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An analogue of Gutzmer’s formula for Hermite expansions

by

S. Thangavelu (Bangalore)

Dedicated to Somesh Bagchi on his sixtieth birthday

Abstract. We prove an analogue of Gutzmer’s formula for Hermite expansions. As
a consequence we obtain a new proof of a characterisation of the image of L2(Rn) under
the Hermite semigroup. We also obtain some new orthogonality relations for complexified
Hermite functions.

1. Introduction. By Gutzmer’s formula we mean any analogue of the
formula

(2π)−1
2π�

0

|f(x+ iy)|2 dx =
∞∑

k=−∞
|f̂(k)|2e−2ky

valid for any 2π-periodic holomorphic function f in a strip in the complex
plane. Here f̂(k) stands for the Fourier coefficients of the restriction of f to
the real line. An analogue of such a formula was established by Lassalle [9]
for holomorphic functions on the complexifications of compact symmetric
spaces. A similar formula for holomorphic functions on the complex crowns
associated to noncompact Riemannian symmetric spaces was discovered by
Faraut [3]. As can be seen from Faraut [2] and Krötz–Ólafsson–Stanton [7]
such formulas are useful in the study of Segal–Bargmann or heat kernel
transforms.

Recently in [15] we have proved an analogue of Gutzmer’s formula on
the Heisenberg groups and used them to study heat kernel transforms and
Paley–Wiener theorems.

In this paper we prove an analogue of Gutzmer’s formula for Hermite
expansions. Let H be the Hermite operator on Rn having the spectral de-
composition H =

∑∞
k=0(2k + n)Pk. Let Hn = Rn × Rn × R be the Heisen-

berg group whose complexification is Cn × Cn × C. Let π(x, u) be the pro-
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jective representation of Rn × Rn related to the Schrödinger representa-
tion of Hn and denote by π(x + iy, u + iv) its extension to Cn × Cn. Let
K = Sp(n,R) ∩ O(2n,R), which acts on Cn × Cn. Denote by ϕk(z, w) the
Laguerre functions of type (n− 1) extended to Cn ×Cn. Our main result is
the following.

Theorem 1.1. Let F be an entire function on Cn. Denote by f its
restriction to Rn. Then for any z = x+ iy, w = u+ iv ∈ Cn we have�

Rn

�

K

|π(σ.(z, w))F (ξ)|2 dσ dξ

= e(u·y−v·x)
∞∑
k=0

k!(n− 1)!
(k + n− 1)!

ϕk(2iy, 2iv)‖Pkf‖22.

As an immediate corollary we obtain the following characterisation of
the image of L2(Rn) under the Hermite semigroup e−tH , t > 0. Let

Ut(x, y) = 2n(sinh(4t))−n/2etanh(2t)|x|2−coth(2t)|y|2 .

Corollary 1.2. An entire function F on Cn belongs to the image of
L2(Rn) under e−tH if and only if�

Rn

�

Rn

|F (x+ iy)|2Ut(x, y) dx dy <∞.

This characterisation is not new and there are several proofs available in
the literature (see Byun [1], Karp [6] and Thangavelu [14]). In Section 4 we
derive some more consequences of Gutzmer’s formula.

We conclude this introduction with some remarks about the methods
used in proving Gutzmer’s formulas. As in the case of Fourier series, Las-
salle [9] used Plancherel’s theorem for the Laurent expansions of holomorphic
functions on the complexifications of compact symmetric spaces X = K/M.
The matrix coefficients associated to class one representations in the unitary
dual of a compact Lie group K holomorphically extend to its complexifica-
tion KC. Thus any function f whose “Fourier coefficients” have exponential
decay can be extended to the complexification XC = KC/MC. Then by
appealing to Plancherel’s theorem and using orthogonality relations the re-
quired formula was established. In [2] Faraut considered a general unimodu-
lar group G and proved a proposition from which Gutzmer’s formula can be
deduced for noncompact Riemannian symmetric spaces [3] and Heisenberg
groups [15].

Thus in all the previous settings the basic functions appearing in the
Fourier series or transform are matrix coefficients of certain irreducible uni-
tary representations of the underlying group. In contrast, the Hermite func-
tions do not occur as matrix coefficients. However, the Hermite functions
are used to calculate the matrix coefficients associated to Schrödinger rep-
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resentations of Hn resulting in special Hermite or Laguerre functions. This
explains why the representation π(z, w) occurs in our Gutzmer’s formula.
The close relationship between Hermite and Laguerre functions is then used
to derive Gutzmer’s formula.

