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Finite-dimensional Lie subalgebras of algebras
with continuous inversion

by

Daniel Beltiţă (Bucureşti) and
Karl-Hermann Neeb (Darmstadt)

Abstract. We investigate the finite-dimensional Lie groups whose points are sep-
arated by the continuous homomorphisms into groups of invertible elements of locally
convex algebras with continuous inversion that satisfy an appropriate completeness con-
dition. We find that these are precisely the linear Lie groups, that is, the Lie groups which
can be faithfully represented as matrix groups. Our method relies on proving that certain
finite-dimensional Lie subalgebras of algebras with continuous inversion commute modulo
the Jacobson radical.

1. Introduction. In the present paper we investigate the finite-dimen-
sional Lie groups whose points are separated by the continuous homomor-
phisms into groups of invertible elements of locally convex algebras with
continuous inversion. We find that these are precisely the linear Lie groups,
that is, the Lie groups which can be faithfully represented as matrix groups
(see Theorem 5.3 below). The structure of the linear groups is fairly well
understood; see for instance Hochschild’s book [Ho65].

This problem is motivated by recent developments in the Lie theory of
infinite-dimensional Lie groups modeled on locally convex spaces (cf. [Mil83],
[Bel06], [GN06]). In this context, the unit groups of continuous inverse al-
gebras are the prototypical “linear Lie groups” ([Gl02]), and it is a natural
question whether the notion of “linearity” in this general context deter-
mines a larger class of finite-dimensional Lie groups than the Lie groups of
matrices.

The unital Banach algebras provide examples of locally convex alge-
bras with continuous inversion, and in this special case we recover the
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characterization obtained in the paper [LV94] for the Lie groups whose uni-
formly continuous representations separate points. However, it is not clear
to us if the approach used in [LV94] can be extended to non-normable
algebras. For one thing, one of the key tools used in the aforementioned
paper was a version of Lie’s theorem concerning existence of weights for
infinite-dimensional representations of solvable Lie algebras. Such a ver-
sion is available as yet only for representations by Banach space opera-
tors (see [GL73] and [BS01]). It is worth mentioning at this point that
there exist large classes of algebras with continuous inversion which are
not Banach algebras, for instance algebras of germs of holomorphic func-
tions or algebras of smooth matrix-valued functions on compact mani-
folds; see Examples VIII.3 in [Ne06] for more details and additional ex-
amples.

Thus an alternative approach is needed when working with general
locally convex algebras with continuous inversion. For this purpose we
prove that the main result of [Ti87] actually holds true far beyond the
setting of Banach algebras, where it was originally discovered. Loosely
speaking, we show that if g is a finite-dimensional complex solvable Lie
subalgebra of an algebra with continuous inversion that satisfies an ap-
propriate completeness condition, then the closed unital associative subal-
gebra generated by g is commutative modulo its (Jacobson) radical; see
Theorem 4.3 below, which is the main technical result we need here.
We obtain it by a method inspired from Turovskĭı’s proof in the ver-
sion presented in [BS01]. However, we emphasize that the present paper
can be read independently of that book, inasmuch as several of the key
tools developed in [BS01]—notably the Kleinecke–Shirokov theorem and
the spectral theory for several non-commuting variables—are not readily
available beyond the setting of normable algebras, so that we now re-
place them by arguments of a different type. And we strive to take ad-
vantage of this situation in order to make the present paper fairly self-
contained.

In Section 2 we set up the necessary preliminaries on algebras with
continuous inversion and on nilpotent elements in Lie subalgebras of asso-
ciative algebras. Section 3 concerns spectra of commutators, and includes
in particular a version of the Kleinecke–Shirokov theorem holding for not
necessarily normable algebras, as well as a version of Rosenblum’s theorem
from [Ro56] suitable for our purposes. In Section 4 we prove the theorem on
commutativity modulo the radical (Theorem 4.3).

