ξ (f),
contradicting ξ ∈ ∆. Hence T (X∗) ⊂ Σ(Γ ).

To see that T is one-to-one, let T (f) = 0 for an f ∈ X∗. Then P ∗ω0
(f) = 0,

and P ∗α+1(f) = P ∗α(f) = 0 for all α ∈ [ω0, µ). Then by a straightforward
(transfinite) induction, P ∗α(f) = 0 for all α ∈ [ω0, µ), and hence f = weak∗-
limα↑µ P ∗α(f) = 0.

A combination of Theorems 5.5 and 6.1 gives us the following:

Corollary 6.2. Let X be a Banach space, F a norming subset of X∗,
H a bounded subset of X which is σ(X,F )-compact fragmented by the norm

of X, and let Y = span(H)
‖ ‖

. If Y has property C, then Y is WLD.

As mentioned earlier, a WLD Banach space is weakly Lindelöf, but the
converse is not true; cf. [21, p. 514]. In [21, p. 521], Mercourakis and Ne-
grepontis have asked if this converse is true in dual Banach spaces. The
affirmative answer to this question is contained in [25] where it is shown
that if X is an Asplund space then X∗ is weakly Lindelöf if and only if
(BX∗∗ ,weak∗) is Corson compact, i.e. X∗ is WLD. Recall that Edgar had
observed earlier [9] that X is an Asplund space whenever X∗ is weakly Lin-
delöf. The next two corollaries are generalizations of the result in [25] just
mentioned. The first one is a special case of the previous corollary.

Corollary 6.3. Let X be an Asplund space, H a subset of X∗ which

is weak∗-compact , and let Y = span(H)
‖ ‖

. If Y has property C then Y is
WLD. In particular , if X is an Asplund space, then X∗ is WLD if and only
if it has property C.

A combination of most of the results in this paper and the main result
in [4] finally allows us to prove:

Corollary 6.4. Let X be a Banach space, and let H be a subset of X∗

which is weak∗-compact and weakly Lindelöf. Then the space generated by

H, Y = span(H)
‖ ‖

, is WLD. In particular , Y is weakly Lindelöf.

Proof. By the remark following Theorem 4.5, we know that the weak∗-
closed absolute convex hull of H, say W , is also weakly Lindelöf. Hence
by Corollary E of [4], (W,weak) is fragmented by the norm. Furthermore,

Y = span(W )
‖ ‖

=
⋃∞
n=1 nW

‖ ‖
has property C by Proposition 2 in [28].

Hence by Corollary 6.2, Y is WLD, and since a closed subspace of a WLD
Banach space is again WLD ([21]), the corollary follows.

Remark 6.5. Let us remark that the statement that Y is weakly Lin-
delöf in the previous corollary can be proved more directly using Proposi-
tion 4.1, Corollary 5.6 and Theorem 4.5. With the notation above we know
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that Z := span(H) =
⋃∞
n=1 nW is weakly Lindelöf, because it is a countable

union of weakly Lindelöf subsets. Therefore by Proposition 4.1, γ(X∗,X) is

stronger than the weak topology on Z. On the other hand, Y = Z
‖ ‖

is Lin-
delöf with respect to γ(X∗,X) by Corollary 5.6, since H is weak∗-compact
and (H,weak) is fragmented by the norm. Consequently, Y will be weakly
Lindelöf if we can prove that γ(X∗,X) is stronger than the weak topology
on Y . For this, it is sufficient to prove that for each x∗∗ ∈ X∗∗ the restric-
tion x∗∗|Y is γ(X∗,X)-continuous. We know from the above that x∗∗|Z is
γ(X∗,X)-continuous. This means that for each ε > 0 there is a γ(X∗,X)-
open neighborhood U ⊂ X∗ of the origin such that

|x∗∗(g)| < ε for each g ∈ U ∩ Z.(14)

Now U is also ‖ ‖-open and therefore U ∩ Z ‖ ‖ = U ∩ Y ‖ ‖ ⊃ U ∩ Y .
Therefore the ‖ ‖-continuity of x∗∗ and (14) imply that |x∗∗(f)| ≤ ε for
every f ∈ U ∩ Y . This means that x∗∗ is γ(X∗,X)-continuous on Y , which
concludes the proof.