2. Preliminaries. In this section we collect some relevant information
about special Hermite functions and prove some results that are required in
the next section. We closely follow the notations used in [12] and [13] and
we refer the reader to these monographs for more details.

Let Φα, α ∈ Nn, be the Hermite functions on Rn normalised so that
their L2 norms are one. These are eigenfunctions of the Hermite operator
H = −∆ + |x|2 with eigenvalues 2|α| + n. On finite linear combinations of
such functions we can define certain operators π(z, w), where z, w ∈ Cn, as
follows:

π(z, w)Φα(ξ) = ei(z·ξ+
1
2
z·w)Φα(ξ + w)

where z·ξ =
∑n

j=1 zjξj and z·w=
∑n

j=1 zjwj . Note that Φα(ξ) =Hα(ξ)e−
1
2
|ξ|2

where Hα is a polynomial on Rn and for z ∈ Cn we define Φα(z) to be
Hα(z)e−

1
2
z2 , where z2 = z · z. The special Hermite functions Φα,β(z, w) are

then defined by
Φα,β(z, w) = (2π)−n/2(π(z, w)Φα, Φβ).

The restrictions of Φα,β(z, w) to Rn×Rn are usually called the special Her-
mite functions and the family {Φα,β(x, u) : α, β ∈ Nn} forms an orthonormal
basis for L2(Cn) (see Proposition 1.4.1 in [12]).

As we have mentioned in the introduction, the operators π(z, w) are re-
lated to the Schrödinger representation π1 of the Heisenberg group Hn. Re-
call that Hn = Rn×Rn×R is equipped with the group law (x, u, t)(x′, u′, t′) =(
x+ x′, u+ u′, t+ t′ + 1

2(u · x′ − x · u′)
)
. For each nonzero real number λ we

have a representation of Hn realised on L2(Rn) given by

πλ(x, u, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2
x·u)ϕ(ξ + u).

Thus π(x, u) = π1(x, u, 0) defines a projective representation of Rn × Rn.
For (z, w) ∈ C2n the operators π(z, w) are not even bounded on L2(Rn).

However, they are densely defined and satisfy

π(z, w)π(z′, w′) = e(i/2)(z′·w−z·w′)π(z + z′, w + w′).

Moreover,
(π(iy, iv)Φα, Φβ) = (Φα, π(iy, iv)Φβ).

This means that π(iy, iv) are self-adjoint operators. We need to calculate
the L2 norms of π(z, w)Φα. Let Ln−1

k be Laguerre polynomials of type (n−1)
and define the Laguerre functions ϕk by

ϕk(x, u) = Ln−1
k

(
1
2(x2 + u2)

)
e−

1
4
(x2+u2).
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Then it is known (see Section 1.4 in [12]) that

ϕk(x, u) = (2π)n/2
∑
|α|=k

Φα,α(x, u).

These functions have a natural holomorphic extension to Cn ×Cn, denoted
by the same symbol:

ϕk(z, w) = (2π)n/2
∑
|α|=k

Φα,α(z, w).

Lemma 2.1. For any z = x+ iy, w = u+ iv ∈ Cn and α ∈ Nn we have�

Rn

|π(z, w)Φα(ξ)|2 dξ = (2π)n/2eu·y−v·xΦα,α(2iy, 2iv).

Proof. It is enough to prove the result in one dimension. Recall Mehler’s
formula satisfied by the Hermite functions hk on R:

∞∑
k=0

hk(ξ)hk(η)rk = π−1/2(1− r2)−1/2e
− 1

2
1+r2

1−r2 (ξ2+η2)+ 2r
1−r2 ξη,

valid for all r with |r| < 1. The formula is clearly valid even if ξ and η are
complex. A simple calculation shows that
∞∑
k=0

rk|π(z, w)hk(ξ)|2 = π−1/2(1− r2)−1/2e−(uy+vx)e
1+r
1−r

v2e−
1−r
1+r

(ξ+u)2e−2yξ.

Integrating both sides with respect to ξ we obtain
∞∑
k=0

rk
�

R
|π(z, w)hk(ξ)|2 dξ = (1− r)−1euy−vxe

1+r
1−r

(y2+v2).

We now recall that the generating function for the Laguerre functions
ϕk(x, u) when n = 1 is

∞∑
k=0

rkϕk(x, u) = (1− r)−1e−
1
4

1+r
1−r

(x2+u2).

