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The one-sided ergodic Hilbert transform in Banach spaces

by

Guy Cohen (Beer Sheva), Christophe Cuny (Nouméa)
and Michael Lin (Beer Sheva)

Abstract. Let T be a power-bounded operator on a (real or complex) Banach space.

We study the convergence of the one-sided ergodic Hilbert transform limn

Pn
k=1

Tkx
k

.
We prove that weak and strong convergence are equivalent, and in a reflexive space also

supn ‖
Pn
k=1

Tkx
k
‖ < ∞ is equivalent to the convergence. We also show that −

P∞
k=1

Tk

k

(which converges on (I − T )X) is precisely the infinitesimal generator of the semigroup
(I − T )r |(I−T )X .

1. Introduction. Izumi [12] raised the question of the a.e. convergence
of the one-sided ergodic Hilbert transform (EHT)

∑∞
k=1

f◦θk
k associated to a

probability preserving transformation θ and functions in L2(S,Σ, µ) (which,
by Kronecker’s lemma, would be a strengthening of Birkhoff’s pointwise er-
godic theorem). Halmos [10] proved that for every ergodic probability pre-
serving transformation on a non-atomic space there always exists a centred
f ∈ L2 such that the one-sided EHT fails to converge in L2-norm.

On the other hand, Cotlar [5] proved that when T is the operator induced
by an invertible probability preserving transformation, for every f ∈ L1 the
two-sided EHT

∑∞
k=1

Tkf−T−kf
k converges a.e., and in Lp-norm when f ∈ Lp,

1 ≤ p <∞. Campbell [2] proved that for a unitary operator T on a complex
Hilbert space H the two-sided EHT converges in norm for every f ∈ H.

For T unitary on a complex Hilbert space H, Gaposhkin [9] obtained
a spectral characterization of the norm convergence of the one-sided EHT∑∞

k=1
Tkf
k . For a normal contraction T , several additional characterizations

were recently obtained by Cohen and Lin [3], who proved that norm con-
vergence is equivalent to weak convergence; this had been proved by Assani
and Lin [1] for T unitary or self-adjoint.
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Recently, Cuny [6] proved that for T a Dunford–Schwartz operator on
a σ-finite measure space or a positive contraction of an Lp space, 1 <

p < ∞, norm convergence of
∑∞

k=1
Tkf
k implies a.e. convergence. For addi-

tional results and references concerning pointwise convergence see [9] and [1].
In this paper we consider a power-bounded operator T on a Banach space

X (which is therefore a contraction in an equivalent norm), and for x ∈ X
we study the convergence of the series

(1)
∞∑
k=1

T kx

k
.

Obviously, weak convergence of (1) implies that x∗(x) = 0 whenever T ∗x∗ =
x∗, so necessarily x ∈ (I − T )X (e.g. [13, p. 73]). Derriennic and Lin [7,
Theorem 2.23] proved that the series (1) converges in norm for every x in
(I − T )X if and only if (I−T )X is closed. It was noted in [3] that the same
holds if norm convergence is replaced by weak convergence.

We obtain several necessary and sufficient conditions for the convergence
of the one-sided ergodic Hilbert transform (1). One of our main results is
that weak convergence of the series (1) always implies its norm convergence.

2. On some operator series. Motivated by conditions for the central
limit theorem for stationary ergodic Markov chains, Derriennic and Lin [7]
defined for 0 < α < 1 and T power-bounded on X the operator (I − T )α by
the series (I−T )α = I−

∑∞
n=1 a

(α)
n Tn, where the coefficients are those of the

expansion of (1−t)α in the interval [−1, 1], with a(α)
n > 0 and

∑∞
n=1 a

(α)
n = 1.