Finally, in Section 5 we obtain the main result of the present paper,
namely the characterization of the finite-dimensional Lie groups whose
points are separated by the homomorphisms into groups of invertible el-
ements of FC-complete algebras with continuous inversion.
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2. Preliminaries

Preliminaries on algebras with continuous inversion

Notation 2.1. For an arbitrary unital complex associative algebra A
we shall use the following notation:

• A× = {a ∈ A | (∃a−1 ∈ A) aa−1 = a−1a = 1};
• the spectrum of any a ∈ A is σA(a) = σ(a) = {λ ∈ C | λ1− a 6∈ A×};
• the spectral radius of any a ∈ A is rA(a) = sup{|λ| | λ ∈ σ(a)} ∈

[0,∞];
• the center ZA = {a ∈ A | (∀b ∈ A) ab = ba};
• NA = {a ∈ A | (∃N ∈ N) aN = 0};
• QA = {a ∈ A | σ(a) = {0}} = {a ∈ A | 1 + Ca ⊆ A×};
• the radical radA = {a ∈ A | (∀b ∈ A) 1− ab ∈ A×} ⊆ QA.

Moreover, for any complex vector space X we denote by L(X ) the set of all
linear maps from X into itself.

Definition 2.2. A continuous inverse algebra (CIA for short) is a Haus-
dorff locally convex unital algebra A whose unit group A× is open and for
which the inversion map A× → A, a 7→ a−1, is continuous.

For any element a of a complex CIA A the spectrum σ(a) is a non-empty
compact subset of C. Here the boundedness of the spectrum follows from

rA(a) = (sup{r > 0 | |z| ≤ r ⇒ 1 + za ∈ A×})−1

and its closedness from the openness of the unit group A×.
If, in addition, A is complete, then the same arguments as for Banach

algebras lead to a holomorphic functional calculus ([Wae67], [Gl02]). Since
completeness is in general not inherited by quotients ([Koe69, §31.6]), it
is natural to consider for CIAs the weaker condition of FC-completeness,
that is, closedness under holomorphic functional calculus. This means that
for a ∈ A, any open neighborhood U of σ(a), each holomorphic function
f ∈ O(U) and any contour Γ around σ(a) in U , the integral

f(a) :=
1

2πi

�

Γ

f(ζ)(a− ζ1)−1 dζ,

which defines an element of the completion of A, actually exists in A.

Remark 2.3. It is known that in every unital complex associative alge-
bra A the radical radA is equal to the intersection of all the maximal left
ideals of A, and it is equal to the intersection of all the maximal right ideals
of A as well. (See for instance Theorem 3.53 in Chapter 1 of [He93].) In par-
ticular, radA is a two-sided ideal of A, and we have rad(A/ radA) = {0}.
(See, e.g., Theorem 3.63 in Chapter 1 of [He93].)
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If A is a CIA, then the fact that its unit group is open implies that
every maximal left (or right) ideal of A is closed (see, e.g., Subsection 2.3
in Chapter II of [Wae67], or Corollary 3.9 in Chapter 2 of [Co68]), hence
radA is a closed two-sided ideal of A. Then the quotient algebra A/radA
is in turn a locally convex unital algebra with continuous inversion. (See,
e.g., Subsection 2.2 in Chapter II of [Wae67] on quotients by closed ideals,
or Prop. 3.14 in Chapter 2 of [Co68].)

Lemma 2.4. If A is a commutative complex CIA, then the spectral radius
rA is a continuous submultiplicative seminorm and , in particular , radA
= QA.

Proof (cf. [Bi07, Th. 1.7]). The spectrum Â := Hom(A,C) of A is a
compact Hausdorff space and the Gelfand transform G : A → C(Â), a 7→
â, â(χ) := χ(a), is a continuous homomorphism of complex unital locally
convex algebras, satisfying â(Â) = σ(a) and hence ‖â‖∞ = rA(a). It follows
that for each quasi-nilpotent element a ∈ A and b ∈ A we have rA(ab) ≤
rA(a)rA(b) = 0, so that 1 − ab ∈ A×, so a ∈ radA. This implies that
radA ⊆ QA ⊆ radA, proving the asserted equality.

An early reference for our Lemma 2.4 is for instance [Wae67]. Another
proof follows from Lemma II.9, Proposition II.3, and Corollary III.9 in
[KOO98].

Lemma 2.5. Let A be a complex CIA.

(1) Each closed unital subalgebra S of A is a CIA. If A is FC-complete,
then so is S.

(2) If S ≤ A is a maximal commutative subalgebra, then S is unital ,
closed and equispectral , i.e., σA(x) = σS(x) for each x ∈ S.