A comparison with this shows that�

R
|π(z, w)hk(ξ)|2 dξ = euy−vxϕk(2iy, 2iv).

Since Φk,k(x, u) = (2π)−1/2ϕk(x, u), this proves the lemma.

In the above lemma we have calculated the L2 norm of π(z, w)Φα by inte-
grating the generating function. We can also calculate the norm by expand-
ing π(z, w)Φα in terms of the Hermite basis and appealing to the Plancherel
theorem for Hermite expansions. This leads to the following identity which
is crucial for our main result.
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Lemma 2.2. For any α ∈ Nn, z = x+ iy, w = u+ iv ∈ Cn we have∑
β∈Nn

|Φα,β(z, w)|2 = (2π)−n/2eu·y−v·xΦα,α(2iy, 2iv).

Proof. We just have to recall that

(π(z, w)Φα, Φβ) = (2π)n/2Φα,β(z, w).

We also need some estimates on the holomorphically extended Hermite
functions on Cn. Let us define Φk(x, u) =

∑
|α|=k Φα(x)Φα(u), which is the

kernel of the projection Pk. Note that Φk extends to Cn × Cn as an entire
function. Using Mehler’s formula for Hermite functions and the generating
function for Laguerre functions we can get the following representation of
Φk in terms of Laguerre functions of type (n/2− 1).

Lemma 2.3.

Φk(z, w) = π−n/2
k∑
j=0

(−1)jLn/2−1
j

(
1
2(z + w)2

)
L
n/2−1
k−j

(
1
2(z − w)2

)
e−

1
2
(z2+w2),

where z2 =
∑n

j=1 z
2
j and w2 =

∑n
j=1w

2
j .

Proof. The Laguerre functions of type (n/2− 1) are given by the gener-
ating function∑

k=0

rkL
n/2−1
k

(
1
2z

2
)
e−

1
4
z2 = (1− r)−n/2e−

1
4

1+r
1−r

z2 .

A simple calculation shows that

(1− r)−n/2e−
1
4

1+r
1−r

(z+w)2(1 + r)−n/2e−
1
4

1−r
1+r

(z−w)2

= (1− r2)−n/2e−
1
2

1+r2

1−r2 (z2+w2)+ 2r
1−r2 zw.

Comparing this with Mehler’s formula and rewriting the left hand side as a
power series in r and then equating coefficients of rk we obtain the lemma.

The above lemma has already been used by us in the study of Bochner–
Riesz means for multiple Hermite expansions. Here we need the above in
order to get the following estimate on Φk(z, w).

Lemma 2.4. For all z = x+ iy ∈ Cn and k = 1, 2, . . . we have

|Φk(z, z)| ≤ C(y)k
3
4
(n−1)e2k

1/2|y|,

where C(y) is locally bounded.

Proof. From the previous lemma we have

Φk(z, z) = π−n/2
k∑
j=0

(−1)jLn/2−1
j (2|x|2)e−|x|

2
L
n/2−1
k−j (−2|y|2)e|y|

2
.
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We now make use of the following estimates on Laguerre functions. First of
all we know that

|Ln/2−1
j (2|x|2)e−|x|

2 | ≤ Cjn/2−1

uniformly in x. On the other hand, Perron’s formula for Laguerre polyno-
mials in the complex domain (see Theorem 8.22.3 in Szegö [11]) gives us

L
n/2−1
j (−2|y|2)e|y|

2 ≤ C(y)j(n−3)/4e2j
1/2|y|,

valid for all |y| ≥ 1. Since Ln/2−1
j (−2|y|2) ≤ Ln/2−1

j (−2) for |y| ≤ 1 we have
the same estimate for all values of y. These two estimates imply the required
bound on Φk(z, z).

We conclude the preliminaries with establishing some more notation. Let
Sp(n,R) stand for the symplectic group consisting of 2n× 2n real matrices
that preserve the symplectic form [(x, u), (y, v)] = u · y − v · x on R2n and
have determinant one. Let O(2n,R) be the orthogonal group; we define
K = Sp(n,R)∩O(2n,R). Then there is a one-to-one correspondence between
K and the unitary group U(n). Let σ = a+ ib be an n× n complex matrix
with real and imaginary parts a and b. Then σ is unitary if and only if
the matrix A =

(
a
b
−b
a

)
is in K. For these facts we refer to Folland [4]. By

σ.(x, u) we denote the action of the correspoding matrix A on (x, u). This
action has a natural extension to Cn×Cn denoted by σ.(z, w) and given by
σ.(z, w) = (a.z−b.w, a.w+b.z) where σ = a+ib as above. For example, when
n = 1 and σ = eiθ we see that the corresponding matrix A is

(
cos θ
sin θ

− sin θ
cos θ

)
.