It is not difficult to show that (I−T )αX ⊂ (I − T )X. It is proved in [7] that
when T is mean-ergodic, x ∈ (I − T )αX if and only if the series

∑∞
n=1

Tnx
n1−α

converges strongly. The proof uses the series representation of 1/(1 − t)α,
which converges for |t| < 1. This suggests the idea in [6] that in order to
study the one-sided EHT, we try to connect it with the inverse of an analytic
function on the open unit disk D := {z ∈ C : |z| < 1}. For z ∈ D, define

H(z) := log
(

e
1− z

)
= 1 +

∑
n≥1

zn

n
=
∑
n≥0

βnz
n.

Since 1− e /∈ D, H 6= 0 on D. Hence G := 1/H is well defined and analytic
on D, so there exists {αn}n≥0 such that

G(z) =
∑
n≥0

αnz
n ∀z ∈ D.

One can see that α0 = 1, and it follows from the identity G(z)H(z) = 1 that

(2) βn +
n∑
k=1

αkβn−k = βn +
n−1∑
k=0

βkαn−k = 0 ∀n ≥ 1.
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Consequently, the coefficients {αn} are real, and it follows from [17, The-
orem 2.31, p. 192] that αn ∼ −1/(n(log n)2). For convenience we denote
γn := K/(n(log(n+ 1))2), n ≥ 1, where K := supn≥1 n(log(n+ 1))2|αn|, so
that |αn| ≤ γn for n ≥ 1. Since G(t) = 1/H(t) for t ∈ (0, 1) and G(1) is
defined by an absolutely convergent power series, letting t→ 1− we obtain
G(1) = 0.

We now fix a power-bounded operator T on a (real or complex) Banach
space X. Since

∑
n≥0 |αn| <∞ and the coefficients are real, the operator se-

ries
∑

n≥0 αnT
n converges in operator norm, and defines a bounded operator

on X, denoted by G(T ).
For every n ≥ 1 we define

(3) Hn(T ) := I +
n∑
k=1

T k

k
=

n∑
k=0

βkT
k

and put H(T )x = limn→∞Hn(T )x whenever the limit exists in norm.

Proposition 2.1. Let T be a power-bounded operator on a Banach
space X. Then

(4) sup
n≥1
‖Hn(T )G(T )‖ <∞.

Proof. Since the series
∑

n≥0 αn is absolutely convergent, we have

(5) Hn(T )G(T ) =
n∑
k=0

βkT
k +

n∑
k=0

βk
∑
m≥1

αmT
m+k

=
n∑
k=0

βkT
k +

n∑
k=0

βk
∑

m≥k+1

αm−kT
m

=
n∑
k=0

βkT
k +

n∑
m=1

(m−1∑
k=0

βkαm−k

)
Tm +

∑
m≥n+1

( n∑
k=0

βkαm−k

)
Tm

= I +
∑

m≥n+1

( n∑
k=0

βkαm−k

)
Tm,

where we used β0 = 1 and (2) for the last equality. It suffices to deal with
the series of the last equality. We have

(6)
∑

m≥n+1

( n∑
k=0

βkαm−k

)
Tm

=
2n∑

m=n+1

( n∑
k=0

βkαm−k

)
Tm +

∑
m≥2n+1

( n∑
k=0

βkαm−k

)
Tm.



254 G. Cohen et al.

For the last sum, monotonicity of {γn} and supn ‖Tn‖ = M <∞ yield∥∥∥ ∑
m≥2n+1

( n∑
k=0

βkαm−k

)
Tm
∥∥∥ ≤ ∑

m≥2n+1

γm−n

( n∑
k=0

βk

)
‖Tm‖

≤M(2 + log n)
∑

m≥2n+1

γm−n ≤ C log n
∑
j≥n+1

K

j(log(j + 1))2
≤ C ′.

Let us deal with the first sum on the right-hand side of (6). By (2), we have∥∥∥ 2n∑
m=n+1

( n∑
k=0

βkαm−k

)
Tm
∥∥∥ =

∥∥∥ 2n∑
m=n+1

βmT
m +

2n∑
m=n+1

( m−1∑
k=n+1

βkαm−k

)
Tm
∥∥∥

≤
2n∑

m=n+1

βm‖Tm‖+
2n∑

m=n+1

( m−1∑
k=n+1

βkγm−k

)
‖Tm‖

≤Mn
1

n+ 1
+Mn

1
n+ 1

∑
j≥1

γj ,

using the definition of {βn} and its monotonicity for the last inequality.