(3) For each closed ideal I E A the quotient algebra Q := A/I is a
CIA. If , in addition, A is FC-complete, and if the quotient map
q : A → Q satisfies σA(a) = σQ(q(a)) for each a ∈ A, then Q is also
FC-complete.

Proof. (1) (See also Remarque 4.6 and Subsection 4.3 in Chapter 2 of
[Wae67].) If a ∈ S satisfies rA(a) < 1, then 1 − a is invertible and the
Neumann series

∑∞
n=0 a

n converges to (1− a)−1 ([Gl02]). Since S is closed,
(1 − a)−1 ∈ S, so that S× is a neighborhood of 1 in S, hence open. The
continuity of the inversion in S follows from the corresponding property
of A.

If, in addition, A is FC-complete and s ∈ S, then σS(s) ⊇ σA(s), so that
each contour around σS(s) also surrounds σA(s). Now for any holomorphic
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function f on a neighborhood of σS(s) the integral

f(s) :=
1

2πi

�

Γ

f(ζ)(s− ζ1)−1 dζ

defines an element of A. Since (s − ζ1)−1 ∈ S for each ζ, the closedness of
S yields f(s) ∈ S. This shows that S is FC-complete.

(2) Since closures of commutative subalgebras are commutative subalge-
bras, the maximality of S implies its closedness. This trivially implies 1 ∈ S.
Moreover, for each x ∈ S we have (x−λ1)−1 ∈ S whenever x−λ1 is invert-
ible in A because (x − λ1)−1 commutes with all elements of S. This leads
to rA(x) = rS(x).

(3) Since q(A×) ⊆ Q× is an open subset of Q, the unit group Q× is
open. The continuity of the inversion of Q follows from its continuity at 1
and the continuity of the map A× → Q×, a 7→ q(a)−1 = q(a−1), because q
is an open map.

For each a ∈ A we have σA(a) = σQ(q(a)). For any open neighborhood
of σQ(q(a)), each holomorphic function f ∈ O(U), and any contour around
σ(a) in U the FC-completeness implies that the integral

f(a) :=
1

2πi

�

Γ

f(ζ)(a− ζ1)−1 dζ

exists in A. We conclude that the integral

q(f(a)) =
1

2πi

�

Γ

f(ζ)q(a− ζ1)−1 dζ =
1

2πi

�

Γ

f(ζ)(q(a)− ζ1)−1 dζ = f(q(a))

exists in Q. Hence Q is FC-complete.

Algebraic preliminaries. In this subsection we turn to the purely alge-
braic part of the preliminaries we need for our main results. In particular,
we prove a suitable generalization of Theorem 2 in §28 of [BS01].

Proposition 2.6. Let X be a complex vector space, g a finite-dimen-
sional solvable Lie subalgebra of L(X ), and h a Cartan subalgebra of g.
Denote by gα, α ∈ R, the family of root spaces of g corresponding to the
set R of non-zero roots, and assume that gα consists of nilpotent elements
for every α ∈ R. Then NL(X ) ∩ g is an ideal of g.

Proof. The proof has two steps.

Step 1. If g is a nilpotent Lie algebra then the desired conclusion follows
by precisely the same reasoning as in Step 1 of the proof of Theorem 2 in §28
of [BS01]. Specifically, we shall argue by induction on dim g. The assertion
is clear if dim g = 1.

Now assume that dim g > 1 and NL(X ) ∩ g 6= {0}. Since nilpotent el-
ements are always polynomially central (Definition 2 in §16 of [BS01]), it
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follows by Theorem 1 in §18 of [BS01], applied with I = g (see also [Sa96]),
that there exists Y ∈ NL(X )∩g such that Y 6= 0 and [Y, T ] = 0 for all T ∈ g.
Let m ≥ 1 with Y m−1 6= 0 = Y m, and define Xk = Ker(Y k) for k = 0, . . . ,m.
Since Y belongs to the center of g, it follows that {0} = X0 ⊆ · · · ⊆ Xm = X
is a nest of invariant subspaces for g. In particular, there exist representa-
tions

%k : g→ L(Xk/Xk−1),
%k(T )(x+ Xk−1) = Tx+ Xk−1 for all T ∈ g and x ∈ Xk,

for k = 0, . . . ,m. It is easy to see that

(1) NL(X ) ∩ g =
n⋂
k=0

%−1
k (NL(Xk/Xk−1)) =

n⋂
k=0

%−1
k (NL(Xk/Xk−1) ∩ %k(g)),

that is, T ∈ g is nilpotent if and only if each %k(T ) ∈ L(Xk/Xk−1) is nilpotent
for k = 0, . . . ,m.