Given θ = (θ1, . . . , θn) ∈ Rn we denote by k(θ) the diagonal matrix in U(n)
with entries eiθj . We denote by dσ the normalised Haar measure on K and
by dθ the Lebesgue measure dθ1 · · · dθn.

3. The main results. Having set up notation and collected relevant
results on special Hermite functions we are now ready to prove our main
results. We begin with

Theorem 3.1. Let f ∈ L2(Rn) be such that ‖Pkf‖2 ≤ Cte−2k1/2t for all
t > 0 and k ∈ N. Then f has a holomorphic extension F to Cn and we have
the following formula for any z = x+ iy, w = u+ iv ∈ Cn:
�

Rn

�

K

|π(σ.(z, w))F (ξ)|2 dσ dξ = eu·y−v·x
∞∑
k=0

k!(n−1)!
(k+n−1)!

ϕk(2iy, 2iv)‖Pkf‖22.

Proof. Consider the Hermite expansion of the function f given by

f(x) =
∞∑
k=0

∑
|α|=k

(f, Φα)Φα(x).
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By the Cauchy–Schwarz inequality,∣∣∣ ∑
|α|=k

(f, Φα)Φα(x+ iy)
∣∣∣2 ≤ Φk(x+ iy, x− iy)‖Pkf‖22.

In view of Lemma 2.4 the hypothesis on f allows us to conclude that the
series ∞∑

k=0

∑
|α|=k

(f, Φα)Φα(x+ iy)

converges uniformly over compact subsets of Cn and hence f extends to an
entire function F on Cn.

Let D be the subgroup of K consisting of 2n × 2n matrices associated
to the elements k(θ) ∈ U(n). We claim that it is enough to prove

(2π)−n
�

Rn

�

D

|π(k(θ).(z, w))F (ξ)|2 dθ dξ

= (2π)n/2eu·y−v·x
∑
α∈Nn

Φα,α(2iy, 2iv)|(f, Φα)|2.

To see the claim, suppose we have the above formula. Then writing�

Rn

�

K

|π(σ.(z, w))F (ξ)|2 dσ dξ

= (2π)−n
�

Rn

�

D

�

K

|π(k(θ)σ.(z, w))F (ξ)|2 dσ dθ dξ

we get�

Rn

�

K

|π(σ.(z, w))F (ξ)|2 dσ dξ

= (2π)n/2
�

K

eu
′·y′−v′·x′

∑
α∈Nn

Φα,α(2iy′, 2iv′)|(f, Φα)|2 dσ,

where (z′, w′) = σ.(z, w). Since the action of σ preserves the symplectic form
we have eu·y−v·x = eu

′·y′−v′·x′ . Thus we are left with proving

(2π)n/2
�

K

Φα,α(σ.(2iy, 2iv)) dσ =
k!(n− 1)!

(k + n− 1)!
ϕk(2iy, 2iv)

whenever |α| = k. But this is a well known fact. A representation-theoretic
proof of it can be found in Ratnakumar et al. [10].

(Another way to see this is the following. The functions Φα,α(x, u) are
eigenfunctions of the special Hermite operator L with eigenvalue 2|α| + n
(see Section 1.4 in [12]). Hence

	
K Φα,α(σ.(x, u)) dσ is a radial eigenfunction

of the same operator. But any bounded radial eigenfunction with eigenvalue
2k + n is a constant multiple of ϕk(x, u). This proves that

(2π)n/2
�

K

Φα,α(σ.(x, u)) dσ =
k!(n− 1)!

(k + n− 1)!
ϕk(x, u)

and hence they are the same on Cn × Cn as well.)



286 S. Thangavelu

We now turn our attention to the formula for the action of D. The idea is
to expand the operator-valued function π(k(θ).(z, w)) into a Fourier series.
Defining

πm(z, w)F (ξ) = (2π)−n
�

D

π(k(θ).(z, w))F (ξ)e−im·θ dθ

we have the expansion

π(k(θ).(z, w))F (ξ) =
∑
m∈Zn

πm(z, w)F (ξ)eim·θ.