The next proposition provides the main tool for our results. It was proved
in [6] in the context of power-bounded operators on Lp spaces.

Proposition 2.2. Let T be a power-bounded operator on a Banach space
X and let x ∈ (I − T )X. Then

lim
n→∞

‖x−Hn(T )G(T )x‖ = 0.

Proof. By the previous proposition, it is enough to prove the convergence
for x ∈ (I − T )X. By (5), the assertion is that for x ∈ (I − T )X,∥∥∥ ∑

m≥n+1

( n∑
k=0

βkαm−k

)
Tmx

∥∥∥ n→∞−−−→ 0.

We denote M := supn≥0 ‖Tn‖. For u ∈ X we have

(7)
∑

m≥n+1

( n∑
k=0

βkαm−k

)
Tm(u− Tu)

=
∑

m≥n+1

( n∑
k=0

βkαm−k

)
Tmu−

∑
m≥n+2

( n∑
k=0

βkαm−k−1

)
Tmu

=
∑

m≥n+2

( n∑
k=1

(βk − βk−1)αm−k
)
Tmu+

( n∑
k=0

βkαn+1−k

)
Tn+1u

+
∑

m≥n+1

αmT
mu−

∑
m≥n+2

βnαm−n−1T
mu.
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We estimate the norms of the last three terms using power-boundedness,
(2) and monotonicity of {βn} and obtain∥∥∥ n∑
k=0

βkαn+1−kT
n+1u+

∑
m≥n+1

αmT
mu−

∑
m≥n+2

βnαm−n−1T
mu
∥∥∥

≤M‖u‖
( n+1∑
j=[n/2]+1

γj+
1

[n/2] + 1

[n/2]+1∑
j=1

γj+
∑

m≥n+1

γm+
1
n

∑
m≥1

γm

)
n→∞−−−→ 0.

It remains to deal with the first term on the right-hand side of (7). Splitting
the inner sum according to k ≤ [n/2] and using monotonicity of {γn}, we
obtain∥∥∥ ∑
m≥n+2

( n∑
k=1

(βk−βk−1)αm−k
)
Tmu

∥∥∥ ≤M ∑
m≥n+2

( n∑
k=1

|βk−βk−1|γm−k
)
‖u‖

≤M
[n/2]∑
k=1

(βk−1 − βk)‖u‖
∑

m≥n+2

γm−[n/2] +
M‖u‖
[n/2]

∑
m≥n+2

γm−n

≤ KM

log n
‖u‖,

for a constant K > 0 independent of u (and T ), which proves the proposi-
tion.

3. Convergence of the one-sided ergodic Hilbert transform. In
this section we obtain several criteria for the convergence of the one-sided
ergodic Hilbert transform of a power-bounded operator. Additional criteria
are obtained when the Banach space is reflexive. For normal contractions in
a complex Hilbert space the main theorems were proved in [3]; for unitary
operators and self-adjoint contractions they had been obtained in [1].

Lemma 3.1. Let T be a power-bounded operator on a Banach space X
and let x ∈ X. If lim infn→∞

∥∥∑n
k=1

Tkx
k

∥∥ <∞, then x ∈ (I − T )X.

Proof. The condition implies that supj ‖Hnj (T )x‖ < ∞ for some {nj}.
Hence x∗(x) = 0 whenever T ∗x∗ = x∗, which implies x ∈ (I − T )X.

Theorem 3.2. Let T be a power-bounded operator on a Banach space
X and let x ∈ X. Then the following are equivalent:

(i) There is an increasing {nj} such that
∑nj

k=1
Tkx
k converges weakly.

(ii) The series
∑∞

k=1
Tkx
k converges weakly.

(iii) The series
∑∞

k=1
Tkx
k converges in norm.