7. Examples of spaces generated by RN-compact subsets. As
mentioned at the beginning of Section 5, in this section we give several
examples of Banach spaces generated by an RN-compact subset. By Theo-
rem 5.5, these spaces share all the properties stated in Theorem 5.1. Also,
by Corollary 6.2, for these spaces being WLD is equivalent to having prop-
erty C.

Example A: Spaces with 1-norming Markushevich basis. Let us recall
that a Markushevich basis, or M-basis, of a Banach space X is a subset
{(xi, fi) : i ∈ I} of X ×X∗ such that

(a) span{xi : i ∈ I} ‖ ‖ = X.
(b)

⋂
i∈I Kernel(fi) = {0}.

(c) fj(xi) = δij , i, j ∈ I.

Let us consider the subspace F := span{fi}, which is a total subspace in
X∗ by condition (b). If K := {xi : i ∈ I} ∪ {0} then it is easy to see that
K is a σ(X,F )-compact set fragmented by the norm. Indeed, {xi : i ∈ I} is
a σ(X,F )-discrete set with 0 as its unique limit point. When F is norm-
ing, the M-basis is called a norming M-basis. Therefore any Banach space
with a norming M-basis is generated by an RN-compact subset. The σ-
fragmentability of spaces with a norming M-basis was first proved in [17];
here, it is a consequence of Theorem 5.8.

Example B: Spaces of continuous functions. Let K be a compact space
and D a dense subset of K. If H ⊂ C(K) is τp(D)-compact, uniformly
bounded, fragmented by the supremum norm and separates the points of K,
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then C(K) is generated by an RN-compact set. Indeed, in this case the
norming subspace of C(K)∗ is F = span{δx : x ∈ D} and we observe that
for every n = 1, 2, . . . the set

Hn := {f1 · . . . · fn : fi ∈ H, i = 1, . . . , n}
is σ(C(K), F )-compact and fragmented by the norm in view of Lemmas
2.1 and 2.2 in [24]. Now, W =

⋃∞
n=1(1/n)Hn ∪ {0} is also σ(C(K), F )-

compact and σ-fragmented by the norm, hence fragmented [16, Theorem
4.1]. On the other hand, the Stone–Weierstrass theorem gives us the equality

span(W )
‖ ‖

= C(K) and so C(K) is generated by a σ(C(K), F )-compact
subset fragmented by the norm.

Example C: Spaces of continuous functions defined on solid compact
spaces and on compact spaces defined through adequate families of sets.
Let I be a set and consider the cube [0, 1]I with the product topology.
Given x ∈ [0, 1]I let us write

supp(x) := {i ∈ I : x(i) 6= 0},
F(I) := {x ∈ [0, 1]I : supp(x) is finite}.

We claim that if K ⊂ [0, 1]I is a compact subset such that K ∩ F(I) is
dense in K (i.e. K is a special type of Valdivia compact space), then C(K)
is generated by an RN-compact subset. Indeed, write D = K ∩F(I) and let
πi : [0, 1]I → [0, 1] denote the canonical projection onto the i-th coordinate,
for each i ∈ I. Without loss of generality we can, and do, assume that for
each i ∈ I there is x ∈ K such that πi(x) 6= 0, because otherwise we can
remove from the index set I the element i that is not needed for embedding
K in [0, 1]I . Observe that {πi : i ∈ I} is τp(D)-discrete and that each τp(D)-
neighborhood of 0 must contain all but at most finitely many {πi : i ∈ I};
therefore {πi : i ∈ I}∪{0} is τp(D)-compact, ‖ ‖∞-fragmented and separates
the points of K. We now use Example B to conclude that C(K) is generated
by an RN-compact subset.