By the orthogonality of the Fourier series we obtain

(2π)−n
�

Rn

�

D

|π(k(θ).(z, w))F (ξ)|2 dθ dξ =
∑
m∈Zn

�

Rn

|πm(z, w)F (ξ)|2 dξ.

In calculating the L2 norm of πm(z, w)F we make use of another property of
special Hermite functions, namely that Φα,β(x, u) is (β − α)-homogeneous.
By this we mean that

Φα,β(k(θ).(x, u)) = ei(β−α)·θΦα,β(x, u).

A proof of this can be found in [12, Proposition 1.4.2].
Expanding f in terms of the Hermite basis we see that

πm(z, w)F =
∑
α,β

(f, Φα)(πm(z, w)Φα, Φβ)Φβ.

But
(πm(x, u)Φα, Φβ) = (2π)−n/2

�

D

Φα,β(k(θ).(x, u))e−im·θ dθ = 0

unless β = α+m due to the homogeneity properties of the special Hermite
functions. Therefore, the expansion of πm(z, w)F reduces to

πm(z, w)F = (2π)n/2
∑
α∈Nn

(f, Φα)Φα,α+m(z, w)Φα+m.

This leads us to

‖πm(z, w)F‖22 = (2π)n
∑
α∈Nn

|(f, Φα)|2|Φα,α+m(z, w)|2.

Thus we have proved

(2π)−n
�

Rn

�

D

|π(k(θ).(z, w))F (ξ)|2 dθ dξ

= (2π)n
∑
m∈Zn

∑
α∈Nn

|(f, Φα)|2|Φα,α+m(z, w)|2.

This proves our claim since the sum over m ∈ Zn is precisely

(2π)−n/2eu·y−v·xΦα,α(2iy, 2iv)

in view of Lemma 2.2. Hence the proof of the theorem is complete.
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The above theorem has a natural converse which we state and prove
now. Together they prove Theorem 1.1 stated in the introduction. In the
proof of the above theorem the hypotheses on the Hermite projections of
f are used twice. First we used the estimates to conclude that f has an
entire extension to Cn. Then we used them to show that the sum and the
integral appearing in the above theorem are finite. In the next theorem we
begin with an entire function for which the integral is finite and obtain the
estimates on the projections.

Theorem 3.2. Let F be an entire function on Rn for which the integral
�

Rn

�

K

|π(σ.(z, w))F (ξ)|2 dσ dξ

is finite for all z, w ∈ Cn. Then ‖Pkf‖2 ≤ Cte−2k1/2t for all t > 0.

Proof. We proceed as in the proof of the previous theorem. Since F is
holomorphic, π(z, w)F makes sense. As before, for almost every σ ∈ U(n)
we have �

Rn

�

D

|π(k(θ)σ.(z, w))F (ξ)|2 dθ dξ <∞.

Expanding the operator π(k(θ).(z, w)) into a Fourier series and proceeding
exactly as in the previous theorem, and noting that at each stage the result-
ing sums are finite, we get Gutzmer’s formula, namely the integral in the
theorem is equal to

eu·y−v·x
∞∑
k=0

k!(n− 1)!
(k + n− 1)!

ϕk(2iy, 2iv)‖Pkf‖22

and hence the sum is finite. Now Perron’s formula for Laguerre functions on
the negative real axis also gives lower bounds. That is, the Laguerre functions
ϕk(2iy, 2iv) behave like e2k

1/2(|y|2+|v|2)1/2
. In view of this we immediately get

the decay estimates on the projections Pkf.

4. Some consequences. In this section we deduce some interesting
consequences of our Gutzmer’s formula. First we obtain the characterisa-
tion of the image of L2(Rn) under the Hermite semigroup mentioned in
Corollary 1.2. As pointed out earlier, the result is not new but we give a
different proof.

Consider the heat kernel pt(y, v) associated to the special Hermite oper-
ator, which is explicitly given by

pt(y, v) = (2π)−n(sinh(t))−ne−
1
4

coth(t)(|y|2+|v|2).
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Let F = e−tHf , f ∈ L2(Rn), and look at the integral
�

Rn

( �

R2n

|π(iy, iv)F (ξ)|2p2t(2y, 2v) dy dv
)
dξ.

Since the function pt(y, v) and the Lebesgue measure dydv are both invariant
under the action of the group K we can rewrite the above integral as

�

R2n

( �

Rn

�

K

|π(σ.(iy, iv))F (ξ)|2 dσ dξ
)
p2t(2y, 2v) dy dv.