Proof. Obviously we have to prove only that (i) implies (iii). We assume
that Hnj (T )x converges weakly to some z; this implies that {‖Hnj (T )x‖}
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is bounded, so x (by Lemma 3.1), and hence z, are in (I − T )X (since
it is weakly closed [8, Theorem V.3.13]), and Proposition 2.2 yields x =
H(T )G(T )x. Using weak continuity of G(T ) we then obtain

G(T )z = weak-limG(T )Hnj (T )x

= weak-limHnj (T )G(T )x = H(T )G(T )x = x.

Since z ∈ (I − T )X, Proposition 2.2 implies that Hn(T )x = Hn(T )G(T )z
converges in norm (to z).

Remark. The theorem is the analogue, for the one-sided EHT, of
Yosida’s theorem for the Cesàro averages (e.g. [13, p. 72]).

Proposition 3.3. Let T be power-bounded on X. The series
∑∞

k=1
Tkx
k

converges if and only if x ∈ G(T )[(I − T )X].

Proof. Denote X0 := G(T )[(I − T )X]. Proposition 2.2 shows that the
limit operator H(T ), defined for all those x for which the one-sided EHT
converges (in norm), has X0 included in its domain of definition, and H(T )
maps its domain of definition onto all of (I − T )X. By the previous proof,
convergence of Hn(T )x implies that x ∈ X0, so X0 is the precise domain of
definition of the one-sided EHT.

Remark. Note that when T is mean ergodic, the ergodic decomposition
yields X0 = G(T )X, since G(1) = 0 implies G(T )z = 0 whenever Tz = z.

Corollary 3.4. Let T be power-bounded on X. For 0 < δ < 1 we have

(I − T )X ⊂ (I − T )δX ⊂ G(T )[(I − T )X] ⊂ G(T )X ⊂ (I − T )X

Proof. Combining (4) with Lemma 3.1 we obtain G(T )X ⊂ (I − T )X.
The first inclusion and the convergence of Hn(T )x for x ∈ (I − T )δX are
proved in [7].

Remark. When (I − T )X is not closed, (I − T )δ1X ( (I − T )δ2X for
every δ2 < δ1 ≤ 1 by [7], hence (I − T )δX 6= G(T )[(I − T )X] for 0 < δ ≤ 1.
By [7, Theorem 2.23], G(T )[(I − T )X] 6= (I − T )X in this case.

Proposition 3.5. Let X = Y ∗ be a dual Banach space and let T = S∗

be a power-bounded dual operator on X. If

(8) lim inf
n→∞

∥∥∥∥ n∑
k=1

T kx

k

∥∥∥∥ <∞
then x ∈ G(T )X. If in addition T is mean ergodic, then

∑∞
k=1

Tkx
k converges

in norm.

Proof. By Lemma 3.1, (8) implies that x ∈ (I − T )X. By assumption
we have an increasing {nj} such that supj≥1

∥∥∑nj
k=1

Tkx
k

∥∥ < ∞. Let LIM
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denote a fixed Banach limit (e.g. [13, p. 135]), and for f ∈ Y (Y is the
predual of X) define

ψ(f) = LIM
{ nj∑
k=1

x(Skf)
k

}
= LIM

{ nj∑
k=1

(T kx)(f)
k

}
= LIM{[Hnj (T )x](f)}.

By (8), ψ is well-defined, linear and bounded, so ψ ∈ Y ∗ = X. Since x is in
(I − T )X, we have G(T )Hn(T )x = Hn(T )G(T )x→ x in norm, by Proposi-
tion 2.2. Since Banach limits preserve convergence and G(T ) = G(S)∗, we
obtain

[G(T )ψ](f) = ψ(G(S)f) = LIM{[Hnj (T )x](G(S)f)}
= LIM{[G(T )Hnj (T )x](f)} = x(f)

for every f ∈ Y , so G(T )ψ = x.
If in addition T is mean ergodic, then x∈G(T )X=G(T )(I − T )X = X0,

so Hn(T )x converges by Proposition 3.3.