On the other hand, 0 6= Y ∈
⋂m
k=0 Ker %k, hence for each k we have

dim %k(g) < dim g. Then the induction hypothesis shows NL(Xk/Xk−1)∩%k(g)
is an ideal of %k(g). Now (1) implies that NL(X ) ∩ g is an ideal of g since
pull-backs and intersections of ideals are again ideals.

Step 2. We now proceed with the proof in the general case. Define
g+ :=

⊕
α∈R gα so that the generalized root space decomposition of g with

respect to the Cartan subalgebra h leads to the Fitting decomposition g =
h u g+. Next set g0 = {T ∈ g | adg T : g → g is nilpotent}. Since g is a
solvable Lie algebra, it follows easily from the Lie theorem on simultaneous
triangularization of solvable Lie algebras of matrices that g0 is an ideal of g.
Moreover, g0 is a nilpotent Lie algebra and⋃

α∈R
gα ⊆ NL(X ) ∩ g ⊆ g0.

In particular, Step 1 of the proof shows that NL(X ) ∩ g is an ideal of g0. To
prove that NL(X )∩g is an ideal of g it remains to check that [h,NL(X )∩g] ⊆
NL(X ) ∩ g.

To this end note that since we have the inclusion of vector subspaces
g+ ⊆ NL(X )∩g and g = hug+ it follows that NL(X )∩g = (NL(X )∩h)ug+.
Since g = h u g+ it then follows that

(2) [h,NL(X ) ∩ g] ⊆ [h,NL(X ) ∩ h] + [h, g+].

Now [h,NL(X ) ∩ h] ⊆ NL(X ) ∩ h by Step 1 of the proof, since h is a nilpotent
Lie algebra. Moreover, [h, g+] ⊆ g+ ⊆ NL(X ) ∩ g, where the latter inclusion
follows by the hypothesis since we saw that NL(X )∩g is a vector space. Thus
(2) shows that [g,NL(X ) ∩ g] ⊆ NL(X ) ∩ g, and the proof is complete.
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Lemma 2.7. Assume that A is a complex unital associative algebra and
g a finite-dimensional Lie subalgebra of A such that g ⊆ NA. Then there
exists an integer m ≥ 1 such that a1 · · · am = 0 for all a1, . . . , am ∈ g.

Proof. Since ad a is a nilpotent operator on A for each a ∈ g, Engel’s
theorem implies that g is a nilpotent Lie algebra. In view of the Poincaré–
Birkhoff–Witt theorem, the unital associative subalgebra A(g) generated
by g is finite-dimensional. Then Lie’s theorem, applied to the left regular
representation of g on A(g) implies that the associative subalgebra of A
generated by g consists of nilpotent elements.

3. Spectra of commutators

Proposition 3.1. Let A be a complex FC-complete CIA. Assume that
a, b, c ∈ A satisfy [a, b] = ab− ba = c, ac = ca, and bc = cb. Then

σA(c) = {0}.
Proof. Since the algebra A is FC-complete, it has an exponential func-

tion exp: A → A×, x 7→ ex, defined by the holomorphic functional calculus.
Define

f : C→ A, f(t) = etabe−ta.

Then f is holomorphic, f(0) = b and f ′(t) = aetabe−ta − etabae−ta =
etace−ta = c for all t ∈ C, because of the assumption ac = ca. This im-
plies that etabe−ta = b+ tc for each t ∈ C, and hence

σA(b) = σA(b+ tc) for each t ∈ C.
As b and c commute,

|t|σ(c) = σ(tc) = σ(tc+ b− b) ⊆ σ(tc+ b)− σ(b) = σ(b)− σ(b).

Since σ(b) is bounded, for |t| → ∞ we obtain the inclusion σ(c) ⊆ {0}. The
lemma now follows from the non-emptieness of the spectrum.

Lemma 3.2. For each complex FC-complete CIA A we have

ZA ∩QA ⊆ radA.
Proof. Let c ∈ ZA ∩QA and b ∈ A. We have to show that 1− bc ∈ A×.