In view of Gutzmer’s formula the above reduces to
∞∑
k=0

k!(n− 1)!
(k + n− 1)!

( �

R2n

ϕk(2iy, 2iv)p2t(2y, 2v) dy dv
)
‖Pkf‖22e−2(2k+n)t.

We now make use of the fact that
k!(n− 1)!

(k + n− 1)!

�

R2n

ϕk(2iy, 2iv)p2t(2y, 2v) dy dv = e2(2k+n)t,

which we have established in [15, Lemma 6.3]. Therefore, we are led to the
identity

�

R2n

( �

Rn

|π(iy, iv)F (ξ)|2 dξ
)
p2t(2y, 2v) dy dv =

∞∑
k=0

‖Pkf‖22 =
�

Rn

|f(ξ)|2 dξ.

A simple calculation shows that the above integral is equal to

(2π sinh(2t))−n
�

R2n

( �

Rn

|F (ξ + iv)|2e−2y·ξe− coth(2t)(|y|2+|v|2) dy
)
dξ dv.

Performing the integration with respect to y we see that the above is nothing
but �

R2n

|F (ξ + iv)|2Ut(ξ, v) dξ dv.

This completes the proof of one implication of Corollary 1.2.
To prove the converse, suppose F is entire and

�

R2n

|F (ξ + iv)|2Ut(ξ, v) dξ dv <∞.

Then it follows that for almost all (y, v) ∈ R2n we have
�

Rn

�

K

|π(σ(iy, iv))F (ξ)|2 dσ dξ <∞.

We can now proceed as in the proof of Theorem 3.2 to conclude that the
projections PkF of F satisfy ‖PkF‖2 ≤ Ce−(2k+n)1/2s for all s > 0 and so
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Gutzmer’s formula is valid for F. Hence the integrability of�

Rn

�

K

|π(σ(iy, iv))F (ξ)|2 dσ dξ

with respect to p2t(2y, 2v) dy dv is equivalent to F = e−tHf for some f ∈
L2(Rn). This completes the proof of Corollary 1.2.

We remark that if we only assume the estimate ‖Pkf‖2 ≤ Ce−2k1/2t for
some t > 0 (not for all t as in Theorem 3.1) then the proof of Theorem 3.1
shows that f can be extended as a holomorphic function to a certain tube
domain Ωt = {z ∈ Cn : |y| < t} and still we have Gutzmer’s formula as long
as |y|2+|v|2 < t2. We can use Gutzmer’s formula to obtain a characterisation
of the image of L2(Rn) under the Hermite–Poisson semigroup e−tH

1/2
as a

weighted Bergman space (the details will appear elsewhere). The work of
Janssen and Eijndhoven [5] on the growth of Hermite coefficients treats
similar problems in terms of pointwise estimates.

Another interesting consequence of Gutzmer’s formula is the following
orthogonality relations for Hermite functions on Cn. Polarising Gutzmer we
obtain�

Rn

�

K

π(σ.(z, w))F (ξ)π(σ.(z, w))G(ξ) dσ dξ

= eu·y−v·x
∞∑
k=0

k!(n− 1)!
(k + n− 1)!

ϕk(2iy, 2iv)(Pkf, Pkg).

Specialising to Hermite functions we get the following result which, to our
knowledge, seems to be new.

Corollary 4.1. For any z, w ∈ Cn and α, β ∈ Nn we have�

Rn

�

K

π(σ.(z, w))Φα(ξ)π(σ.(z, w))Φβ(ξ) dσ dξ

= eu·y−v·x
k!(n− 1)!

(k + n− 1)!
ϕk(2iy, 2iv)δα,β.

The above shows that in the one-dimensional case the Hermite functions
hk satisfy the following relations. The choice z = iη, w = 0 gives

�

R

2π�

0

e−2ξη cos θhk(ξ + iη sin θ)hj(ξ + iη sin θ) dθ dξ = 2πL0
k(−2η2)eη

2
δk,j .

The choice z = η, w = iη leads to

�

R

2π�

0

e2ξη sin θ−η2 cos(2θ)hk(ξ + iηe−iθ)hj(ξ + iηe−iθ) dθ dξ = 2πL0
k(−2η2)δk,j .
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Other interesting relations in higher-dimensional cases can be obtained by
suitable choices of z, w and also by choosing various subgroups of K.
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[9] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification

d’un espace symétrique compact , Ann. Sci. École Norm. Sup. 11 (1978), 167–210.
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