Remark. The use of a Banach limit is not necessary when the pre-
dual Y is separable; in this case the weak-∗ topology on bounded sets in
X = Y ∗ is metrizable, and there exists an increasing sequence of integers
nj such that Hnj (T )x converges weak-∗ to some ψ ∈ X. Since x ∈ (I − T )X,
weak-∗ continuity of G(T ) and Proposition 2.2 imply that G(T )ψ =
weak-∗ limG(T )Hnj (T )x = x.

Corollary 3.6. Let T be a power-bounded operator on a reflexive Ba-
nach space. Then

∑∞
k=1

Tkx
k converges in norm if and only if

lim inf
n→∞

∥∥∥∥ n∑
k=1

T kx

k

∥∥∥∥ <∞.
Proof. Since X is reflexive, T is a dual mean ergodic operator.

Combining the previous corollary with [6, Theorem 1.3] we obtain the
following.

Corollary 3.7. Let 1 < p < ∞ and let T be a positive contraction of
Lp(S,Σ, µ) of a σ-finite measure space. If f ∈ Lp satisfies

lim inf
n→∞

∥∥∥∥ n∑
k=1

T kf

k

∥∥∥∥
p

<∞,

then
∑n

k=1
Tkf
k converges almost everywhere and

sup
n≥1

∣∣∣∣ n∑
k=1

T kf

k

∣∣∣∣ ∈ Lp(S, µ).

Remark. Positivity is not needed when T is a Dunford–Schwartz opera-
tor—we apply [6, Theorem 1.2] instead of [6, Theorem 1.3].
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Example 1 (A dual operator T and x ∈ X with {Hn(T )x} bounded
and non-convergent). Define S on Y = `1 by

S(a0, a1, a2, . . .) = (a1, a2, a3, . . .).

Then T = S∗ on X = `∞ is given by

T (b0, b1, b2, . . .) = (0, b0, b1, b2, . . .).

For e = (1, 1, . . .) ∈ `∞ we have ‖n−1
∑n

k=1 T
ke‖∞ = 1 for every n, so

T is not mean ergodic since it has no fixed points. We put x = G(T )e;
Proposition 2.1 yields supn ‖Hn(T )x‖ <∞.

We show that {Hn(T )x} is not Cauchy. We use G(1) = 0 and the asymp-
totic behaviour of αn to conclude that for m ≥ 0 the mth coordinate of
x = G(T )e is

xm =
m∑
k=0

αk = −
∑

k≥m+1

αk ∼
C

log(m+ 2)
.

For k ≥ 0 the mth coordinate of T kx is 0 for m < k and xm−k for m ≥ k.
Let 1 < p < q. For m > q we have( q∑

k=p

βkT
kx
)
m

=
q∑

k=p

βkxm−k ≥
q∑

k=p

Cβk
log(m+ 2− k)

.

If we take q = p2, for m = p2 + p we obtain

‖Hq(T )x−Hp(T )x‖ ≥
p2∑
k=p

Cβk
log(m+ 2− k)

≥ C

log(p+ 2)

p2∑
k=p

1
k

≥ K

log(p+ 2)
(log(p2)− log p) 9 0.

Proposition 3.8. Let T be a power-bounded operator on a Banach
space X such that T ∗∗ is mean ergodic on X∗∗ (e.g. X is reflexive). Then∑∞

k=1
Tkx
k converges if and only if lim infn→∞

∥∥∑n
k=1

Tkx
k

∥∥ <∞.
Proof. Assume the condition (8) holds. We identify X as a closed sub-

space of X∗∗ by the canonical embedding, which is T ∗∗-invariant.
We apply Proposition 3.5 to T ∗∗ and x and obtain the existence of

x∗∗ ∈ X∗∗ such that G(T ∗∗)x∗∗ = x. As noted earlier, the mean ergodicity
of T ∗∗ implies the existence of z∗∗ ∈ (I − T ∗∗)X∗∗ such that G(T ∗∗)z∗∗ = x.
By Proposition 2.2 we then have

‖Hn(T )x− z∗∗‖ = ‖Hn(T ∗∗)x− z∗∗‖ = ‖Hn(T ∗∗)G(T ∗∗)z∗∗ − z∗∗‖ → 0,

which shows that z∗∗ ∈ X and proves the desired convergence.