To this end, let A0 be a maximal commutative subalgebra of A containing
both b and c. Then A0 is a closed unital subalgebra of A, hence an FC-
complete CIA with rA(a) = rA0(a) (Lemma 2.5). In particular, rA(bc) =
rA0(bc) ≤ rA0(b)rA0(c) = 0, where the inequality follows by Lemma 2.4.
Thus σA(bc) = {0}, and so 1− bc ∈ A×, as desired.

Proposition 3.3. Let A be a complex FC-complete CIA. Then for all
a1, a2 ∈ A the operator

∆ : A → A, x 7→ a1x− xa2,

satisfies σL(A)(∆) ⊆ σA(a1)− σA(a2).
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Proof. The method of proof used in Section 3 of [Ro56] works in the
present setting as well. Specifically, let λ ∈ C with λ 6∈ σA(a1)−σA(a2). We
are going to prove that λ 6∈ σL(A)(∆). Since both σA(a1) and σA(a2) are
compact subsets of C, there exist open subsets U1 and U2 of C such that
σA(aj) ⊆ Uj for j = 1, 2 and U1 ∩ (λ+ U2) = ∅.

Now let Γ ⊆ U2 be a piecewise smooth contour surrounding σA(a2).
Then for every z ∈ Γ we have λ+ z 6∈ σA(a1), hence we can define a linear
map from A into itself by

T : A → A, Tx =
1

2πi

�

Γ

((λ+ z)1− a1)−1x(z1− a2)−1 dz.

We now have

T (λ1−∆)x = T (λx− a1x+ xa2)

=
1

2πi

�

Γ

((λ+ z1)− a1)−1(λx− a1x+ xa2)(z1− a2)−1 dz

=
1

2πi

�

Γ

((λ+ z1)− a1)−1

× (((λ+ z)1− a1)x+ x(a2 − z1))(z1− a2)−1 dz

=
1

2πi

�

Γ

x(z1− a2)−1 dz − 1
2πi

�

Γ

((λ+ z1)− a1)−1x dz

= x
1

2πi

�

Γ

(z1− a2)−1 dz − 1
2πi

�

Γ

((λ+ z1)− a1)−1 dz · x

= x · 1− 0 · x = x

and
(λ1−∆)Tx = λTx− a1Tx+ Txa2

=
1

2πi

�

Γ

(λ1− a1)((λ+ z1)− a1)−1x(z1− a2)−1 dz

+
1

2πi

�

Γ

((λ+ z1)− a1)−1x(z1− a2)−1a2 dz

=
1

2πi

�

Γ

((λ+ z − z)1− a1)((λ+ z1)− a1)−1x(z1− a2)−1 dz

+
1

2πi

�

Γ

((λ+ z1)− a1)−1x(z1− a2)−1(a2 − z1 + z1) dz

= x
1

2πi

�

Γ

(z1− a2)−1 dz +
1

2πi

�

Γ

((λ+ z1)− a1)−1 dz · x

= x · 1 + 0 · x = x.

This shows that T is an inverse of λ1−∆, so that λ ∈ C \ σL(A)(∆).
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Corollary 3.4. Let A be a complex FC-complete CIA. Assume that
a, b ∈ A satisfy the condition (adA a − λ)mb = 0 for some λ ∈ C \ {0} and
m ≥ 1, where adA a : A → A, (adA a)x = ax − xa. Then for every integer
N > 2rA(a)/|λ| we have bN = 0.

Proof. Since ∆ := adA a : A → A is a derivation of A, it follows by
induction on k that for all integers n, k ≥ 1, all λ1, . . . , λk ∈ C, and all
x1, . . . , xk ∈ A we have

(∆− λ1 − · · · − λk)n(x1 · · ·xk)

=
∑

j1+···+jk=n

n!
j1! · · · jk!

((∆− λ1)j1x1) · · · ((∆− λk)jkxk).

Hence (∆− kλ)n(bk) = 0 whenever k ≥ 1 and n > km.
This shows that if N ≥ 1 and bN 6= 0, then Nλ ∈ σL(A)(∆). Con-

sequently, Nλ ∈ σA(a) − σA(a) by Proposition 3.3, whence necessarily
N |λ| ≤ 2rA(a).