A compact space K ⊂ [0, 1]I is said to be solid if whenever x ∈ K and
y ∈ [0, 1]I are such that either yi = xi or yi = 0, for every i ∈ I, then y ∈ K.
Obviously, if K ⊂ [0, 1]I is solid, then K ∩F(I) is dense in K and therefore
C(K) is generated by an RN-compact set in view of our former reasoning.

A particular situation to which we can apply the above is when we deal
with compact spaces defined through adequate families of sets. Following
Talagrand [33], if I is a non-empty set, a family A of subsets of I is called
adequate if it has the following properties:

(a) If A ∈ A and B ⊂ A, then B ∈ A.
(b) {i} ∈ A for every i ∈ I.
(c) If A ⊂ I and every finite subset of A belongs to A, then A ∈ A.
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If A is an adequate family in I, then

K := {χA : A ∈ A}
is a solid compact space. Then C(K) is also generated by an RN-compact
subset. Talagrand produced in [33, Théorème 4.3] an example of a compact
space K defined through an adequate family of sets that is not Eberlein com-
pact; the corresponding C(K) then does not contain a τp(K)-compact subset
separating the points of K, even though it contains a τp(D)-compact (for a
certain dense D ⊂ K) ‖ ‖∞-fragmented subset separating the points of K.

Example D: Spaces of Bochner integrable functions. Let (X, ‖ ‖) be a
Banach space and F ⊂ X∗ a norming subspace. It was stated in [6, Corollary
4.3] that if σ(X,F )-separable compact subsets of X are ‖ ‖-separable then
σ(X,F )-compact (norm-bounded) subsets H of X are ‖ ‖-fragmented. This
is indeed a consequence of the equivalence between the first two statements
in Theorem 2.1: write D = F ∩ BX∗ and consider H ⊂ [−1, 1]D; for A ⊂
D countable the set H|A ⊂ [−1, 1]A is compact and metrizable, therefore
separable; then there is a σ(X,F )-compact and separable S ⊂ H such that
S|A = H|A; the restriction map [−1, 1]D → [−1, 1]A is continuous for the
corresponding uniform metrics and therefore H|A is dA-separable, because
S is dD-separable (S is ‖ ‖-separable).

The above observation is useful in finding more compact spaces “living”
in Banach spaces and fragmented by the norm without being necessarily
weakly compact.

Given a probability space (Ω,Σ, µ) we will denote by Lp(µ,X), 1 ≤
p < ∞, the Banach space of µ-strongly measurable X-valued p-Bochner
integrable functions f : Ω → X normed by

‖f‖p =
( �

Ω

‖f‖p dµ
)1/p

.

The dual Lp(µ,X)∗ of Lp(µ,X) is a space of weak∗-measurable functions
and the space Lq(µ,X∗), 1 = 1/p+1/q, which can be isometrically identified
with a subspace of Lp(µ,X)∗, is a norming subspace. So σ′ = σ(Lp(µ,X),
Lq(µ,X∗)) is a Hausdorff topology which is weaker than the weak topology
of Lp(µ,X); these two topologies coincide if, and only if, X∗ has the RNP
[8, IV.1.1]. It was shown in [6, Example E] that every σ′-separable compact
subset of Lp(µ,X) is norm-separable. Therefore, every σ′-compact subset
of Lp(µ,X) is fragmented by the norm. Thus we can apply the results in
Sections 5 and 6 to state for instance that if H ⊂ Lp(µ,X) is σ′-compact

then the space Y = span(H)
‖ ‖p has a PRI. This result is related to the main

result of [3], which asserts the existence of a bounded one-to-one operator

from span(H)
σ′

into some c0(Γ ) which is σ′-pointwise continuous.
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239–251.

[33] —, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407–438.
[34] M. Valdivia, Projective resolution of identity in C(K) spaces, Arch. Math. (Basel)

54 (1990), 493–498.

Departamento de Matemáticas
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