Remark. The proof shows that (8) always implies that x ∈ G(T ∗∗)X∗∗,
but we need x ∈ G(T )[(I − T )X] ⊂ G(T )X for convergence of {Hn(T )x}.
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Example 2 (A mean ergodic power-bounded T and x ∈ X with
{Hn(T )x} bounded and non-convergent). On X = c0 we define the isometry

T (b0, b1, b2, . . .) = (0, b0, b1, b2, . . .),

Since Tnz → 0 weakly for every z ∈ c0, the operator T is mean ergodic.
Note that the dual T ∗ on `1 is the operator S of Example 1, and is also
mean ergodic. The operator T ∗∗ on `∞ is in fact the operator of Example 1,
and we put x = G(T ∗∗)e. As shown in Example 1, the mth coordinate of x
behaves asymptotically like C/log(m + 2), so x ∈ c0. The computations in
Example 1 prove boundedness and non-convergence of {Hn(T )x}; in partic-
ular, x /∈ G(T )X.

Derriennic and Lin [7] proved that for T power-bounded on X the family
of operators {(I − T )r := (I − T )[r](I − T )r−[r] : r ≥ 0} has the semigroup
property, and in [7, Theorem 2.22] it is proved that the restriction of this
semigroup to the closed subspace (I − T )X is strongly continuous at 0 (with
the identity as limit at 0). The following answers a question raised in [1].

Theorem 3.9. Let T be power-bounded on X, and let A be the infinites-
imal generator of the semigroup {(I − T )r : r ≥ 0} defined on (I − T )X.
Then x ∈ D(A) if and only if the series

∑∞
n=1

Tnx
n converges. The generator

is then given by

Ax = −
∞∑
n=1

Tnx

n
, x ∈ D(A).

Proof. If the one-sided EHT converges in norm, then x ∈ D(A) and
Ax = −

∑∞
k=1

Tkx
k , by [7, Proposition 2.21].

Now let x ∈ D(A) ⊂ (I − T )X. Then Ax ∈ (I − T )X and Proposi-
tion 2.2 implies that z := G(T )(I − A)x is in the domain of the one-sided
EHT and satisfies limnHn(T )z = (I −A)x. But since z is in the domain of
the EHT, by [7], z ∈ D(A) and lim(Hn(T )−I)z = −Az, so (I−A)(x−z) = 0.

When Ay = y, the semigroup continuity yields (I − T )ry = ery (see the
first part of the proof of [15, Theorem IX.4.1, p. 240], which applies also to
real Banach spaces), so in particular (I − T )y = ey, implying that if y 6= 0
then ‖Tny‖ = (e−1)n‖y‖ → ∞, contradicting the power-boundedness of T .
Hence x = z, so

∑∞
n=1

Tnx
n converges (to −Ax).

Remark. If in the proof we use [1, Proposition 4.1] instead of [7], we can
obtain Theorem 3.2 as a corollary; we have preferred to prove Theorem 3.2
directly, independently of results from semigroup theory (used in [1] and in
Theorem 3.9).

Given T power-bounded on a Banach space X, for every ε > 0 the
series

∑∞
k=1

Tk

k1+ε converges in operator norm. Combining the theorem with
Corollary 4.5 of Assani and Lin [1] we obtain the following.
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Corollary 3.10. Let T be a power-bounded operator on a Banach
space X and let x ∈ (I − T )X. Then

∞∑
n=1

Tnx

n
converges ⇔ lim

ε→0+

∞∑
k=1

T kx

k1+ε
exists

and the two limits are equal.

The following was proved in [3] for normal contractions in a Hilbert
space.