4. Commutativity modulo the radical. The following statement is
a version of Lemma 1 in §24 of [BS01].

Lemma 4.1. Let A be a unital complex FC-complete CIA with zero rad-
ical. Assume that g is a complex Lie subalgebra of A such that the closed
unital associative subalgebra generated by g is equal to A, and let j be a
finite-dimensional ideal of g such that (adg a)|j : j→ j is a nilpotent map for
every a ∈ g. Then [g, j] = {0}.

Proof. We essentially follow the lines of the proof of Lemma 1 in §24 of
[BS01], by using Proposition 3.1 instead of the Kleinecke–Shirokov theorem.
Since dim j < ∞, it follows from Lemma 2.7 that there exists some m ≥ 1
such that

(3) (∀a1, . . . , am ∈ g)(∀a0 ∈ j) (adg am) · · · (adg a1)a0 = 0.

We shall prove that if m ≥ 2 then (3) also holds with m − 1 instead of m,
and this will conclude the proof.

To this end, let a1, . . . , am−1 ∈ g and a0 ∈ j, and set

y = (adg am−1) · · · (adg a1)a0 ∈ j.

We have to check that y = 0. By (3) we have

[am, y] = (adg am)(adg am−1) · · · (adg a1)a0 = 0 for all am ∈ g.

Since A is generated by g it then follows that ay = ya for all a ∈ A, that is,
y ∈ ZA.

On the other hand, note that

y = [am−1, u], where u = (adg am−2) · · · (adg a1)a0
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if m ≥ 3 and u = a0 if m = 2. Since y commutes with every element in A,
we have in particular yam−1 = am−1y and yu = uy, hence Proposition 3.1
shows that σ(y) = {0}. Consequently, by Lemma 3.2, we get y ∈ QA∩ZA ⊆
radA = {0}, and the proof ends.

Here is a suitable version of Proposition 1 in §24 of [BS01].

Proposition 4.2. Let A be a complex FC-complete CIA. Assume that
g is a complex Lie subalgebra of A such that the closed unital associative
subalgebra generated by g equals A, and let j be a finite-dimensional solvable
ideal of g. Then NA ∩ j is an ideal of g and NA ∩ j ⊆ radA.

Proof. We follow the lines of the proof of Proposition 1 in §24 of [BS01].
Thus, let % : A → L(A) be the regular representation of A. Then %(g) is a
Lie subalgebra of L(A) and %(j) is a finite-dimensional solvable ideal of %(g).

On the other hand, let h be a Cartan subalgebra of j, (jα)α∈R the root
spaces of j corresponding to the set R of non-zero roots, and j = h u g+ the
corresponding Fitting decomposition, as in Proposition 2.6 and its proof.
It follows from Corollary 3.4 that for every root α ∈ R we have jα ⊆ NA,
and hence %(jα) ⊆ NL(A). Now note that % : A → L(A) is a faithful rep-
resentation, hence %(h) is a Cartan subalgebra of %(j) and (%(jα))α∈R are
the corresponding root spaces. Also, %(NA) ⊆ NL(A). Thus, we can apply
Proposition 2.6 to deduce that %(NA∩j) is an ideal of %(j). Since % is faithful,
this shows that NA ∩ j is an ideal of j.

Now, to prove that NA ∩ j is even an ideal of g, it suffices to check that
[a,NA ∩ j] ⊆ NA for all a ∈ g. To this end, set j1 = Ca + j, which is a
finite-dimensional solvable Lie subalgebra of g since j is a finite-dimensional
solvable ideal. Then the preceding argument shows that NA ∩ j1 is an ideal
of j1. If it happens that NA ∩ j1 = NA ∩ j, then [a,NA ∩ j] = [a,NA ∩ j1] ⊆
NA ∩ j1 = NA ∩ j and we are done. Now assume that NA ∩ j1 6= NA ∩ j and
pick b ∈ (NA ∩ j1) \ j. Then j1 = Cb+ j = (NA ∩ j1) + j, hence

dim((NA ∩ j1)/(NA ∩ j)) = dim((NA ∩ j1)/((NA ∩ j1) ∩ j))
= dim(((NA ∩ j1) + j)/j) = dim(j1/j) ≤ 1.

Since b ∈ (NA ∩ j1) \ (NA ∩ j), it follows that NA ∩ j1 = Cb+ (NA ∩ j). Now
the finite-dimensional Lie algebra NA ∩ j1 consists of nilpotent elements,
hence it is nilpotent. As every hyperplane subalgebra of a finite-dimensional
nilpotent Lie algebra is an ideal, NA ∩ j is an ideal of NA ∩ j1. Since NA ∩ j

is an ideal of j it follows that

[a,NA ∩ j] ⊆ [j + (NA ∩ j1),NA ∩ j] ⊆ (NA ∩ j) + (NA ∩ j) = NA ∩ j.

Since a ∈ g is arbitrary, this proves that NA ∩ j is an ideal of g.
It remains to show that NA ∩ j ⊆ radA. By Lemma 2.7, there exists an

integer m ≥ 1 such that the product of any m elements in NA ∩ j vanishes.
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On the other hand, as NA∩ j is an ideal of g, that is, [NA∩ j, g] ⊆ g, we have
(NA ∩ j) · g ⊆ g · (NA ∩ j) + (NA ∩ j), hence the unital associative subalgebra
A0 of A generated by g satisfies

(NA ∩ j) · A0 = A0 · (NA ∩ j),

where for any subsets S1, . . . , Sk of A we denote by S1 · · ·Sk the linear
subspace generated by all products s1 · · · sk with s1 ∈ S1, . . . , sk ∈ Sk. By
iterating the above equality m times we get

(NA ∩ j) · A0 · · · (NA ∩ j) · A0 = (NA ∩ j) · · · (NA ∩ j) · A0 · · · A0 = {0}.
In particular, for all c ∈ NA ∩ j and d ∈ A0 we have (cd)m = 0. Since A0

is dense in A by hypothesis, the latter equality actually holds for all d ∈ A
and implies that 1− cd ∈ A× for all d ∈ A. That is, c ∈ radA for arbitrary
c ∈ NA ∩ j, and the proof is complete.

Now we can extend the main result of [Ti87] (or Theorem 1 in §24 of
[BS01]) to FC-complete locally convex algebras with continuous inversion.

Theorem 4.3. Let A be a complex FC-complete CIA. Assume that g is
a complex Lie subalgebra of A and let A(g) be the closed unital associative
subalgebra of A generated by g. Then for every finite-dimensional solvable
ideal j of g we have [j, g] ⊆ rad(A(g)) ⊆ QA.

Proof. The inclusion rad(A(g)) ⊆ QA(g) (⊆ QA) follows at once from
the definition of rad(A(g)).

To prove [j, g] ⊆ rad(A(g)), first note that according to Lemma 2.5(1),
A(g) is in turn a unital complex FC-complete CIA. Thus we may (and do)
assume that A(g) = A. Then define Ã = A/radA and let q : A → Ã the
natural projection. We claim that Ã× = q(A×). The inclusion q(A×) ⊆ Ã×
is trivial. For the converse, we assume that q(a) ∈ Ã×. Then there exists
b ∈ A such that ab, ba ∈ 1+radA ⊆ A×. Hence a is left and right invertible,
which implies that a ∈ A×. Now 1 + radA ⊆ A× implies that

q−1(Ã×) = q−1(q(A×)) = A× + radA = A×,
and this entails that σ eA(q(a)) = σA(a) for each a ∈ A. Then Remark 2.3
and Lemma 2.5(3) show that Ã is a unital complex FC-complete CIA with
rad Ã = {0}. We are going to apply Lemma 4.1 to the ideal q(j) of the Lie
subalgebra q(g) of Ã.

In fact, let a ∈ q(g) and b ∈ q(j) be such that (adq(g) a)b = λb for some
λ ∈ C \ {0}. Then b ∈ N eA ∩ q(j) ⊆ rad Ã = {0} by Corollary 3.4 and
Proposition 4.2. Consequently, the linear mapping (adq(g) a)|q(j) : q(j)→ q(j)
has no non-zero eigenvalue, and thus it is nilpotent. It then follows from
Lemma 4.1 that [q(g), q(j)] = {0}, that is, [g, j] ⊆ Ker q = radA.
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Corollary 4.4. Let A be a complex FC-complete CIA. Assume that g

is a finite-dimensional complex Lie subalgebra of A, r its solvable radical ,
and A(g) the closed unital associative subalgebra of A generated by g. Then
[g, r] ⊆ rad(A(g)) ⊆ QA.