Corollary 3.11. Let T be power-bounded on a reflexive Banach space X
and let x ∈ (I − T )X. Then

∞∑
n=1

Tnx

n
converges ⇔ sup

0<ε<1/2

∥∥∥∥ ∞∑
k=1

T kx

k1+ε

∥∥∥∥ <∞
Proof. We first assume that sup0<ε<1/2

∥∥∑∞
k=1

Tkx
k1+ε

∥∥ < ∞. By weak
sequential compactness of bounded sets, there is a sequence εj → 0 such
that

∑∞
k=1

Tkx

k1+εj
converges weakly, say to z. By the proof of [1, Corollary 4.5]∑∞

k=2
Tkx

k(k−1)εj
converges weakly to z−Tx. Combining this with Lemma 4.4

of [1] we obtain

weak- lim
εj→0

(I − T )εjx− x
εj

= −Tx− weak- lim
εj→0

∞∑
k=2

T kx

k(k − 1)εj
= −z.

By a result of Yosida [11, Theorem 10.5.4, p. 318] this already implies x ∈
D(A) (and then Ax = −z), so by Theorem 3.9,

∑∞
n=1

Tnx
n converges strongly.

The converse implication follows from the previous corollary.

4. The one-sided ergodic Hilbert transform of L1 isometries. Lin
and Sine [14] proved that for T a contraction of L1(S,Σ, µ), a function f is in
(I−T )L1 if (and obviously only if) supn ‖

∑n
k=1 T

kf‖1 <∞. Unfortunately,
their method cannot be used to prove that for L1-contractions, f ∈ G(T )L1

if supn
∥∥∑n

k=1
Tkf
k

∥∥
1
< ∞, since the coefficients {αn}n≥1 of G(z) are not

all negative (though they eventually are). However, we can still deal with
isometries of L1.

Recall that for a complete finite measure space, L∗∞ = L∗∗1 is identi-
fied with the space ba(S,Σ, µ) of bounded finitely additive (signed) mea-
sures, called charges (see [8, IV.8.16]), and by the canonical embedding L1

is identified with the space M(S,Σ, µ) of countably additive signed mea-
sures absolutely continuous with respect to µ. A charge η ∈ ba(S,Σ, µ) is
called a pure charge if |η| does not bound any non-negative measure, and
then ‖η + ν‖ = ‖η‖+ ‖ν‖ for any countably additive ν. Every η ∈ L∗∗1 can
be decomposed as η = η1 + η0 with η1 countably additive and η0 a pure
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charge [16]. The following lemma must be known (its first part is essentially
[16, Theorem 2.6]).

Lemma 4.1.

(i) Let η ∈ ba(S,Σ, µ) satisfy ‖η + ν‖ = ‖η‖+ ‖ν‖ for every countably
additive ν. Then η is a pure charge.

(ii) The set of pure charges is norm-closed.

Proof. (i) Write η = η1 + η0 with η1 countably additive and η0 a pure
charge. Putting ν = −η1 and using the assumption, we obtain

‖η0‖ = ‖η + ν‖ = ‖η‖+ ‖η1‖ = ‖η0‖+ 2‖η1‖,

which implies η1 = 0.
(ii) Let {ηn} be a sequence of pure charges converging in norm to η and

use (i).

Lemma 4.2. Let T be an invertible isometry of L1(S,Σ, µ). Then T ∗∗η
is a pure charge if η is.

Proof. For any ν ∈ M(S,Σ, µ) we have (T ∗∗)−1ν ∈ M(S,Σ, µ) (with
d
dµ(T ∗∗)−1ν = T−1 dν

dµ). Hence

‖T ∗∗η + ν‖ = ‖η + (T ∗∗)−1ν‖ = ‖η‖+ ‖(T ∗∗)−1ν‖ = ‖T ∗∗η‖+ ‖ν‖

and we apply Lemma 4.1(i).

Proposition 4.3. Let T be an invertible isometry of L1(S,Σ, µ). If
f ∈ L1 satisfies supn

∥∥∑n
k=1

Tkf
k

∥∥
1
< ∞, then f ∈ G(T )L1. If T is also

mean ergodic, then
∑∞

k=1
Tkf
k converges in L1-norm.

Proof. We identify f with the measure it defines. We apply Proposi-
tion 3.5 to T ∗∗ and obtain an element η ∈ L∗∗1 with G(T ∗∗)η = f . We
decompose η = η1 + η0 with η1 countably additive and η0 a pure charge.
Since T is an invertible isometry, (T ∗∗)kη0 is a pure charge for every k,
so Lemma 4.1(ii) shows that G(T ∗∗)η0 is a pure charge. Since G(T ∗∗)η1

is countably additive, f = G(T ∗∗)η1 + G(T ∗∗)η0 implies f = G(T )g with
g = dη1/dµ.

If T is also mean ergodic, G(T )L1 = G(T )(I − T )L1 and Proposition 3.3
yields the convergence.

Corollary 4.4. Let θ be an invertible measure preserving trans-
formation of a probability space (S,Σ, µ). If f ∈ L1(S, µ) satisfies
supn

∥∥∑n
k=1

f◦θk
k

∥∥
1
<∞, then the one-sided EHT

∑n
k=1

f◦θk
k converges a.e.

and in L1-norm.
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Proof. The operator Tf = f ◦ θ is a mean ergodic invertible isometry,
so the result follows by combining Proposition 4.3 with [6, Theorem 1.2].

The following theorem deals with general probability preserving trans-
formations which may not be invertible. To deal with this contingency, we
first assume that the measure space in question is a Lebesgue space; in this
setting the existence of an invertible probability preserving transformation
(also on a Lebesgue space) which has the original one as a factor (the natural
extension) is well-known (e.g. [4, p. 240]).

Theorem 4.5. Let θ be a measure preserving transformation of a Le-
besgue probability space (S,Σ, µ) with θ(S) = S. If f ∈ L1(S, µ) satisfies

(9) sup
n

∥∥∥∥ n∑
k=1

f ◦ θk

k

∥∥∥∥
1

<∞,

then the one-sided EHT
∑n

k=1
f◦θk
k converges a.e. and in L1-norm.

Proof. For f ∈ L1(µ) put Tf := f ◦ θ. Then T is an isometry of L1(µ),
mean ergodic because µ is finite.

When θ not invertible, there exists an invertible probability preserving
θ̂ on (Ŝ, Σ̂, µ̂) with a factor map π : Ŝ → S such that µ̂(π−1A) = µ(A) and
π ◦ θ̂ = θ ◦ π, which yields π ◦ θ̂n = θn ◦ π for n ≥ 0. We put T̂ ĝ = ĝ ◦ θ̂
for ĝ ∈ L1(Ŝ, µ̂). For f ∈ L1(S, µ) define f̃ = f ◦ π; the identity 1̃A = 1π−1A

yields ‖f̃‖1 = ‖f‖1, and we obtain

T̃ kf = f̃ ◦ θk = (f ◦ θk) ◦ π = (f ◦ π) ◦ θ̂k = f̃ ◦ θ̂k = T̂ kf̃ ,

so ‖
∑n

k=1 akT
kf‖1 = ‖ ˜∑n

k=1 akT
kf‖1 = ‖

∑n
k=1 akT̂

kf̃‖1.

It follows that if f ∈ L1(S, µ) satisfies (9), then supn
∥∥∑n

k=1
T̂k f̃
k

∥∥
1
<∞,

and by Proposition 4.3,
∑n

k=1
T̂k f̃
k converges in L1(µ̂)-norm. Now∥∥∥∥ n∑

k=j

T kf

k

∥∥∥∥
1

=
∥∥∥∥ n∑
k=j

T̂ kf̃

k

∥∥∥∥
1

shows that
{∑n

k=1
Tkf
k

}
is Cauchy in L1(µ), so converges in norm. The a.e.

convergence follows from the norm convergence by [6, Theorem 1.2].
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