5. CIA-linear Lie groups

Definition 5.1. A finite-dimensional Lie group G is said to be linear
if it is isomorphic to a (closed) Lie subgroup of some GLn(R). Obviously,
this condition is equivalent to the requirement that G is isomorphic to a Lie
subgroup of some finite-dimensional unital associative algebra A.

We call G CIA-linear if there exists an injective continuous homomor-
phism η : G→ A× for some FC-complete CIA A.

Lemma 5.2. Let A be a complex FC-complete CIA and x ∈ A quasi-
nilpotent such that eRx is relatively compact in A×. Then x = 0.

Proof. Let A0 ⊆ A be a maximal commutative subalgebra containing x.
Then A0 is an FC-complete commutative CIA with {0} = σA(x) = σA0(x)
(Lemma 2.5). We may therefore assume that A is commutative.

Then the Gelfand transform G : A → C(Â), a 7→ â, satisfies ‖â‖∞ =
rA(a), so that radA = QA = kerG is a closed 2-sided ideal of A. We
conclude that the closure K ⊆ A× of eRx is contained in the closed affine
subspace U := 1 + radA = G−1(1), which is contained in A×, hence K is a
subgroup of A×.

Next we observe that the spectral mapping theorem implies that

Exp: (QA,+) = (rad(A),+)→ U, x 7→ ex,

is a diffeomorphism with inverse the logarithm function Log : U → rad(A),
which in turn is given by a convergent power series. We conclude that
Log(K) is a compact subgroup of the locally convex space (rad(A),+), hence
trivial, and this implies that x = 0.

The main result of our paper is the following theorem:

Theorem 5.3. For a connected finite-dimensional Lie group G the fol-
lowing are equivalent :

(1) G is CIA-linear.
(2) The continuous homomorphisms η : G→ A× into the unit groups of

FC-complete CIAs separate the points of G.
(3) G is linear.

Proof. (1)⇒(2) and (3)⇒(1) hold trivially. Therefore it remains to show
that (2) implies (3).

Assume that G satisfies (2). Let g := L(G) be the Lie algebra of G and
g = r o s be a Levi decomposition.
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Step 1. For 0 6= x ∈ [r, g] the subgroup expG(Rx) is not relatively com-
pact.

We argue by contradiction. Let 0 6= x ∈ [r, g]. From (2) and the fact that
g is finite-dimensional it follows that there exists a complex FC-complete
CIA A and a morphism of Lie groups η : G→A× for which L(η) : g→A is
injective. Now Corollary 4.4 implies that L(η)([g, r]) ⊆ QA, so that Lemma
5.2 entails that η(expG(Rx)) = eRL(η)x is not relatively compact in A×, and
this implies that expG(Rx) cannot be relatively compact in G.

Step 2. Let R := 〈expG r〉 denote the radical of G. Then R is a linear
Lie group.

Let R′ be the commutator subgroup of R. Since L(R′) = [r, r], Step 1
implies that expG(Rx) is not relatively compact in G for 0 6= x ∈ [r, r].
This implies that R′ is closed ([Ho65, XVI.2.3/4]) and does not contain
circle groups. Hence it is a simply connected nilpotent Lie group, so that all
compact subgroups of R′ are trivial. Now [Ho65, XVIII.3.2] implies that R
is a linear Lie group.

Step 3. The Levi subgroup S := 〈expG s〉 ≤ G is linear.

Let qS : S̃ → S denote the universal covering and ηS : S̃ → S̃C be the
universal complexification. Then S is linear if and only if S is a quotient
of ηS(S̃), i.e., ker ηS ⊇ ker qS ([Ho65, XVII.3.3]). Since A is a complex FC-
complete CIA, the homomorphism of Lie algebras L(η) : s → A extends to
a homomorphism L(η)C : sC → A, which in turn integrates to a morphism
of Lie groups ηC : S̃C → A× with L(ηC) = L(η)C. Thus L(ηC ◦ ηS)|s =
L(η)|s, and hence ηC ◦ ηS = η ◦ qS , so that ker ηS ⊆ q−1

S (ker η). By (2), the
homomorphisms η : G→ A× separate the points of S, and we conclude that
ker ηS ⊆ ker qS , showing that S is linear.

Step 4. G is linear because R and S are linear ([Ho65, XVIII.4.2]).
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